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Abstract

The main aim of this project is to study the so-called soliton ratchet phenomena in a Frenkel-
Kontorova model, by making use of the collective coordinate approximation. From a math-
ematical point of view, the discrete double sine-Gordon equation will be considered. This
system, which consists of N coupled second-order ordinary differential equations (ODEs),
will be reduced to a system of just two coupled second-order ODEs, in terms of the collective
coordinates, that is, the center of mass X(t) and the width l(t) of the topological soliton, or
kink, solution. Once these equations are obtained, the aim is to look at whether the different
motion regimes that this reduced system show adequately approximate the full system.
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Resumen

El objetivo principal de este proyecto es estudiar el llamado fenómeno ratchet de solitones en
un modelo de Frenkel-Kontorova, haciendo uso de la aproximación de coordenadas colectivas.
Se estudiará la ecuación discreta de doble sine-Gordon desde un punto de vista matemático.
Este sistema, que está formado por N ecuaciones diferenciales ordinarias (EDO) acopladas
de segundo orden, se reducirá a un sistema de solo dos EDOs acopladas de segundo orden en
términos de las coordenadas colectivas, es decir, el centro de masa X(t) y la anchura l(t) de
la solución de solitón topológico, también llamada kink. Una vez obtenidas estas ecuaciones,
el objetivo es ver si los diferentes reǵımenes de movimiento que muestra este sistema reducido
se aproximan adecuadamente al sistema completo.
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Chapter 1

Introduction

The sine-Gordon equation is one of the most renowned non-linear differential equation models.
This equation is obtained by taking the regular Klein-Gordon equation, and replacing the
linear potential term by a non-linear sine term, i.e.:

ϕtt + sinϕ−∆ϕ = 0. (1.1)

The popularity of this equation is due to the large number of applications, starting in the
1860s with the study of surfaces of constant negative curvature (pseudospheres) in space, and
later being rediscovered in the 1930s, in its discrete version – known as the Frenkel-Kontorova,
or discrete sine-Gordon model–, by Frenkel and Kontorova when studying dislocations in
crystal lattices [1], and was later used to describe a chain of coupled pendula [2]. The
Frenkel-Kontorova model regained interest in the 1990s with its use in the theory of Josephson
junctions arrays in the study of parallel layers of superconductors. More recently, this model
has been used to study galactic orbits near the inner Lindblad resonance [1, 3], as well
as to describe the dynamics of molecular motion in nematic liquid crystals under a twisting
disturbance of the molecular arrangement under the external electric field [4]. Apart from the
large number of applications that this equation has, it is by itself mathematically relevant due
to its particular structure and its properties. In particular, the complete integrability of the
system, which implies the possibility of finding conserved quantities and exact analytical
solutions to the equation. Of particular physical importance among these solutions are
solitons, or solitary waves, which are spatially localized travelling waves whose shape is
maintained in time. These types of solutions were first discovered in the late 19th century
via the so-called Bäcklund transformations and were called kinks, or topological solitons
[1, 5, 6]. The importance of solitons as solutions to this equation is however not limited
to the realm of Physics. They have been widely recognized to take part in many biological
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interactions, and in particular the Frenkel-Kontorova has been used to model DNA chains,
implying that soliton excitations may exist in these chains [7].

In addition to the sine-Gordon equation, one can consider a slight variation of it by adding
a second non-linear term, typically another periodic term, which also permits to find kinks,
since in order for these to exist the potential must possess at least two minima. This leads
to the double sine-Gordon equation, written as:

ϕtt −∆ϕ+ sinϕ+ λ cos 2ϕ = 0.

Throughout this project, we will not be interested in studying the continuous sine-Gordon
equation or its variant, but the analogous discrete system. As mentioned before, this system
was first introduced by Frenkel and Kontorova in the theory of crystal dislocations. Denoting
by n the lattice nodes, by N the number of lattice nodes, and by h the distance between
these nodes in the lattice, we can write this system as:

ϕ̈n − κ∆dϕn + sinϕn = 0, n = 1, . . . , N, (1.2)

where κ = 1/h2, and ∆d denotes the discrete Laplacian. In 1D, this is ∆dϕn = ϕn+1 −
2ϕn + ϕn−1. One can see that, by taking the continuous limit h → 0, we recover (1.1), with
continuous coordinate x = n/

√
κ. Similarly, we can consider different types of potentials on

this system, in particular we can add another periodic term to obtain the discrete analogous
to the double sine-Gordon equation:

ϕ̈n − κ∆dϕn + sinϕn + λ cos 2ϕn = 0, n = 1, . . . , N. (1.3)

This system can be interpreted as a chain of coupled double pendula [8].

The main aim of this project is to study the so-called ratchet phenomenon in topological
solitons (i.e. kinks), that is, the emergence of net motion of the soliton under forces of
zero average (e.g. a sinusoidal driving force) [1]. This has been extensively studied in the
last decades, and it has been predicted via the breaking of the symmetries of the system
[9, 10, 11, 12, 13]. The ratchet phenomenon has been observed to appear in non-linear systems
like (1.2), both experimentally and in simulations, when space-time symmetries are broken
[1, 14, 15, 16, 17, 18]. Examples of such symmetry breakings can be seen by adding a force
term to (1.2) made up of two different harmonics (e.g. F (t) = sin(t)+cos(2t)) [19, 20, 21], or
by adding another periodic term to the potential [1, 9]. This second case would correspond
to having λ ̸= 0 in (1.3). A spatially asymmetric ratchet model was first proposed by
Smoluchowski and Feynman [22], and further models have been proposed to describe different
situations, such as artificial molecular motors [23], or pearl growth [24]. Additionally, the
emergence of ratchet transport when symmetries are broken by time-dependent forces has
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been experimentally observed in the case of motion of fluxons in Josephson junctions [15, 17],
or currents in semiconductors [25]. The aim of this project is to study the ratchet phenomenon
in the particular case of the damped and driven double sine-Gordon equation [1]. However,
we will not be studying this system as is, directly, since this has already been done extensively
(cf. [26]). We aim to first approximate this system of N second-order ODEs by a simpler
system of two second-order ODEs, using so-called collective coordinates [27, 28]. Since our
aim is to study kink motion, the collective coordinates that will be introduced are X(t), the
center of mass of the kink, and l(t), its width. It is worth noting that even though this
will lead to an approximate system, by reducing the number of equations to 2 second-order
ODEs the problem will become significantly more manageable and, in certain cases, it will
be possible to obtain some analytical results. Once we approximate our system this way,
the different types of motion that the kink can exhibit will be studied, depending on the
lattice/discretization parameter κ, and on the amplitude of the force applied on the system.
Finally, these results will be compared with those obtained in [28] and [26] for the full system
with N second-order ODEs.
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Chapter 2

Mathematical Background

In this chapter, the equations to be used are introduced, as well as the collective coordinates
and the method that is going to be used to approximate the system by a simpler system of
two second-order ODEs.

2.1 Discrete sine-Gordon system

We start by considering a set of N forced and damped coupled non-linear oscillators. The
dynamics of this system, under a potential V , can be described by the following system of
second-order ODEs:

ϕ̈n − κ∆dϕn +
dV (ϕn)

dϕn

= −αϕ̇n + F (t), n = 1, . . . , N, (2.1)

where ϕn is a scalar field, ϕ̇n its time derivative, ∆dϕn := ϕn+1 + ϕn−1 − 2ϕn is the discrete
Laplacian, κ = 1/h2 is the coupling constant, with h the lattice spacing, α is the damping

parameter, dV (ϕn)
dϕn

is the derivative of the potential V (ϕn), and F (t) is a time-periodic external
driving. Our aim is to study the ratchet phenomenon, in a kink-type solution. In order to do
so, we will need both F (t) and dV (ϕn)

dϕn
to be periodic and have zero average (i.e. integrating

over time – for F (t) – or over space – since the system is discrete, by adding over n for
dV (ϕn)
dϕn

– yields 0), and hence for simplicity we will be assuming these are superpositions of
trigonometric functions of different periods. In addition to this, it is necessary for these
functions to break either the space symmetry (in the case of dV (ϕn)

dϕn
), or the time symmetry
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(in the case of F (t)), so that the ratchet phenomenon can appear. To do so, it is assumed
that at least one of these two functions is the sum of two (different) harmonics.

Our aim, in order to study the dynamics of a kink-type solution to this system, is to introduce
a Collective Coordinates (CC) approximation, so that we can reduce (2.1) from N coupled
second-order ODEs to just two of them. In particular, these coordinates will be the center
of mass of the kink, X(t), and its width, l(t). Since we are interested in kink-type solutions,
the ansatz to be used for (2.1) will be a discrete version of the so-called Rice ansatz for a
continuous sine-Gordon equation, ϕ(x) = 4 arctan(exp(x)), as used in [29]. This continuous
ansatz can be seen in Fig. 2.1.
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Figure 2.1: Rice ansatz ϕ(x) for the continuous sine-Gordon equation.

