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An approach that provides a qualitative description of any image is presented in this paper. The main
visual features (shape and colour) and the main spatial features (fixed orientation, relative orientation
and topology) of each object within the image are described. This approach has been tested in two real
scenarios that involve agents and human interaction: (i) images captured by the webcam of a mobile
robot while it navigates, and (ii) images of tile compositions captured by an industrial camera used to
select tile pieces to be used in assembling tile mosaics. In both scenarios, promising results have been
obtained.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Digital images are fully integrated within modern daily life. Dig-
ital cameras are used to take photographs of trips and holidays,
mobile phone cameras allow users to capture any scene in every-
day life, and webcams in laptops are used to communicate the
images of users’ surroundings instantly across the network. The
digital images generated can be easily copied, deleted, edited, sent
by email or multimedia messages, included in web pages, etc. and
computer systems and programs have been developed to provide
all these possibilities. However, there is still no system capable of
describing a digital image cognitively, that is, in a similar way to
how people do it.

Psychological studies carried out on how people describe
images [1–4] explain that people find the most relevant content
in the images and use words (qualitative tags) to describe it. Usu-
ally different colours/textures in an image indicate different ob-
jects/regions of interest to people [5]. Moreover, cognitive studies
[6] explain that, although the retinal image of a visual object is a
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quantitative image in the sense that specific locations on the retina
are stimulated by light of a specific spectrum of wavelengths and
intensity, the knowledge about this image that can be retrieved
from memory is qualitative because absolute locations, wave-
lengths and intensities cannot be retrieved from human memory.
Thus, qualitative representations are similar in many ways to the
mental images that people report when they describe what they
have seen from memory or when they attempt to answer questions
on the basis of visual memories [7,8].

Therefore, a cognitive description of any digital image must be a
qualitative description that could be understood and interpreted
by human users, which would allow the user-machine communi-
cation in many applications to be enhanced. For example, the qual-
itative description obtained may be used as the key search in
image retrieval from data bases, and it may also be easily post-pro-
cessed to produce a written narrative description of any image that
may be included in a user-interface or read aloud by a speech syn-
thesiser application for blind users to know what the image shows.
Moreover, a cognitive description of a digital image must be able to
describe any kind of object/region in the image by its features,
regardless of whether it has been seen or unseen previously, as
people can describe a scene or objects that they have never seen
before or the names of which they cannot recall. Finally, it must
be possible to extract and compute a cognitive description of any
digital image automatically. It must also be independent of the im-
age segmentation methods used to obtain the relevant regions in
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the image, so that the system could apply a new more efficient
method when it appears in the literature.

However, using computers to extract visual information from
space and interpreting it in a meaningful way as human beings
can do remains a challenge. Because digital images represent visual
data numerically, most image processing has been carried out by
applying mathematical techniques to obtain and describe image
content. In the recent literature there are methods that describe
and compare digital images numerically in order to obtain a degree
of similarity between them [9–12]. All these approaches succeeded
in the task they were designed for. However, they produce huge
numerical file descriptions that cannot be interpreted or given a
meaning without a correspondence of descriptions produced by
other images of visualised scenes or objects previously stored in
memory. Moreover, most of them need training or learning tech-
niques. The main disadvantage of these methods is that a reposi-
tory of all the possible images of scenes or objects existing in the
world is still not possible. Therefore, they only succeed in specific
delimited contexts. And they are not cognitive because they are
not able to describe any feature of an object or scene that they have
not seen before, that is, that have not been previously stored in
memory.

Furthermore, extracting semantic information from images is
still an on-going area of research in computer vision. The associa-
tion of meaning with the representations of objects obtained by ro-
botic systems, also known as the symbol-grounding problem, is a
prominent issue within the field of Artificial Intelligence [13]. A
qualitative description of images can contribute in this topic be-
cause it would be understandable not only by people but also by
intelligent agents. The advantage of a description based on qualita-
tive tags is that a semantic meaning can be assigned to them by
means of ontologies. Therefore, the knowledge of any agent able
to describe images qualitatively would be increased, i.e. a software
agent could ‘know’ the content of the images on the Web or a phys-
ical agent (i.e. a mobile robot) could ‘know’ the features of all the
objects in the images captured by its webcam even if these objects
have not been seen before.

In this paper, the contribution presented is the automatic
extraction of a qualitative description of any digital image based
on the description of the visual and spatial information of the rel-
evant regions within it, which are extracted independently of the
segmentation method applied to the image. Specifically, the Qual-
itative Image Description approach (QID approach) uses qualitative
models of shape and colour to describe the visual features of each
relevant region in the image, and the qualitative models of topol-
ogy [14] and orientation [15,16] to describe their spatial features.

The QID approach is intended to contribute to the solution of
the open research issues previously presented. In this paper, the
QID approach is applied to two real-world scenarios that involve
agents and human interaction: (i) images captured by the webcam
of a mobile robot while it navigates, and (ii) images of tile compo-
sitions captured by an industrial camera used to select tile pieces
to be used in assembling tile mosaics. In addition, here the QID ap-
proach is generalised to show its flexibility in all kind of images
and also its adaptability to other scenarios (i.e. medical image
description, geographical image description, etc.).

This flexibility opens the way to future applications that involve
extending the QID approach for: (1) extracting meaning from
images and improving the understanding of those images by web
agents by translating the QID to a description logics-based ontol-
ogy; (2) obtaining a semantic similarity measure between the
meaning of two ontological descriptions, where this similarity
would calculate the resemblance between the different instances
generated; (3) measuring the similarity of two qualitative image
descriptions from the point of view of human thinking; (4) using
that similarity measure for visual image/scene recognition and
retrieval from a cognitive point of view (applicable to design auto-
mation processes, psychological research, and other fields involv-
ing imitation and study of human perception); (5) generating a
human-language description for each processed image using a con-
text free grammar which may produce a written paragraph
describing the scene and which may be read aloud for a speech-
synthesiser application for blind users to understand; etc.

The remainder of this paper is organised as follows. Section 2
presents the related work. Section 3 presents the QID approach
and its implementation is explained in Section 4. Section 5 details
the two scenarios where the experimentation was carried out and
the results obtained. Finally, conclusions are drawn in Section 6.
2. Related work

Similar approaches that extract qualitative or semantic infor-
mation from images representing scenes have appeared in the lit-
erature [17–20,10]. Socher et al. [17] provided a robotic
manipulator system with a verbal description of an image so that
it can identify and pick up an object that has been previously mod-
elled geometrically and then categorised qualitatively by its type,
colour, size and shape. The spatial relations between the prede-
fined objects detected in the image are also described qualitatively.
Lovett et al. [18] proposed a qualitative description for sketch im-
age recognition, which described lines, arcs and ellipses as basic
elements and also the relative position, length and orientation of
their edges. Qayyum and Cohn [19] divided landscape images
using a grid for their description so that semantic categories (grass,
water, etc.) could be identified and qualitative relations of relative
size, time and topology could be used for image description and re-
trieval in data bases. Oliva and Torralba [20] obtained the spatial
envelope of complex environmental scenes by analysing the dis-
crete Fourier transform of each image and extracting perceptual
properties of the images (naturalness, openness, roughness, rug-
gedness and expansion) that enable the images to be classified in
the following semantic categories: coast, countryside, forest,
mountain, highway, street, close-up and tall building. Quattoni
and Torralba [10] proposed an approach for classifying images of
indoor scenes in semantic categories such as book store, clothing
store, kitchen, bathroom, restaurant, office, classroom, etc. This ap-
proach combined global spatial properties and local discriminative
information (i.e. information about objects contained in places)
and used learning distance functions for visual recognition.

All the studies described above provide evidence for the effec-
tiveness of using qualitative information to describe images. How-
ever, in the approach developed by Socher et al. [17], a previous
object recognition process is needed before it becomes possible
to give a qualitative description of the image of the scene the robot
manipulator has to manage, whereas the QID approach is able to
describe the image of the scene in front of the robot without this
prior process. The approach of Lovett et al. [18] is applied to
sketches, while the QID approach is applied to digital images cap-
tured from the real robot environment. Qayyum and Cohn [19]
used a grid to divide the image and to describe what is inside each
grid square (grass, water, etc.), which is suitable for their applica-
tion. However, the objects are divided into an artificial number of
parts that depend on the size of the cell, while the QID approach
extracts complete objects. Oliva and Torralba’s [20] approach is
useful for distinguishing between outdoor environments. How-
ever, as this approach does not take into account local object infor-
mation, it will obtain similar spatial envelopes for similar images
corresponding to the indoor environments where our robot navi-
gates, such as corridors in buildings. Quattoni and Torralba’s [10]
approach performs well for recognising indoor scenes, although
it uses a learning distance function and, therefore, it must be



Fig. 1. Structure of the qualitative image description obtained by the QID approach.

