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Resumen

La simulación de flujos de flúıdos con altos números de Reynolds (régimen de con-
vección dominante, turbulento) sigue siendo un área de investigación muy activa.
La resolución precisa y eficiente al mismo tiempo de las ecuaciones en derivadas
parciales subyacentes puede suponer un verdadero desaf́ıo. Por esta razón, la fi-
nalidad de este trabajo es proponer Modelos de Orden Reducido (MOR), de tipo
Proper Orthogonal Descomposition (POD), para tratar este problema.

En particular, en este trabajo se expone un estudio teórico del método POD y se
propone un modelo de orden reducido POD con viscosidad artifical. Este método se
aplicará en primera instancia a la ecuación de Burgers con coeficientes de difusión
muy pequeños. En este contexto, para el método propuesto (AV-POD-G-ROM)
se derivan las estimaciones de error correspondientes y se realizan simulaciones
numéricas. En segundo lugar, se extiende este método a las ecuaciones de Navier-
Stokes con viscosidades pequeñas, dando lugar a un modelo de orden reducido POD
de tipo Smagorinsky (S-POD-G-ROM). En este contexto, se realizan simulaciones
numéricas del flujo no estacionario alrededor de un obstáculo.
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Abstract

The numerical simulation of fluid flows at high Reynolds numbers (dominant con-
vection, turbulent regime) is a very active research area. The precise and efficient
resolution of the corresponding partial derivative equations can be a real challenge.
For this reason, the goal of this work is to propose Reduced Order Models (ROMs),
based on Proper Orthogonal Decomposition (POD), to treat this problem.

In particular, in this work we show a theoretical study of the POD method and
propose a POD reduced order model with artificial viscosity. This method will be
applied in first instance to the Burgers equation with small diffusion coefficients. In
this context, for the proposed method (AV-POD-G-ROM) the corresponding error
estimates are derived and numerical simulations will be carried out. Secondly, this
method will extend to the Navier-Stokes equations with small viscosity, leading
to a Smagorinsky POD reduced order model (S-POD-G-ROM). In this context,
numerical simulations of unsteady flow around an obstacle will be carried out.
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Chapter 1

Introduction

Nowadays, mathematics and numerical simulations have an important role on the
design and optimization of industrial processes, specifically on the energy sector
that involves fluid mechanics problems. Fluid mechanics problems are usually
governed by the Navier-Stokes equations, which describe the fluid flow, possi-
bly combined with other equations (e.g., energy equation to obtain the so-called
Boussinesq equations). These types of problem can describe the combustion in cars
engine, wind turbines and solar thermal receivers. However, the accurate resolu-
tion of these problems with Full Order Models (FOMs) such as the Finite Element
Method (FEM) normally requires a high computational cost. To this purpose,
Reduced Order Models (ROMs) appeared in the recent scientific literature with
the main aim of reducing computational cost while maintaining a similar accuracy
with respect to FOMs.

The main advantage of ROMs is that they drastically reduce the degrees of
freedom of FOMs, with a consistent saving in computing time, and at the same
time they guarantee similar error levels. Research on ROMs is growing faster since
the beginning of this century and much faster algorithms appeared mainly based
on RB-Reduced Basis [23] and POD-Proper Orthogonal Descomposition [30].

In this work, we will focus on ROMs based on the POD method, and specifically
on POD-closure models to solve non-linear Partial Differential Equations (PDEs)
in fluid mechanics. The POD method essentially provides a low-dimensional or-
thonormal basis for representing a given set of data in a certain least-squares
optimal sense. Originally, the POD was introduced as a spectral analysis method,
which was presented by K. Pearson [10] in 1901. Nowadays, the most common
version of the POD method is the method of snapshots that was presented first by
Sirovich [27] in 1987. This method has been succesfully applied to numerous fields
such as pattern recognition, statics and geophysicial fluid dynamics. From that
moment forth, numerical methods based on POD for PDEs underwent some rapid
development. For instance, Kunisch and Volkwein applied a POD-Galerkin ROM

13



14 CHAPTER 1. INTRODUCTION

for the numerical solution of parabolic PDEs, presenting also the corresponding
error estimates in [19]. Their work has been extended in several papers to more
general PDEs, see e.g. [31] for a recent review paper.

In this work, we present the POD-ROM for Burgers and Navier-Stokes equa-
tions, by considering a specific closure model. In Chapter (2), we enumerate some
notations and fundamental tools used in the rest of the work. Before applying the
POD method to the previous equations, we first introduce it as a method in Rm in
Chapter (3), and we consider its relation with the Singular Value Descomposition
(SVD) and application to image compression. We also consider the POD method
with weighted inner product, useful when applying it to PDEs. Moreover, we
introduce several methods that allow the treatment of non-linear and non-affine
terms (with respect to the parameter) within the POD method, such as the Dis-
crete Empirical Interpolation Method (DEIM) or a method based on Radial Basis
Functions (RBF). In particular, the former method will be used in this work to
approximate the non-linear closure model. In Chapter (4), we introduce a POD-
Galerkin ROM for the Burgers equation together with an artificial viscosity closure
model. We perform its numerical analysis, by mainly deriving error estimates, and
we consider its practical implementation and corresponding numerical results. In
Chapter (5), we introduce a POD-Galerkin ROM for the Navier-Stokes equations
together with the Smagorinsky modeling of the eddy viscosity. We perform nu-
merical studies on a two dimensional unsteady flow around a cylinder. Finally, in
Chapter (6), we state some conclusions and future research directions.



Chapter 2

Notation and preliminary results

In this chapter, we will briefly introduce some notation and results that we will be
used through this work.

2.1 Notation

Let Ω ⊂ Rd, with d ∈ {2, 3}, be a open domain with Lipschitz boundary ∂Ω.
Hereafter, we are going to consider the following notation:

1. Partial derivatives:
∂

∂xk
(·) = ∂k(·) 1 ≤ k ≤ d.

∂

∂t
(·) = ∂t(·).

∂2

∂xk∂xl
(·) = ∂lk(·) 1 ≤ k, l ≤ d.

2. Gradient of a scalar-valued function v : Rd → R :

∇v =

 ∂1v
...
∂dv

 .

3. Gradient of a vector-valued function v : Rd → Rd:

∇v =

 ∂1v1 · · · ∂dv1
...

. . .
...

∂1vd · · · ∂dvd

 .

15



16 CHAPTER 2. NOTATION AND PRELIMINARY RESULTS

4. Divergence of a vector function v : Rd → Rd :

∇ · v =
d∑

k=1

∂kvk.

5. Divergence of a tensor-valued function σ : Rd → Rd×d :

∇ · σ =


∑d

k=1 ∂kσ1k
...∑d

k=1 ∂kσdk

 .

6. Laplace operator of a scalar-valued function v : Rd → R :

∆v = ∇ · ∇v =
d∑

k=1

∂kkv.

7. Convection term of a vector-valued function v : Rd → Rd, velocity of the
Navier-Stokes equation:

(v · ∇)v =

 v · ∇v1
...

v · ∇vd

 =


∑d

k=1(∂kv1)vk
...∑d

k=1(∂kvd)vk

 .

2.2 Preliminary results

In this dissertation, we work with several function spaces and we use its associated
norms, so we are going to introduce them.

Let 1 ≤ p ≤ ∞, the Lebesgue spaces are defined as:

Lp(Ω) = {f : Ω→ R/f measurable, ‖f‖Lp(Ω) <∞}.

The norm for a function u : Ω→ R of Lp(Ω) is

‖u‖Lp(Ω) = (

∫
Ω

|u(x)|pdx)1/p with 1 ≤ p <∞,

‖u‖L∞(Ω) = ess sup x∈Ω|u(x)|.

Lebesgue spaces are Banach spaces and for p = 2 we get the Hilbert space L2(Ω)
with inner product:
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(u, v)L2(Ω) =

∫
Ω

u(x)v(x)dx.

Normally, we will use the following notation for the L2−inner product

(·, ·) := (·, ·)L2(Ω).

Sobolev spaces too play an important role in the analysis of PDEs. In this
work, we use:

H1(Ω) = {f ∈ L2(Ω)/∇f ∈ [L2(Ω)]d},

and when working with homogeneous Dirichlet boundary conditions, we con-
sider:

H1
0 (Ω) = {f ∈ H1(Ω)/f |∂Ω = 0}.

This is a closed linear subspace of H1 and thus a Hilbert space endowed with the
H1−norm (‖u‖H1). Thanks to Poincarè inequality, the H1−norm is equivalent on
H1

0 to the norm ‖u‖H1
0

= ‖∇u‖L2 .
Finally, we introduce the Bochner spaces, needed for the analysis of time-

dependent PDEs [9]. For 1 ≤ p ≤ ∞, the Bochner space is defined as:

Lp((0, T ),Ω) = {f : (0, T )× Ω→ R/f Bochner measurable,‖f‖Lp((0,T ),Ω) <∞},

where for a function u : (0, T )× Ω→ R, its associated norm is:

‖u‖Lp((0,T ),Ω) = (

∫ T

0

‖u(t)‖pLp(Ω)dt)
1/p with 1 ≤ p <∞,

‖u‖L∞((0,T ),Ω) = ess sup t∈(0,T )‖u(t)‖L∞(Ω).
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Chapter 3

The POD method in Rm space

In this chapter, we introduce the Proper Orthogonal Decomposition (POD) method
in Rm. This method seeks a proper orthonormal basis called POD basis {ϕi}ri=1

of rank r, which preserve the essential information of n vectors y1, . . . , yn ∈ Rm

called snapshots, with r ≤ min{m,n}. Snapshots constitute a high dimensional
data set that normally comes from a Direct Numerical Simulations(DNS) [10, 27].
The POD method is formulated as constrained optimization problem:

max
ϕ1,...,ϕr∈Rm

r∑
i=1

n∑
j=1

(yj, ϕi)Rm subject to (ϕi, ϕj)Rm = δij 1 ≤ i, j ≤ r, (3.1)

where δij is the Kronecker delta and (a, b)Rm =
∑m

i=1 aibi.
In this chapter, we are going to introduce the Singular Value Descomposition
(SVD) and the connection with the POD, and some properties of the POD basis.
This part follows [30]. Afterward, we consider a widely used application of the
SVD method, such as image compression. We introduce the POD method with
weighted inner product, useful when applying it to PDEs. Finally, we consider
the treatment of non-linear and non-affine terms (with respect to the parameter)
within the POD.