Discretizing this function in x using the collective coordinates yields the following ansatz for
(2.1):

ϕn(t) = 4 arctan(exp(θn(X(t), l(t)))), (2.2)

where θn(X(t), l(t)) = nκ−1/2−X(t)
l(t)

.

2.2 Generalized Travelling-Wave method. Application

to the discrete double sine-Gordon model

To derive the equations of motion for the CCs we will use the so-called Generalized Travelling-
Wave method (GTWM), first introduced in a general way in [27], and used here as described
in [28]. This method consists of first substituting the proposed ansatz into (2.1). Since we are
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considering two different coordinates, X(t) and l(t), we will multiply the resulting equations
by ∂ϕn

∂X
and by ∂ϕn

∂l
, respectively. We will from this point onwards call the equation multiplied

by ∂ϕn

∂X
the “equation for X(t)”, and the equation multiplied by ∂ϕn

∂l
the “equation for l(t)”.

We note however that both equations will have terms in both X(t) and l(t), and possibly
their time derivatives. Finally, to obtain the two second order ODEs for X(t) and l(t), we
will add over all of the elements n of the lattice.

As an application of this method, a potential of the form V (ϕn) = − cos(ϕn) +
λ
2
sin(2ϕn) is

considered, where λ = 0 in the case of the symmetric potential, and λ ̸= 0 for the asymmetric
potential case. We recall that, as previously mentioned, the first case λ = 0 will imply that
the force F (t) in (2.1) is necessarily the superposition of two different harmonics, and for
λ ̸= 0 this is not necessary. Additionally, the amplitude of the force must be small so that
the collective coordinate approximation is valid; in particular, it may not exceed 0.1. The
aim in this section is to reproduce the calculations performed in [28].

To derive the collective coordinate equations, let us consider a generic ansatz of the form

ϕn(t) ≡ ϕ(θn(X(t), l(t))), where θn(X(t), l(t)) = nκ−1/2−X(t)
l(t)

. We will see later on why it is
convenient to derive the CC equations in terms of a generic ansatz instead of using a more
explicit one from the beginning. To plug this into (2.1), we first need to obtain an expression
of ϕ̇n and ϕ̈n in terms of θn. For the first derivative we obtain:

ϕ̇n = θ̇n
dϕ

dθn
(θn),

= −Ẋ + l̇θn
l

dϕ

dθn
(θn),

and for the second derivative we get:

ϕ̈n =
d2ϕ

dθ2n

(
dθn
dt

)2

+
dϕ

dθn

d2θn
dt2

,

=

(
Ẋ + l̇θn

l

)2
d2ϕ

dθ2n
+

dϕ

dθn

(
2Ẋl̇ − lẌ − lθnl̈ + 2θnl̇

2

l2

)
,

=
d2ϕ

dθ2n

(
Ẋ2 + l̇2θ2n + 2Ẋl̇θn

l

)
+

dϕ

dθn

(
2Ẋl̇ − lẌ − lθnl̈ + 2θnl̇

2

l2

)
.

Finally, in addition to these time derivatives, it may be observed that in (2.1) the discrete
Laplacian ∆dϕn appears, which is an expression in terms of ϕn−1, ϕn and ϕn+1. Hence, before
substituting ϕn into (2.1), it will be approximated so that it is only expressed in terms of
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ϕn. To do so we will Taylor expand each of ϕn±1. In terms of θn, we have ϕn±1 = ϕ(θn ± δ),
where δ = 1/(

√
κl) = h/l, with h being the spacing of the lattice, and hence considering

their Taylor expansion around δ = 0 up to the fourth order term, we have:

ϕ(θn ± δ) ≈ ϕ(θn)± ϕ′(θn)δ +
1

2
ϕ′′(θn)δ

2 ± 1

3!
ϕ(3)(θn)δ

3 +
1

4!
ϕ(4)(θn)δ

4.

Therefore, computing ϕn+1 + ϕn−1 − 2ϕn we obtain, up to fourth order:

ϕn+1 + ϕn−1 − 2ϕn ≈ ϕ(θn) + ϕ′(θn)δ +
1

2
ϕ′′(θn)δ

2 +
1

3!
ϕ(3)(θn)δ

3 +
1

4!
ϕ(4)(θn)δ

4

+ ϕ(θn)− ϕ′(θn)δ +
1

2
ϕ′′(θn)δ

2 − 1

3!
ϕ(3)(θn)δ

3 +
1

4!
ϕ(4)(θn)δ

4 − 2ϕn(θn),

≈ ϕ′′(θn)δ
2 +

1

12
ϕ(4)(θn)δ

4.

Hence, since κ = 1/(δ2l2), the discrete Laplacian term −κ∆dϕn will be:

−κ∆dϕn = − 1

l2
ϕ′′(θn)−

1

12κl4
ϕ(4)(θn).

Therefore, an approximation of system (2.1), written in terms of the ansatz ϕn and the
collective coordinates, is the following:

C1
n

Ẋ2

l2
+ C2

n

l̇2

l2
+ C3

n

2Ẋl̇

l2
+ C4

n

(
2Ẋl̇

l2
− Ẍ

l

)
+ C5

n

(
2l̇2

l2
− l̈

l

)
− 1

l2
C1

n

− 1

12κl4
C6

n + C7
n + λC8

n = α
Ẋ

l
C4

n + α
l̇

l
C5

n + F (t), (2.3)

where Ci
n are the following functions of ϕ(θn) and its derivatives:

C1
n = ϕ′′(θn),

C2
n = ϕ′′(θn)θ

2
n,

C3
n = ϕ′′(θn)θn,

C4
n = ϕ′(θn),

C5
n = ϕ′(θn)θn,

C6
n = ϕ(4)(θn),

C7
n = sin(ϕ(θn)),

C8
n = cos(2ϕ(θn)),

Now that (2.1) is written in terms of the ansatz ϕ(θn), we can proceed with the GTWM
method to obtain the collective coordinate equations.

7



We start by deriving the equation for X(t). To do so, it is first worth noting the following
relation:

∂ϕn

∂X
=

∂θn
∂X

dϕn

dθn
,

= − 1

l(t)

dϕn

dθn
.

Hence, multiplying (2.3) by this, we obtain the following equation (note that l(t) ̸= 0, and
hence both sides of the equation can be multiplied by l(t), thus not needing to take into
account the factor of 1/l(t) from ∂ϕn

∂X
):

I1n
Ẋ2

l2
+ I2n

l̇2

l2
+ I3n

2Ẋl̇

l2
+ I4n

(
2Ẋl̇

l2
− Ẍ

l

)
+ I5n

(
2l̇2

l2
− l̈

l

)
− 1

l2
I1n

− 1

12κl4
I6n + I7n + λI8n = α

Ẋ

l
I4n + α

l̇

l
I5n + F (t)I9n,

where Ikn = ϕ′(θn)C
k
n for k = 1, . . . , 9, with C9

n = 1, are the following functions of ϕ(θn) and
its derivatives:

I1n = ϕ′′(θn)ϕ
′(θn),

I2n = ϕ′′(θn)ϕ
′(θn)θ

2
n,

I3n = ϕ′′(θn)ϕ
′(θn)θn,

I4n = (ϕ′(θn))
2,

I5n = (ϕ′(θn))
2θn,

I6n = ϕ(4)(θn)ϕ
′(θn),

I7n = sin(ϕ(θn))ϕ
′(θn),

I8n = cos(2ϕ(θn))ϕ
′(θn),

I9n = ϕ′(θn).

Therefore, to obtain the equation for X(t) all that remains is to sum over n. Since only the
functions Ikn depend on n, this can be easily done, obtaining the equation for X(t):

I4
Ẍ

l
+ I5

l̈

l
− l̇2

l2
(I3 + 2I5)−

Ẋ2

l2
I1 −

2Ẋl̇

l2
(I2 + I4) = (2.4)

− αI5
l̇

l
− αI4

Ẋ

l
− I6F (t) + I7 + λI8 −

1

l2

(
I1 +

I9
12κl2

)
,

where Ik =
∑

n I
k
n for k = 1, . . . 9 are the following:
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I1 =
∑
n

ϕ′′(θn)ϕ
′(θn),

I2 =
∑
n

ϕ′′(θn)ϕ
′(θn)θn,

I3 =
∑
n

ϕ′′(θn)ϕ
′(θn)θ

2
n,

I4 =
∑
n

(ϕ′(θn))
2,

I5 =
∑
n

(ϕ′(θn))
2θn,

I6 =
∑
n

ϕ′(θn),

I7 =
∑
n

sin(ϕ(θn))ϕ
′(θn),

I8 =
∑
n

cos(2ϕ(θn))ϕ
′(θn),

I9 =
∑
n

ϕ(4)(θn)ϕ
′(θn). (2.5)

We can proceed in a similar way to derive the equation for l(t). First of all, we observe the
relation:

∂ϕ(θn)

∂l
=

∂θn
∂l

dϕ(θn)

dθn
,

= − 1

l(t)
θnϕ

′(θn).