Fig. 2. Example of (a) an object within a digital image and (b) the extraction of the
relevant points of the boundary of the object.
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trained on a dataset, while the QID approach does not require
training.
1 The number of labels in this feature and in the rest of features must be defined in
ach situation as it can be seen in Section 5.
3. The Qualitative Image Description (QID) approach

Some studies on how people describe images can be found in
the literature [1–4] whose main objective is analysing people’s im-
age descriptions for image retrieval in databases.

Jörgensen’s research [1] studied image attributes typically
noted by participants in a series of describing tasks involving activ-
ities such as viewing images, describing them for a retrieval system
and describing them from memory. Their results show that the
mentioned attributes may be distributed in the following classes:
objects, people, colour, visual elements (e.g. shape, texture), loca-
tion, description (e.g. number of objects), people-related attributes
(e.g. emotion, social status), art-historical information (e.g. a pic-
ture, a photo, a print), abstract concepts (e.g. theme, atmosphere),
content/story (e.g. activity, event), external relation (e.g. compari-
son, similarity) and viewer response (e.g. conjecture, uncertainty).
These classes were also found in studies by Laine-Hernandez and
Westman [2] analysing of how people describe journalistic
photographs.

Psychological studies by Greisdorf and O’Connor [3] showed
that seven basic attributes generally ascribed to images when com-
puter users look at them are: objects, colour, shape, texture, loca-
tion, actions and affects. On the other hand, research by Wang
et al. [4] on how humans describe relative positions of image ob-
jects show that the relations of direction (right, left, above, below),
topology (overlap, separate, touch, in, out, etc.) and distance (far,
near, etc.) are the most used.

These studies provide us an idea of all the concepts people pay
attention to when an image is looked at. In order to simplify the
amount of information to extract from an image, the QID approach
tackles the problem of qualitative image description by describing
objects within an image visually and spatially as it is shown in
Fig. 1. As visual features, the QID approach describes the shape
(Section 3.1) and colour (Section 3.2) of each region, which are
absolute properties that only depend on the region itself. As spatial
features, the QID approach describes the topological relations (Sec-
tion 3.3) and the qualitative orientation relations (Section 3.4) of
the regions within the image, which are properties defined with re-
spect to other regions.
3.1. Qualitative Shape Description (QSD)

Cognitively shape is defined as an aspect of a stimulus that re-
mains invariant despite changes in size, position and orientation
[21]. By knowing the shape of an object, people can predict more
facts about that object than by knowing any other property (e.g.
its size, what kind of object it is, what it is used for and so on) [5].

Usually, when people describe the shape of an object, they dis-
tinguish between straight sides and curved ones, describe angles
and their convexity, and compare the lengths of the sides of the ob-
ject. Hence, these features are used in QSD [22] which is briefly
presented next.

Given a digital image containing an object (see the example in
Fig. 2a), the boundary of this object are firstly extracted by the
QSD and by analysing the slope defined by groups of points con-
tained on this boundary, a set of relevant points, denoted by
{P0,P1, . . . ,PN}, are obtained, as a second step (see the example in
Fig. 2b). Then, each relevant point P is described by a set of four
features hKECP, AP or TCP, LP, CPi, which are defined below.

The first feature is the Kind of Edges Connected (denoted by
KEC) and it indicates the connection at the relevant point P. This
feature is described by the following tags:

– line-line, if the point P connects two straight lines;
– line-curve, if P connects a straight line and a curve;
– curve-line, if P connects a curve and a straight line;
– curve-curve, if P connects two curves; or
– curvature-point, if P is a point of curvature of a curve.

If KEC is a line-line, line-curve, curve-line or curve-curve, the sec-
ond feature to consider is the Angle (denoted by A) at the relevant
point. The angle is a quantitative feature that is discretised by
using the Angle Reference System or ARS = {�, ALAB, AINT} where, de-
grees (�) indicates the unit of measurement of the smaller angle at
each relevant point; ALAB refers to the set of labels for the angles;
and AINT refers to the values in degrees � related to each label:
ALAB = {A1, A2, . . ., AKA}, and AINT = {[0,a1], (a1,a2], . . ., (aKA�1,180]}
where KA is the number of labels1.

On the other hand, if the KEC is a curvature-point or a p-curve,
the second feature is the Type of Curvature (denoted by TC) at P
which is defined by the Type of Curvature Reference System or
TCRS = {�, TCLAB, TCINT}. As it is shown in Fig. 3a, the Type of
e



Fig. 3. Characterization of: (a) point Pj as a point of curvature, and (b) points Pj as convex and Pj+1 as concave.

Table 1
QSD of an object containing straight segments and curves before parametrising of the features of shape: Angle (A), Type
of Curvature (TC) and Length (L).

Object 1 QSD

QSD(Object 1) = [
A: [line-line, A(A), L(A), convex],
B1: [line-curve, A(B1), L(B1), concave],
B2: [curvature-point, TC(B2), L(B2), convex],
B3: [curve-line, A(B3), L(B3), concave],
C: [line-line, A(C), L(C), convex],
D: [line-line, A(D), L(D), convex],
E: [line-line, A(E), L(E), convex]].
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Curvature at Pj is determined by calculating first the point c, which
is the half-point of the line between Pj�1 (initial point of the curve)
and Pj+1 (final point of the curve). Next, the distance between Pj�1

and c, named da, and the distance between Pj and c, named db, are
calculated, and finally, the angle that determines the TC is obtained
by Angle(P) = 2 � atan2(da/db) � 180/p in degrees (�). In TCRS, TCLAB

refers to the set of labels for curvature; and TCINT refers to the val-
ues of degrees (�) related to each label: TCLAB = {TC1, TC2, . . ., TCKTC},
and TCINT = {[0, tc1], (tc1, tc2], . . ., (tcKTC�1,180]} where KTC is the
number of labels.

The third feature considered is the compared length (denoted
by L) which is defined by the Length Reference System or LRS = {UL,
LLAB, LINT}, where UL or Unit of compared Length refers to the rela-
tion between the length of the first edge and the length of the sec-
ond edge connected by P, that is, ul = (length of 1st edge)/(length of
2nd edge); LLAB refers to the set of labels for compared length; and
LINT refers to the values of UL related to each label: LLAB = {L1, L2, . . .,
LKL}, and LINT = {[0, l1], (l1, l2], . . ., (lKL�1, lKL)} where KL is the number
of labels and lKL is the maximum number of times that an edge of a
shape can be larger than another edge connected by a relevant
point, which will be determined by the kind of shapes processed
in the application.

The last feature to be considered is the Convexity (denoted by C)
at point P, which is obtained from the oriented line built from the
previous point to the next point and by ordering the qualitative
description of the shape clockwise. For example, as Fig. 3b shows:
Pj is characterised as convex, whereas Pj+1 is characterised as con-
cave. Note that mathematically Pj cannot be within the oriented
line from Pj�1 to Pj+1, otherwise it will not be a relevant point of
the shape. Moreover, the convexity of the angle at the relevant
point indicates if the smaller angle is measured from the inside
or the outside of the object.

Thus, the shape is described as a set of qualitative descriptions
of relevant points as:

½½KEC0;A0jTC0; L0;C0�; . . . ; ½KECn�1;An�1jTCn�1; Ln�1;Cn�1��

where n is the total number of relevant points of the object, KECi de-
scribes the Kind of Edges Connected by the first relevant point of the
shape of the object, AijTCi describes the Angle or the Type of Curvature
defined by the first relevant point of the shape of the object, Li de-
scribes the compared length of the edges connected by the first rele-
vant point of the shape of the object and finally, Ci describes the
convexity of the first relevant point of the shape of the object. By con-
vention, the first relevant point to be described (denoted by P0) is al-
ways the one closest to the upper-left corner of the image and the rest
of the relevant points are described cyclically in a clockwise direction.
An example of the QSD of an object is shown in Table 1.

