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Abstract Prediction of financial crashes in a complex financial network is known to be an NP-hard problem,
which means that no known algorithm can guarantee to find optimal solutions efficiently. We experimentally
explore a novel approach to this problem by using a D-Wave quantum computer, benchmarking its perfor-
mance for attaining financial equilibrium. To be specific, the equilibrium condition of a nonlinear financial
model is embedded into a higher-order unconstrained binary optimization (HUBO) problem, which is then
transformed to a spin-1/2 Hamiltonian with at most two-qubit interactions. The problem is thus equivalent
to finding the ground state of an interacting spin Hamiltonian, which can be approximated with a quantum
annealer. The size of the simulation is mainly constrained by the necessity of a large quantity of physical
qubits representing a logical qubit with the correct connectivity. Our experiment paves the way to codify
this quantitative macroeconomics problem in quantum computers.
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1 Introduction

Economics is a complex science in which the agents’ psychology plays an essential role that is often hardly
grasped by mathematical models. However, economists do not relinquish to try to predict market behavior
employing sophisticate models, leading to the field of quantitative finance. Following this idea, quantitative
finance and economics emerged. They were applied to understand the evolution of financial markets and
economies, as well as to forecast their possible future. A realistic question in risk management is: would there
be a drastic drop in the market values if the prices of assets suffer some small perturbation? The cross-holdings
and nonlinear character of financial network dynamics will cause chain reactions, implying that sudden
drops of a market value might affect other nodes in the network resulting in a financial crisis. Presently,
the prediction of crashes is mainly performed by studying previous cases in history and comparing with
the current configuration [1,2,3,4,5,6]. While this empirical approach has been succesful [7], the economic
environment is constantly evolving. Hence, we cannot limit ourselves to predicting economic disasters which
are qualitatively similar to past events. Therefore, ab initio simulations of financial networks will become
essential for avoiding financial crises. This problem was recently shown to be NP-Hard [8]. Therefore, given
the current standpoint on complexity theory, this problem is not expected to be efficiently solvable in a
classical computer. Indeed, given the global knowledge of a financial network, the time to compute the
consequences of a perturbation would by far exceed the age of the universe.

An alternative approach to this problem was presented in Refs. [9,10], where they suggest a possible
improvement of the efficiency to tackle this type of problems by using quantum computing. In particu-
lar, a mathematically identical problem is simulated and the corresponding result measured [11,12,13,14].
Specifically, it was shown that obtaining the equilibrium configuration of a financial network is equivalent to
solving a higher-order unconstrained binary optimization (HUBO) problem, which should be feasible for a
quantum annealer allowing for multi-qubit interactions. Unfortunately, this hardware has not been realized
yet, as state-of-the-art quantum annealers are restricted to two-qubit interactions [15]. A possible work-
around, which comes at the price of introducing ancillary qubits, is to find an effective Hamiltonian with the
same low-energy subspace and two-qubit interactions at most. This leaves us with the problem of solving
a quadratic unconstrained binary optimization (QUBO) problem whose optimum encodes the equilibrium
configuration of a financial network. This problem can be addressed employing a quantum annealer. The D-
Wave 2000Q quantum annealer, equipped with a Chimera architecture, requires a large quantity of physical
qubits to obtain the desired connectivity and limits the number of institutions and assets considered. An
analysis of the changes experienced by the financial network to reach its equilibrium configuration will tell
whether a crash has occurred.

In this paper, we experimentally benchmark the study presented in Refs. [9,10]. Specifically, we compute
the equilibrium configuration of a financial network after perturbation with a D-Wave 2000Q quantum an-
nealer, and compare the result to alternative methods. Although the D-Wave machine has been successfully
used to solve problems in engineering [16], cryptography [17], biology [18], and quantitative finance [19,20]
among others, it is the first time that quantum annealing is applied to solve a problem of macroeconomics.
This should attract more attention from the finance and economic disciplines towards quantum comput-
ing [21,22,23,24,25,26,27], as well as enlarge the amount of feasible problems for quantum annealers.