3.1 Singular Value Decomposition

Let S = (y1| · · · |yn) ∈ Rm×n be a real matrix of rank d ≤ min(m,n), usually called
the snapshots matrix. The Singular Value Decomposition (SVD) of S guarantees
that there exists orthogonal matrices:

Φ = [ϕ1| · · · |ϕm] ∈ Rm×m and V = [v1| . . . |vn] ∈ Rn×n (3.2)

19



20 CHAPTER 3. THE POD METHOD IN RM SPACE

such that

ΦTSV = Σ :=

(
D 0
0 0

)
∈ Rm×n, (3.3)

where D = diag(σ1, . . . , σd) ∈ Rd×d, with σ1 > . . . > σd > 0.(see [11]). Moreover
the vectors {ϕi}di=1 and {vi}di=1 satisfy

Sϕi = σivi and STvi = σiϕi for i = 1, . . . , d, (3.4)

so
STSϕi = σiS

Tvi = σ2
iϕi ∀i = 1, . . . , d, (3.5)

SSTϕi = σiSϕi = σ2
i vi ∀i = 1, . . . , d. (3.6)

Therefore, we obtain that {ϕi}di=1 and {vi}di=1 are the eigenvectors for SST and
STS and their eigenvalues are λi = σ2

i > 0 i = 1, . . . , d.
From (3.3) and using that Φ and V are orthogonal, we obtain that

S = ΦΣV T . (3.7)

Simplifying (3.7) we note

S = ΦdD(V d)T = ΦdBd, (3.8)

where Φd ∈ Rd×n, V d ∈ Rd×n and Bd = D(V d)T ∈ Rd×n. The expression (3.8)
says that the column space of S can be represented in terms of the d linearly
independent columns of Φd and we have that

sj =
∑d

i=1B
d
ijϕ

d
i =

∑d
i=1(D(V d)T )ijϕi =

∑d
i=1((Φd)TΦdD(V d)T )ijϕj =

(3.8)
=
∑d

i=1((Φd)TS)ijϕj =
∑d

i=1(
∑m

k=1 ϕ
d
kiskj)ϕj =

∑d
i=1(ϕi, sj)Rmϕi.

Therefore, the column vector yj of S can be expressed as linear combination of
{ϕi}di=1 as:

yj =
d∑
i=1

(ϕi, yj)Rmui ∀j = 1, . . . , n. (3.9)

3.2 The relation between POD and SVD

Now, we are going to connect the POD with the SVD. Firstly, we want to compute
iteratively an orthonormal basis, which approximates the data set {yj}nj=1. From
this computation, we obtain the vectors {ϕi}ri=1 that will be called the POD basis
of rank r. The first POD mode solves the following maximization problem

max
ϕ̃1∈Rm

n∑
j=1

|(yj, ϕ̃1)Rm|2 s.t. ‖ϕ̃1‖2
Rm = 1. (3.10)
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Thanks to Lagrange formalism, the first lest singular vector ϕ1 solves (3.10).
Following this procedure, the second POD mode is obtained by solving the follow-
ing maximization problem

max
ϕ̃2∈Rm

n∑
j=1

|(yj, ϕ̃2)Rm|2 s.t. ‖ϕ̃2‖2
Rm = 1, (ϕ1, ϕ̃2)Rm = 0, (3.11)

and the solution is given by the left singular vector ϕ2. According this inductive
procedure, we get the following theorem:

Theorem 1. Let S = [y1, . . . , yn] ∈ Rm×n with rank d ≤ min(m,n). Moreover let
S = ΦΣV T be the SVD described in (3.7). Then for 1 ≤ r ≤ d the optimization
problem

max
ϕ̃1,...,ϕ̃r∈Rm

r∑
i=1

n∑
j=1

|(yj, ϕ̃i)Rm|2 s.t. (ϕ̃i, ϕ̃j)Rm = δij∀1 ≤ i, j ≤ r, (3.12)

is being solved by the left singular vectors {ϕi}ri=1 and it holds that

arg max (3.12) =
r∑
i=1

σ2
i =

r∑
i=1

λi. (3.13)

Proof. The proof of Theorem (1) can be found in [[30],theorem 1.1].

Having made the connection between the POD basis and the SVD through
Theorem (1), we are going to show that the POD basis is optimal in the following
sense:

Theorem 2. (Optimality of the POD basis) Let all hypotheses of Theorem (1) be

satisfied. Suppose that Φ̂d ∈ Rm×d denotes a matrix with pairwise orthonormal
vectors ϕ̂i and that the expansion of the columns of S in the basis {ϕ̂i}di=1 is given
by

S = Φ̂dCd, where Cd
ij = (ϕ̂i, yj)Rm for 1 ≤ i ≤ d, 1 ≤ j ≤ n. (3.14)

Then for every r ∈ {1, . . . , d} we have

‖S − ΦrBr‖F ≤ ‖S − Φ̂rCr‖F . (3.15)

In (3.15), ‖ · ‖F denotes the Frobenius norm given by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|A2
ij| =

√
trace(AtA) for A ∈ Rm×n, (3.16)

the matrix Φr denotes the first r ≤ d columns of Φ, Br the first r rows of B and
similarly for Φ̂r and Cr.



22 CHAPTER 3. THE POD METHOD IN RM SPACE

To prove Theorem (2), we need the following result:

Lemma 1. Let A ∈ Rm×n and Q an orthogonal matrix of order m. Then:

‖QA‖F = ‖A‖F . (3.17)

Proof.

‖QA‖2
F = trace((QA)T (QA)) = trace(ATQTQA) = trace(ATA) = ‖A‖F . (3.18)

Now we are going to prove Theorem (2).

Proof. Using the Lemma (1)

‖Y − Φ̂rCr‖2
F = ‖Φ̂d(Cd − Cr

0)‖2
F = ‖Cd − Cr

0‖2
F =

d∑
i=r+1

n∑
j=1

|Cr
ij|2, (3.19)

where Cr
0 ∈ Rr×n is obtained by replacing the last d − r rows of C ∈ Rr×n by 0.

Similarly we have

‖Y − ΦrBr‖2
F = ‖Φk(Bd −Br

0)‖2
F = ‖Bd −Br

0‖2
F =

∑d
i=r+1

∑n
j=1 |Bd

ij|2

=
∑d

i=r+1

∑n
j=1 |(yj, ϕi)|=

∑d
i=r+1

∑n
j=1((yj, ϕi)yj, ϕi) =∑d

i=r+1(SSTϕi, ϕi) =
∑d

i=r+1 σ
2
i .

(3.20)
We know that, by Theorem (1), ϕ1, . . . , ϕd solve problem (3.12). Now, using (3.20),
we obtain:

‖S‖2
F = ‖Φ̂dCd‖2

F = ‖Cd‖2
F =

d∑
i=1

n∑
j=1

|Cr
ij|2, (3.21)

and

‖S‖2
F = ‖ΦdBd‖2

F = ‖Bd‖2
F =

d∑
i=1

n∑
j=1

|Br
ij|2 =

r∑
i=1

σ2. (3.22)

Therefore

‖S − ΦrBr‖2
F =

∑d
i=r+1 σ

2
i =

∑d
i=1 σ

2
i −

∑r
i=1 σ

2
i = ‖S‖2

F −
∑r

i=1

∑n
j=1 |(yj, ϕi)|2

≤ ‖S‖2
F −

∑r
i=1

∑n
j=1 |(yj, ϕ̂i)|2 =

∑d
i=1

∑n
j=1 |Cd

ij|2 −
∑r

i=1

∑n
j=1 |Cd

ij|2

=
∑d

i=r+1

∑n
j=1 |Cd

ij|2 = ‖S − Φ̂rCr‖2
F .

(3.23)
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We note that

‖S− Φ̂rCr‖2
F =

n∑
j=1

m∑
i=1

|Sij−
r∑

k=1

(ϕ̂k, yj)Φ̂
r
ik|2 =

n∑
j=1

‖yj−
r∑

k=1

(yj, ϕ̂k)ϕ̂k‖2, (3.24)

and

‖S − ΦrBr‖2
F =

n∑
j=1

‖yj −
r∑

k=1

(yj, ϕk)ϕk‖2. (3.25)

Hence, by Theorem (2)

n∑
j=1

‖yj −
r∑

k=1

(yj, ϕk)ϕk‖2 ≤
n∑
j=1

‖yj −
r∑

k=1

(yj, ϕ̂k)ϕ̂k‖2. (3.26)

Then, we can obtain the POD basis of rank r using the Theorem (2) by solving
the following optimization problem:

min
ϕ̃1,...,ϕ̃r∈Rm

n∑
j=1

‖yj −
r∑
i=1

(yj, ϕ̃i)ϕ̃i‖2 s.t. (ϕ̃i, ϕ̃j) = δij for 1 ≤ i, j ≤ r. (3.27)

In practice, computing the SVD of S is computationally expensive, since S ∈
Rm×n is a dense matrix and m or n are very large. However, we can transform the
search of the POD basis into an eigenvalues problem of size m×m or n×n, which
is useful if m << n or m >> n. Hence, we are going to distinguish two cases:

1. If n < m :
We compute the eigenvectors φ1, . . . , φr ∈ Rn by solving the symmetric n×n
eigenvalues problem:

STSφi = λiφi for i = 1, . . . , r. (3.28)

and using (3.4),

ϕi =
1√
λi
Sφi for i = 1, . . . , r. (3.29)

2. If n > m:
We can obtain the POD basis by solving the m×m eigenvalues problem:

SSTϕi = λiϕi for i = 1, . . . , r. (3.30)

This method is usually called the method of snapshots for historical reasons
[26].
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Finally, we mention that for the choice of r in practical problems one could use
the following formula:

ε(r) :=

∑r
i=1 λi∑d
i=1 λi

≥ δε, (3.31)

where ε(d) is called the energy ratio and δε ∈ (0, 1] is a fixed threshold. Since
we want to capture most of the energy system by the POD modes, usually we
choose δε close to 1.