It is worth noting that ∂ϕ(θn)
∂l

= θn
∂ϕ(θn)
∂X

, and consequently the equation for l(t) is derived by
multiplying (2.4) by θn:

I3n
Ẋ2

l2
+ I10n

l̇2

l2
+ I2n

2Ẋl̇

l2
+ I5n

(
2Ẋl̇

l2
− Ẍ

l

)
+ I11n

(
2l̇2

l2
− l̈

l

)
− 1

l2
I3n

− 1

12κl4
I12n + I13n + λI14n = α

Ẋ

l
I5n + α

l̇

l
I11n + F (t)I15n ,

where Ikn are as before for k = 2, 3, 5, and the following functions of ϕn and its derivatives
for k = 10, . . . , 15:

I10n = ϕ′′(θn)ϕ
′(θn)θ

3
n = I2nθn,

I11n = (ϕ′(θn))
2θ2n = I5nθn,

I12n = ϕ(4)(θn)ϕ
′(θn)θn = I9nθn,

I13n = sin(ϕ(θn))ϕ
′(θn)θn = I7nθn,

I14n = cos(2ϕ(θn))ϕ
′(θn)θn = I8nθn,

I15n = ϕ′(θn)θn = I6nθn.
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Thus, to obtain the equation for l(t) all that remains is to sum over n. Since only the
functions Ikn depend on n, this can be easily done, obtaining the equation for l(t):

I5
Ẍ

l
+ I11

l̈

l
− l̇2

l
(I10 + 2I11)−

Ẋ2

l2
I2 −

2Ẋl̇

l2
(I3 + I5) =

− αI11
l̇

l
− αI4

Ẋ

l
− I12F (t) + I13 + λI14 −

1

l2

(
I2 +

I15
12κl2

)
,

where Ik =
∑

n I
k
n are the following:

I2 =
∑
n

ϕ′′(θn)ϕ
′(θn)θn,

I3 =
∑
n

ϕ′′(θn)ϕ
′(θn)θ

2
n,

I4 =
∑
n

(ϕ′(θn))
2θn,

I10 =
∑
n

ϕ′′(θn)ϕ
′(θn)θ

3
n,

I11 =
∑
n

(ϕ′(θn))
2θ2n,

I12 =
∑
n

ϕ′(θn)θn,

I13 =
∑
n

sin(ϕ(θn))ϕ
′(θn)θn,

I14 =
∑
n

cos(2ϕ(θn))ϕ
′(θn)θn,

I15 =
∑
n

ϕ(4)(θn)ϕ
′(θn)θn. (2.6)

Hence, the collective coordinate equations are:

I4
Ẍ

l
+ I5

l̈

l
− l̇2

l2
(I3 + 2I5)−

Ẋ2

l2
I1 −

2Ẋl̇

l2
(I2 + I4) =

− αI5
l̇

l
− αI4

Ẋ

l
− I6F (t) + I7 + λI8 −

1

l2

(
I1 +

I9
12κl2

)
,

I5
Ẍ

l
+ I11

l̈

l
− l̇2

l
(I10 + 2I11)−

Ẋ2

l2
I2 −

2Ẋl̇

l2
(I3 + I5) =

− αI11
l̇

l
− αI5

Ẋ

l
− I12F (t) + I13 + λI14 −

1

l2

(
I2 +

I15
12κl2

)
,

(2.7)

where the Ik are as in (2.5) and (2.6).
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Chapter 3

Symmetric Potential

Let us consider a potential V (ϕn) = − cos(ϕn). We note that this is the potential used
in Section 2.2, with λ = 0. We will consider the Rice ansatz ϕn(t) = 4 arctan(exp(θn))
introduced previously in Section 2.1. Since the potential that we consider in this section is
symmetric, in order to have ratchet transport it is necessary to break the time symmetry
by means of the force F (t). With this objective, we consider a force of the form F (t) =
ϵ(cos(ωt) + cos(2ωt)), where ϵ is the amplitude of the force, ω = 2π

T
its frequency, and T its

period. The aim of this section is to reproduce the results from [28]. Namely, our aim is
to obtain a system of ODEs for X(t) and l(t) that approximates (2.1) by reproducing the
calculations in [28]. The integrals calculated in this section have been evaluated symbolically
using Mathematica’s “Integrate” function.

3.1 Equations for the symmetric potential

First of all, we consider the system (2.7). To obtain the collective coordinate equations for
ϕn(t), we need to calculate the coefficients Ik corresponding to this ansatz, and substitute
them into (2.7). To do so, we will use the expressions for Ik given in (2.5) and (2.6). Hence,
we first need to calculate the first, second, and fourth derivatives of ϕ with respect to θn:
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ϕ′(θn) = 4
d

dθn
arctan(exp(θn)),

=
2

cosh θn
,

ϕ′′(θn) =
d

dθn

2

cosh θn
,

= −2 sinh θn

cosh2 θn
,

ϕ(4)(θn) = −2
d2

dθ2n

sinh θn

cosh2 θn
,

=
12 sinh θn

cosh4 θn
− 2 sinh θn

cosh2 θn
.

Furthermore, for the trigonometric expressions we have sinϕn = sin(4 arctan(exp(θn))) =

−2 sinh θn
cosh2 θn

= ϕ′′(θn), and cos(2ϕn) = cos(8 arctan(exp(θn))) = 1 − 8 sinh2 θn
cosh4 θn

, which implies
I7 = I1 and I13 = I2. Therefore, we can write the Ik explicitly in terms of θn as the following
sums:

I1 = −4
∑
n

sinh θn

cosh3 θn
,

I2 = −4
∑
n

θn sinh θn

cosh3 θn
,

I3 = −4
∑
n

θ2n sinh θn

cosh3 θn
,

I4 = 4
∑
n

1

cosh2 θn
,

I5 = 4
∑
n

θn

cosh2 θn
,

I6 = 2
∑
n

1

cosh θn
,

I7 = −4
∑
n

sinh θn

cosh3 θn
= I1,

I8 = 2
∑
n

1

cosh θn
− 16

∑
n

sinh2 θn

cosh5 θn
,

I9 = 24
∑
n

sinh θn

cosh5 θn
− 4

∑
n

sinh θn

cosh3 θn
,

I10 = −4
∑
n

θ3n sinh θn

cosh3 θn
,

I11 = 4
∑
n

θ2n
cosh2 θn

,

I12 = 2
∑
n

θn
cosh θn

,

I13 = −4
∑
n

θn sinh θn

cosh3 θn
= I2,

I14 = 2
∑
n

θn
cosh θn

− 16
∑
n

θn sinh
2 θn

cosh5 θn
,

I15 = 24
∑
n

θn sinh θn

cosh5 θn
− 4

∑
n

θn sinh θn

cosh3 θn
.
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We can see that these sums are, in general, hard to work with numerically since there is
no obvious way to truncate them, as it is done with Taylor or Fourier series. Hence, in
order to obtain expressions for these functions we will use the Poisson summation formula,
i.e. instead of considering the sums of the form

∑
n f(n), where f(n) ≡ f(θn) is any of the

above, we consider the expansion of f as a complex Fourier series,
∑

m f̂(m)e2πim
√
κX , where

we are taking the Fourier transform with respect to X (recall θn = nκ−1/2−X
l

= n−κ1/2X
κ1/2l

) [30].
Furthermore, we can rewrite the sum as a real Fourier series, which is more convenient:

Ij =
1

2
A0

j +
∑
n

An
j cos(2nπ

√
κX) +

∑
n

Bn
j sin(2nπ

√
κX),

where

An
j =

∫ ∞

−∞
fj(θn) cos(2nπ

√
κX)dX,

Bn
j =

∫ ∞

−∞
fj(θn) sin(2nπ

√
κX)dX.

By considering these sums this way, we can obtain an expression for the Ik that we can work
with by approximating them by the first non-null term (i.e. the first non-null harmonic of
f).

As an example, let us consider I1. In this case, we have f1(θn) =
sinh(θn)

cosh3(θn)
. We can see that,

since sinh x is an odd function and coshx is an even function, f1 is odd, hence we need only
consider the integral of f1 against sin(2πm

√
κX), where m ∈ N. Therefore, we have:

I1 = −4
∞∑

m=1

Bm
1 sin(2πn

√
κX).

