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a b s t r a c t

In this paper the k-nearest-neighbours (KNN) based method is presented for the classification of time ser-
ies which use qualitative learning to identify similarities using kernels. To this end, time series are trans-
formed into symbol strings by means of several discretization methods and a distance based on a kernel
between symbols in ordinal scale is used to calculate the similarity between time series. Hence, the idea
proposed is the consideration of the simultaneous use of symbolic representation together with a kernel
based approach for classification of time series. The methodology has been tested and compared with
quantitative learning from a television-viewing shared data set and has yielded a high success identifica-
tion ratio.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The study of the temporal tendency of systems is an incipient
research area and the development of new methodologies is neces-
sary in order to analyze and process the time series obtained for
these systems. Usually these time series are stored in large dat-
abases, and a method for the simplification of information, such
as a qualitative method, is therefore useful. The symbolic represen-
tation of experimental data offers a potentially powerful tool for
studying dynamic behaviour and for model fitting (Lesher, Guan,
& Cohen, 2000). Nevertheless, when large data sets are aggregated
into a smaller data size, data tables of a higher complexity are re-
quired e.g. those of interval type instead of standard (Do & Poulet,
2005).

Given two time series, one of the major problems in database
series is to obtain a similarity measure that provides an adequate
approach to the problem studied. Many approaches to a similarity
measure exist based on the Euclidean distance (Sivaramakrishnan
& Bhattacharyya, 2004), and dynamic time warping (DTW; Sakoe &
Chiba, 1978). Nevertheless, kernels methods provide a greater vari-
ety of measures than these since, for example, the Euclidean dis-
tance and Lp distances are particular cases of distances based on
kernels (Schölkopf & Smola, 2002).

Ever since Agrawal, Faloutsos, and Swami (1993), many ap-
proaches have been proposed to solve the problem of an efficient
comparison between time series. In this paper, we propose carry-
ing out this comparison from a qualitative perspective, which takes
into account the variations of the time series values. The idea of our
ll rights reserved.
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proposal is to abstract the numerical values of the time series, as in
Lesher et al. (2000), Lin, Keogh, Lonardi, and Chiu (2003), Robinson
(2007) for example, by using the discretization of continuous val-
ues, and to concentrate the comparison on the shape of the time
series. A similarity measure can be seen in Lin et al. (2003) which
is defined on time series and is based on a qualitative perspective,
although one of the most commonly used similarity measures is
the longest common subsequence (LCS; Paterson & Dancik, 1994)
which is a special case of DTW.

Almost all time series data sets are of very high dimensions
which presents a major challenge since all non-trivial data mining
and indexing algorithms degrade exponentially with dimensional-
ity. Nevertheless, the qualitative perspective permits to use SVM
and kernel based methods (Angulo, Anguita, Gonzalez-Abril, & Ort-
ega, 2008; Schölkopf & Smola, 2002) since both the computational
cost and the memory requirement are reduced when interval data
is used instead of single data. Thus, massive data sets must be sum-
marized into interval data sets (Bock & Diday, 1999). Another
important reason for using a qualitative learning is that there are
many areas of research where data sets are obtained by using sta-
tistical inference i.e. each data point is not a precise input since it is
given as a confidence interval.

Many researchers have considered transforming real-value time
series into symbolic representations since there is an enormous
wealth of existing algorithms and data structures that allow the
efficient manipulation of symbolic representations (Lin et al.,
2003) from the text processing and bioinformatics. Furthermore,
discretization itself may be viewed as a discovery of knowledge
in that critical values in a continuous domain may be revealed.

The rest of this paper is structured as follows: in Section 2 an
overview of the methodology is presented and a distance based
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Fig. 1. Sample of translation. The original time series, the values of differences (in
bars) and the assigned labels to each transition between adjacent values (high,
medium, low, 0, Low, Medium, and High). The example uses symmetrical
discretization with 5 ranges whose landmarks are shown as horizontal lines.
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on a kernel over symbol strings is also included. A practical imple-
mentation is described in Section 3. Conclusions and ideas for fu-
ture work are enumerated in the final section.