3.3 Application to Image Compression

In this section, we show how helpful is the SVD in real life, showing one of its most
used application that is image compression. Image compression [7] is based on:
given an image S ∈ Rm×n of rank d, we are looking for a matrix S̃ ∈ Rm×n with
rank r << d such that ‖S − S̃‖ is minimal. Then by the Eckart-Young theorem
[12], we have that:

min
rank(S̃)=r

‖S − S̃‖ = ‖S − S(r)‖ =

{
σr+1 for the 2-norm.√∑d
i=r+1 σ

2
i for the Frobenius-norm.

(3.32)
The results (3.32) means that truncated matrix from the SVD:

S(r) := Φ

(
Σ(r) 0

0 0

)
V T =

r∑
i=1

σiϕiv
T
i , (3.33)

with Σ(r) := diag(Σ11, . . . ,Σrr) solves the minimization problem. Consequently,
we only need to compute a truncated SVD with a good rank (high content of
information) in order to compress an image.

We use a colour image of the Faculty of Mathematics (University of Seville),
which is 600 pixels wide and 900 pixels high. Each pixel is divided in three integer
values corresponding to the intensity of red, blue and green of the colour. In Figure
(3.1), we can see the original image and its SVD approximation of rank 5, 150 and
500.
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(a) Original image (b) SVD Approximation of rank 5

(c) SVD Approximation of rank 150 (d) SVD Approximation of rank 500

Figure 3.1: Approximation of the original images with lower rank

The matrix representation of the image has full rank, i.e., it has rank 600.
First of all, we have to divide the matrix of the original image into three matrices
corresponding to each colour. Then, we have to perform an SVD approximation
for each colour, therefore the decayment of its singular values are shown in Figure
(3.2).

Figure 3.2: Singular values of red, blue and green.

From Figures (3.2), we observe a fast decay of the corresponding singular values,
so that we expect a good approximation for relatively small values of r.
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Figure 3.3: Energy ratio of red, blue and green.

In Figures (3.3), we show how the energy ratio ε(r) :=

∑r
i=1 σi∑d
i=1 σi

depends on

the size r of the truncated SVD and that a big portion of the energy ratio can be
attributed to the first singular values, which motivates a truncated singular value
descomposition for relatively small values of r.

3.4 The POD method with weighted inner prod-

uct

In the next chapters, we are going to work with the L2-inner product. Let consider
two functions

u :=
m∑
i=1

uhi ϕ
h
i , v :=

m∑
j=1

vhj ϕ
h
j ∈ L2(Ω),

their L2-inner product is

(u, v)L2(Ω) = (
m∑
i=1

uhi ϕ
h
i ,

m∑
j=1

vhj ϕ
h
j )L2(Ω) =

m∑
i,j=1

uhi (ϕ
h
i , ϕ

h
j )L2(Ω)v

h
j = (uh)TMhv

h,

(3.34)
where Mh ∈ Rm×m is the mass matrix, whose entries are (Mh)ij = (ϕhi , ϕ

h
j )L2(Ω)

for 1 ≤ i, j ≤ m. If we observe (3.34), we note that the L2-inner product of two
functions is a weighted inner product of their coefficient vectors. For this reason,
we are going to extend the POD from Section 3.2 to weighted inner product.

Let us consider a weighted inner product:

(u, v)W := uTWv = (u,Wv)Rm = (Wu, v)Rm for u, v ∈ Rm, (3.35)

where W ∈ Rm×m is a symmetric, positive definite matrix. Moreover, ‖u‖W =√
(u, u)W for u ∈ Rm is the associated induced norm. If we consider W = Im, the

identity matrix, the inner product (3.35) is the Euclidean inner product.
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Now, we are going to repeat the same as in Section 3.2. The first POD mode
solves the following maximization problem

max
ϕ̃1∈Rm

n∑
j=1

|(yj, ϕ̃1)W |2 s.t. ‖ϕ̃1‖2
W = 1,

and then, the second POD mode is obtained by solving:

max
ϕ̃2∈Rm

n∑
j=1

|(yj, ϕ̃2)W |2 s.t. ‖ϕ̃2‖2
W = 1.

Therefore, by induction, we get the following theorem:

Theorem 3. (POD basis with weighted inner product) Let S = [y1, . . . , yn] ∈ Rm×n

with rank d ≤ min(m,n), W ∈ Rm×m be a symmetric, positive definite matrix and

S̄ = W
1
2S. Moreover, let S̄ = Φ̄ΣV̄ T be the singular value decomposition of Ȳ ,

where Φ̄ = [ϕ̄1, . . . , ϕ̄m] ∈ Rm×m and V̄ = [v̄1, . . . , v̄n] ∈ Rn×n are the orthogonal
matrices,

Σ =

(
D 0
0 0

)
∈ Rm×n,

with D = diag(σ1, . . . , σd) ∈ Rd×d and σ1 ≥ σ2 ≥ · · · ≥ σd > 0. Then for
1 ≤ r ≤ d the optimization problem

max
ϕ̃1,...,ϕ̃r∈Rm

r∑
i=1

n∑
j=1

|(yj, ϕ̃i)W |2 s.t. (ϕ̃i, ϕ̃j)W = δij∀1 ≤ i, j ≤ r. (3.36)

is being solved by the vectors ϕi = W− 1
2 ϕ̄1 for 1 ≤ i ≤ r and it holds that

arg max (3.36) =
r∑
i=1

σ2
i =

r∑
i=1

λi

Proof. The proof follows the same steps as Theorem (1).

Remark 1. Following again the same steps as in Section 3.2, we can show that

min
ϕ̃1,...,ϕ̃r∈Rm

n∑
j=1

‖yj−
d∑
i=1

(yj, ϕ̃i)W ϕ̃i‖2
W s.t. (ϕ̃i, ϕ̃j)W = δij for 1 ≤ i, j ≤ r, (3.37)

is an optimization problem equivalent to (3.27).
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Remark 2. We note that S̄T S̄ = STWS. Therefore, in order to solve the n × n
eigenvalues problem we have

S̄T S̄φ̄i = STWSφ̄i = λiφi for i = 1, . . . , r.

and

ϕi = W− 1
2 ϕ̄i =

1√
λi
W− 1

2 (S̄ϕ̄i) =
1√
λi
W− 1

2W
1
2Sϕ̄i =

1√
λi
Sϕ̄i, for 1 ≤ i ≤ r.

Moreover,

(ϕi, ϕj)W = ϕTi Wϕj =
δijλj√
λiλj

= δij ∀1 ≤ i, j ≤ r,

so the matrix W
1
2 is not needed.

3.5 Treatment of non-linear and non-affine terms

within the POD method

In this section, we introduce several techniques that allow to treat non-linear and
non-affine terms (with respect to parameter) within the POD-ROM framework.
Those methods help to reduce the complexity of these terms in such a way it is
proportional to the number of the POD modes, which is crucial for reduced order
modeling with POD. Their strategy consists in approximating a non-linear term
g : µ ∈ P ⊂ Rp → g(µ) ∈ RN by projecting onto a POD basis Q :

g(µ) ≈ gr̃(µ) = Qα(µ) =
r̃∑
j=1

αjϕ̃j, (3.38)

where µ is the parameter, Q = [ϕ̃1, . . . , ϕ̃r̃] ∈ RN×r̃ and α(µ) ∈ Rd̃ is the
coefficients vector with d̃ << N. The POD basis Q is constructed applying the
POD method described in section (3.2) on a set of snapshots:

S = [g(µ1)| . . . |g(µns)], ns > r̃.

Once the basis is obtained, we have to determine the vector α(µ) ∈ Rr̃. This
can be done by the following methods.

3.5.1 Discrete Empirical Interpolation Method

The first method we present to compute the coefficients vector α is the Discrete
Empirical Interpolation Method (DEIM). To do so, we follow [3, 6, 23]. The DEIM
procedure requires the following:
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1. Construct a set of snapshots S = [g(µ1)| . . . |g(µns)] and with this create a
POD base Q as mentioned before.

2. Select iteratively r̃ indices I ⊂ {1, . . . , N} from the POD basis Q by using a
greedy procedure, which minimizes at each step the interpolation error over
the snapshots set measured in the maximum norm.

3. Given a new parameter µ, compute the coefficients vector α(µ) by solving
the following liner system:

QIα(µ) = gI(µ), (3.39)

where QI ∈ Rr̃×r̃ is the matrix formed by the I rows of Q and gI(µ) is the
evaluation of g(µ) on the I points. Therefore, we obtain:

gr̃(µ) = QQ−1
I gI(µ). (3.40)

The detailed Algorithm with the online and offline phases completely separated
is the following:

• OFFLINE PHASE

1. The offline phase consists first in constructing the spatial basis Q =
[ϕ̃1| · · · |ϕ̃r̃] obtained by operating a POD over a set of snapshots S =
[g(µ1)| · · · |g(µns)].