Since we will only be considering the first non-null term, we can take m = 1, thus obtaining:

B1
1 = 2

∫ ∞

−∞

sinh nκ−1/2−X
l

cosh3 nκ−1/2−X
l

sin(2π
√
κX)dX,

= −2
√
κl

∫ ∞

−∞

sinhw

cosh3w
sin(2π

√
κlw)dw,

=
−4π3κ3/2l3

sinh(π2
√
κl)

,

and hence I1 ≈ 16π3κ3/2l3

sinh(π2
√
κl)

sin(2π
√
κX). We can proceed in a similar way to obtain the

expressions for the remaining Ij, obtaining:

13



I1 ≈
16π3κ3/2l3

sinh(π2
√
κl)

sin(2π
√
κX),

I2 ≈ −4
√
kl,

I3 ≈
2π

√
κl

sinh3(π2
√
κl)

(
2− 3κπ4l2 − (2 + κl2π4) cosh(2π2

√
κl) + 4

√
κlπ2 sinh(2π2

√
κl)
)
sin(2π

√
κX),

I4 ≈ 8
√
kl,

I5 ≈
8
√
κπl

sinh(π2
√
κl)

(
1−

√
κl sinh(π2

√
κl)

cosh(π2
√
κl)

)
sin(2π

√
κX),

I6 ≈ 2π
√
kl,

I7 ≈
16π3κ3/2l3

sinh(π2
√
κl)

sin(2π
√
κX),

I8 ≈
32π3κ3/2l3

3 cosh(π2
√
κl)

(−1 + 2κl2π2) cos(2π
√
κX),

I9 ≈
16π3κ3/2l3

sinh(π2
√
κl)

(1 + 2κl2π2) sin(2π
√
κX),

I10 ≈ −π2
√
κl,

I11 ≈
2π2

√
κl

3
,

I12 ≈ −2π2
√
κl sinh(π2

√
κl)

cosh2(π2
√
κl)

sin(2π
√
κX),

I13 ≈ −4
√
kl,

I14 ≈ − 16π2κl2

3 cosh2(π2
√
κl)

(
2− 8κl2π2 +

√
κlπ2(−1 + 2κl2π2)

sinh(π2
√
κl)

cosh(π2
√
κl)

)
sin(2π

√
κX),

I15 ≈ −8
√
κl.

Hence, we can substitute these expressions for functions Ij into (2.7) to obtain the full
collective coordinate equations. However, it is worth noting that, as we can see in (2.7), both
of these equations have non-zero terms in the second derivatives of X and l. Therefore, it is
worth looking at the relative magnitudes of the Ij to see whether or not these equations may
be simplified. Up to a factor of

√
κl, common to all the Ij, these can be seen in Fig. 3.1.
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Figure 3.1: Magnitudes of I8, I7, I3, I1, I5, I12, and I14 (from top to bottom; I3 and I1 overlap).
Since l(t) ≈ 1, they have been evaluated at l = 1.

As we can see, I5, I12 and I14 have a significantly smaller magnitude than the rest, and
hence may be dropped. In particular, it is worth noting that by dropping the I5 term, we
discard the l̈(t) term from the equation for X, and similarly we discard the Ẍ(t) term from
the equation for l. Thus, substituting this into (2.7) we obtain two equations with a single
second order term, which is more convenient to work with, since we can in this case write the
system in normal form (note however that even if we did not drop the I5 term, we could still
write the equations in normal form by adding them, multiplied by appropriate constants;
dropping the I5 term renders significantly more manageable expressions). Finally, we can
normalize the ODEs by dividing the first equation in (2.7) by I4/l, and the second one by
I11/l, obtaining the equations:

Ẍ +

[
J1

l̇2

l
− J2Ẋ

2 − J3

]
sin(2π

√
κX)− λJ4 cos(2π

√
κX)− Ẋl̇

l
= −αẊ − π

4
lF (t),

l̈ − l̇2

2l
+

6

π2

Ẋ2

l
+ J5Ẋl̇ sin(2π

√
κX) = −αl̇ + J6, (3.1)
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where Ji ≡ Ji(κ, l) are the following [28]:

J1(κ, l) =
π (cosh (2

√
κ l π2) (κ l2 π4 − 2) + 3 k l2 π4 + 2)

4 sinh3 (
√
κ l π2)

,

J2(κ, l) =
2κ l π3

sinh (
√
κ l π2)

,

J3(κ, l) =
π3 (12κ l2 + 2κ l2 π2 + 3)

6 l sinh (
√
κ l π2)

+ J2(κ, l),

J4(κ, l) =
4κ l3 π3 (2κ l2 π2 − 1)

3 cosh (
√
κ l π2)

,

J5(κ, l) =
6π

√
κ (3

√
κ l π2 − 2 sinh (2

√
κ l π2) +

√
κ l π2 cosh (2

√
κ l π2))

sinh3 (
√
κ l π2)

,

J6(κ, l) = −12κ l2 (l2 − 1)− 3

2κ l3 π2
. (3.2)

Finally, to perform the numerical study of this system of ODEs we need to specify some
initial conditions. Since our aim is to reproduce the results in [28], we will use X(0) =
Ẋ(0) = l̇(0) = 0, l(0) = 1. We will also be using the values of the constants α = ω = 0.1, as
in [28].

3.2 Numerical study for symmetric potential

Now that we have the equations for the collective coordinates, (3.1) and (3.2), we can proceed
to study the system numerically and compare the results with those obtained for the collective
coordinate approximation in [28].

First of all, we can use our CC equations to estimate the so-called depinning threshold, that is
the curve on the (κ, ϵ) plane that separates pinned states (i.e. no net kink motion, Ẋ(t) = 0)
from the region where a moving kink exists (Ẋ(t) ̸= 0). The results, which can be seen in
Fig. 3.2, closely match the the results using the equations for the full system from [28].
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Figure 3.2: Depinning threshold for ω = 0.1, α = 0.1, using Collective Coordinate approxi-
mation (points in red), and equations for the full system (solid black line) [28]. Below the line
no moving kink exists, above it moving kinks exist. The solid black line has been generated
with data provided by Jesús Cuevas Maraver.

We have determined the threshold above which a moving kink can exist. However, there
is not simply one type of motion that the system exhibits, but three: phase-locked motion,
where the kink moves at constant average velocity (i.e. the velocity, when measured after
each period, remains constant); chaotic or diffusive motion, where the kink moves with
non-constant average velocity; and “rotating” states, where the kink does not show any
net displacement after each period, but moves the same amount in each direction over one
period, typically several sites of the lattice. These “rotating” states may be compared with
a pendulum, in the sense that they would correspond to a pendulum rotating several times
in one direction, and then back the same amount of times, so that over a single period of the
force it has on average not moved. We can see different examples of these different motion
regimes in Fig. 3.3.
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Figure 3.3: Examples of: (a) phase-locked motion, (b) chaotic motion, (c) rotating motion.

Computationally, we can distinguish the first two states (i.e. phase-locked and chaotic/diffu-
sive) by calculating the position of the center of mass of the kink X(t) after each period T of
the force, and subsequently computing the correlation with a linear function. Additionally,
if there is no net motion (i.e. the slope of the fitting function is zero), it is necessary to
differentiate between rotating states and no motion. This can be done by comparing the
maximum displacement of X(t) over each period of the force with the lattice separation pa-
rameter h = 1/

√
κ. By proceeding this way, we can perform a detailed study on the different

types of motion that the system exhibits and the regions where they appear. This can be
seen in Fig. 3.4.

18



0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

(a)

0 0.5 1 1.5 2 2.5 3
0

0.02

0.04

0.06

0.08

(b)

Figure 3.4: Chaotic (red), phase-locked (black), and rotating (green) transport in the (κ, ϵ)
plane for (a) Collective Coordinate approximations, (b) full system [28]. Values of the pa-
rameters: ω = 0.1, α = 0.1. The right panel has been generated with data provided by Jesús
Cuevas Maraver.

In a similar way as presented in [28], we can see that the collective coordinate approximation
somewhat overestimates both the red and green regions, corresponding to chaotic and rotating
motions, respectively. However, it does capture the overall pattern in the parameter plane.
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Chapter 4

Asymmetric potential

We now consider a potential V (ϕn) = − cos(ϕn) +
λ
2
sin(2ϕn), with λ ̸= 0. We observe that

this potential is asymmetric, unlike the one considered before, and hence it is not necessary
to break the time symmetry by means of the force F (t) in order to observe ratchet transport.
Therefore, we consider a slightly simpler force of the form F (t) = ϵ cos(ωt), where ϵ is its
amplitude, ω = 2π

T
its frequency, and T its period. To study the dynamics of this system,

we will again look at the regions on the (κ, ϵ) plane where the kink experiences the different
motion regimes. Our aim is to use the equations obtained in the previous section for the
symmetric potential, (3.1), and to determine whether these equations can adequately describe
the system for λ ̸= 0, or whether a different approach is needed, by comparing the results
with the ones presented in [26] for the study of the full system of N equations. The value of
λ that will be taken in this section is λ = 0.46, which is the value that was used in [26].