2. Proposed methodology

Let B be a time series data set which is labelled with C different
classes (C > 1). First, by using cross validation, B is split into two
subsets: a learning and a test subset. Assuming that the learning
set X = {x0, � � � ,xn} is given, let XT ¼ f~x0; � � � ; ~xng be the typified time
series obtained from X where ~xi ¼ xi�X

SX
and X and SX are the mean

and the standard deviation of X, respectively. Typification is chosen
since the series is robust to outliers produced by noise in the series
values, and it is invariant against scale and offset shifting when the
offset is positive in the X original time series. Furthermore, it is
well understood that it is meaningless to compare time series with
different offsets and amplitudes (Keogh & Kasetty, 2002).

Let XD = {d1, � � � ,dn} be the series of differences obtained from XT

as follows: di ¼ ~xi � ~xi�1 for i = 1, � � � ,n. The difference series shows
the evolution of the time series, and hence the focus is on the over-
all shape and not on particular values.

In the next step several related tasks are accomplished: (i) the
discretization methods are applied over the learning subset by pro-
ducing a set of landmarks, (ii) the landmarks are used as the limits
of intervals and a qualitative symbol is assigned to each interval,
and (iii) finally, the series are translated into symbol strings.

We are going to evaluate our method with the following dis-
cretization methods1:

� Equal-width intervals or EWI. The range of values is divided into k
equal-size intervals.

� Equal-frequency intervals or EFI. This method finds a set of inter-
vals that present an approximately equal number of values.

� CUM method (González & Gavilán, 2001). This method makes a
clustering of the initial values by minimizing the mean of the
standard deviation in each interval, under the constraint that
all the class marks must be equally representative.

� CAIM is a supervised discretization method and obtained good
results in terms of number of intervals (Kurgan & Cios, 2004).

� AMEVA method is based on Chi-square statistics (Gonzalez-
Abril, Cuberos, Velasco, & Ortega, 2009).

All representations allow the real-value data to be converted in
a streaming fashion, with only an infinitesimal time and space
overhead. Note that although the label of each time series is
known, the unsupervised discretization methods EWI, EFI and
CUM are used, since even if the methodology is defined from a
supervised perspective, in the future an unsupervised approach
can be desired.

All the applications of the methods are applied to the learning
subset, and sets of interval landmarks are obtained. A symbol, actu-
ally a single character in alphabetical order, is assigned to each
interval. Each symbol is understood as a qualitative label denoting
the series evolution. This relation between intervals and characters
is the key to transforming the difference series, generated in the
typification process, into strings of characters the difference series
is used in the labelling step to produce the string of characters cor-
responding to X (see Fig. 1). Hence, a distance defined over the
strings is constructed.

Let I ¼ fðc � r; c þ rÞ � R : r > 0; a 2 Rg be the family of all the
open intervals.2 Hence, a function / : I! R2 is defined:
1 A more extensive list may be found in Kurgan and Cios (2004).
2 By default, we are working with open intervals although it is equally possible to

translate the study to closed intervals.
/ðIÞ ¼ A
c

r

� �
¼

a11 a12

a21 a22

� �
c

r

� �

From this function /, a Mercer kernel (Schölkopf & Smola, 2002),
denoted as k(�,�), is defined over pairs of intervals as the inner prod-
uct of their transformations, kð�; �Þ ¼ h/ð�Þ;/ð�ÞiR. Hence a distance
between intervals is defined (González, Velasco, Angulo, Ortega, &
Ruiz, 2004):

d2
1ðI1; I2Þ ¼ Dc Drð ÞS

Dc

Dr

� �
ð1Þ

where I1 = (c1 � r1,c1 + r1), I2 = (c2 � r2,c2 + r2), Dc = c2 � c1 and
Dr = r2 � r1. Furthermore, A must be a non-singular matrix, there-
fore / is an injective application, and S = AtA is a symmetrical and
positive defined matrix. From the A matrix, the weight given to
the position of the intervals, c, and to the size, r, can be controlled.

Other kernels defined on intervals can be cited, for example, in
Do and Poulet (2005) where a Gaussian kernel is defined based on
the Hausdorff distance, and in Nivlet, Fournier, and Royer (2001)
where interval arithmetic is used (Neumaier, 1990) from a proba-
bilistic perspective.

The conversion of a continuous attribute into labels using the
construction of different class intervals allows us to use the dis-
tance between intervals as the distance between labels. Hence-
forth, symbols are considered as letters since the ordinal scale
can be reflected in alphabetical order.