3.2. Qualitative Colour Description (QCD)

Although millions of colours can be defined in computer sys-
tems, the basic colours that can be named by users are limited to
about 10–20 [23]. Moreover, a real fact in human cognition is that
people go beyond the purely perceptual experience to classify
things as members of categories and attach linguistic labels to
them, and colour is not an exception: fresh blood and ripe toma-
toes are all classified as red, even though they produce their own
particular colour coordinates [5].

Colour naming models are designed to relate a numerical colour
space with semantic colour names used in natural language. In the
literature, different colour naming models were defined based on
different colour spaces: CIE Lab colour space [24–26]; CIE Lab
and HSL colour spaces [27]; Musell colour space (L*C*H) [28];
HSV colour space [29]; and so on. The colour naming model used
in the QID approach is based on HSL colour space which translates
the standard Red, Green and Blue (sRGB) colour channels of the
centroid of each segmented object in an image into coordinates
of Hue, Saturation and Lightness (HSL) colour space (see Fig. 4).

The colour of the centroid is the representative of a region be-
cause the image processing algorithms used extract colour homo-
geneous regions and do not deal with the problem of patterns.
Moreover, according to Sarifuddin and Missaoui [30], the HSL col-
our space is intuitive to use for giving a name to the perceptual col-
our of the object and for adding semantic labels to this name in
order to refer to the richness (saturation) or the brightness of the
colour (lightness).



702 Z. Falomir et al. / Computer Vision and Image Understanding 116 (2012) 698–714
From the HSL colour coordinates obtained, a reference system
for qualitative colour description is defined as: QCRS = {UH, US,
UL, QCLAB1. . .M, QCINT1. . .M} where UH is the Unit of Hue; US is the
Unit of Saturation; UL is the Unit of Lightness; QCLAB1. . .M refers to
the qualitative labels related to colour distributed in M colour sets;
and QCINT1. . .M refers to the three intervals of Hue, Saturation and
Lightness colour coordinates associated with each colour label of
the M colour sets.

HSL colour space distributes colours in the following way (see
Fig. 4). The rainbow colours are located in the horizontal central cir-
cle. The colour lightness changes in the vertical direction, therefore
light rainbow colours are located above, while dark rainbow colours
are located below. The colour saturation changes from the bound-
ary of the two cone bases to the axis of the cone bases, therefore,
pale rainbow colours are located inside the horizontal central circle.
As a consequence of the changing colour saturation and lightness,
the vertical axis locates the qualitative colours corresponding to
the grey scale. According to this, the QID approach considers
M = 5 colour sets: (1) grey colours, (2) rainbow colours, (3) pale
rainbow colours, (4) light rainbow colours and (5) dark rainbow
colours where the QCLAB and QCINT are:

QCLAB1
¼ fG1;G2;G3; . . . ;GKGg
QCINT1
¼ f½0; gul1 �; ðgul1 ; gul2 �; ðgul2 ; gul3 �; . . . ; ðgulKG�1

;100� 2 UL=UH

2 ½0;360� and US 2 ½0; gusMAX
�g

The saturation coordinate of the HSL colour space (US) determines if
the colour corresponds to the grey scale or to the rainbow scale. The
colour name set for the grey scale is defined by QCLAB1

whose corre-
sponding intervals of values in HSL are determined by QCINT1

. All the
colours in this set can take any value of hue, values of saturation be-
tween 0 and gusMAX

and values of lightness which determine the dif-
ferent colour names defined.

QCLAB2
¼ fR1;R2;R3; . . . ;RKRg
QCINT2
¼ f½0; ruh1 �; ðruh1 ; ruh2 �; ðruh2 ; ruh3 �; . . . ; ðruhKR�1 ;360�
2 UH; where UL 2 ðrulMIN

; rulMAX
� and US 2 ðrusMIN ;100�g

The colours in the rainbow scale are defined by the names in QCLAB2

and they are considered the more saturated ones or the strong ones.
In QCINT2

, their saturation can take values between rusMIN and 100,
their lightness between rulMIN and rulMAX

and the different values of
Fig. 4. HSL colour space. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
hue are those which determine the colour names defined for this
set.

QCLAB3
¼ fpale þ QCLAB2

g

QCINT3
¼ f½0; ruh1

�; ðruh1
; ruh2
�; ðruh2

; ruh3
�; . . . ; ð ruhKR�1

;360�
2 UH; where UL 2 ðrulMIN

; rulMAX
� and US 2 ðgusMAX

; rusMIN �g

The pale colour name set ðQCLAB3
Þ is defined by adding the prefix pa-

le_to the colours defined for the rainbow scale ðQCLAB2
Þ. These colour

names are defined in QCINT3
by the same hue and lightness intervals,

they differ from rainbow colours by their saturation which can take
values between gusMAX

and rusMIN .

QCLAB4
¼ flight þ QCLAB2

g

QCINT4
¼ f½0; ruh1 �; ðruh1 ; ruh2 �; ðruh2 ; ruh3 �; . . . ; ðruhKR�1 ;360�
2 UH; where UL 2 ðrulMAX

;100� and US 2 ðrusMIN ;100�g

QCLAB5
¼ fdark þ QCLAB2

g

QCINT5
¼ f½0; ruh1 �; ðruh1 ; ruh2 �; ðruh2 ; ruh3 �; . . . ; ðruhKR�1 ;360�
2 UH; where UL 2 ðrdul; rulMIN

� and US 2 ðrusMIN ;100�g

The lightness coordinate (UL) determines the luminosity of the col-
our: dark and light colours are distinguished and given an explicit
name in QCLAB4

and QCLAB5
, respectively, by adding the prefixes dark_

and light_ to the colour names in the rainbow scale ðQCLAB2
Þ. The

intervals of values for dark and light colour sets ðQCINT4
and

QCINT5
, respectively) can take the same values of hue and saturation

as those taken by the rainbow colours in QCINT2
. However, they take

different values for lightness: light colours between rulMAX
and 100

and dark colours between rdul and rulMIN .
Note that, although colour identification depends on illumina-

tion, HSL colour space deals with lighting conditions through the
L coordinate, which separates the lightness of the colour while
its corresponding hue or colour spectrum remains the same. In
the same way, the QCRS deals with the lighting conditions main-
taining the name of the colour depending on the hue and managing
the lightness and saturation changes using the semantic prefixes
light, dark and pale.

As an example, according to the previous definitions, if the col-
our of the object in Table 1 would have as HSL colour coordinates
[0,0,0], the colour name assigned to it would be one defined in the
grey scale ðQCLAB1

Þ.

3.3. Topological description

Topological relations are spatial relations that are invariant un-
der topological transformations, such as translation, rotation and
scaling and also describe implicitly the relative distance between
the objects [31].

In order to represent the topological relationships of the objects
in the image, the intersection model defined by Egenhofer and
Franzosa [14] for region configurations in R2 is used. However, as
information on depth cannot be obtained from digital images,
the topological relations overlap, coveredBy, covers and equal de-
fined by that model cannot be distinguished by the QID approach
and are all substituted by touching. For example, as Table 2 shows,
in an image in two dimensions, it cannot be known: (i) if the green
rectangle is overlap by the blue object or if they are touching; (ii) if
the blue object is a blue rectangle covered by a grey rectangle or if
they are a blue hexagon and a grey rectangle touching; and (iii) if
any object covers a smaller or equal object and makes it invisible.

Therefore, the topological situation in space of an object A with
respect to (wrt) another object B (A wrt B), is described by:



Table 2
Drawing for exemplifying the topological relations between object 3 and the other objects within the image described
by the QID approach.

Image Topology description

. . .

[3, [Container, 0], [touching, 2, 5],
[disjoint, 1, 6], [completely_inside, 4]
],

. . .
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Topology ¼ fdisjoint; touching; completely inside; containerg

The QID approach determines if an object is completely_inside or if it
is the container_of another object, and it also defines the neighbours
of level of an object as all the other objects within the same con-
tainer. The neighbours of level of an object can be (i) disjoint from
the object, if they do not have any edge or vertex in common; (ii)
or touching the object, if they have at least one vertex or edge in
common or if the Euclidean distance between them is smaller than
a certain threshold (DistanceThreshold) set by experimentation.