2. The second step of the offline phase consists in selecting iteratively r̃
indices I ⊂ {1, . . . , N}, where N is usually the number of FOM de-
grees of freedom for g(µ), from the basis Q using the following greedy
procedure

– Initialization: i1 = arg maxi=1,...,N |(ϕ̃1)i|; Q = ϕ̃1; I = {i1}.
– Iterations: 

for m = 2 : r̃
res = ϕ̃m −QQI(ϕ̃m)I ;
im = arg max i=1,...,N |(res)i|
Q← [Q|ϕ̃m]; I ← I ∪ {im}

where QI is the matrix formed by the I rows of Q and (ϕ̃m)I is
formed by the I component of ϕ̃m.

• ONLINE PHASE
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1. In order to compute online the coefficients vector α(µ) = [α1(µ), . . . , αr̃(µ))]T ,
interpolation constraints are imposed at the points corresponding to the
selected indices.
First of all, we have to evaluate g on the interpolation points {xi1 , . . . , xir̃}
in order to construct gI(µ).

2. The second step of the online phase requires the solution of the following
linear system:

QIα = gI(µ).

Note that the complexity of solving the linear system (3.40) is O(r̃3) and we
have an error bound

‖g(µ)− gr̃(µ)‖2 ≤ ‖Q−1
I ‖2‖(I−QQT )g(µ)‖2, (3.41)

with

‖(I−QQT )g(µ)‖2 ≈ σr+1, (3.42)

being σr+1 the first discarded singular values.

Alternatively to the DEIM, the Empirical Interpolation Method([4]) is also
used for the approximation of non-linear terms. The philosophy of EIM is the
same as DEIM, but the construction of the basis Q is done by a Reduced Basis
procedure with greedy algorithm ([8]) instead of the POD.

3.5.2 Radial Basis Functions

The second method we introduce to compute the coefficient vector α in (3.38) is
the Radial Basis Functions (RBF). To decribe it, we follow [13]. First, we note
that in this method the non-linear term can depend on different parameters. For
simplicity, we are going to consider two parameters, µ and t (e.g., time):

g(µ, t) ≈ gr̃(µ, t) = Qα(µ, t) =
r̃∑
j=1

αj(µ, t)ϕ̃j.

The POD basis Q is now obtained by a POD method on

S = {g(x, ti;µ1), . . . , g(x, tns ;µM)}.

Before explaining the method, we are going to fix some notations:

• PM = {µ1, . . . , µM} is the set of the M parameters.
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• Xµ,t = PM × {t1, . . . , tN} is the Cartesian product of the discretized param-
eter set and the set of times instants at which snapshots were taken.

• xiµ,t is the i-th member of Xµ,t.

• t∗ is the time instant at which the ROM solution is sought.

• µ∗ is the new parameter considered in the online stage of the ROM (within
the range [µ1, µM ], but different from the parameters used in the offline
stage).

• z∗ = (t∗, µ∗) is combination of the online parameter and the time instant at
which the ROM solution is desired.

• S = {g(x, ti;µ1), . . . , g(x, tns ;µM)} ∈ RN×M̃ is the set of snapshots, where
M̃ = ns ·M .

• α̃r,l = (Sr, ϕ̃l) is the projection of the r-th column of S on the l-th POD
mode (ϕ̃l) of Q.

The interpolation statement will be the following

• Given Xµ,t, [S
i]M̃i=1 and [αr,l]

M̃,d̃
r=1,l=1, predict the value of α in (3.38) for z∗.

• The goal can be split to each of the scalar coefficient [αi(t
∗, µ∗)]Mi=1.

Note that the interpolation procedure will be carried out for each mode separately,
so we can fix one mode ϕ̃L and obtain YL = [αr,L]M̃r=1 ∈ RN set of observation. The
procedure is the following:

1. Consider the pair Xµ,t, YL.

2. The interpolation using RBF functions is based on the following formula:

GL(z) =
N∑
j=1

wL,j, ξL,j(‖z − xjµ,t‖L2(Rq+1)) L = 1, 2, . . . ,M, (3.43)

where z = (t, µ), wL,j are some appropriate weights and ξL,j are the RBF
functions which are chosen to be Gaussian functions centered in xiµ,t.

3. Computations of the weights.

(a) We know GL(xiµ,t, t) = αi,L.

(b)
∑N

j=1wL,j, ξL,j(‖xiµ,t − x
j
µ,t‖L2(Rq+1)) = gi,L.
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(c) This corresponds to the following linear system:

AξLwL = YL, (3.44)

where
(AξL)ij = ξL,j(‖xiµ,t − x

j
µ,t‖L2). (3.45)

The weights wL can be thus computed in the offline phase, and then
stored to be used in the online phase.

(d) In the online stage, we have z∗ and the goal is to compute α(z∗) =
[αi(z

∗)]r̃i=1 which it is done by

α(z∗) ≈ Gi(z
∗) =

M̃∑
j=1

wi,jξi,j(‖z∗ − xjµ,t‖L2(Rq+1)) i = 1, 2, . . . , r̃.

(3.46)

This technique has been used in Appendix (A) to approximate the eddy vis-
cosity.



Chapter 4

The POD for the Burgers
equation

The Burgers equations with initial and boundary conditions is given by:
ut − νuxx + uux = f in Ω× (0, T ),
u(x, 0) = u0 in Ω,
u(x, t) = g on ∂Ω× (0, T ).

(4.1)

where ν is the diffusion parameter, f is the forcing term, Ω is the 1D computational
domain and T is the final time. We are going to consider the function space
X = H1

0 (Ω) and assume that, without loss of generality, g ≡ 0 and f ≡ 0. Then,
the weak formulation of the Burgers equation (4.1) reads:

(ut, v)L2 + ν(ux, vx)L2 + (uux, v)L2 = 0 ∀v ∈ X. (4.2)

To derive the standard POD-Galerkin ROM applied to the Burgers equation,
one has to solve first the fully discretized version of (4.2) for a certain set of
time instances. In this way, we collect the snapshots, and we perform the POD
method over the set of snapshots to compute the POD basis in L2 (see Section
3.4). The Galerkin projection-based POD-ROM uses both Galerkin truncation
and Galerkin projection. The former yields an approximation of the solution by a
linear combination of the truncated POD basis:

u(x, t) ≈ ur(x, t) =
r∑
j=1

aj(t)ϕj(x) ∈ Xr, (4.3)

where Xr = span{ϕ1, . . . , ϕr} is the space for the POD setting and {ai(t)}ri=1

are the time coefficients.
Replacing the solution u with ur in the Burgers equations (4.2), using the

Galerkin method, and projecting the resulted equations onto the space Xr, one

33
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obtains the standard POD-Galerkin ROM (POD-G-ROM) for the Burgers equa-
tions. To obtain its time discretization, we apply the backward Euler method and

denoting ∂̄ukr =
ukr − uk−1

r

∆t
, the problem reads:

(∂̄ukr , ϕ)L2 + ν((ukr)x, (ϕ)x)L2 + (ukr(u
k
r)x, ϕ)L2 = 0 ∀ϕ ∈ Xr. (4.4)

The POD-G-ROM (4.4) leads to the following autonomous system for the co-
efficients a(t) :

·
a (t) = Ba+ aTCa, (4.5)

where B and C correspond to the linear and quadratic terms in the numerical
discretization of the Burgers equation (4.4), respectively. The initial conditions
are obtained by the projection:

·
ai (0) = (u(·, 0), ϕi)L2 i = 1, . . . , r.

The finite dimensional system (4.5) can be written componentwise as follow:

·
ai (t) =

r∑
m=1

Bimam(t) +
r∑

n=1

r∑
m=1

Cimnam(t)an(t).

where

Bim = −((ϕm)x, (ϕi)x)L2 ,

Cimn = −(ϕm(ϕn)x, ϕi)L2 .

4.1 AV-POD-G-ROM

In this section we are going to introduce an artificial viscosity POD-ROM (AV-
POD-G-ROM). The reason to introduce this model is that for convection-dominated
non-linear problems, the standard POD-G-ROM is not accurate. Thus, we intro-
duce a new term of artificial viscosity (AV), which try to replicate in this frame-
work the effect of the Smagorinsky turbulence model for the Navier-Stokes equa-
tions [32]. We emphasize that, although the Burgers equations is considered as
simplification of NSE and small diffusion parameters ν are corresponding to high
Reynolds numbers in NSE, in this context we are not representing the real turbu-
lence. Therefore, the role of closure methods changes correspondingly. Instead of
improving physical accuracy (dissipating energy according to the well known con-
cept of energy cascades), they increase the numerical stability (in testing problems
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showing shock-like behavior, for instance). Of course, once we fully understand
the behavior of this kind of POD closure model in this simplified setting, we will
analyze in the NSE setting (see (6)). Therefore, the new weak formulation of (4.2)
is:

(ut, v)L2 + ν(ux, vx)L2 + (uux, v)L2 + c(|ux|ux, vx) = 0 ∀v ∈ X, (4.6)

where c is a positive coefficient.
Now, we repeat the same process as in the previous section, so we replace (4.3)

into (4.6) and obtain the AV-POD-G-ROM:

(∂̄ukr , ϕ)L2 + ν((ukr)x, (ϕ)x)L2 + (ukr(u
k
r)x, ϕ)L2 + c(|ukr |ukr , φx)L2 = 0 ∀ϕ ∈ Xr.

(4.7)
In order to obtain an autonomous system with respect to the time coefficients

a(t), we have to treat the non-linear term (|(ud)x|(ud)x, ϕx). In this case we are
going to do an approximation by the DEIM (see Section (3.5.1)). Up to our
knowledge, it is the first time that the DEIM is applied in such kind of model to
reduce its computational complexity, as we will show in Section (4.3). Then, if we
apply the DEIM method on |ux| we obtain:

|ux| =
r̃∑
j=1

αj(t)ϕ̃j,

where X̃ r̃ = span{ϕ̃1, . . . , ϕ̃r̃} and αj(t) are the time coefficients.
Consequently we obtain the following autonomous system for the coefficients a(t) :

·
a (t) = Ba+ aTCa+ αTDa. (4.8)

where B,C and D correspond to the linear and the two quadratic terms in the
numerical discretization of the AV Burgers equation (4.7), respectively. The initial
conditions are obtained by the projection:

·
ai (0) = (u(·, 0), ϕi)L2 i = 1, . . . , r.