The contents are organized as follows: in Sec. 2, we introduce the model of financial network that will
be considered. Sec. 3 reviews the quantum annealing algorithm to find financial equilibrium. Sec. 4 experi-
mentally proves the validity of the scheme by finding the financial equilibrium of a random network of the
largest implementable size with a D-Wave 2000Q quantum annealer; for this network, we also show exper-
imentally how the scheme allows to compute the financial equilibrium. Sec. 5 analyzes the achieved results
and discusses further possible improvements. The conclusions drawn from the work are shown in Sec. 6.
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Fig. 1 Example of a financial network: the yellow nodes and green nodes denote institutions and assets, respectively. Links
denote ownerships and cross-holdings, described by the ownership matrices D and C, respectively. Diagonal matrix C̃ represents
the self-ownership of institutions, which would be plotted as self-loops in the graph representation. The equity value Vi of
institution i is defined by summing up its ownership of all assets and cross-holdings.

2 Financial network model

A nonlinear network model for financial markets is proposed in Ref. [9]. It is made up of n institutions and
m assets, and aims at representing the market values of institutions by mapping it onto a network, as shown
in Fig. 1. We codify the prices of the m assets by an m−dimensional vector ~p ∈ Rm, where the element pk
represents the price of asset k. Moreover, an n×m ownership matrix D can be defined such that the element
Dik ≥ 0 corresponds to the percentage of asset k owned by institution i. There is also an n × n ownership
matrix C that describes the cross-holdings and self-ownerships between institutions. The coefficients Cij
denote the percentage of institution j owned by institution i. By considering all self-ownerships (i.e., the
diagonal elements) from C one forms a new diagonal matrix C̃ which represents the self-ownership only,
such that matrix C = C − C̃ codifies all cross-holdings. The equity value Vi of institution i is defined by
summing up its ownership of all assets and cross-holdings, Vi = ΣkDikpk + ΣjCijVj . One thus obtains a

matrix equation ~V = D~p+ C~V , where equity value vector ~V ∈ Rn is an n−dimensional vector. Accordingly,
the market value is the equity value rescaled with its self-ownership, resulting in the n−dimensional market
value vector ~v = C̃~V . The solution to the linear matrix equation thus reads

~v = C̃(I−C)−1D~p. (1)

We introduce the nonlinear effect of panic in the model via a Heaviside-theta function Θ; if the market
value vi drops below the critical value vic, failure of institution i occurs and its equity value drops by βi(~p)

which is governed by the price vector of assets. Once we define the failure vector~b(~v, ~p) = βi(~p)(1−Θ(~v− ~vc)),
the market value vector with nonlinearity can be written as

~v = C̃(I−C)−1(D~p−~b(~v, ~p)). (2)

Mathematically, it is the nonlinearity of ~b(~v, ~p) which makes financial networks so hard to be predicted.

This drop may cause an institution’s value to crash, a behavior which can infect other nodes in the
network. Under our definition, a financial crash happens when, after a perturbation in the assets price, the
market value of an institution considering the nonlinear term is lower than those pre-perturbation prices
calculated with the linear model.



4 Short form of author list

3 Quantum annealing algorithm

As proposed in Ref. [9] finding financial equilibrium can be represented as the minimization of an objective
function, which is equivalent to finding the ground state of a classical spin Hamiltonian.

By squaring Eq. (2), we obtain an objective function that meets its minimum value when the market
value state is set to be the equilibrium state

(3)

Thus, our task is now to find the ~v that minimizes Obj(~v) for a given financial network.
Next, we need to deal with the nonlinear terms (modeling failure) of the objective function. The reason

is that once the objective function is transformed to a spin-1/2 Hamiltonian, it should ideally be made of
polynomial terms only, due to the limitations of quantum annealers. Thus, one expands the failure terms
with Heaviside-theta functions in terms of polynomials. This expansion is not unique, and here we choose
the Legendre expansion [9],