Let A ¼ fA1;A2; � � � ;A‘g be an alphabet of ‘ letters and let P be
the set of all the possible words with this alphabet. Let P1 and P2
be two words on P that are denoted by P1 = P11P12 � � � P1n,
P2 = P21P22 � � � P2m with n P m, and P1i; P2j 2A. A map is defined:

KkðP1; P2Þ ¼max
Xm

i¼1

kd2ðP1iþk ;P2iÞ; k ¼ 0; � � � ; n�m

( )

where 0 < k < 1 and d(�,�) is a distance between letters. The function
Kk is a radial basis function (RBF) since is defined as a function of a
distance and it is known that RBF kernels are general and efficient.

It can be verified that mkr2
6 KkðP1; P2Þ 6 m, 8P1; P2 2 P for all

0 < k < 1 where r = maxijd(Ai,Aj), with Ai;Aj 2A. Note that if the
words are the same size n, then: KkðP1; P2Þ ¼

Pn
i¼1k

d2ðP1i ;P2iÞ.
The main property of this function when n = m is that it is a

Mercer kernel and, therefore, a distance between words can be de-
fined as



Table 1
Identification average (%) and standard deviation in test subset (200 draws) vs. number of neighbours.

Method Labels Neighbours

1 3 5

Average Standard deviation Average Standard deviation Average Standard deviation

CAIM 7 90.5 4.26 89.4 4.56 89.1 4.74
AMEVA 3 91.6 2.74 89.4 2.77 89.7 2.81

CUM 2 90.7 2.86 88.4 2.91 89.0 2.98
3 85.9 4.04 85.1 4.20 86.1 3.88
4 75.9 6.01 71.3 5.29 70.9 5.59
5 73.2 5.41 71.0 5.42 72.3 5.52
6 82.4 4.21 80.8 4.03 80.8 4.95
7 83.2 3.56 80.0 3.69 80.0 4.28
8 85.2 3.33 82.8 2.95 82.1 3.36
9 86.4 3.15 84.9 2.60 84.6 3.13

EFI 2 91.1 2.88 90.9 2.65 90.7 2.87
3 95.5 2.13 95.4 1.98 95.1 2.02
4 88.8 3.07 87.6 3.15 87.4 3.40
5 85.2 3.87 85.1 4.14 85.4 3.85
6 80.2 4.11 77.6 4.71 76.4 4.90
7 74.6 4.78 71.7 5.31 71.0 5.37
8 75.7 4.32 71.2 4.91 70.6 5.01
9 74.7 5.26 70.4 5.27 69.1 6.20

EWI 2 71.0 11.5 65.2 13.2 66.5 12.9
3 46.0 8.08 36.3 8.26 35.0 8.90
4 71.9 11.9 67.3 14.2 68.8 14.3
5 74.9 10.7 71.0 13.0 71.9 11.9
6 72.3 10.9 68.3 13.7 70.3 13.6
7 85.8 7.76 84.7 8.22 85.9 8.28
8 75.3 9.32 73.3 10.3 74.2 11.0
9 88.1 4.90 87.4 5.76 88.0 5.27

DTW – 80,2 3,74 78,0 4,44 76,4 4,27
Euclidean distance 91,5 2,99 89,6 3,04 89,5 3,07
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Xn

i¼1
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It is very important to note that d(P1,P2) defines a quasi-distance
between time series since two different series can define the same
character string.

The k parameter models the importance given to matching let-
ters vs. the comparison of different symbols. For coincident letters
the value is always 1.

The quality of a discretization method (its ability to correctly
identify the class to which a new series from the work set belongs)
can now be evaluated. The test tries to identify every verification
series by using the nearest-neighbour algorithm. The label of the
most similar learning series to the new series is checked against
the label in this series, thereby checking if the system chooses
the right label.