The finite dimensional system (4.8) can be written componentwise as follow:

·
ai (t) =

r∑
m=1

Bimam(t) +
r∑

n=1

r∑
m=1

Cimnam(t)an(t) +
r̃∑

n=1

r∑
m=1

Dimnam(t)αn(t),

where
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Bim = −((ϕm)x, (ϕi)x)L2 ,

Cimn = −(ϕm(ϕn)x, ϕi)L2 ,

Dimn = −(c(ϕ̃m)x(ϕn)x, (ϕi)x)L2 .

4.2 Error estimates

In this section, our aim is to prove estimates for the time discretization error
1

M

∑M
k=1 ‖ukr − u(tk)‖2

L2 , where ukr is the solution of (4.7) and u(tk) is the solution

of (4.6). For it, we follow [19] and [32]. However, in this section we only focus on
time discretization and POD truncation, for finite element spatial discretization
the reader is referred to [20] and [15].

First of all, we are going to introduce some notations and results that we need
to prove the main result. For clarity and simplicity, let L2, H1

0 ,W
1,3,W 1,3

0 denote
the usual Sobolev spaces on Ω and (·, ·) = (·, ·)L2 .
For all ϕ, ψ ∈ H1

0 , we define

a(ϕ, ψ) := ν(ϕx, ψx) ∀ϕ, ψ ∈ H1
0 , (4.9)

(F (ϕ), ψ) := (ϕϕx, ψ). (4.10)

For ϕ, ψ ∈ W 1,3 and c > 0,

(G(ϕ), ψ) := c(|ϕx|ϕx, ψx). (4.11)

We will denote by Ck, k ∈ N the different constants that will appear indepen-
dent of the number of the POD modes (r) and the number of snapshots (M).

Now, we show several results, that will be used throughout this section. The
first one:

Lemma 2 (Poincarè inequality). ∃α > 0 constant such that

‖ϕ‖L2 ≤ α|ϕ|H1 ∀ϕ ∈ H1
0 , (4.12)

where | · |H1 is the H1−seminorm.

Lemma 3. The bilinear form a(·, ·) is continuous and coercive, this means that
∃β, κ such that

|a(ϕ, ψ)| ≤ β‖ϕ‖H1‖ψ‖H1 ∀ϕ, ψ ∈ H1
0 , (4.13)

|a(ϕ, ϕ)| ≤ κ‖ϕ‖2
H1 ∀ϕ ∈ H1

0 . (4.14)



4.2. ERROR ESTIMATES 37

Lemma 4 (Strong monotonicity and Lipschitz continuity of G). For all ϕ1, ϕ2, ψ ∈
W 1,3,∃C constant, such that

(G(ϕ1)−G(ϕ2), ϕ1 − ϕ2) ≥ C‖(ϕ1 − ϕ2)x‖3
L3 , (4.15)

(G(ϕ1)−G(ϕ2), ψ) ≤ CM̃‖(ϕ1 − ϕ2)x‖L3‖ψx‖L3 , (4.16)

where M̃ := max{‖(ϕ1)x‖L3 , ‖(ϕ2)x‖L3}.

Definition 1. The projection PR : H1
0 → Xr is defined as follows: for all ψ ∈ Xr

a(PRu, ψ) = a(u, ψ) ∀u ∈ H1
0 . (4.17)

Lemma 5. If ∆t is small enough, we have the following approximation for PR([19]):

1

M

M∑
k=1

‖u(k)− PRu(tk)‖2
H1 ≤ C1

d∑
j=r+1

λj, (4.18)

1

M

M∑
k=1

‖∂̄u(tk)− PR∂ū(tk))‖2
H1
≤ C2

d∑
j=r+1

λj. (4.19)

We also need the following results:

Lemma 6. ∃C3, C4 such that for all v ∈ X it is verified

‖v‖L3 ≤ C3‖v‖L2 ‖v‖L2 ≤ C4‖v‖L3 . (4.20)

Proof. We note that {ϕ1, . . . , ϕd} is an orthonormal basis of X, so if v ∈ X, then
∃vi scalars such that vi = (v, ϕi) and v =

∑d
i=1 viϕi. Consequently

‖v‖L3 = ‖
d∑
i=1

viϕi‖L3 ≤
d∑
i=1

|vi|‖ϕi‖L3 ≤ ( max
i=1,...,r

‖ϕi‖L3)
d∑
i=1

|vi|. (4.21)

Now we need the following auxiliar Lemma (7) whose proof is in ([5]):

Lemma 7 (auxiliar). Let {x1, . . . , xn} be a linearly independent set of vectors in
a normed space X (of any dimension). Then there is a number C > 0 such that
for every choice of scalars α1, . . . , αn we have

‖α1x1 + . . .+ αnxn‖ ≥ C(|α1|+ · · ·+ |αn|). (4.22)

Applying the auxiliar lemma (7) into (4.21) we obtain the first inequality. The
other one has the same proof as the first.
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Lemma 8. Assume that the solution of (4.6) satisfies ux ∈ H1
0 . There exists

constants C5, C6 and C7, such that, for all k = 1, . . . ,m, the following inequalities
hold

‖ux(tk)‖L2 ≤ C5, ‖ux(tk)‖L3 ≤ C6, ‖PRux(tk)‖L2 ≤ C7. (4.23)

Proof. The first two inequalities are easily proved by letting ϕ = u in (4.6), using
(F (u), u) = 0, Cauchy-Schwarz inequality, the strong monotonicity of G (4.15)
and adjusting constants. Therefore, we want to prove the last inequality, so first
of all, we remind the definition of the projection (4.17):

a(PRux, ψ) = a(ux, ψ) ∀ψ ∈ Xr. (4.24)

If we let ψ = PRux, we obtain:

a(PRux, PRux) = a(ux, PRux). (4.25)

Next, we are going to bound separately both terms in (4.25).
Firstly, using the continuity of a(·, ·) :

a(PRux, ux) ≤ β‖PRux‖L2‖ux‖L2 . (4.26)

Secondly, using the coercivity of a(·, ·) :

a(PRux, PRux) ≥ κ‖PRux‖2
L2 . (4.27)

Then, if we join (4.27),(4.26) and (4.25):

κ‖PRux‖2
L2 ≤ a(PRux, PRux) = a(ux, PRux) ≤ β‖PRux‖L2‖ux‖L2 , (4.28)

‖PRux‖L2 ≤ β

κ
‖ux‖L2 ≤ C7. (4.29)

We are now ready to prove the main theorem:

Theorem 4. Let u be the solution of (4.6) and {ukr}Mk=1 be the solution of (4.7).
Assume that ux ∈ H1

0 and utt ∈ L2(0, T ;L2). If ∆t is small enough, then there
exists a constant C > 0, such that

1

M

M∑
k=1

‖ukr − u(tk)‖L2 ≤ C(‖u0 − PRu0‖2 +
d∑

j=r+1

λj + ∆t2). (4.30)
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Proof. The proof follows the same ideas and procedure as the Theorem 7 and 11
in ([19]) and Theorem 1 in section 4 of [32]. For that reason, we only show the
main differences and a small part of the proof.
First of all, we decompose the error:

ukr − u(tk) = ukr − PRu(tk) + PRu(tk)− u(tk). (4.31)

Now, we define ϑk := ukr − PRu(tk) and %k := PRu(tk)− u(tk), so:

ukr − u(tk) = ϑk + %k. (4.32)

If we use the triangle inequality, we have

1

M
‖ukr − u(tk)‖2 ≤ 2

M

M∑
k=1

‖ϑk‖2 +
2

M

M∑
k=1

‖%k‖2. (4.33)

The second term on the right hand side of (4.33) can be bounded by the
properties of the projection (4.18)-(4.19) and the Poincarè’s inequality (4.12):

1

M

M∑
k=1

‖%k‖2 ≤ C8

d∑
j=r+1

λj. (4.34)

For the first term, we need to introduce some notation: for k = 1, . . . ,m ∂̄ϑk :=
ϑk − ϑk − 1

∆t
, vk := u(tk) − ∂̄PRu(tk) = wk + zk, wk := ut(tk) − ∂̄u(tk), zk :=

∂̄u(tk)− ∂̄PRu(tk).

For all ψ ∈ Xr, we have

(∂̄ϑk, ψ) + a(ϑk, ψ) = (∂̄ukr , ψ) + a(ukr , ψ)− (∂̄PRu(tk), ψ)− a(PRu(tk), ψ)
= (f(tk), ψ)− (F (ukr), ψ)− (G(ukr), ψ)− (∂̄PRu(tk), ψ)− a(u(tk), ψ)
= (vk, ψ) + (F (u(tk))− F (ukr), ψ) + (G(u(tk))−G(ukr), ψ).

(4.35)
Letting ψ := ϑk, we get

‖ϑk‖2 − (ϑk, ϑk−1) + ∆tν‖(ϑk)x‖2 = ∆t(vk, ϑk)
+ ∆t(F (u(tk))− F (ukr), ϑk) + ∆t(G(u(tk))−G(ukr), ϑk).

(4.36)

We now have to estimate the r.h.s. of (4.36). The first one, if we use the Cauchy-

Schwarz inequality, we obtain

(vk, ϑk) ≤ ‖vk‖‖ϑk‖. (4.37)
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The second one, if we do the same as in the page 139 of [19] we obtain the following
estimate:

|(F (u(tk))− F (ukr), ϑk)| ≤ ν‖ϑk‖2
H1 + C9‖ϑk‖2

L2 + C10‖%‖2
H1 . (4.38)

For the last term, since it is not included in [19], we are going to use the same
ideas as in [32]. We start by:

(G(u(tk))−G(ukr), ϑk) = (G(u(tk))−G(PRu(tk)), ϑk)
+ (G(PRu(tk))−G(ukr), ϑk).