Θ(x) =
1

2
+

∞∑
l=1

(Pl−1(0) + Pl+1(0))Pl(x), (4)

in the domain [−1, 1], with Pl(x) to be the l-th Legendre polynomial. By setting x = (vi− vci )/vimax, Eq. (4)
enables us to expand Θ(vi − vci ) in the range of vi ∈ [0, vimax]. Using this expansion as an example, we take
the approximation

bi(vi, ~p) ≈ βi(~p)
(

1

2
−

r∑
l=0

Γl2
l

l∑
k=0

(
l

k

)( l+k−1
2

l

)
v̄ki

)
(5)

where Γl =
√
π

2Γ( 2−l
2 )Γ( 3+l

2 )
and v̄i =

vi−vci
vimax

.The polynomial expansion removes the discontinuity while

maintaining the strong nonlinearity of the network.
We now encode the continuous variables vi with classical bits. This will allow rewriting the resulting

objective function in digital form. The expansion is straightforward, and reads vi =
∑∞
α=−∞ xi,α2α. However,

due to the limited resources in real-world devices, one must truncate this expansion, i.e., vi ≈
∑q
α=−q xi,α2α,

where xi,α are classical bits with binary values 0 or 1. In this way, the market value of institution i is encoded
with 2q + 1 classical bits. The maximal market value vmaxi is given by

∑q
α=−q 2α.

Considering (vi− vci )k =
∑k
h=0(−1)h

(
k
h

)
vk−hi (vci )

h and vni =
∑
m0+...+mp=n

(
n

m0,...,mp

)∏mα 6=0
0≤α≤p 2αmαxi,α,

the resulting objective function is a polynomial of binary variables xi,α of degree 2r.

Ĥ =
∑
i

 q∑
α=−q

xi,α2α − γi +
∑
j

C̄ijbj(xj,α, ~p)

2

(6)

with γi =
∑
j C̄ij

∑
kDjkpk and C̄ij = C̃ii(I− C)−1ij .

To express it as a spin-1/2 Hamiltonian, we replace the binary variables xi,α by qubit operators x̂i,α with
eigenvalues 0 and 1, i.e., x̂i,α|0〉 = 0, x̂i,α|1〉 = |1〉. The Pauli-z operator satisfies x̂i,α = (1 + σ̂zi,α)/2, and
therefore the Hamiltonian reads

Ĥ = Poly2r(σ̂
z
i,α), (7)

which is equivalent to our objective function but written with Pauli matrices. This Hamiltonian includes all
types of multi-spin interactions, up to 2r-body terms.
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Fig. 2 Recast of quantum Hamiltonian with k-qubit interactions into a modified, effective Hamiltonian with the same low-
energy spectrum with two-qubit interactions at most. We illustrate the particular case of a k = 4-qubit interactions, which
requieres the introduction of 4 ancilla qubits to obtain the effective Hamiltonian.

The Hamiltonian obtained in Eq. (7) is appropriate for a quantum annealer that allows many-qubit inter-
actions. However, state-of-the-art quantum annealers only accept inputs with at most two-qubit interactions.
Finding the ground state of a spin-1/2 Hamiltonian, as the one obtained in Eq. (7), is equivalent to solv-
ing a Quadratic Unconstrained Binary Optimization (QUBO) problem, which is the input of the quantum
annealer. Thus, we should recast our quantum Hamiltonian into a modified, effective Hamiltonian with at
most two-qubit interactions. Some protocols achieving exactly this are proposed in Refs. [28,29,30,31,32,33,
34], in particular we base our protocol in Ref. [34], where k ancilla qubits are introduced to implement an
effective k-qubit interaction. Suppose that there is a k-qubit interaction term Ĥk = JkΠ

k
i=1σ

z
i with the same

low-energy spectrum of another Hamiltonian term H̃k with at most two-qubit interactions. We can express
H̃k with k logical qubits and k extra ancilla qubits as