Finally, as an example, the topological situation of the blue ob-
ject in the drawing in Table 2 is described as having: (i) one con-
tainer (the image, Object 0); (ii) an object located completely
inside (the red circle, Object 4); (iii) two neighbours touching (the
green and grey rectangles, Objects 2 and 5), and (iv) two neigh-
bours disjoint (the purple triangle and the yellow circle, Objects 1
and 6).
3.4. Orientation description

Metric orientation information locates a point at any position
on a line segment from the origin of a Cartesian reference system
with a given angle. However, orientation information expressed
in this way is not cognitive, because for human beings this kind
of information is impossible to obtain for two main reasons: (i)
our perceptual measurements (without any suitable tool) are quite
imprecise, and we usually think of orientation as left or right but
rarely as ‘15 degrees to the north’; and (ii) we hardly ever think that
our orientation or position is somewhere with respect to an exter-
nal Cartesian reference system unless we are using a compass.
Therefore, qualitative models of orientation are used cognitively
in many applications because they enable users to express their
orientation in terms of non-metric information and also enable
them to differentiate between given orientations and to reason
about them.

The QID approach applies two kinds of qualitative orientation
models: (i) the model by Hernández [15] in order to provide the
orientation relations of the objects within the image fixed by the
point of view of an external observer; and (ii) the Freksa’s dou-
ble-cross orientation model [16] in order to provide the orientation
of the objects relative to other objects within the image and
regardless of the orientation of the image given by an external
observer.

Note that the QID approach discretizes the regions in the image
by describing some relevant points of their boundary. Therefore,
both region-based [15] and point-based [16] orientation models
are suitable of application, as the orientation of a region is deter-
mined as the union of all the orientations obtained by the relevant
points of its boundary.

This section is organised as follows. The fixed orientation model
applied is explained in SubSection 3.4.1 and its relative orientation
model used is described in SubSection 3.4.2. Moreover, in Sec-
tion 3.4.3, a comparison of the reference frames used by each mod-
el of orientation is given. Finally, as the orientation relations of
each region in an image depend on the total number of regions
contained within this image, Section 3.4.4 explains which orienta-
tion relations can be computed according to the number of objects
within the same container.

3.4.1. Qualitative model of fixed orientation
A Fixed Orientation Reference System (FORS) is defined which

obtains the orientation of an object A wrt its container or the ori-
entation of an object A wrt an object B, neighbour of A. This refer-
ence system divides the space into eight regions (see Fig. 5) which
are labelled as:

FO ¼ffrontðf Þ; backðbÞ; leftðlÞ; rightðrÞ; left frontðlf Þ; right frontðrf Þ;
left backðlbÞ; right backðrbÞ; centreðcÞg

In order to obtain the fixed orientation of each object wrt an-
other object or wrt the image, the QID approach locates the centre
of the FORS on the centroid of the reference object and its front area
is fixed to the upper edge of the image. The orientation of an object
is determined by the union of all the orientation labels obtained for
each of the relevant points of the object. If an object is located in all
the regions of the reference system, it is considered to be in the
centre.

Moreover, the fixed orientation of the relevant points of all the
objects in the image is also obtained wrt its centroid. This informa-
tion is included in the visual description of the region because the
obtained fixed orientations are related to each of the relevant
points of the shape of the object and arranged wrt them.

Note that the FO information would change if there is a signif-
icant rotation of the image or if there is a significant translation or
rotation of any of the objects in the image.

As an example, the fixed orientation (FO) of the purple triangle
(Object 1) in the drawing in Table 3 is described as located: front-
left wrt its container (the image or Object 0); left wrt the Object 2;
front-left wrt the Object 3 and wrt Object 5; and front wrt the Ob-
ject 6. Note that the FO wrt the red circle (Object 4) is not given be-
cause it is not a neighbour of level of the purple triangle (Object 1)
since the red circle is completely_inside the blue rectangle (Object
3). Finally, the orientation of the vertices of the triangle wrt its cen-
troid are provided: front, back-right and back-left.

3.4.2. Qualitative model of relative orientation
A Relative Orientation Reference System (RORS) is defined using

Freksa’s double-cross orientation model [16]. This model divides
the space by means of a Reference System (RS) which is formed
by an oriented line determined by two reference points a and b.
The information that can be represented by this model is the qual-
itative orientation of a point c wrt the RS formed by the points a



Fig. 5. The reference system used in the qualitative orientation model by
Hernández [15].

Fig. 6. The qualitative orientation model by Freksa [32] and its iconical
representation: l is left, r is right, f is front, s is straight, m is middle, b is back and i
is identical.
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and b, that is, c wrt ab (Fig. 6). This model divides the space into 15
regions labelled as:

RO ¼fleft frontðlf Þ; straight frontðsf Þ; right frontðrf Þ; leftðlÞ;
dentical frontðidf Þ; rightðrÞ; left middleðlmÞ; same middleðsmÞ;
right middleðrmÞ; identical back leftðiblÞ; identical backðibÞ;
identical back rightðibrÞ; back frontðbf Þ; same backðsbÞ;
back rightðbrÞg

In order to obtain the relative orientation of an object, the QID
approach establishes reference systems (RORSs) between all the
pairs of disjoint neighbours of that object. The points a and b of
the RORS are the centroids of the objects that make up the RORS.
The relevant points of each object are located with respect to the
corresponding RORS and the orientation of an object with respect
to a RORS is calculated as the union of all the orientation labels ob-
tained for all the relevant points of the object.

Note that the RO information would change if there is a signif-
icant translation of any of the objects in the image, whereas it
would remain invariant to image and object rotations.

As an example, some relative orientations (RO) that can be ex-
tracted from the objects in the drawing in Table 4 are described
next. The purple triangle (Object 1) is right-middle, right-front
(rm, rf) wrt the reference system built from the green rectangle
to the blue hexagon (RS(2,3)) but left-middle, left-front (lm, lf) in
the opposite direction, that is, wrt RS(3,2). Note that, as the rela-
tions of orientation obtained directly from opposite RSs are exactly
the opposite orientations, they are not given in the QID approach.
In the same way: (i) the green rectangle (Object 2) is left-middle
wrt the reference system built from the purple triangle to the
green rectangle (RS(1,5)); (ii) the blue hexagon (Object 3) is left-
middle, right-middle wrt the RS built from the triangle to the yellow
circle (RS(1,6)); (iii) the grey rectangle (Object 5) is right-middle,
right-front wrt the RS built form the purple triangle to the green
rectangle (RS(1,2)) and, wrt the same RS, the yellow circle (Object
Table 3
Drawing for exemplifying the fixed orientation relations of ob

Image
6) is right-middle. The rest of the orientations described in Table 4
are described similarly. Note that the relative orientation of the red
circle (Object 4) cannot be provided as this object has not any
neighbours of level (objects contained by the same container).

3.4.3. Reference frames of fixed and relative orientation
The reason for using two models for describing the orientation

of the objects or regions in the image is the different kind of infor-
mation each provides. According to the classification of reference
frames made by Hernández [15], it is considered that:

� the reference system or frame in the FORS is intrinsic because
the orientation is given by some inherent property of the refer-
ence object. This property is defined by our approach by fixing
the object front to the upper edge of the image. Therefore, the
orientations provided by this model are implicit because they
refer to the intrinsic orientation of the parent object or the
object of reference. Here, implicit and intrinsic orientations
coincide as the front of all the objects is fixed to the same loca-
tion a priori. Therefore, the point of view is influenced by the
orientation of the image given by an external observer.
� in the RORS, an explicit reference system or frame is necessary

to establish the orientation of the point of view with respect to
the reference objects. Moreover, this reference system is extrin-
sic, since an oriented line imposes an orientation and direction
on the reference objects. However, the orientation between the
objects involved is invariant to the orientation of the image
given by an external observer, because even if the image rotates,
the orientations obtained by our RORS remain the same.

Therefore, in practice, considering both models, our approach
can:

(a) describe the implicit orientations of the objects in the image
from the point of view of an external observer (i.e. robot
camera) and regardless of the number of objects within
the image, and
ject 1 described by the QID approach.

Fixed orientation description

. . .

[1, [Container, 0], [Orientation wrt 0: front_left],
[Orientation wrt Neighbours: [2, left], [3, front_left],
[5, front_left], [6, front]],
. . .

[Vertices_Orientation, front, back_right, back_left],],
],
. . .



Table 4
Drawing for exemplifying the relative orientation relations of object 1 described by the QID approach.