(4.39)

Now, if we move the last term on the right hand side of (4.39) to the left hand
side of (4.36) and apply the strong monotonicity property of G (4.15):

(G(ukr)−G(PRu(tk)), ϑk) ≥ C11‖(ϑk)x‖3
L3 . (4.40)

If we apply the Lipschitz continuity of G (4.16) to the first term on the right hand
side of (4.36):

(G(u(tk))−G(PRu(tk)), ϑk) ≤ CM̃‖(%k)x‖L3‖(ϑk)x‖L3 , (4.41)

where M̃ = max{‖(u(tk))x‖L3 , ‖PR(u(tk))x‖L3} and we have used the Lemma (8).

Using the first estimate in Lemma (6) and Young’s inequality:

‖(%k)x‖L3‖(ϑk)x‖L3 ≤ C2
3‖(%k)x‖‖(ϑk)x‖L2 ≤

≤
ν‖(ϑk)x‖2

L2

2
+

1

2ν
C4

3‖(%k)x‖2
L2 .

(4.42)

Using (4.36)-(4.42), we obtain the following approximation

‖ϑk‖2
L2 − (ϑk, ϑk−1) + ∆tν‖(ϑk)x‖3

L3 ≤

≤ ‖vk‖L2‖ϑk‖L2 + (ν + C13 +
ν

2
)‖(ϑk)x‖2

L2 + (C10 +
C4

3

2ν
)‖(%k)x‖2

L2 .
(4.43)

If we follow the rest of the proof in the page 140 of [19], choosing a small ∆t and
summing over k, we obtain

‖(ϑk)x‖2
L2 ≤ eC14T (‖(v0)x‖2

L2 + ∆t
k∑
j=1

(‖ϑ‖2
L2 + C15‖(%)x‖2

L2)). (4.44)

Finally, using the estimate of vk as done in [19] and (4.34) we obtain the main
result (4.30).
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4.3 Practical Implementation and Numerical Re-

sults

The main goal of this section is to show the improvements of the AV-POD-G-ROM
over the POD-G-ROM in terms of accuracy. We take the same initial condition
and similar parameters used in [32, 21, 17].

In order to perform the computations, we consider the initial condition of (4.1)
as :

u0(x) =


1 if x ∈ (0,

1

2
],

0 if x ∈ (
1

2
, 1).

(4.45)

The following numerical discretization has been used in all our numerical tests.
The computational domain is Ω = (0, 1) and the final time is T = 1. The pa-
rameters that we are going to use are: mesh size h = 1

1024
for the Finite Element

(FE) full order discretization; time step ∆t = 10−3 ; diffusion parameter ν = 10−5;
number of snapshots M = 1001. Note that the used diffusion parameter is rather
sharp with respect to the one used in [32, 21, 17], for which ν ≥ 10−3.

Firstly, we run a Direct Numerical Simulation (DNS). In addition, given the
spatial and temporal resolution used, we can consider the resolution of the problem
by finite elements as our benchmark solution, see Figure (4.2). The 1001 snapshots
are generated by piecewise linear finite elements in space and backward Euler
method in time, and they are used to generate the POD modes (we can see some
of them in Figure (4.1)). The first 30 modes are used to generate the POD-G-ROM
(4.4) and the AV-POD-G-ROM (4.7) with c = 10−4.

In order to employ the DEIM method to the non-linear term, we consider 1001
snapshots too of it. We have to take a determinated number of mode in order to
get more than the 99% of energy for it. In this case, if we consider r̃ = 60 we get
it, but to show the efficiency of the DEIM algorithm we considered smaller values
of r̃ too.

We show the space-time evolution of the DNS in Figure (4.2), POD-G-ROM
model in Figure (4.3) and AV-POD-G-ROM models with different values of r̃ in
Figures 4.4-4.5-4.6.
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Figure 4.1: POD modes

Figure 4.2: DNS solution.
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Figure 4.3: POD-G-ROM solution.

Figure 4.4: AV-POD-G-ROM solution in space-time with r̃ = 20
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Figure 4.5: AV-POD-G-ROM solution in space-time with r̃ = 40

Figure 4.6: AV-POD-G-ROM solution in space-time with r̃ = 60

We present the l2(L2) errors for both models POD-G-ROM (4.4) and AV-POD-
G-ROM (4.7) with different values of r, and the Normalized residual energy



4.3. PRACTICAL IMPLEMENTATION AND NUMERICAL RESULTS 45

r Normalized residual energy POD AV-POD(20) AV-POD(40) AV-POD(60)∑1001
j=r+1 λj∑1001
j=1 λj

6 1.1e-02 7.7e-04 4.0e-04 4.0e-04 4.0e-04
12 2.2e-03 7.0e-04 5.7e-05 5.5e-05 5.5e-05
21 1.7e-04 4.7e-04 6.0e-06 4.7e-06 4.9e-06
30 1.0e-05 4.2e-04 2.2e-06 9.3e-07 1.1e-06
39 3.0e-06 3.7e-04 1.9e-06 8.8e-07 9.2e-07
48 6.8e-07 3.5e-04 1.8e-06 8.5e-07 8.1e-07

Table 4.1: l2(L2) errors between both ROMS and DNS and the Normalized residual
energy.

If we observe Table 4.1, we can apreciate that the POD-G-ROM is always worse
than the AV-POD-G-ROM and it has always, with different values of r, the same
error order.

We also present the DNS, POD-G-ROM and AV-POD-G-ROM with different
values of r̃ at the final time T = 1, in order to contrast the oscillations between
the different models and the improvements that the AV-POD-G-ROM has if we
increase the number of r̃.

Figure 4.7: Solution curves of DNS, POD-G-ROM and AV-POD-G-ROM (r̃ = 20)
at final time T = 1.
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Figure 4.8: Solution curves of DNS, POD-G-ROM and AV-POD-G-ROM (r̃ = 40)
at final time T = 1.

Figure 4.9: Solution curves of DNS, POD-G-ROM and AV-POD-G-ROM (r̃ = 60)
at final time T = 1.

To better compare both models we include the L2 errors at final time T = 1
too.
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r Normalized residual energy POD AV-POD(20) AV-POD(40) AV-POD(60)∑1001
j=r+1 λj∑1001
j=1 λj

6 1.1e-02 2.8e-03 1.0e-03 1.0e-03 1.0e-03
12 2.2e-03 1.6e-03 8.1e-05 8.0e-05 8.0e-05
21 1.7e-04 8.5e-04 7.4e-06 6.7e-06 6.6e-06
30 1.0e-05 8.3e-04 1.2e-06 4.6e-07 4.9e-07
39 3.0e-06 7.6e-04 1.1e-06 3.8e-07 3.9e-07
48 6.8e-07 7.4e-04 1.1e-06 3.6e-07 3.1e-07

Table 4.2: L2 errors between ROMs and DNS at final time T = 1.

Now, if we observe Table 4.2, we can appreciate that the POD-G-ROM error
has a slow decay in its order when we increase the number of modes. On the other
hand, the AV-POD-G-ROM rapidly reaches errors of 10−7 order.

To study the efficiency of the proposed ROMs, we have included the CPU time
of the DNS and the online phase of the POD-G-ROM (4.4) and AV-POD-G-ROM
(4.7).

CPU TIME
Time

DNS 6.014s
POD-G-ROM 0.257s
AV-POD-G-ROM(r̃ = 20) 0.272s
AV-POD-G-ROM(r̃ = 40) 0.302s
AV-POD-G-ROM(r̃ = 60) 0.358s

Table 4.3: CPU time of DNS, POD-G-ROM and AV-POD-G-ROM with different
values of r̃

From Table 4.3, we observe a saving in CPU time of more than one order of
magnitude for this simple setting in 1D, which holds for all ROMs. Note that
in more complex settings (see next Section), we can arrive at three orders of
magnitude of saving in CPU time for ROMs with respect to FOMs. We emphasize
that with the AV-POD-G-ROM with r̃ = 60 we can obtain an L2 error of 10−7

order, in contrast to the error of POD-G-ROM of 10−4 order, although the time
difference is insignificant.
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Chapter 5

The POD for the Navier-Stokes
equations

In this chapter, we are going to study the numerical approximation of incompress-
ible flows with the POD-ROMs. For this purpose, we consider the Navier-Stokes
equations:

{
ut − ν∆u+ (u · ∇)u+∇p = f in Ω× (0, T ),

∇ · u = 0 in Ω× (0, T ),
(5.1)

in a boundary domain Ω ⊂ Rd, d ∈ {2, 3}, and with initial condition u(0) = u0.
In the above equation, u is the velocity field, p the pressure, ν > 0 the kinematic
viscosity coefficient and f the forcing term. It is necessary to complete (5.1)
with boundary conditions, so for simplicity we are going to consider Dirichlet
homogeneous condition.

In order to give a variational formulation of problem (5.1), let us consider the
velocity space:

X = (H1
0 )d = {v ∈ (H1(Ω))d : v = 0 on ∂Ω},

and the pressure space:

Q = L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

qdx = 0}.

The weak formulation of (5.1) reads:

49
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Given f ∈ L2(H−1), find u : (0, T )→ X, p : (0, T )→ Q such that:
d

dt
(u, v) + (u · ∇u, v) + ν(∇u,∇v)− (p,∇ · v) = 〈f, v〉 ∀v ∈ X in D′(0, T )

(∇ · u, q) = 0 ∀q ∈ Q
u(0) = u0,

(5.2)

where 〈·, ·〉 it is the duality between X and its dual X ′ and D′(0, T ) is the space
of distributions in (0, T ).