H̃k = J

k∑
i=2

i−1∑
j=1

σ̂zi σ̂
z
j + h

k∑
i=1

σ̂zi

+Ja
k∑
i=1

k∑
j=1

σ̂zi σ̂
z
j,a +

k∑
i=1

hai σ̂
z
i,a, (8)

as represented in Fig. 2. This two-qubit Hamiltonian has the same low-energy spectrum than Ĥk when
J , Ja, h and hai are set to some appropriate values. As Ref. [34] suggested, this can be achieved once
qi = (−1)k−i+1Jk + q0, h = −Ja + q0, hai = −Ja(2i − k) + qi and J = Ja, with any q0 that satisfies
|Jk| � q0 < Ja and |Jk| � Ja − q0 < Ja. These conditions can be relaxed to |Jk| < q0 < Ja and
|Jk| < Ja−q0 < Ja if one aims at having the same ground state only, instead of the whole low-energy sector.

4 Implementation in a D-Wave 2000Q quantum annealer

Once shown that it is possible to recast the problem of finding financial equilibrium into a language that is
amenable to quantum annealers, this section deals with its implementation using a state-of-the-art quantum
annealer, namely, the D-Wave 2000Q. This quantum annealer consists of 2048 qubits connected according
to the Chimera graph topology (see Fig. 3). It is designed to solve embedded Ising problems or QUBO
problems.

Two simulations were produced:
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Fig. 3 Chimera graph topology implemented by the D-Wave 2000Q quantum annealer. The 2048 qubits are partitioned into
subgraphs of 8 qubits. The connection between subgraphs is sparse, in each of these subgraphs there are two sets of four qubits;
each qubit connects to all qubits in the other set but to none in its own, forming a K4,4 bipartite graph.

1. A financial network without failure term, which is simple to solve on a classical computer in order to
benchmark the performance of the quantum processor.

2. A financial network with the inherently nonlinear risk of failure. We will perturb the asset price vector
in this network to compute the new equilibrium configuration using the quantum annealing algorithm.

We initially generate a financial network with 10 institutions and 15 assets. To demonstrate the algorithm,
we randomize the ownership matrix D with a Dirichlet distribution that satisfies

∑n
i=1Dij = 1, where Dij

are random variables. The cross-holding matrix C is generated in a similar way but with a constraint that all
diagonal elements should be larger than 0.5, ensuring that all institutions can make decisions according to
their own wills. Thus, we randomize C̃ii between 0.5 and 1 and randomize

∑n
i=1 Cij = 1−C̃jj with a rescaled

Dirichlet distribution. The price vector ~p is also random, with pi ∈ [10, 40]. The network configuration is
shown in Figs. 4 and 5.

We can calculate the equilibrium state ~vq and the equity value vector ~V on a classical computer using

~vq = C̃(I−C)−1D~p, (9)

~V = (I−C)−1D~p. (10)

The objective function shown in Eq. (3) was implemented, for benchmarking reasons, both in a quantum

annealer and a classical simulator. Variables vi were encoded, vi =
∑6
α=0 2αxi,α, on seven qubits. As such,

this constrains the vi to be integers smaller than 127. A quantum implementation of this algorithm does not
require ancilla qubits, as there are no many-qubit interactions.

The QUBO for this linear problem is a 70×70 matrix, with 210 couplers which cannot be solved directly
due to the topology structure of the quantum annealer. D-Wave provides a software named qbsolv that allows
to combine the classical computer with its quantum annealer by splitting the QUBO matrix into partition
matrices that can be embedded in the quantum annealer. As a decomposing solver, it finds a minimum value
of a large QUBO problem by splitting it into pieces solved either via a D-Wave system or a classical tabu
solver (both approaches were considered here for comparison purposes). Since the D-Wave 2000Q processor
is a quantum annealer, 20 results would be obtained from a qbsolv process with a default setting; these results
should be handled by a correction process, e.g., majority voting, to help us identify the most plausible answer.
The result of this QUBO problem is shown in Fig. 6, where the exact solution via solving a linear matrix
equation, qbsolv solution with classical tabu solver, and qbsolv solution with D-Wave quantum annealer, are
compared. It is straightforward to observe that a quantum annealer provides a similar solution to the exact
solution than the classical tabu solver.