4.1 Numerical study for asymmetric potential using

the Rice ansatz

We start by considering (3.1):

Ẍ +

[
J1

l̇2

l
− J2Ẋ

2 − J3

]
sin(2π

√
κX)− λJ4 cos(2π

√
κX)− Ẋl̇

l
= −αẊ − π

4
lF (t),

l̈ − l̇2

2l
+

6

π2

Ẋ2

l
+ J5Ẋl̇ sin(2π

√
κX) = −αl̇ + J6,
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where the Ji are as in (3.2). We can proceed as before to study the different types of motion
that the system exhibits, for 0 < ϵ < 0.1, and 0 < κ < 4. As a first step, so as to be able to
better compare the results with those in [26], we will only be looking at states where there is
net transport, i.e. chaotic and phase-locked states. As before, we expect to see a threshold
below which no motion is observed (i.e. a depinning threshold), and above it we expect to
see net motion, in particular, chaotic and phase-locked states. The results obtained using,
as before, ω = 0.1, α = 0.1, and for λ = 0.46, can be seen in Fig. 4.1.
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Figure 4.1: Phase-locked (blue) and chaotic (red) transport in the (κ, ϵ) plane, for (a) Col-
lective Coordinate approximation (3.1), and (b) full system [26]. Values of the parameters:
ω = 0.1, α = 0.1. The right panel has been generated with data provided by Jesús Cuevas
Maraver.

As we can see, this does not resemble the results obtained in [26] for the full system (2.1),
which we can see in Figure 4.1(b). First of all, there is kink motion for significantly lower
values of both κ and ϵ. Secondly, we can see that there is no region where net transport
appears for κ > 2, in stark contrast with the results for the full system (2.1). An explanation
of all this can be that the ansatz used (2.2) was orginally proposed for the symmetric potential
sine-Gordon equation, and hence is valid for λ = 0, but whilst the Rice ansatz approaches
0 and 2π for x → −∞ and x → ∞, respectively, the double sine-Gordon’s kinks approach
slightly different values that depend on the minima of the potential (cf. Fig. 4.2 for a visual
reference). Hence, this suggests that a different ansatz is needed to tackle this problem.
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Figure 4.2: Rice ansatz (in red) for the continuous sine-Gordon equation, and ansatz for the
continuous double sine-Gordon equation (in black), with λ = 0.46 [31].

4.2 New ansatz for asymmetric potential

We will now consider a different ansatz for ϕn that comes from the ansatz used for the
continuous double sine-Gordon model in [31]. This new ansatz, which will be called QSS
(Quintero-Sánchez-Salerno as in [31]) ansatz, is:

ϕn ≡ ϕ(θn) = ϕ0 + 2arctan

(
ABsgnλ

A− 1− η sinh θn

)
, (4.1)

with θn = n/
√
κ−X
l

, as before, and where A =
√
1 + 8λ2, B =

√
2(4λ2 − 1 + A), η =

2λ
√

2(1 + A), and ϕ0 = arcsin[(1 − A)/4λ], which depend only on λ. We remark that
this approach, using a collective coordinate approximation directly through this ansatz, is
original and that the results obtained are to be compared with those already published in
[26], where authors study the discrete double sine-Gordon model in its full extent via the
N -equations description.
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We recall equations (2.7), the collective coordinate equations for X(t) and l(t):

I4
Ẍ

l
+ I5

l̈

l
− l̇2

l2
(I3 + 2I5)−

Ẋ2

l2
I1 −

2Ẋl̇

l2
(I2 + I4) =

− αI5
l̇

l
− αI4

Ẋ

l
− I6F (t) + I7 +

λ

2
I8 −

κ

l2

(
I1 +

I9
12l2

)
,

I5
Ẍ

l
+ I11

l̈

l
− l̇2

l
(I10 + 2I11)−

Ẋ2

l2
I2 −

2Ẋl̇

l2
(I3 + I5) =

− αI11
l̇

l
− αI4

Ẋ

l
− I12F (t) + I13 +

λ

2
I14 −

κ

l2

(
I2 +

I15
12l2

)
,

(4.2)

where functions Ij are as in (2.5) and (2.6).

4.2.1 Equations for the asymmetric potential

To obtain the collective coordinate equations for the QSS ansatz, we can proceed as before,
by first calculating the functions Ij corresponding to this ansatz. To do so, using (2.5) and
(2.6), we will first calculate the first, second, and fourth derivatives of ϕ(θn) with respect to
θn:

ϕ′(θn) =
2ABη cosh(θn)

A2 (B2 + 1)− 2(A− 1)η sinh(θn)− 2A+ η2 sinh2(θn) + 1
,

ϕ′′(θn) =
ABη (sinh(θn) (4A

2 (B2 + 1)− 8A− 5η2 + 4)− η(−8A+ η sinh(3θn) + 8))

2
(
A2 (B2 + 1)− 2(A− 1)η sinh(θn)− 2A+ η2 sinh2(θn) + 1

)2 ,

ϕ(4)(θn) =
P (θn)(

A2 (B2 + 1)− 2(A− 1)η sinh(θn)− 2A+ η2 sinh2(θn) + 1
)4 ,

where P (θn) is:

P (θn) = 2ABη(−9η4(A2(B2 + 5)− 10A+ 5) sinh5(θn) + sinh(θn)((A
2(B2 + 1)− 2A+ 1)3

+ 34(A− 1)2η4 sinh2(2θn)) + 8(A− 1)η3(A2(3B2 + 5)− 10A+ 5) sinh4(θn)

− 12η3 cosh4(θn)(−A+ η sinh(θn) + 1)(−2A2B2 + 2A2 − 4(A− 1)η sinh(θn)− 4A+ η2 cosh(2θn)

− η2 + 2)− 3η2(A4(B4 + 6B2 + 5)− 4A3(3B2 + 5) + 6A2(B2 + 5)− 20A+ 5) sinh3(θn)

+ 4η cosh2(θn)(2A
2B2η3 sinh3(θn) + 2(A− 1)(A2(B2 + 1)− 2A+ 1)2 − η(A4(5B4 + 6B2 + 1)

− 4A3(3B2 + 1) + 6A2(B2 + 1)− 4A+ 1) sinh(θn)− 26(A− 1)η4 sinh4(θn) + 7η5 sinh5(θn))

+ 24(A− 1)η5 sinh6(θn)− 16(A− 1)3η3 sinh2(2θn)− 5η6 sinh7(θn)).
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In addition to these derivatives, we also need to take into account the trigonometric functions
sin(ϕn) and cos(2ϕn). Unfortunately, unlike before, these do not simplify nicely as to coincide
with any of the derivatives above and thus lead to significantly more complex expressions for
the Ij. We can write Ik =

∑
n fk(θn), where the fk are as follows:

f1(θn) =
A2B2η2 cosh(θn)[(4− 8A+ 4A2(1 +B2)− 5η2) sinh(θn)− η(8− 8A+ η sinh(3θn))]

(1− 2A+ A2(1 +B2)− 2(A− 1)η sinh(θn) + η2 sinh2(θn))3
,

f2(θn) =
θnA

2B2η2 cosh(θn)[(4− 8A+ 4A2(1 +B2)− 5η2) sinh(θn)− η(8− 8A+ η sinh(3θn))]

(1− 2A+ A2(1 +B2)− 2(A− 1)η sinh(θn) + η2 sinh2(θn))3
,

f3(θn) =
θ2nA

2B2η2 cosh(θn)[(4− 8A+ 4A2(1 +B2)− 5η2) sinh(θn)− η(8− 8A+ η sinh(3θn))]

(1− 2A+ A2(1 +B2)− 2(A− 1)η sinh(θn) + η2 sinh2(θn))3
,

f4(θn) =
4A2B2η2 cosh2(θn)

(A (AB2 + A− 2) + η sinh(θn)(−2A+ η sinh(θn) + 2) + 1)2
,

f5(θn) =
4A2B2θnη

2 cosh2(θn)

(A (AB2 + A− 2) + η sinh(θn)(−2A+ η sinh(θn) + 2) + 1)2
,

f6(θn) =
2ABη cosh(θn)

A2 (B2 + 1)− 2(A− 1)η sinh(θn)− 2A+ η2 sinh2(θn) + 1
,

f7(θn) =
2ABη cosh(θn) sin(ϕn)

A2 (B2 + 1)− 2(A− 1)η sinh(θn)− 2A+ η2 sinh2(θn) + 1
,

f8(θn) =
2ABη cosh(θn) cos(2ϕn)

A2 (B2 + 1)− 2(A− 1)η sinh(θn)− 2A+ η2 sinh2(θn) + 1
,

f9(θn) =
2ABη cosh(θn)P

(A2 (B2 + 1)− 2(A− 1)η sinh(θn)− 2A+ η2 sinh2(θn) + 1)5
,

f10(θn) =
θ3nA

2B2η2 cosh(θn)[(4− 8A+ 4A2(1 +B2)− 5η2) sinh(θn)− η(8− 8A+ η sinh(3θn))]