For this test every discretization method is applied to all the
series. The application of the methods consists of transforming
the series into symbol strings and calculating the similarity be-
tween every pair by means of the distance defined in (2). Once
all the results are obtained for each method in every attempt, the
best method for the current data set is selected by changing the
learning and test subsets.
3. Experiments

The data to be considered is a set of television-viewing shares
(percentage of viewers tuned into a channel at a specified time)
from the seven main television channels (TV1, La2, A3, Canal Sur,
Tele5, Canal+ and Canal2Andalucı́a) in Andalusia (Spain). The data
has been provided by Canal Sur Televisión and generated by TNS
Audiencia de Medios (2003).
Time series represent the average share in 15 m blocks, there-
fore each time series has 96 instances for a 24 h period. A single
day, Wednesday, has been chosen for this study and the first 32
Wednesdays of year 2007 have been selected as the input set
and the other 20 are used as the work set to be predicted.

With respect to the discretization methods EWI, EFI and CUM,
the user must specify the number of intervals to be computed.
As there is no rule for an optimal value, all these methods will be
calculated from 2 to 9 intervals. A low number of discretization
intervals is also desired since according to Catlett (1991), discreti-
zation should significantly reduce the number of possible values of
the continuous attribute due to the fact that a large number of pos-
sible attribute values contributes to a slow and ineffective process
of inductive machine learning.

A four fold cross validation is used and several discretization
methods plus two quantitative methods are applied to the learning
subset. When a discretization method is used, then a list of inter-
vals is obtained and a letter in alphabetical order is assigned to
each interval. The learning system evaluates the number of suc-
cessful identifications in the test subset by using the k-neighbours
algorithm for each method. The results are presented in Table 1
where the average percentage and variance for all the methods
in 200 draws for 1, 3 and 5 neighbours are shown. Note that the
execution time is not taken into account since our experiments
show that it is not significant. Furthermore, it can be seen that
the qualitative methods are competitive with the quantitative
methods.

The application of the methodology presented achieves a 95%
correct identification rate for the work set series. The best discret-
ization method for this data set was EFI with 3 labels, the same
number of labels as for AMEVA which found the optimum number
of labels directly. Furthermore, it can be observed in Table 1 that
although the discretization methods build the intervals by follow-



Table 2
Percentage of correct identification in the work set for each method vs. k value.

Lambda

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CAIM 0.88 0.88 0.88 0.86 0.86 0.84 0.84 0.82 0.80
AMEVA 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.87
CUM02 0.88 0.88 0.88 0.88 0.88 0.88 0.86 0.86 0.88
EFI03 0.91 0.91 0.91 0.92 0.92 0.92 0.92 0.92 0.90
EWI09 0.85 0.85 0.85 0.85 0.84 0.84 0.85 0.87 0.85
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Fig. 2. Identification average (%) in test subset vs. number of draws.
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ing different approaches, except for some anomalous cases, the re-
sults are similar, that is, the kernel is very robust when confronted
with the discretization methods.

The level of correct identification by these methods are very
high although it is possible to question the influence of the differ-
ent parameters presented. Initially, the influence of the k parame-
ters of the kernel definition were studied. However, this had no
effect on the identification task as can be seen in Table 2 where
the best methods EWI, EFI and CUM are shown. Note that only
the CAIM method is affected by the value of k.

Moreover, the relation between the number of iterations and
the average of correct identification in the test subset is given in
Fig. 2. With the sole exception of EWI with 9 labels, the values
are very stable with more than 20 iterations. Even when taking
EWI into account, there is no important variation after 60 draws.

4. Conclusions and future work

An off-line methodology has been presented which allows the
identification of the class of time series. A comparison between
series is made based on the series tendencies and not based on
specified values. A supervised discretization on these tendencies
is carried out, which leads to an improvement of the results.

The novel features of the new method come from the symbolic
representation of time series and the distance based on a kernel be-
tween symbols. Experiments on a television-viewing share data set
are also conducted to verify the feasibility of the proposed method.

Our research is focused on finding the different behaviour pat-
terns of the system stored in a database, looking for a particular
pattern, and reducing the number to only relevant series before
applying analysis algorithms, as presented in Cuberos, Ortega, Gas-
ca, and Toro (2002). Thus this paper is a first approach to resolving
this problem. In the future, our work will focus on the extension of
the methodology to include series with multiple attributes. At the
same time, new data sets will be used to reinforce its validation.

Finally, it should be mentioned that this kernel has certain
implications in the type of similarity considered and these implica-
tions will be studied in future research. With respect to the classi-
fication methods, we are interested in applying support vector
machines in line with our other research (Angulo et al., 2008; Ang-
ulo, Ruiz, González, & Ortega, 2006).
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