While the failure-free model only has linear and quadratic terms in vi, the nonlinear model has powers
of vi up to order 2r, as shown in Eq. (7). For large r, this can be extremely resource-consuming in terms of
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Fig. 4 Ownership matrix D for the linear model. The element Dik ≥ 0 corresponds to the percentage of asset k owned by
institution i. We randomize the ownership matrix D with a Dirichlet distribution that satisfies

∑n
i=1 Dij = 1.
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Fig. 5 Cross-holding matrix C for the linear model that describes the cross-holdings and self-ownerships between institutions.
Cross-holding matrix is generated in a similar way to ownership matrix but with a constraint that all diagonal elements should
be larger than 0.5, ensuring that all institutions can make decisions according to their own wills.

ancillary qubits due to the requested connectivity. An estimation of the number of qubits can be made by
counting the number of interaction terms; Eq. (7) indicates that Ĥ can have up to

∑2r
α=0

(
n(2q+1)

α

)
terms,

where n(2q + 1) denotes the logical qubits that are required. In each term, 3-to-2r new ancilla qubits are
needed, depending on the number of logical qubits in this term. Therefore, the number of necessary qubits
grows rapidly with the degree of the polynomial expansion r. Note that the aforementioned QUBO problem
is NP-hard for any n ≥ 2. In practice, this is an upper bound to the required resources, calculated assuming
that Ĥ has all possible terms up to order O(2r).

Here, we implement an enhanced model with failure terms on the basis of the linear model previously
simulated. We perturb the vector of asset prices, leaving the ownership matrix D and cross-holding matrix C
invariant, and recompute the equilibrium state. Specifically, we set the price of some random assets to zero (to
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Fig. 6 Linear-model result. The first row shows the result if the matrix equation is solved exactly, the second row if qbsolv with
tabu classical solver is used, and the third row if qbsolv with D-Wave 2000Q solver is employed. We observe that a quantum
annealer provides a similar solution to the exact solution than the classical tabu solver.
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Fig. 7 Ownership matrix D for the implemented network with failure terms. The element Dik ≥ 0 corresponds to the
percentage of asset k owned by institution i. We randomize the ownership matrix D with a Dirichlet distribution that satisfies∑n

i=1 Dij = 1.

simulate, e.g: the assets’ destruction). In this study, we will use an expansion of Ĥ to third order, which still
characterizes the phenomenon of sudden drop near the critical value. Moreover, this approach provides strong
nonlinearity while saving plenty of qubit resources. As a result, 70 logical qubits and 872,690 ancilla qubits are
required with 4,446,575 couplers in the problem. This results in the requirement of about 6TB memory, since
each element has an accuracy of double float in qbsolv. Due to the limitations of state-of-the-art techniques,
the network is reduced to three institutions and each market value vi is encoded by five qubits, bounding
the maximum market value to be 31. New 3 × 7 ownership matrix D and 3 × 3 cross-holding matrix C are
generated while the price vector ~p before perturbation is ~p = {8.43, 14.47, 6.75, 8.09, 19.11 , 11.32, 7.19}T .
The network configuration is shown in Figs. 7 and 8. The equilibrium state before perturbation without
nonlinearity is given as ~vq = {21.18 23.33, 30.83}T , and the critical value vector is still set to be 80% of

the original equilibrium state, while the failure strength ~β is considered to be 30% of the original equity
value. The corresponding perturbed price vector is given as ~p = {8.43, 14.47, 0, 8.09, 0 , 11.32, 7.19}T .
Before calculating the new equilibrum state with nonlinearity and perturbation, some parameters, like Ja

and q0, must be set. For the minor embedding of a submatrix in the D-Wave quantum annealer, this is done
by introducing a penalty function between qubits in the Chimera graph requiring Jm ≥ Ja, which means
that the Ja for mapping multi-qubit interactions to two-qubit interactions should be in the proper scale.
Meanwhile, as we mentioned in the theory part, we need to sample out the thermal fluctuation by assuming
that |Ĥk| is much smaller than Ja, or the protocol will break down because those ancilla qubits will not be
in the corresponding ground state anymore. Thus, in the implementation we took Ja = 20Jk and q0 = 10Jk,
such that this could ensure that either q0 or Ja − q0 would be at least 10 times larger than Jk.
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Fig. 8 Cross-holding matrix C for the implemented network with failure terms that describes the cross-holdings and self-
ownerships between institutions. Cross-holding matrix is generated in a similar way to ownership matrix but with a constraint
that all diagonal elements should be larger than 0.5, ensuring that all institutions can make decisions according to their own
wills.