(1− 2A+ A2(1 +B2)− 2(A− 1)η sinh(θn) + η2 sinh2(θn))3
,

f11(θn) =
4A2B2θ2nη

2 cosh2(θn)

(A (AB2 + A− 2) + η sinh(θn)(−2A+ η sinh(θn) + 2) + 1)2
,

f12(θn) =
2θnABη cosh(θn)

A2 (B2 + 1)− 2(A− 1)η sinh(θn)− 2A+ η2 sinh2(θn) + 1
,

f13(θn) =
2θnABη cosh(θn) sin(ϕn)

A2 (B2 + 1)− 2(A− 1)η sinh(θn)− 2A+ η2 sinh2(θn) + 1
,

f14(θn) =
2θnABη cosh(θn) cos(2ϕn)

A2 (B2 + 1)− 2(A− 1)η sinh(θn)− 2A+ η2 sinh2(θn) + 1
,

f15(θn) =
2θnABη cosh(θn)P

(A2 (B2 + 1)− 2(A− 1)η sinh(θn)− 2A+ η2 sinh2(θn) + 1)5
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As was the case with the symmetric potential, these sums are difficult to work with numer-
ically, since there is no obvious way to truncate them. Hence, in order to obtain usable
expressions for these coefficients we will proceed as before, using the Poisson summation
formula. Therefore, since Ij =

∑
n fj(n), we need to calculate the Fourier transforms of each

fj. As before, this is a Fourier series, and hence it is convenient to write:

Ij =
1

2
A0

j +
∑
n

An
j cos(2nπ

√
κX) +

∑
n

Bn
j sin(2nπ

√
κX),

where:

An
j =

∫ ∞

−∞
fj(θn) cos(2nπ

√
κX)dX,

Bn
j =

∫ ∞

−∞
fj(θn) sin(2nπ

√
κX)dX.

Let us start by calculating the first function, I1. First of all, the first (constant) term of the
series is considered, which we will denote by A1

0. Up to a factor
√
κl, common to all the Ij

which can then be cancelled out in (4.2), we obtain:

A1
0 =

∫ ∞

−∞

A2B2η2 coshx[(4− 8A+ 4A2(1 +B2)− 5η2) sinhx− η(8− 8A+ η sinh 3x)]

(1− 2A+ A2(1 +B2)− 2(A− 1)η sinhx+ η2 sinh2 x)3
dx

= 0.

As we can see, this integral vanishes, and hence we need to consider the first order terms in
the Fourier series, A1

1 and B1
1 . It is worth mentioning that this integral has been calculated

numerically using Mathematica’s “NIntegrate” function to a value of 0; however, the inte-
grand is not symmetric nor periodic to be able to assert its value beyond machine precision.
The values of both A1

1 and B1
1 will depend on the values of both κ and l(t), and in particular

on the value of the product
√
κl. This in particular means that, since these integrals have

no closed form, it would in theory be necessary to calculate each of these integrals at each
step of the numerical resolution of system (4.2) since l(t) is one of the two variables, which
is unfeasible. However, it is possible to instead calculate an interpolant surface which may
allow for the evaluation of the integrals over the range where κ and l(t) lie. This interpolant
can be computed at reasonable speed by software such as Mathematica, yielding functions
that are manageable to deal with for the numerical resolution of the problem. Since we are
varying κ from 0.1 (κ = 0 is a singularity, and it is noted that for κ ≤ 0.1 and ϵ ≤ 0.1 no
moving kink exists) to 4, the range of interpolation taken was 0.1 ≤ κ ≤ 4, and 0.01 ≤ l ≤ 2.

We can repeat this process to obtain expressions for the Ij in terms of their first non-null
harmonic (for simplicity, we will use An

j and Bn
j for the non-constant coefficients instead of
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the full integral expression; for those functions that are approximated by a constant, the
value of this constant obtained via numerical integration is provided, for λ = 0.46):

I1 ≈ A1
1(κ, l) cos(2π

√
κX) +B1

1(κ, l) sin(2π
√
κX),

I2 ≈ −3.40878,

I3 ≈ −2.09823,

I4 ≈ 6.81756,

I5 ≈ 2.09823,

I6 ≈ 2π,

I7 ≈ A1
7(κ, l) cos(2π

√
κX) +B1

7(κ, l) sin(2π
√
κX),

I8 ≈ A1
8(κ, l) cos(2π

√
κX) +B1

8(κ, l) sin(2π
√
κX),

I9 ≈ A1
9(κ, l) cos(2π

√
κX) +B1

9(κ, l) sin(2π
√
κX),

I10 ≈ −13.7068,

I11 ≈ 9.13786,

I12 ≈ 1.08865,

I13 ≈ −4.33394,

I14 ≈ −1.97697,

I15 ≈ 2.47729,

As we can see, some of the Ij depend explicitly on both κ and l (in particular, on the product√
κl). However, this is not the case for most of the coefficients, which can be approximated

by the constant term with no explicit dependence on κ or l; since λ is a fixed parameter, these
will be constant throughout our simulations. For those coefficients whose constant term does
vanish (namely I1, I7, I8, I9), to find the coefficients for the first harmonic we need to proceed
in an analogous way as for I1 described above, namely constructing an interpolant over the
same domain of κ and l(t).

Once we have calculated these interpolants, in order to determine whether one of these
coefficients is small enough to be neglected in (4.2), as was the case for the symmetric
potential, we can plot their amplitudes in terms of the product

√
κl (this was done by fixing

l to one and varying κ; their amplitude was taken to be the usual L2 norm). This can be
seen in Fig. 4.3. In particular, from this figure we see that they are significant for values of
small enough values of

√
κl, hence must be taken into account in (4.2).
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Figure 4.3: Amplitudes of the coefficients I1, I7, I8, I9 (blue, black, orange, brown respectively)
vs κ compared with I2 (red) for 0 < κ ≤ 4 (κ = 0 is a singularity).

Having determined the coefficients for (4.2), we perform the simulations to determine the
different types of motion the system exhibits in terms of the discretization parameter κ and
the amplitude of the force, ϵ. In particular, as was the case for the Rice ansatz, we expect to
see three different types of motion, in addition to the stationary state: phase-locked motion,
chaotic motion, and rotating states. To differentiate between the different types of motions
we can proceed as before. Namely, we first calculate X(t) after each period of the force, and
then we fit these points by a linear function. If the slope of this function is different to zero,
then we have a phase-locked state if the fit is good (that is, if the R2 coefficient is close to
1), and chaotic otherwise. If this slope is close to 0, then to distinguish between stationary
and rotating states we compare the maximum displacement of X(t) over each period of the
force with the lattice separation parameter h = 1/

√
κ.

The results obtained can be seen in Fig. 4.4. The initial conditions taken are X(0) = Ẋ(0) =
l̇(0) = 0, l(0) = 0.8 (average value of the width observed for λ = 0.46; as shown in [26], the
results should not depend on the initial conditions chosen, although the closer these are to
the final state the faster the stationary solution will be obtained and hence the lower the
computational time needed will be).
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Figure 4.4: Different types of motion of the kink, in terms of the discretization parameter
κ and the amplitude of the force ϵ, using (a) collective coordinate approximation, (b) full
system (2.1) [26]. White area: No net motion; black area: phase-locked motion; red area:
chaotic motion; green area: rotating states; blue area: solutions blow up. Values of the
parameters: ω = 0.1, α = 0.1, λ = 0.46. The right panel has been generated with data
provided by Jesús Cuevas Maraver.

We can see that the results obtained are close to the results from the simulation of the full
system; in particular, the region at κ > 3 with net kink motion, that was not reproduced
with Rice ansatz, is now reproduced. There are however two differences worth mentioning.
First, the rotating states region (i.e. the green region in 4.4) is slightly overestimated in
the collective coordinate approximation, as is the phase-locked states region (i.e. the black
region in 4.4). Nevertheless, this approximation satisfactorily captures the general behaviour
of the system. Secondly, and more relevantly, it is worth noting that there is a small vertical
line at κ ≈ 1 where some points (i.e. net kink motion) appear; however, this is not due
to any actual net kink motion, but to the solutions of the system “blowing up” at some
points for κ ≲ 1. These are the points represented in blue. This suggests that the Collective
Coordinate approximation made might not be valid on this region. However, a possible
explanation for this is related to the way we approximated the ϕn±1 in the expression for the
discrete Laplacian. We recall that we approximated them via their Taylor expansion around
δ = 0, where δ = 1/(

√
κl), up to fourth order, i.e.:

ϕ(θn ± δ) ≈ ϕ(θn)± ϕ′(θn)δ +
1

2
ϕ′′(θn)δ

2 ± 1

3!
ϕ(3)(θn)δ

3 +
1

4!
ϕ(4)(θn)δ

4.