Image Relative orientation description

[1, [RO: [[2,3], rm, rf], [[2,5], br], [[2,6], rm], [[3,5], bl],
[[3,6], br], [[5,6], rm]],
[2, [RO: [[1,5], lm], [[1,6], lm], [[5,6], br]]],
[3, [RO: [[1,6], lm, rm]]
[4, [RO: -],
[5, [RO: [[1,2], rm, rf], [[1,6], lm], [[2,6], lm]],
[6, [RO: [[1,2], rm], [[1,3], rf], [[1,5], rm], [[2,3], lf],
[[2,5], lf], [[3, 5], rm, br]],

Table 5
Spatial features described depending on the number of objects at each level. The ‘x’
symbol indicates that the description can be provided with this amount of objects,
while ‘–’ means the opposite.

Spatial features described Objects within the same container

1 2 >2

Wrt its container
Topology x x x
Fixed orientation x x x

Wrt its neighbours
Topology – x x
Fixed orientation – x x
Relative orientation – – x
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(b) describe complex objects contained in the image (which
must be composed of at least three objects or regions) in an
invariant way, that is, regardless of the orientation of the
image given by an external observer (which could be very
useful in a vision recognition process in the near future).

3.4.4. Organization of orientation relations
In our approach, orientation relations between the objects

in the image are structured in levels of containment. The fixed
orientation [15] of a region is defined with respect to its con-
tainer and neighbours of level, while the relative orientation of
a region [32] is defined with respect to its disjoint neighbours
of level.

Therefore, as the spatial features of the regions are relative to
the other regions in the image, the number of spatial relationships
that can be described depends on the number of regions located at
the same level of containment, as shown in Table 5.

The advantage of providing a description structured in levels
of containment is that the level of detail to be extracted from
an image can be selected. For example, the system can extract
all the information in the image or only the information about
the objects whose container is the image and not another object,
which could be considered a more general or abstract description
of the image.

3.5. Structure of the Qualitative Image Description (QID)

Summarizing, the general structure of the Qualitative Image
Description (QID) provided by our approach is defined as a set of
qualitative tags such that:

QIDðIdImageÞ ¼½SpatialDescriptionðNRegionsÞ;
VisualDescriptionðNRegionsÞ�
For each object/region detected in the image, the spatial infor-
mation described consists of the identifier of the object/region,
its topological relations wrt its container and the other objects in
the image, its fixed orientation wrt its container and wrt its neigh-
bours, and its relative orientation wrt all the reference systems de-
fined by its neighbours:
SpatialDescriptionð1::NRegionsÞ
¼ ½IdRegion; TopologyðContainerÞ;FixedOrientationðContainerÞ;

TopologyðRegionÞ;FixedOrientationðNeighboursÞ;
RelativeOrientationðRSsÞ�
Topology(Container) = [Container, IdContainer]
FixedOrientation(Container) = [Orientation wrt IdContainer:
FixedOrientationTags]
Topology(Region) = [touching(IdRegions), disjoint(IdRegions),
completely_inside(IdRegions)]
FixedOrientation (1 .. NNeighbours) = [Orientation wrt Neigh-
bours: [IdNeighbour, FOs]]
RelativeOrientation (1 .. NRSs) = [Relative Orientation wrt
Neighbours Disjoint: [RSs, ROs]]
RS = [IdNeighbour_A, IdNeighbour_B]
FO 2 {front, back, left, right, left_front, right_front, left_back,
right_back, centre}
RO 2 {lf, sf, rf, l, idf, r, lm, sm, rm, ibl, ib, ibr, bf, sb, br}

For each object/region detected in the image, the visual infor-
mation described consists of its identifier, its colour and the
description of the shape of each vertex:
VisualDescriptionð1::NRegionsÞ
¼ ½IdRegion;QCD;QSDðRPsÞ;OrientationðRPsÞ�
QCD 2 QCLAB1. . .5 where,

QCLAB1
¼ fG1;G2;G3; . . . ;GKGg

QCLAB2
¼ fR1;R2;R3; . . . ;RKRg

QCLAB3
¼ fpale þ QCLAB2

g

QCLAB4
¼ flight þ QCLAB2

g

QCLAB5
¼ fdark þ QCLAB2

g

QSD(1..nRP) = [KEC, A or TC, L, C] where,
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KEC 2 fline� line; line� curve; curve� line; curve� curve;

curvature� pointg;

A 2 ALAB ¼ fA1;A2; . . . ; AKAg

TC 2 TCLAB ¼ fTC1;TC2; . . . ; TCKTCg

C 2 fconvex; concaveg

L 2 LLAB ¼ fL1; L2; . . . ; LKLg

Orientationð1::nRPÞ ¼ ½FOs�
4. A computational model for the QID approach

The computational model for the QID approach first obtains the
relevant regions of an image by applying image processing algo-
rithms and then describes the visual and spatial features of these
regions by applying qualitative models presented in Section 3
(see Fig. 7).

The approaches used to extract the main regions of a digital im-
age are discussed in Section 4.1 whereas Section 4.2 outlines the
proposed algorithm. The structure of the qualitative description
obtained has been explained in Section 3.5.

4.1. Obtaining the relevant regions of any digital image

Region segmentation is defined by Palmer [5] as the process of
dividing an image into mutually exclusive areas based on the uni-
formity of an image-based property, such as luminance, chromatic
colour, texture, motion or binocular disparity. Two ways of
approaching this task are also distinguished:

� Boundary-based methods, in which the visual system detects dif-
ferences (or gradients) in local visual properties that divide one
region from another. The methods that first detect the edges or
boundaries in a digital image and then, from the obtained
boundaries, extract the regions within it are included in this
group. An example is the well-known Canny’s segmentation
method [33].
� Region-based methods, which consider that in an image, differ-

ent colours or textures usually indicate different regions of
interest to the human eye. The methods included in this group
are those that extract the different regions of colour/texture/
etc., from an image and then define the boundaries of these
regions as the edges. An example of these methods is the one
by Felzenszwalb and Huttenlocher [34].

As Felzenszwalb and Huttenlocher [34] mention, the problems
of image segmentation and grouping remain great challenges for
computer vision because, for obtaining a useful segmentation
method, it has to: (i) capture perceptually important groupings
or regions, which often reflect global aspects of the image; and
(ii) be highly efficient, running in time nearly linear in the number
of image pixels.

Generally, image region-based segmentation methods are
considered more cognitive than boundary-based segmentation
methods because the extracted edges are defined by the bound-
aries between colour regions and all of these regions are closed.
In Fig. 8, the results of both methods applied to the segmenta-
tion of the same image can be compared. While Canny’s segmen-
tation method [33] obtains open edges, the boundaries extracted
from Felzenszwalb and Huttenlocher’s method [34] are all
closed.

It is worth noting that the QID approach is not dependent on the
region segmentation method used, and therefore, the most conve-
nient method that obtains closed regions can be selected from the
literature depending on the application.

4.2. The proposed algorithm

The computational procedure for the QID approach is out-
lined in Algorithm 1, which is described in the following
subsection.

Algorithm 1. Obtaining the qualitative description of a digital
image.

ImageRegions Image_Region_Segmentation(Image,Method)
for all RegionR in ImageRegions do

R.Points Find_Relevant_Points(R)
R.Container Find_Container(R,ImageRegions)
R.Centroid Find_Centroid(R)
R.QC Qualitative_Colour(R)
for all P in R.Points do

R.QSD Qualitative_Shape(P,R)
end for
for all P in R.Points do

Fixed_Orientation(P,R.Centroid)
Fixed_Orientation(P,R.Container.Centroid)

end for
for all r in{ImageRegionsjr.Container = R.Container} do

if Touching(r,R,DistanceThreshold) then
R.Neighbours_Touching r

else
R.Neighbours_Disjoint r
end if

end for
for all r in{R.Neighbours_TouchingorR.Neighbours_Disjoint}
do

for all P in R.Points do
Fixed_Orientation_wrt_Neighbours_of_Level(P,r.Centroid)

end for
end for
if R.Neighbours_Disjoint P 2 then

RS Build_Reference_Systems(R.Neighbours_Disjoint)
for all rs in RS do

for all P in R.Points do
Relative_Orientation(rs,P)

end for
end for

end if
end for

First, the captured digital image (Image) is segmented into re-
gions of interest (ImageRegions) by the selected method, which,
as mentioned earlier, can be a boundary-based or a region-based
segmentation method, depending on the application. Then, for
each region (R) of interest:

� its boundary is processed and the relevant points (R.Points) that
characterise its shape are extracted;
� its container (R.Container) is obtained and, as an inverse rela-

tionship, the current region is located completely inside its
container;
� its centroid (R.Centroid) is calculated;
� its qualitative colour (R.QC) is obtained from the centroid of the

region;
� its qualitative shape description (R.QSD) is obtained by describ-

ing the features of each of the relevant points on its boundary
(R.Points);



Fig. 7. Schema of the QID approach for qualitative image description.