For this problem, the QUBO matrix had the size of 8280 × 8280, with 15 logical qubits, 8265 ancilla
qubits and 38,790 couplers. Remark that the available quantum annealer structure is not optimized for this
problem and, also, that the translation is not efficient because of sparse connectivity of the quantum processor.
Therefore, the only benefit here is to explore the possibility of having certain sub-exponential speedup in
the implementation of the problem in a quantum annealer [35], by optimizing submatrices generated by the
partition algorithm in qbsolv. Finally, we compare our results from the quantum annealer with the integer
equilibrium solution calculated with a straightforward method by trying 323 times in Fig. 9, which shows
a good agreement and the accuracy of the proposed method. Comparing the results after the perturbation
with the pre-perturbation values, we can conclude that we have detected the financial crash.
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Fig. 9 The first group (left) is the equilibrium without failure term before perturbation. The second group (center) depicts the
integer result of the implemented network with polynomial expansion calculated with a straightforward method by trying 323

times. The third group (right) shows the outcome from qbsolv software in D-Wave 2000Q. The error bar characterizes a 95%
confidence interval. The agreement between integer and annealer solutions confirms the feasibility and accuracy of the method.
Additionally, by comparing both with the pre-perturbation values, we can conclude that we have detected the financial crash.

5 Results and discussion

D-Wave is a quantum annealer designed to deal with QUBO problems, e.g., Ising model. However, the
problem faced in this paper, namely, financial crisis prediction with nonlinearity associated to panic, is not
QUBO but HUBO instead, thus requiring multi-qubit interactions. In order to approximate this HUBO
problem with two-qubit interactions, at the current stage of hardware and software we were limited to
simulate a small financial network, made up of three institutions and cross-holdings.

An effective two-qubit quantum Hamiltonian could still not be read directly in D-Wave system which
requires QUBO type input or Ising type input. Although some open-source software like pyqubo can generate
it, the input size must be very small in order to avoid a stack overflow associated with recursion errors. A
possible solution is to produce a Mathematica script that reads each term, write it as a string of coefficients
and qubits in an input file for the D-Wave system. Once we generate the input for this problem, this is still
too large to be embedded in the D-Wave 2000Q quantum annealer because of the graph structure. Thus,
qbsolv is an inevitable option for us, which works by separating the large matrix to submatrices and solve
them by a classical tabu solver or D-Wave solver. This kind of hybrid computation provides the possibility to
solve the complicated problem but brings some new constraints, namely: (i) Local hardware. Once the QUBO
matrix is provided, qbsolv allocates dynamic memory before separating it to submatrices with elements of
double precision floats, by requiring a size of 8n × n bytes of memory. However, the bottleneck is not the
memory size but the performance of CPU since a large QUBO matrix will consume exhaustive CPU time if
one needs high accuracy of the optimized result; (ii) Algorithm. Instead of a real quantum annealing process
for the whole matrix, qbsolv provides a tabu algorithm or D-Wave 2000Q quantum annealer for submatrices.
The partition strategy for generating submatrices may get stuck in a local minimum instead of the global
minimum that quantum annealing guarantees with high probability under ideal conditions, i.e. in absence
of decoherence and in the adiabatic limit. Considering that the logical qubits only encode less than 1% in
the QUBO matrix, the risk of getting stuck is still high, even if we sample over the thermal distribution
or give a huge repeat limitation in the main loop to improve its accuracy. We would have to customize a
random seed for the separation, and check the final result manually, to see whether the result is near from the
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equilibrium. Another option is that one may send the QUBO matrix to the solver many times and average
the result to obtain the best solution. (iii) Quantum annealer. The submatrices will be sent to D-Wave
2000Q quantum annealing device for optimization after they are generated by Glover’s algorithm [36]. In
the quantum annealing process, magnetic fields are applied to the processors and the strength should be
accurate because Jk, Ja in the QUBO matrix and Jm for the embedding belong to different magnitudes.
Any imprecision in the system preparation will cause significant deviation from the correct result.