This approximation is valid for values of δ sufficiently small, i.e. κ sufficiently large (in this
case it is valid for the region of interest, κ ≳ 1). In particular, for small values of κ, the terms
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in the higher order even derivatives (recall that we are adding ϕ(θn+ δ)+ϕ(θn− δ)− 2ϕ(θn),
hence the odd order terms, as well as the zeroth order one, cancel out) will be significant and
hence should be taken into account. However, since we are interested in studying the region
where there is net kink motion, this region where κ ≲ 1 need not be taken into account. In
fact, for

√
κl ≳ 1, the fourth order term may be dropped, and we expect the number of terms

needed for the approximation to be good to grow very quickly for
√
κl ≤ 1.
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Chapter 5

Conclusions and Perspectives

For the first part of this project, the forced and damped discrete sine-Gordon system (here-
after referred to as the symmetric potential system) was considered. The aim in this first
part was to reproduce the results given in [28]. First of all, a collective coordinate (CC)
approach was taken so as to reduce the system from a (possibly) large number N of ODEs
to just two. This was done by means of the so-called Generalized Travelling Wave method,
with the resulting equations being used for the numerical simulations. Overall, the results
obtained largely agree with those obtained in [28].

Once the CC equations for the symmetric potential system were obtained, an attempt was
made to extend them to the study of the damped and forced double sine-Gordon system
(hereafter referred to as the asymmetric potential system). This attempt ultimately proved
unsuccessful, owing to the extra harmonic term in the potential rendering the previously
used ansatz incorrect. For the study of the system in more detail however, a different ansatz
was proposed and the CC equations corresponding to this ansatz were derived. Once the
resulting system of two coupled second-order ODEs was obtained, numerical simulations of
it were ran and compared with the results using the full N equation system. Unlike before,
the results obtained this time agreed reasonably well with those obtained in [26] for the full
system. The results obtained in this part of the project are original and, together with some
extension to the study of the stability of the different orbits that appear, might be worthy of
publication.

Overall, the main goal of obtaining a collective coordinate approximation of the damped and
forced discrete double sine-Gordon system was achieved, providing a reasonable and time
efficient approximation of the system of N equations. However, the fact that the approxi-
mation did not provide good results for κ ≲ 1, even though it did not pose any problems in
our case, could be problematic when considering other values of the parameters, and in such
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case it might be necessary to use higher order terms in the approximation of the discrete
Laplacian.

Finally, as an extension of this project, it could be interesting to study the stability of the
periodic and travelling wave solutions, using Floquet analysis, with the aid of the Collective
Coordinate equations. To do so, the variational equations would need to be calculated,
which would most certainly imply making further approximations [32, 33]. As for the chaotic
orbits, which may not be studied using Floquet analysis, the variational equations can be
used to calculate the associated Lyapunov exponents [32, 34]. Even though this study would
require further approximations, if successful these would provide, in a similar way as the
approximations made in this project, a computationally effective way of determining the
stability of solutions when compared to the full system of N coupled equations. In addition
to this study of the stability, it could be worth extending the study of the ratchet phenomenon
with collective coordinate approximations to a ϕ4 potential (that is a potential of the form
ϕ2/2− ϕ4/4 instead of the periodic one used here), where the ratchet behaviour of kinks has
been studied in the continuous case [35, 36]. In addition to changing the potential, studying
the system under other types of forces, such as parametric forces that depend on the field ϕ –
that is, ϕn ≡ ϕ(θn) in the discrete case – as well as on time could also present an interesting
extension. For these parametric forces the ratchet phenomenon and the existence of kinks has
been studied, in the continuous case, both for the sine-Gordon [37, 38] and the ϕ4 potential
[37, 39].
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Appendix A

Codes

Below is the Mathematica code used to simulate the Collective Coordinate equations and
produce Figure 4.4(a).

(*Values of the parameters*)

lambda = 0.46;

w = 0.1;

T = 2 Pi/w;

alpha = 0.1;

(*Values of constants in ansatz*)

A = Sqrt[1+8 lambda^2];

eta = 2 lambda Sqrt[2 (1+A)];

B = Sqrt[2 (4 lambda^2-1+A)];

phi0 = ArcSin[(1-A)/(4 lambda)];

ansatz[x_] := phi0 + 2 ArcTan[A B/(A-1-eta Sinh[x])];

(*We calculate the derivatives of the ansatz*)

deriv1[x_]:=ansatz’[x];

deriv2[x_]:=ansatz’’[x];

deriv4[x_]:=ansatz’’’’[x];

trig1[x_] := Sin[ansatz[x]];

trig2[x_] := Cos[2 ansatz[x]];

(*We calculate the f_k corresponding to each of the I_k*)

I1[x_]:=Simplify[deriv1[x] deriv2[x]];

36



I2[x_]:=Simplify[deriv1[x] deriv2[x] x];

I3[x_]:=Simplify[deriv1[x] deriv2[x] x^2];

I4[x_]:=Simplify[deriv1[x]^2];

I5[x_]:=Simplify[deriv1[x]^2 x ];

I6[x_]:=Simplify[deriv1[x]];

I7[x_]:=Simplify[deriv1[x] trig1[x]];

I8[x_]:=Simplify[deriv1[x]trig2[x]];

I9[x_]:=Simplify[deriv1[x] deriv4[x]];

I10[x_]:=Simplify[deriv1[x] deriv2[x] x^3];

I11[x_]:=Simplify[deriv1[x]^2 x^2];

I12[x_]:=Simplify[deriv1[x] x];

I13[x_]:=Simplify[deriv1[x] trig1[x] x];

I14[x_]:=Simplify[deriv1[x]trig2[x] x];

I15[x_]:=Simplify[deriv1[x] deriv4[x] x];

(*We interpolate the non-constant coefficients over the region of interest*)

h1=FunctionInterpolation[NIntegrate[Simplify[I1[x] Cos[2 Pi Sqrt[k] l

x]],{x,-Infinity,Infinity}],{k,0.1,4},{l,0.01,2}];

h7=FunctionInterpolation[NIntegrate[Simplify[I7[x] Cos[2 Pi Sqrt[k] l

x]],{x,-Infinity,Infinity}],{k,0.1,4},{l,0.01,2}];

h8=FunctionInterpolation[NIntegrate[Simplify[I8[x] Cos[2 Pi Sqrt[k] l

x]],{x,-Infinity,Infinity}],{k,0.1,4},{l,0.01,2}];

h9=FunctionInterpolation[NIntegrate[Simplify[I9[x] Cos[2 Pi Sqrt[k] l

x]],{x,-Infinity,Infinity}],{k,0.1,4},{l,0.01,2}];

h16=FunctionInterpolation[-NIntegrate[Simplify[I1[x] Sin[2 Pi Sqrt[k] l

x]],{x,-Infinity,Infinity}],{k,0.1,4},{l,0.01,2}];

h17=FunctionInterpolation[-NIntegrate[Simplify[I7[x] Sin[2 Pi Sqrt[k] l

x]],{x,-Infinity,Infinity}],{k,0.1,4},{l,0.01,2}];

h18=FunctionInterpolation[-NIntegrate[Simplify[I8[x] Sin[2 Pi Sqrt[k] l

x]],{x,-Infinity,Infinity}],{k,0.1,4},{l,0.01,2}];

h19=FunctionInterpolation[-NIntegrate[Simplify[I9[x] Sin[2 Pi Sqrt[k] l

x]],{x,-Infinity,Infinity}],{k,0.1,4},{l,0.01,2}];

f1[a_,b_]:=h1[a,b];

f7[a_,b_]:=h7[a,b];

f8[a_,b_]:=h8[a,b];

f9[a_,b_]:=h9[a,b];

f16[a_,b_]:=h16[a,b];

f17[a_,b_]:=h17[a,b];

f18[a_,b_]:=h18[a,b];

f19[a_,b_]:=h19[a,b];

(*We calculate the remaining (constant) coefficients, and define functions I_k*)
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J2=NIntegrate[I2[x],{x,-Infinity,Infinity}];

J3=NIntegrate[I3[x],{x,-Infinity,Infinity}];

J4=NIntegrate[I4[x],{x,-Infinity,Infinity}];

J5=NIntegrate[I5[x],{x,-Infinity,Infinity}];

J6=NIntegrate[I6[x],{x,-Infinity,Infinity}];

J10=NIntegrate[I10[x],{x,-Infinity,Infinity}];

J11=NIntegrate[I11[x],{x,-Infinity,Infinity}];

J12=NIntegrate[I12[x],{x,-Infinity,Infinity}];

J13=NIntegrate[I13[x],{x,-Infinity,Infinity}];

J14=NIntegrate[I14[x],{x,-Infinity,Infinity}];

J15=NIntegrate[I15[x],{x,-Infinity,Infinity}];