Fig. 8. Comparison of segmentation methods: (a) original image from the robot environment; (b) segmentation obtained by Canny’s boundary based method [33]; (c)
segmentation obtained by Felzenszwalb and Huttenlocher’s region based method [34]; and (d) boundaries of the coloured regions in (c) extracted by our algorithms. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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� the fixed orientation of each of the relevant points in the region
(R.Points) is described with respect to its centroid (R.Centroid);
� its fixed orientation with respect to the centroid of its container

(R.Container.Centroid) is obtained;
� its neighbours that are touching (or within a distance threshold)

are obtained from all the regions with the same container
(R.Neighbours_Touching). As an opposite relationship, all the
neighbours that are disjoint are also obtained
(R.Neighbours_Disjoint);
� its fixed orientation with respect to its neighbours on the same

level (touching or disjoint) is obtained;
� a reference system (RS) is built and the relative orientations of

the current region wrt all these reference systems are obtained
for each pair of disjoint neighbours (R.Neighbours_Disjoint) of
the current region.

The computational cost of the algorithm is O(PR3), where P is
the largest number of relevant points that define a region in the
image and R is the total number of regions in the image. Clearly,
the computational cost of our QID-Algorithm peaks when a lot of
regions are extracted in the image and those regions have irreg-
ular boundaries that are described by a large number of relevant
points.
5. Experimentation and results

In this paper, the QID approach presented is applied to two
real robot-working scenarios (the ones available at our laboratory
at Universitat Jaume I), where digital images are managed for
interaction between human users and physical agents (i.e. a mo-
bile robot) or software agents (i.e. computer applications). Specif-
ically, these scenarios are: (i) Scenario I: the description of images
of the world captured by a webcam located on a mobile robot
(Section 5.2), and (ii) Scenario II: the description of images of tile
compositions captured by an industrial camera located on a plat-
form that is used by a robot arm to assemble mosaics automati-
cally (Section 5.3). The parameters selected for both scenarios are
shown in Section 5.1 and an analysis of the results is shown in
Section 5.4.

It is important to note that, although both scenarios presented
were suitable for the test experiments, the parameters and the im-
age segmentation method used by the QID approach can be ad-
justed for any kind of scenario that manages digital images and
needs to improve human user interaction or the knowledge of
the agents involved.
5.1. Parameter selection

In order to determine the interval values of the reference sys-
tems defined for describing the angles and lengths of the shape
(ARS, TCRS and LRs) and the colour (QCRS) of the image regions,
several experts in the implementation area (robotics and industrial
tile mosaics) were asked for their opinions and know-how. First,
they were asked about the most suitable granularity for describing
each feature, that is, the number of qualitative labels to use to de-
scribe it. Then they were shown some angles, lengths and colours
and they were asked to match a qualitative label to them. The
AMEVA algorithm [35] was used to obtain the classes of the inter-
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vals, which were rounded off afterwards in order to obtain the
same sets of intervals used in both applications.2

For the Angle Reference System or ARS = {�, ALAB, AINT}, the cho-
sen granularity was 5 and the set of labels for the qualitative angles
and the values of degrees (�) related to each label were:

ALAB ¼ fvery acute; acute; right; obtuse; very obtuseg
AINT ¼ f½0;40�; ð40;85�; ð85;95�; ð95;140�; ð140;180�g

For the Type of Curvature Reference System or TCRS = {�, TCLAB,
TCINT}, the chosen granularity was also 5 and the set of labels for
the type of curvature and the values of degrees (�) related to each
label were:

TCLAB ¼ fvery acute; acute; semicircular;plane;very planeg
TCINT ¼ f½0;40�; ð40;85�; ð85;95�; ð95;140Þ; ½140;180�g

For the Length Reference System or LRS = {UL, LLAB, LINT}, the
chosen granularity was 7, the set of labels that were related in or-
der to compare length and the values related to each label were:

LLAB ¼fmuch shorterðmshÞ; half lengthðhlÞ; a bit shorterðabshÞ;
similar lengthðslÞ; a bit longerðablÞ;double lengthðdlÞ;
much longerðmlÞg

LINT ¼fð0;0:4Þ; ½0:4;0:6�; ð0:6;0:9Þ; ½0:9;1:1�; ð1:1;1:9Þ; ½1:9;2:1�;
ð2:1;10Þg

For the Qualitative Colour Reference System or
QCRS ¼ fUH;US;UL;QCLAB1...5

;QCINT1...5
g, the qualitative labels re-

lated to each colour scale and the interval values which refers to
the intervals of HSL colour coordinates associated with each colour
label were the following (See Tables 8–12):

QCLAB1
¼ fblack;dark grey; grey; light grey;whiteg

QCINT1
¼ f½0;20Þ; ½20;30Þ; ½30;40Þ; ½40;80Þ; ½80;100Þ 2 UL;

where UH 2 ½0;360� and US 2 ½0;20�g

QCLAB2
¼ fred; yellow; green; turquoise; blue; purple; pinkg

QCINT2
¼fð335;360� and ½0;40�; ð40;80�; ð80;160�; ð160;200�;
ð200;260�; ð260;297�; ð297;335� 2 UH;
where US 2 ð50;100� and UL 2 ð40;55�g

QCLAB3
¼ fpale þ QCLAB2

g

QCINT3
¼fð335;360� and ½0;40�; ð40;80�; ð80;160�; ð160;200�;
ð200;260�; ð260;297�; ð297;335� 2 UH;
where US 2 ð20;50� and UL 2 ð40;55�g

QCLAB4
¼ flight þ QCLAB2

g

QCINT4
¼fð335;360� and ½0;40�; ð40;80�; ð80;160�; ð160;200�;
ð200;260�; ð260;297�; ð297;335� 2 UH;
where US 2 ð50;100� and UL 2 ð55;100�g

QCLAB5
¼ fdark þ QCLAB2

g

QCINT5
¼fð335;360� and ½0;40�; ð40;80�; ð80;160�; ð160;200�;
ð200;260�; ð260;297�; ð297;335� 2 UH;
where US 2 ð50;100� and UL 2 ð20;40�g
2 For the sake of simplicity, the same sets of intervals were chosen, since there are
few differences between them the two scenarios.
For QCLAB1
, the chosen granularity was 5, while for QCLAB2...5

, the
chosen granularity was 7. Therefore, in the final QCRS, 10 basic col-
ours are defined (black, grey, white, red, yellow, green, turquoise,
blue, purple, pink) and by adding the semantic descriptors pale_,
light_ and dark_, a total of 5 + 7 � 4 = 33 colour names are obtained.
Conway’s research [23] showed that, although strictly speaking it
may be accurate, people tend not to describe a colour as dark pale
blue and may even consider this a contradiction. They also recom-
mended that, in order to produce more cognitive colour name
descriptions, no more than one adjective should be applied to a ba-
sic colour name. Furthermore, if a lightness and saturation modi-
fier appears equally applicable to a particular colour, the
saturation modifier should be chosen. This aspect is reflected in
the QCRS.

5.2. Scenario I

Scenario I consists of the description of images captured by a
webcam located on the top of a Pioneer 2 mobile robot3 (see
Fig. 9). For this scenario, Felzenszwalb’s segmentation method [34]
is used since it captures the perceptually important regions in an im-
age, it is highly efficient, running nearly linear in time as regards the
number of image pixels, and it also preserves detail in low-variabil-
ity image regions while ignoring detail in high-variability regions.
This is achieved by adjusting its segmentation parameters: r, used
to smooth the input image before segmenting it; k, the value for
the threshold function in segmentation, the larger the value, the lar-
ger the components in the result; and min, the minimum size of the
extracted regions in pixels enforced by post-processing.

An excerpt of the qualitative description of the digital image
shown in Fig. 9 is given in Table 6. Specifically, the qualitative spa-
tial description of regions 1 and 10 and the qualitative visual
description of regions 7 and 10 is shown in this table.