Once obtained the weak formulation, we are going to give a FE approximation
of (5.2). Let {Th}h>0 be a family of regular triangulations of Ω̄. For any mesh
cell k ∈ Th, the diameter will be called hk and h = maxk∈Th hk. The FE space for
velocity and pressure are Xh ⊂ X and Qh ⊂ Q respectively. Therefore the FE
approximation of (5.2) is:

Find (uh, ph) : (0, T )→ Xh ×Qh such that:
d

dt
(uh, vh) + (uh · ∇uh, vh) + ν(∇uh,∇vh)− (ph,∇ · vh) = 〈f, vh〉 in D′(0, T )

(∇ · uh, qh) = 0 a.e. in (0, T )
uh(0) = u0h,

(5.3)

for any (vh, qh) ∈ Xh × Qh, and uoh is some stable approximation to u0 into
Xh.

Now, if we collect snapshots of the velocity field at certain time instances and
we apply a standard POD-Galerkin ROM, we obtain an approximation of the
solution of problem (5.1):

u(x, t) ≈ ur(x, t) =
r∑
j=1

aj(t)ϕj(x),

where Xr = span{ϕ1, . . . , ϕr} is the space for the POD setting and {ai(t)}ri=1 are
the time coefficients. Then, if we replace u with ur in (5.1), using the Galerkin
method and projecting the resulted equations onto Xr, we obtain the POD-G-
ROM for the Navier-Stokes equation (5.1):

(
∂ur
∂t

, ϕ) + (ur · ∇ur, ϕ) + ν(∇ur,∇ϕ) = 0 ∀ϕ ∈ Xr. (5.4)

We note that, the POD modes are linear combinations of the snapshots, and thus
belong to the space of discrete divergence-free functions. Also, without loss of
generality, f ≡ 0.
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Remark 3. Since the POD velocity modes are linear combinations of the velocity
snapshots, the POD velocity modes satisfy the boundary conditions in (5.1). This
is because of the particular choice we have made at the beginning to work with
homogeneous Dirichlet boundary conditions. In general, one has to manipulate
the velocity snapshots set. This is the case, for instance, of steady-state non-
homogeneous Dirichlet boundary conditions, for which is preferable to consider a
proper lift in order to generate POD velocity modes for the lifted velocity snapshots,
satisfying homogeneous Dirichlet boundary conditions. This would lead to work
with centered-trajectory method in the POD-ROM setting [16].

Remark 4. In (5.4), the pressure term vanishes due to the fact that the POD
modes are weakly divergence-free. However, there exists different methods to re-
cover the pressure, two of the most common methods are explained in [28]. These
methods are used to solve the stability issues too, due to the fulfillment of the inf-
sup condition in the reduced order framework. The first one enriches the velocity
space adding more modes, which is called supremizer enrichment. The second one
consists of adding a Possion equation for pressure and new boundary conditions
for pressure too. We also consider another method, the Local Projection Stabiliza-
tion(LPS) [24, 22]. This method leads to a coupled velocity-pressure POD-ROM
that uses pressure modes as well to compute the reduced order pressure by adding
a LPS term to the reduced equations (see Section 6.2.2).

From the POD-G-ROM (5.4), we obtain an autonomous system for the coeffi-
cient a(t) :

·
a (t) = Aa+ aCaT , (5.5)

where A,C correspond to the linear and quadratic term in the numerical dis-
cretization of the Navier-Stokes equations, respectively.

The finite dimensional system (5.5) can be written componentwise as follow:

·
ai (t) =

r∑
j=1

Aijaj(t) +
r∑
j=1

r∑
m=1

Cijmam(t)aj(t), (5.6)

where

Aij = ν(∇ϕi,∇ϕj), (5.7)

Cijm = −(ϕj · ∇ϕm, ϕi). (5.8)



52 CHAPTER 5. THE POD FOR THE NAVIER-STOKES EQUATIONS

5.1 S-POD-G-ROM

The POD-G-ROM is an efficient tool for many applications, for example it works
well on diffusion-dominated and laminar fluid flows. However, the POD-G-ROM
for convection-dominated or turbulent flows yields inaccurate result, due to the
effect of the discarded POD modes {ϕr+1, . . . , ϕd} on the retained ones, which is
not taken into account. Indeed, although the disregarded modes do not contain
a significant amount of the system’s kinetic energy, they have a significant role
in the dynamics of the reduced-order system. For this reason, we are going to
introduce a closure model to address this issue, the Smagorinsky POD-G-ROM
(S-POD-G-ROM), see [25].

This closure model consists in adding, both to the offline and online stage, an
eddy viscosity:

νS := (Csδ)
2‖∇u‖F , (5.9)

where Cs is the Smagorinsky constant, δ is the lengthscale and ‖∇u‖F is the
Frobenius norm of ∇u. Adding this into (5.3), we obtain the following problem:



Find (uh, ph) : (0, T )→ Xh ×Qh such that
d

dt
(uh, vh) + (uh · ∇uh, vh) + ν(∇uh,∇vh)

+(Csδ)
2(‖∇uh‖F∇uh,∇vh)− (ph,∇ · vh) = 〈f, vh〉 in D′(0, T )

(∇ · uh, qh) = 0 a.e. in (0, T )
uh(0) = u0h.

(5.10)

Now if we apply the same process for the online stage as in the previous section,
we obtain the new autonomous system (S-POD-G-ROM):

·
a (t) = (A+ Ã)a+ aCaT . (5.11)

This finite dimensional system (5.11) can be written componentwise as follows:

·
ai (t) =

r∑
j=1

(Aij + Ãij)aj(t) +
r∑
j=1

r∑
m=1

Cijmam(t)aj(t) ∀i = 1, . . . , r, (5.12)

where

Ãij = −(Csδ)
2(‖∇ur‖F∇ϕj, ϕi). (5.13)

As presented in [32], the S-POD-G-ROM has a disadvantage, which is to com-
pute the matrix Ã (depending on ‖∇ur‖F ) at every time step. Therefore, we
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propose to employ the DEIM algorithm (3.5.1) to reduce the computational com-
plexity. So, we obtain:

‖∇u‖F =
r̃∑
j=1

αj(t)ϕ̃j, (5.14)

where X̃ r̃ = span{ϕ̃1, . . . ϕ̃r̃} and αj(t) are the time coefficients. Consequently,
if we replace (5.14) into our autonomous system (5.11), we obtain:

·
a= Aa+ αTDa+ aTCa. (5.15)

This finite dimensional system (5.15) can be written componentwise as follow:

·
ai (t) =

r∑
j=1

Aijaj(t)+
r̃∑
j=1

r∑
m=1

Dijmαj(t)am(t)+
r∑
j=1

r∑
m=1

Cijmaj(t)am(t) ∀i = 1, . . . , r,

(5.16)

where

Dijm = −(Csδ)
2(ϕ̃j∇ϕm,∇ϕi). (5.17)

5.2 Numerical Studies

In this section, we present numerical results for the S-POD-G-ROM we introduced
in the previous section. The numerical experiments are performed on the bench-
mark problem of the 2D unsteady flow around a cylinder with circular cross-section
[14], and we take the same parameters as in [2] and [22].

5.2.1 Setup for numerical simulations

Following [29], the computational domain is given by a rectangular channel with
a circular hole (see Figure (5.1)):

Ω = {(0, 2.2)× (0, 0.41)} \ {x : (x− (0.2, 0.2))2 ≤ 0.052}.
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Figure 5.1: Computational grid

No slip boundary conditions are prescribed on the horizontal walls and on the
cylinder, and a parabolic inflow profile is provided at the inlet

u(0, y, t) = (4Umy(A− y)/A2, 0)T ,

with Um = u(0, A/2, t) = 1.5 m/s and A = 0.41 m the channel height. At the
outlet, we impose outflow (do nothing) boundary conditions (ν∇u−pId)n = 0 with
n the outward normal to the domain. The chosen Reynolds number is Re = 100,
depending on the inflow velocity U = 2Um/3 = 1m/s, the cylinder diameter
D = 0.1m, and the kinematic viscosity ν = 10−3 m2/s and there is no external
forcing, f = 0 m/s2. In the fully developed periodic regime, a vortex shedding can
be observed behind the obstacle, resulting in the well-known von Kármán vortex
street, see Figure 5.2.

For the evaluation of computational results, we are interested in studying the
temporal evolution of the following quantities of interest. The first one is the
kinetic energy of the flow, given by:

EKin =
1

2
‖u‖2

L2 .

The others quantities of interest are the drag and lift coefficients. In the present
work, they are computed as volume integrals [18]:

cD = − 2

DU
[(∂tu, vD) + (u · ∇u, vD) + ν(∇u,∇vD)− (p,∇ · vD)],

cL = − 2

DU
[(∂tu, vL) + (u · ∇u, vL) + ν(∇u,∇vL)− (p,∇ · vL)],

for arbitrary test functions vD, vL ∈ H1 such that vD = (1, 0)T on the boundary
of the cylinder and vanishes on the other boundaries, vL = (0, 1)T on the boundary
of the cylinder and vanishes on the other boundaries. In the actual computations
we have used the approach in ([33]), where the pressure term is not necessary
to compute cD, cL, since we used discretely divergence-free test functions vD, vL
obtained by Stokes projection.
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Figure 5.2: Final velocity FOM.

5.2.2 FOM and POD modes

Our aim is to compare the performance of the S-POD-G-ROM with the POD-G-
ROM.