P1[k_,l_]:=2 Sqrt[k] l f16[k,l] Sin[2 Pi Sqrt[k] u[t]]+2 Sqrt[k] l f1[k,l] Cos[2

Pi Sqrt[k] u[t]];

P2[k_,l_]:=Sqrt[k] l J2;

P3[k_,l_]:=Sqrt[k] l J3;

P4[k_,l_]:=Sqrt[k] l J4;

P5[k_,l_]:=Sqrt[k] l J5;

P6[k_,l_]:=Sqrt[k] l J6;

P7[k_,l_]:=2 Sqrt[k] l f17[k,l] Sin[2 Pi Sqrt[k] u[t]]+2 Sqrt[k] l f7[k,l] Cos[2

Pi Sqrt[k] u[t]];

P8[k_,l_]:=2 Sqrt[k] l f18[k,l] Sin[2 Pi Sqrt[k] u[t]]+2 Sqrt[k] l f8[k,l] Cos[2

Pi Sqrt[k] u[t]];

P9[k_,l_]:=2 Sqrt[k] l f19[k,l] Sin[2 Pi Sqrt[k] u[t]]+2 Sqrt[k] l f9[k,l] Cos[2

Pi Sqrt[k] u[t]];

P10[k_,l_]:=Sqrt[k] l J10;

P11[k_,l_]:=Sqrt[k] l J11;

P12[k_,l_]:=Sqrt[k] l J12;

P13[k_,l_]:=Sqrt[k] l J13;

P14[k_,l_]:=Sqrt[k] l J14;

P15[k_,l_]:=Sqrt[k] l J15;

(*Definition of the force*)

F[t_]:=ev Cos[w t];

(*We normalize the coefficients I_k for each equation*)

JJ1[k_,l_]:=P1[k,l]/P4[k,l];

JJ2[k_,l_]:=P2[k,l]/P4[k,l];

JJ3[k_,l_]:=P3[k,l]/P4[k,l];

JJ4[k_,l_]:=1;
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JJ5[k_,l_]:=P5[k,l]/P4[k,l];

JJ6[k_,l_]:=P6[k,l]/P4[k,l];

JJ7[k_,l_]:=P7[k,l]/P4[k,l];

JJ8[k_,l_]:=P8[k,l]/P4[k,l];

JJ9[k_,l_]:=P9[k,l]/P4[k,l];

JJ10[k_,l_]:=P10[k,l]/P4[k,l];

JJ11[k_,l_]:=P11[k,l]/P4[k,l];

JJ12[k_,l_]:=P12[k,l]/P4[k,l];

JJ13[k_,l_]:=P13[k,l]/P4[k,l];

JJ14[k_,l_]:=P14[k,l]/P4[k,l];

JJ15[k_,l_]:=P15[k,l]/P4[k,l];

QQ1[k_,l_]:=P1[k,l]/P11[k,l];

QQ2[k_,l_]:=P2[k,l]/P11[k,l];

QQ3[k_,l_]:=P3[k,l]/P11[k,l];

QQ4[k_,l_]:=P4[k,l]/P11[k,l];

QQ5[k_,l_]:=P5[k,l]/P11[k,l];

QQ6[k_,l_]:=P6[k,l]/P11[k,l];

QQ7[k_,l_]:=P7[k,l]/P11[k,l];

QQ8[k_,l_]:=P8[k,l]/P11[k,l];

QQ9[k_,l_]:=P9[k,l]/P11[k,l];

QQ10[k_,l_]:=P10[k,l]/P11[k,l];

QQ11[k_,l_]:=1;

QQ12[k_,l_]:=P12[k,l]/P11[k,l];

QQ13[k_,l_]:=P13[k,l]/P11[k,l];

QQ14[k_,l_]:=P14[k,l]/P11[k,l];

QQ15[k_,l_]:=P15[k,l]/P11[k,l];

(*We define the system that we want to solve*)

system = {u’’[t]+JJ5[k,l[t]] l’’[t]==-alpha l’[t] JJ5[k,l[t]]-alpha

u’[t]-JJ6[k,l[t]] F[t] l[t]+l[t] JJ7[k,l[t]]+lambda l[t] JJ8[k,l[t]]-1/l[t]

(JJ1[k,l[t]]+JJ9[k,l[t]]/(12 k l[t]^2))+l’[t]^2/l[t](JJ3[k,l[t]]+2

JJ5[k,l[t]])+u’[t]^2/l[t] JJ1[k,l[t]]+2 u’[t] l’[t]/l[t](JJ2[k,l[t]]+1),

l’’[t]+QQ5[k,l[t]] u’’[t]==-alpha l’[t]-alpha u’[t] QQ5[k,l[t]]-QQ12[k,l[t]] F[t]

l[t]+l[t] QQ13[k,l[t]]+lambda l[t] QQ14[k,l[t]]-1/l[t]

(QQ2[k,l[t]]+QQ15[k,l[t]]/(12 k

l[t]^2))+l’[t]^2/l[t](QQ10[k,l[t]]+2)+u’[t]^2/l[t] QQ2[k,l[t]]+2 u’[t]

l’[t]/l[t](QQ3[k,l[t]]+QQ5[k,l[t]])};

(*We state the number of points where the system will be solved, and the

variables where the values of kappa and epsilon will be stored, depending on

the type of motion, and on whether or not the solution blows up*)
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kpoints=100;

kx = Array[0.1+(4-0.1)/kpoints (#-1)&,kpoints];

nev=100;

evx = Array[(0.1)/nev (#-1)&,nev];

tolerance=0.001;

kvaluesphl={};

evaluesphl={};

kvaluescha={};

evaluescha={};

kvaluesrot={};

evaluesrot={};

kvaluesblowup={};

evaluesblowup={};

(*We use Shared Variables so that we may parallelize the problem to obtain

results faster*)

SetSharedVariable[evaluesphl];

SetSharedVariable[kvaluesphl];

SetSharedVariable[evaluescha];

SetSharedVariable[kvaluescha];

SetSharedVariable[evaluesrot];

SetSharedVariable[kvaluesrot];

SetSharedVariable[evaluesblowup];

SetSharedVariable[kvaluesblowup];

SetSystemOptions["ParallelOptions" -> "ParallelThreadNumber" -> 4];

(*We run the simulations for the different values of kappa and epsilon*)

ParallelTable[

sys=With[{k=kx[[kval]],ev=evx[[evalue]]},Evaluate[system]];

{usol,lsol}=NDSolveValue[Join[sys,{u[0]==0,u’[0]==0,l[0]==1,l’[0]==0}],{u,l},{t,0,60

T}];

Xpo=Table[usol[n T],{n,30,60}];

lm=LinearModelFit[Xpo,x,x];

R2=lm["RSquared"];

(*Even if the linear fit is very poor, we need to calculate the average velocity

to check if we have chaotic motion or not; the fit might be poor due to the

solution blowing up*)

Which[(R2>=0.7),

velav=First@Pick[lm["BestFitParameters"],lm["BasisFunctions"],x],

True,
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velav=(usol[60 T]-usol[30 T])/(30 T);

];

Which[(velav>=-tolerance && velav<=tolerance),

max=First[FindMaximum[{usol[t],55 T<=t<=57 T},{t,56 T}]];

min=First[FindMinimum[{usol[t],55 T<=t<=57 T},{t,56 T}]];

maxdisp=max-min;

avl=1/Sqrt[kx[[kval]]];

Which[maxdisp>=2 avl,

AppendTo[evaluesrot,evx[[evalue]]];

AppendTo[kvaluesrot,kx[[kval]]];

];

];

(*If the solution blows up, then we cannot take it as showing net transport,

hence we set the velocity to zero*)

Which[(velav>10^2||velav<-10^2),

AppendTo[evaluesblowup,evx[[evalue]]];

AppendTo[kvaluesblowup,kx[[kval]]];

velav=0;

];

(*We check for net transport, and store the results as appropriate for each type

of motion*)

Which[(velav>tolerance||velav<-tolerance),

Which[(R2>=0.995),

AppendTo[evaluesphl,evx[[evalue]]];

AppendTo[kvaluesphl,kx[[kval]]],

True,

AppendTo[evaluescha,evx[[evalue]]];

AppendTo[kvaluescha,kx[[kval]]];

];

];

,{kval,kpoints},{evalue,nev}

]

(*We save the data into .txt files so that we can easily recover the results*)

Export["kvaluesphl.txt",kvaluesphl];

Export["evaluesphl.txt",evaluesphl];

Export["kvaluescha.txt",kvaluescha];

Export["evaluescha.txt",evaluescha];
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Export["kvaluesrot.txt",kvaluesrot];

Export["evaluesrot.txt",evaluesrot];

Export["kvaluesblowup.txt",kvaluesblowup];

Export["evaluesblowup.txt",evaluesblowup];
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