In this implementation, the accuracy is not especially high, since we are not optimizing the objective
function rigourously because the market values are integers vi ∈ [0, vmax] constrained by the qubits we take
to encode them. The computation time is also long, considering that there is a straightforward but equivalent
classical algorithm by testing the value of the objective function 323 times by brute force, corresponding to
all de possible combinations. Although mapping it to a QUBO problem and optimizing it with a general
quantum annealer is not efficient enough for current technology, we believe it is a valuable example of how
one can solve an NP-hard problem via quantum computation. With quantum annealers designed for solving
HUBO problems that allow an efficient mapping multi-qubit interactions to a QUBO problem, we may
obtain a speed up factor in forecasting the behavior of complex financial networks over the use of general
purpose annealers. We expect this kind of quantum solver may be available in the near future. Meanwhile,
D-Wave has recently announce its next generation of quantum annealers called the Advantage system [37].
It would consist of more than 5000 qubits connected with each other according to the Pegasus topology. In
this manner, one could improve the number of qubits and the connectivity by a factor of 2.5.

Considering that a specialized quantum annealer for HUBO problems would not be available to the public
anytime soon, we now analyze the possible ways to enhance the performance of D-Wave 2000Q quantum
annealer on this problem. After compromising on the maximum two-qubit interactions in hardware, the
subsequent strategy will be reducing the number of ancilla qubits. With fewer ancilla qubits, the size and
accuracy of a solvable network can be improved. As proposed in Ref. [34], the multi-to-two mapping is a
general method, but for three-to-two, for example, a more efficient mapping can be constructed with only
one ancilla qubit. Suppose there is a sub-Hamiltonian of three-qubit interactions

Ĥ3 = J3σ̂
z
1 σ̂

z
2 σ̂

z
3 . (11)

A subgraph with full connectivity of three logical qubits and one ancilla qubit is shown in Fig. 10, where the
equivalent Hamiltonian is given as

H̃3 = J

3∑
i=2

i−1∑
j=1

σ̂zi σ̂
z
j + h

3∑
i=1

σ̂zi + Ja
3∑
i=1

σ̂zi σ̂
z
a + haσ̂za. (12)

At variance with the previous protocol, Ja = 2J > h and ha = 2h = 2J3. Also, for sampling out the thermal
fluctuation, we take Ja ≥ J3, to prevent the protocol to fail for the same reason. The ancilla qubits can be
reduced to about 7000 with this method. Meanwhile, the partition method in qbsolv may cause the system
to get stuck in local minima which requires a better algorithm in the main loop.



12 Short form of author list

σ̂z
1

σ̂z
2

σ̂z
3

σ̂z
a

Fig. 10 An efficient encoding of three qubits, making use of only one ancilla qubit. The multi-to-two interaction Hamiltonian
mapping is a general method, but for three-to-two, a more efficient mapping can be constructed via a subgraph with full
connectivity of three logical qubits and one ancilla.

6 Conclusion

We have implemented in a D-Wave quantum computer the algorithm proposed in Ref. [9], to solve the equi-
librium state of a complex financial network that predicts financial crashes. Although the size of the studied
financial network is limited, this proof of principle is in agreement with the result of an exhaustive search.
Moreover, this work is a convincing evidence that quantum computation can be used to study quantitative
finance and help institutions anticipate risks. This result may be improved with the design of a customized
“financial quantum annealer”: a quantum processor with suitable connectivity for efficient embedding of
this kind of problems. Such coherent quantum annealers can be built with current technology [38,39,40],
providing convenient multi-qubit couplings.
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