The numerical method to get the snapshots is the Smagorinsky method (5.1),
with a spatial discretization using P2 − P 1 FE for the pair velocity-pressure on a
relatively coarse computational grid (see Figure (5.1), h = 6, 6 × 10−2), resulting
in 6175 d.o.f for velocities and in 1735 d.o.f for pressure. For the time discretiza-
tion, a semi-implicit Backward Differentation Formula of order 2 (BDF2) has been
applied, which guarantees a good balance between numerical accuracy and com-
putational complexity [1]. In particular, the discrete time derivative has been
approximated by the operator D2

t :

D2
t u

n+1
h =

3un+1
h − 4unh + un−1

h

2∆t
n ≥ 1, (5.18)

and we have considered an extrapolation for the convection velocity: ũnh =
2unh − un−1

h , n ≥ 1, in order to guarantee a second order accuracy in time. At the
inizialization (n = 0), we have to consider u−1

h = u0
h = u0h, being u0h the discrete

initial condition, so the time scheme for the first iteration reduces from BDF2 to
the semi-implicit Euler method for the first time step (∆t)0 = (2/3)∆t.
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In the FOM simulation, the initial condition is a zero velocity field and the time
step is ∆t = 2 · 10−3s. Time integration is performed till a final time T = 7s. For
Re = 100, in the time period [0, 5]s the flow is expected to develop to full extent,
including a subsequent relaxation time. We have plotted the time evolution of
drag and lift coefficients in Figure (5.3) and kinetic energy in Figure (5.4) to show
this.

Figure 5.3: Temporal evolution of drag and lift coefficients.

The POD modes are generated in L2 by the method of snapshots with centered-
trajectories by storing every FOM solution from T = 5s to one period. The full
period length of the statistically steady state is 0.332s for Re = 100, so we collect
167 snapshots. In Figure (5.5) we can see the decay of the eigenvalues associated
to the correlation matrix of the velocity, and for the DEIM algorithm applied to
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Figure 5.4: Temporal evolution of kinetic energy.

Figure 5.5: Decay of the eigenvalues and captured energy.

the eddy viscosity, and the captured energy calculated by 100
∑r

k=1 λk/
∑d

k=1 λk
where λk are the corresponding eigenvalues. Note that with 5 POD velocity modes,
we already capture more than 99% of the energy, while for the DEIM algorithm
we need around 20 modes.

Once the POD modes are generated, the S-POD-G-ROM and POD-G-ROM
are constructed as it is explained in section 5.1, using the same time discretization
as the FOM and run in [5, 7]s for Re = 100 using only up to 7 POD velocity modes
and 30 DEIM modes in order to get good results. We also decided to employ an
adaptive in time algorithm for the Smagorinsky coefficient Cs, by adjusting its
dissipation with the FOM energy, see next section. This caused a considerable
improvement in the results.
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5.2.3 Adaptive in time algorithm for the Smagorinsky co-
efficient Cs

In this section, we are going to describe the adaptive in time algorithm proposed,
following ([22]). This is the first time that it is applied in the S-POD-G-ROM.
The strategy that this algorithm entails is adjusting the Smagorinsky constant in
order to remove dissipation if the ROM energy is too small and add disipation if it
is large with respect to FOM energy. The algorithm starts with an initial value C̄s
that we obtained by minimizing the L∞ error in time with respect to the snapshots
energy computed. As we only have one period, we have to repeat for the rest of
periods. The detailed algorithm is as follow:
Algorithm (ROM with adaptive in time Cs)

1. Initialize the online Cs = C̄s.

2. Set Cmin > 0 the minimum value that Cs can reach in the algorithm.

3. Set F to be the frequency in the number of time steps to adapt Cs.

4. Set δ to be the adjustment size to change Cs.

5. Set tol to be the tolerance chosen for making a change to Cs.

6. For time step n = 1, 2, . . .
if mod (n, F ) == 0

• Compute Ediff
kin =

1

2
(‖und‖2

L2 −‖u mod (n,M)
h ‖2

L2), where M is the number

of snapshots collected.

• if Ediff
kin > tol set Cs = max{Cmin, Cs + δ},

Else if Ediff
kin < −tol , set Cs = max{Cmin, Cs − δ}.

end
Recompute unr

5.2.4 Numerical Results

All the ROMs models(POD-G-ROM, S-POD-G-ROM, Adapt-S-POD-G-ROM)
are tested in the interval [5, 7]s, in order to show the ability of ROMs to pre-
dict in time six period of lift coefficient. Note that the fact that the snapshots are
collected just for the first period increases the difficulty of simulations. With this,
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we want to show the improvements of the S-POD-G-ROM and Adapt-S-POD-
G-ROM over the general POD-G-ROM. Thus, we decided to test the temporal
evolution of the drag and lift coefficients and kinetic energy.

Before showing the numerical results of the quantities of interest, we show the
first four POD modes of velocity in Figure (5.6). For S-POD-G-ROM the value
of Cs is 10−2 and for Adapt-S-POD-G-ROM the values of the parameters of the
adaptive method are C̄s = 10−2, Cmin = 10−4, δ = 10−3, F = 3 and tol = 10−5.

Figure 5.6: First four POD modes of velocity.

First, we are going to show the numerical results for kinetic energy using r = 7
modes are shown in Figure (5.7), where we display a comparison of the the three
ROMs models.

In order to complete these results, we also show the temporal evolution of the
absolute error in kinetic energy and of the adapted Smagorinsky coefficient Cs in
Figure (5.8) .
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Figure 5.7: Time evolution of the kinetic energy for FOM, POD-G-ROM, S-POD-
G-ROM and Adapt-S-POD-G-ROM for r = 7.

Figure 5.8: Temporal evolution of absolute error in kinetic energy of POD-G-ROM,
S-POD-G-ROM and Adapt-S-POD-G-ROM with respect to FOM on the left and
the value of Cs coefficient in the adaptive method on the right using r = 7.

From Figure (5.8), we observe that error levels are maintained below 10−3 for
Adapt-S-POD-G-ROM, while for S-POD-G-ROM this holds mainly for the first
period. The POD-G-ROM already loses this property even in the first period. This
means that the Adapt-S-POD-G-ROM is the only that guarantees good results
with a few modes in a predictive regime, which is not the case for the other two,
being the S-POD-G-ROM at least accurate in the reconstrution regime.

A similar conclusion holds for the numerical results for drag and lift coefficients
using r = 7 modes shown in Figures (5.9), (5.10).
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Figure 5.9: Temporal evolution of drag coefficient (left) and lift coefficient (right)
for FOM, POD-G-ROM, S-POD-G-ROM and Adapt-S-POD-G-ROM for r = 7.

Figure 5.10: Temporal evolution of drag coefficients error for FOM, POD-G-ROM,
S-POD-G-ROM and Adapt-S-POD-G-ROM for r = 7.
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Chapter 6

Conclusion and outlook

6.1 Conclusion

In this work, we have considered POD-ROMs for closure modeling. We started
with the AV(Artificial Viscosity)-POD-G-ROM for the Burgers equation, and then
moved to the S(Smagorinsky)-POD-G-ROM for the Navier-Stokes equations. In
both cases, we applied an hyperreduction technique such as the DEIM to reduce
the computational complexity for the arising nonlinear tems.

To sum up, the obtained results show how these models outperform the stan-
dard POD-G-ROM in terms of accuracy, and also their efficiency in computing
convection-dominated flows. Indeed, with few basis functions we are able to com-
pute accurate results, achieving a significant speed-up over the FEM (high-fidelity)
simulations.

6.2 Outlook

In this section, we present some future research directions based on this work that
could be pursued:

6.2.1 NSE error estimates

In Chapter 4, we performed the numerical analysis of the AV-POD-G-ROM for
the Burgers equation, by mainly deriving its error estimates. One could think to
extend this analysis to the S-POD-G-ROM for the Navier-Stokes equations, which
is not being performed yet in the literature up to our knowledge. In this case, a
careful treatment of the pressure should be taken into account, as outlined in the
next subsection too.
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6.2.2 Pressure recovery and turbulent flows

In chapter 5, we already mentioned several methods to recover the pressure in fluid
dynamics reduced order simulations. A recent proposal has been to apply a Local
Projection Stabilization (LPS) technique in the POD-ROM framework [24, 22].

This method is a velocity-pressure ROM that uses pressure modes as well to
compute the reduced order pressure needed for instance in the computation of rele-
vant engineering quantities. It circumvents the standard discrete inf-sup condition
for the POD velocity-pressure spaces, whose fulfillment can be rather expensive in
realistic applications in Computational Fluid Dynamics (CFD). Also, the velocity
modes do not have to be either strongly or weakly divergence-free, which allows
the use of snapshots generated, for instance, with penalty or projection-based sta-
bilized methods.

In particular, in my ongoing research (see Appendix A), I obtained some new
results combining the LPS for pressure stability and the RBF technique (see section
3.5.2) to approximate the eddy viscosity, to tackle the increase of Reynolds number
in multi-parametric POD-ROMs [13].

We believe this is a first step towards the challenging simulation of realistic
turbulent flows by ROMs, which would be the goal of future research.



Appendix A

Ongoing research

Figure A.1: Mesh of the problem (Flow past cylinder).

Figure A.2: Decay of POD eigenvalues of velocity, pressure and eddy viscosity.
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Figure A.3: Kinetic energy relative error for different Reynolds values including
Re = 187.5 (not considered in the snapshots sample).

Figure A.4: Temporal evolution of L2 norm of relative error of velocity (right) and
pressure (left).

Figure A.5: Drag and Lift coefficient for Re = 187.5.
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Figure A.6: Comparison of the velocity field for FOM (left) and ROM (right) for
Re = 187.5. The fields are depicted for different time instant equal to t = 7.5 s
, 8 s , 8.5 s and 9s and increasing from top to bottom. The ROM solutions are
obtained with 8 modes for velocity and pressure and 60 modes for eddy viscosity.
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Figure A.7: Comparison of the pressure field for FOM (left) and ROM (rigth) for
Re = 187.5. The fields are depicted for different time instant equal to t = 7.5 s
, 8 s , 8.5 s and 9s and increasing from top to bottom. The ROM solutions are
obtained with 8 modes for velocity and pressure and 60 modes for eddy viscosity.
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