The spatial description of region 1 can be read as follows: its
container is the Image and it is located wrt to the Image at front,
front_left, back, back_left. Its touching neighbours are the regions 2,
8, 9 and 13 (Note that some of these are not technically touching
but are closer to region 1 than the threshold determined for this
application). Its disjoint neighbours are the regions 0, 3, 4, 5, 6, 7,
11 and 12 and finally, the object 10 is completely_inside 1. The fixed
orientation of region 1 wrt region 0 is front_right, right, back_right,
back, wrt region 2 is left, back, back_left, wrt region 3 is back_right
and in a similar way, the fixed orientation of region 1 is described
wrt all its neighbours of level. Finally, the relative orientation wrt
the disjoint neighbours of region 1 is given: from region 0 to region
4, region 1 is located right_middle (rm); from region 4 to region 7,
region 1 is located back right (br) and also right front (rf), from re-
gion 11 to region 12, region 1 is located right middle (rm) and right
front (rf).

The spatial description of region 10 is also given in Table 6: its
container is region 1 with respect to which it is located at left, back
left, back. Region 10 has no neighbours of level as it is the only region
contained by region 1.

The visual description of region 7 in Table 6 shows that its col-
our is dark_grey and that the shape of its boundary is qualitatively
described as composed of four line-line segments whose angles are
all right and convex and whose compared distances are much_shor-
ter, much_longer, half, and much_longer, respectively. Finally, the
orientation of its vertices with respect to the centroid of the region
is in a clockwise direction: front, back, back, front. Note that region
10 is described similarly.

With respect to computation time, it should be noted that, for
the image shown in Fig. 9, the time of execution for the extraction
3 http://www.mobilerobots.com
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Fig. 9. The QID approach applied to Scenario I: describing an image of University Jaume I corridor taken by a webcam located on a Pioneer 2 mobile robot.

Table 6
An excerpt of the qualitative description obtained for the image captured by the Pioneer 2 webcam in Fig. 9.

[SpatialDescription,
(. . .)

[1, [Container, Image], [Orientation wrt Image: front, front_left, back_left, back],
[touching, 2, 8, 9, 13], [disjoint, 0, 3, 4, 5, 6, 7, 11, 12], [completely_inside, 10],
[Orientation wrt Neighbours: [0, front_right, right, back_right, back], [2, left, back, back_left], (. . .)]
[Relative Orientation wrt Neighbours Disjoint: [[0, 4], rm], (. . .) [[4, 7], br, rf] (. . .) [[11, 12], rm, rf]]

]
(. . .)

[10, [[Container, 1] [Orientation wrt 1: left, back_left, back],
[None Neighbours of Level]]

],
(. . .)

]
[VisualDescription,

(. . .)
[7, dark_grey,

[Boundary_Shape,
[line-line, right, much_shorter, convex]
[line-line, right, much_longer, convex],
[line-line, right, half_length, convex],
[line-line, right, much_longer, convex],

[Vertices_Orientation,front, back, back, front]],
],

(. . .)
[10, dark_red,

[Boundary_Shape,
[line-line, obtuse, half_length, convex],
[line-line, obtuse, similar_length, convex],
(. . . )
[line-line, very_obtuse, similar_length, convex]]

[Vertices_Orientation, front, front, front_right, right, back_right (. . . )]],
],
(. . .)

]
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of the main regions in the image is around 0.83 seconds and the
time for generating the qualitative description of the image is
around 2.19 seconds. The total time of execution is thus around
3.02 seconds using a computer with an Intel Core i5 processor at
2.27 GHz and 4 GB of RAM, running under an Ubuntu 10.04 (lucid)
with a Linux kernel 2.6.32-21-generic.

The images of indoor scenes captured by a webcam located on
a Pioneer 2 robot shown in Fig. 10 were used to test our ap-
proach. The segmentation result of each image and the QID ob-
tained are available on-line.4 The execution times obtained in
the tests are shown in Fig. 11. The vertical axis represents the time
in seconds, whereas the horizontal axis represents the computa-
tional cost of each QID description (O(P R3)). This depends on the
number of regions in the image (R) and the maximum or the larg-
est number of relevant points that define a region in the image (P),
4 http://dl.dropbox.com/u/17361913/CVIUTests.rar
because the temporal cost depends on both values. For example,
the variable SC17:10;8 in the horizontal axis indicates that the im-
age SC17 was described by the QID approach as being composed by
10 regions of with a maximum number of relevant points for each
region of 8. The time needed for obtaining the QID of image SC17 is
0.5 seconds.
5.3. Scenario II

Scenario II consists of the description of images of tile composi-
tions captured by an industrial camera AVT-Guppy F033C located
on a platform from which a robot arm picks up and places tile
pieces for assembling tile mosaics (Fig. 12). In this scenario, the
Canny method of segmentation [33] is used. This method obtains
fast, good results for this application, since the boundaries of the
objects are clearly defined and distinguished, as they are usually
made up of straight edges or simple curves.

http://dl.dropbox.com/u/17361913/CVIUTests.rar


(a) sc1 (b) sc2 (c) sc3 (d) sc4 (e) sc5 (f) sc6

(g) sc7 (h) sc8 (i) sc9 (j) sc10 (k) sc11 (l) sc12

(m) sc13 (n) sc14 (o) sc15 (p) sc16 (q) sc17 (r) sc18

Fig. 10. Images of indoor scenes (SC) used for testing our approach.

Fig. 11. Execution times of QID obtained for images in Fig. 10 related to the computational cost of QID-Algorithm for each situation.

710 Z. Falomir et al. / Computer Vision and Image Understanding 116 (2012) 698–714
An excerpt of the qualitative description of the digital image
shown in Fig. 12 is given in Table 7. Specifically, the qualitative
spatial description of regions 3 and 5 and the qualitative visual
description of region 3.

The spatial description of region 3 can be read as follows: its
container is the Image and it is located wrt to the Image at left.
Its disjoint neighbours are the rest of the pieces of tile composition
since none of them is touching region 3. The fixed orientation of re-
gion 3 wrt region 0 is left, back_left, wrt region 1 is left, back, back_-
left and in a similar way, the fixed orientation of region 3 is
described wrt all its neighbours of level. Finally, the relative orienta-
tion wrt the disjoint neighbours of region 3 is given: from region 0
to region 1, region 3 is located left_front (lf); from region 0 to region
2, region 3 is located back_right(br), from region 0 to region 6, re-
gion 3 is located right_front (rf), right_middle (rm) and so on. Note
that the spatial description of region 5, also given in Table 7, is ex-
plained similarly.
The visual description of region 3 in Table 7 shows that its col-
our is pale_yellow and that the shape of its boundary is qualita-
tively described as composed of five line-line segments whose
angles are: one acute and convex, one right and convex and three ob-
tuse and convex and whose compared distances are similar_lenght,
similar_lenght, a_bit_longer, similar_length, and half_length, respec-
tively. The orientation of its vertices with respect to the centroid
of the region is in a clockwise direction: front, right, back, back_left,
left.

With respect to the computation time, it should be noted that,
for the image shown in Fig. 12, the time of execution for the extrac-
tion of the main regions in the image is around 0.77 seconds and
the time for generating the qualitative description of the image is
around 0.89 seconds. The total time of execution is thus around
1.66 seconds using the same computer as in Scenario I.

The images of tile compositions captured by an industrial cam-
era located above the table where a robot arm assembles tile mosa-



Fig. 12. The QID approach applied to Scenario II: describing an image of a tile composition taken by an industrial camera located in a platform which is used by a robot arm to
assemble tile mosaics.

Table 7
An excerpt of the qualitative description obtained for the mosaic image captured by the industrial camera in Fig. 12.

[SpatialDescription,
(. . .)

[3, [Container, Image], [Orientation wrt Image: left],
[disjoint, 0, 1, 2, 4, 5, 6, 7],
[Orientation wrt Neighbours: [0, left, back_left], [1, left, back, back_left] (. . . ) [7, front_left, left]],
[Relative Orientation wrt Neighbours Disjoint: [[0, 1], lf], [[0, 2], br] (. . .) [[0, 6], rf, rm] (. . .)
[[1, 2], br], [[1, 4], rm] (. . . )[[4, 6], rm, rf] (. . .) [[6, 7], bl, lm]]

]
(. . .)
[5, [Container, Image], [Orientation wrt Image: right, back_right, back],

[disjoint, 0, 1, 2, 3, 4, 6, 7],
[Orientation wrt Neighbours: [0, back, back_right], [1, back_right] (. . .) [6, right], [7, front_right, right]],
[Relative Orientation wrt Neighbours Disjoint: [[0, 1], bl], [[0, 2], rm, rf], [[0, 3], lm, bl] (. . .) [[1, 2], rm, rf]

(. . .)
[[4, 6], bl, lm], [[4, 7], lm, lf], [[6, 7], lf, rf]]

]
(. . .)

]
[VisualDescription,

[3, pale_yellow,
[Boundary_Shape,

[line-line, acute, similar_lenght, convex],
[line-line, right, similar_lenght, convex],
[line-line, obtuse, a_bit_longer, convex],
[line-line, obtuse, similar_lenght, convex],
[line-line, obtuse, half_length, convex]],

[Vertices_Orientation,front, right, back, back_left, left],],
],

(. . .)
]
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ics shown in Fig. 13 were used to test our approach. The results of
segmentation of each image by Canny’s method and the QID ob-
tained are available on-line.5 The execution times obtained in the
tests are shown in Fig. 14, which has the same structure as previ-
ously described Fig. 11.

5.4. Analysis of the results

As the QID approach is a general approach aimed at extracting
qualitative knowledge from any digital image, it can be applied
in a lot of scenarios by adjusting its parameters and selecting the
suitable image segmentation method.

The two testing scenarios shown in this paper prove the func-
tionality and adaptability of our approach. There is not any prede-
5 http://dl.dropbox.com/u/17361913/CVIUTests.rar
fined task that our approach has to solve in these scenarios. How-
ever, examples of possible applications can be given for clarifica-
tion and for outlining possible future work. In Scenario I, the QID
approach can help in localisation and object-recognition tasks after
matching the qualitative descriptions obtained. And it can also
help in the communication between a human user and a robot
by obtaining the qualitative description produced in a narrative
language form and reading it aloud by a speech synthesiser pro-
gram. In Scenario II, on the other hand, the QID approach can help
to find the similarity between two mosaics by solving the problem
of matching of two qualitative descriptions of tile compositions,
and it can also enhance human-machine communication by nam-
ing the visual features of the tile pieces currently located on the
table.

From the charts shown in Figs. 11 and 14, note that the compu-
tation cost of our QID-Algorithm peaks when a lot of regions are

http://dl.dropbox.com/u/17361913/CVIUTests.rar


(a) tc1 (b) tc2 (c) tc3 (d) tc4 (e) tc5 (f) tc6

(g) tc7 (h) tc8 (i) tc9 (j) tc10 (k) tc11 (l) tc12

(m) tc13 (n) tc14 (o) tc15 (p) tc16 (q) tc17 (r) tc18

Fig. 13. Images of tile compositions (TC) used for testing our approach.

Fig. 14. Execution times of QID obtained for images in Fig. 13 related to the computational cost of QID-Algorithm for each situation.
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extracted in the image and those regions have irregular boundaries
described by a large number of relevant points. Note also that hav-
ing more than 10 regions in an image significantly increases the
time needed to describe that image. Furthermore, if an image has
few regions but a very irregular shape with a high number of rele-
vant points, the time obtained is more than that needed to describe
an image with more regions and more regular shapes. Fig. 11
shows an example, where image SC18 (with 9 regions and a max-
imum of 12 points defining a region) needs more time for the QID
than image SC2 with 11 regions and a maximum of 7 points. More-
over, the worst time obtained is less than 4 seconds for an image of
more than 15 regions, but in images with few regions, like those in
Scenario II, the time decreases a lot and the experiments are per-
formed in less than 1.6 seconds.
6. Conclusions

A computational approach to the qualitative description of any
digital image based on the visual and spatial features of all the
characteristic regions/objects within the image is presented in this
paper. This description was obtained from qualitative models of
shape, colour, topology, and fixed and relative orientation.

The QID approach is not dependent on the region segmentation
method used, and therefore, the most convenient segmentation
method that obtains closed regions can be selected from the liter-
ature depending on the application. Moreover, the parameters of
the QID approach can be adjusted by experts according to the se-
lected application.

The approach presented here was applied to extract qualitative
information from two different scenarios: (i) images of indoor
environments, mainly visual landmarks, captured from a mobile
robot camera in which a region-based image segmentation method
is used; and (ii) images of tile compositions captured by an indus-
trial camera located on a platform which is used by a robot arm to
assemble mosaics automatically, in which a boundary-based image
segmentation method is applied. In both cases, successful results
were obtained with a low computational cost, thus showing the
utility and flexibility of the QID approach.

As future work, we intend to apply the QID approach to solve
tasks in both scenarios presented here by, for example: (i) match-
ing the QID obtained to help in robot localisation and object recog-



Table 11
HSL intervals ðQCINT4

Þ for colour names in QCLAB4
.

QCLAB4
UH US UL

light_red (335, 360]^[0, 40] (50, 100] (55, 100]
light_yellow (40, 80] (50, 100] (55, 100]
light_green (80, 160] (50, 100] (55, 100]
light_turquoise (160, 200] (50, 100] (55, 100]
light_blue (200, 260] (50, 100] (55, 100]
light_purple (260, 297] (50, 100] (55, 100]
light_pink (297, 335] (50, 100] (55, 100]

Table 12
HSL intervals ðQCINT5

Þ for colour names in QCLAB5
.

QCLAB5
UH US UL

dark_red (335, 360]^[0, 40]) (50, 100] (20, 40])
dark_yellow (40, 80] (50, 100] (20, 40]
dark_green (80, 160] (50, 100] (20, 40]
dark_turquoise (160, 200] (50, 100] (20, 40]
dark_blue (200, 260] (50, 100] (20, 40]
dark_purple (260, 297] (50, 100] (20, 40]
dark_pink (297, 335] (50, 100] (20, 40]
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nition; (ii) enhancing human-machine communication by translat-
ing the produced QID into a natural language form; and (iii) mea-
suring the similarity between two mosaics by solving the
approximate matching of two QIDs of tile compositions in order
to detect design plagiarisms. Moreover, other intended future
applications are the following: (i) extracting meaning from images
and improving the understanding of those images by web agents
by translating the QID to a description logics-based ontology; (ii)
obtaining a semantic similarity measure between the meaning of
two ontological descriptions, where this similarity would calculate
the resemblance between the different instances generated; (iii)
measuring the similarity of two qualitative image descriptions
from the point of view of human thinking; (iv) using that similarity
measure for visual image/scene recognition and retrieval from a
cognitive point of view (applicable to design automation processes,
psychological research, and other fields involving imitation and
study of human perception); and (v) applying the QID approach
to other scenarios, such as, medical image description, geographi-
cal image description, and so on.
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Appendix A

Tables for parameterizing qualitative colours in the HSL colour
space.
Table 8
HSL intervals ðQCINT1

Þ for colour names in QCLAB1
.

QCLAB1
UH US UL

black [0, 360] [0, 20] [0, 20)
dark_grey [0, 360] [0, 20] [20, 30)
grey [0, 360] [0, 20] [30, 40)
light_grey [0, 360] [0, 20] [40, 80)
white [0, 360] [0, 20] [80, 100)

Table 9
HSL intervals ðQCINT2

Þ for colour names in QCLAB2
.

QCLAB2
UH US UL

red (335, 360]^[0, 40] (50, 100] (55, 100]
yellow (40, 80] (50, 100] (55, 100]
green (80, 160] (50, 100] (55, 100]
turquoise (160, 200] (50, 100] (55, 100]
blue (200, 260] (50, 100] (55, 100]
purple (260, 297] (50, 100] (55, 100]
pink (297, 335] (50, 100] (55, 100]

Table 10
HSL intervals ðQCINT3

Þ for colour names in QCLAB3
.

QCLAB3
UH US UL

pale_red (335, 360]^[0, 40] (20, 50] (40, 55]
pale_yellow (40, 80] (20, 50] (40, 55]
pale_green (80, 160] (20, 50] (40, 55]
pale_turquoise (160, 200] (20, 50] (40, 55]
pale_blue (200, 260] (20, 50] (40, 55]
pale_purple (260, 297] (20, 50] (40, 55]
pale_pink (297, 335] (20, 50] (40, 55]
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