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Abstract

We study the possibility that four Ξ resonances (Ξ(1620), Ξ(1690), Ξ(1820), Ξ(1950)) could
correspond to pentaquark states, in the form of a meson-baryon bound systems. We also explore
the possible existence of doubly strange pentaquarks with hidden charm (Pcss) and find two can-
didates structured in a similar form, at energies of 4493 MeV and 4630 MeV. The meson-baryon
interaction is built from t-channel meson exchange processes which are evaluated using effective
Lagrangians. Moreover we analyse the Ξb → Ξ J/ψ ϕ decay process, which permits exploring the
existence of the heavy double strange pentaquark, as well as other exotic hadrons, in the three dif-
ferent two-body invariant mass spectra of the emitted particles. In the J/ψϕ mass spectrum, we
analyse the nature of the X(4140) and X(4160) resonances. In the J/ψΞ invariant mass spectrum,
we study the signal produced by the doubly strange pentaquark, where we conclude that it has a good
chance to be detected in this reaction if its mass is around 4580 − 4680 MeV. Finally, in the ϕΞ
spectrum we study the likelihood to detect the Ξ(2500) state.
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1. Introduction
In the last few decades lots of different multi-quark states have been observed experimentally, show-
ing the existence of more complex structures than the conventional mesons and baryons, made of a
quark-antiquark pair and three quarks respectively. This fact motivated many theoretical groups
to study models that can generate hadrons beyond the standard structures, which increased our
understanding of the hadron interaction. One kind of these exotic configurations proposes baryons
composed by five quarks, but structured in a quasi-bound state of an interacting meson-baryon
pair. One example of the success of this type of models is provided by the Λ(1405) resonance,
for which the quarks models systematically over-predicted its mass. Instead, dedicated studies of
the meson-baryon interaction obtained from chiral effective Lagrangians predict the Λ(1405) to be
a K̄N molecule [1–3]. After the successful interpretation of the Λ(1405), many groups tried to
extend this kind of models to other spin, isospin and flavour sectors, finding a more natural way
to explain different states, like the f0(500) and the a0(980), which are described as meson-meson
quasi-bound states [4–6].

More resent experimental results, like the discovery at LHCb [7,8] of four excited resonances of
the nucleon (Pc(4312), Pc(4380), Pc(4440) and Pc(4457)) seen on the invariant mass distribution
of J/ψp pairs from the Λb decay, and the more recent report of LHCb [9] which, analysing the Ξb
decay finds evidence of the existence of a pentaquark with strangeness (Pcs(4459)) on the invariant
mass distribution of J/ψΛ pairs, clearly establish the need for including a cc̄ pair excitation, in
order to reproduce the high masses of these states. Baryons with hidden charm, structured as
a meson-baryon molecule, had been predicted in some earlier works [10–14], but the existence of
a hidden charm pentaquark with double strangeness was not obtained. A recent work studying
hadronic molecules states of a baryon with charm and a meson with an anti-charm finds that the
bound energy for the Ξ′

cD̄
∗
s pair is positive, pointing that the pentaquark with double strangeness

may exist [15]. If this state exists it should be visible on the ηcΞ or J/ψΞ invariant mass spectrum.

Other examples of exotic states are the X meson resonances. There is still a discussion of
the nature and properties of the X(4140) and X(4160) states. In 2008, the Belle collaboration
reported the existence of the X(4160) [16] in the e−e+ → J/ψD∗D̄∗ reaction and, during the
following years, some groups reported the existence of a narrow X(4140) with a width around
19 MeV [17–22]. Despite of these results, a more recent measurement of the B+ → J/ψϕK+ decay
from the LHCb collaboration [23] obtained a width of 83 MeV for X(4140), which is pretty large
compared with the previously studies. In that work other states that couple to J/ψϕ were also
reported such as the X(4274), X(4550) and the X(4700), but the X(4160), which is the state that
was previously seen in 2008, was not observed. It might be that the reason of this large width for
X(4140) is related to the fact that the two neighbouring states (the narrow X(4140) state plus
rather X(4160) resonance) were fitted together. In this work we will study the interplay between
the X(4140) and the X(4160) resonances and will try to find an observable that permit us to
discriminate whether the truly nature of this state is only one wide X(4140) resonance or it is the
combination of a narrow X(4140) state plus a X(4160) one.

Among the theoretical works studying these X states, there were some groups trying to identify
the X(4140) as a molecular state of a D∗

sD̄
∗
s pair with the quantum numbers 0++ and 2++ [24–26],

but these studies did not take into account the light meson states, producing a small width for
the state, hence it was associated to the X(4140). Later, in Ref. [27], the contribution of the light
meson channels were included, generating a 2++ X state at 4169 MeV with a width of 139 MeV
that strongly couples to D∗

sD̄
∗
s and it was associated to the X(4160). In the end the quantum

numbers of X(4140) were measured, obtaining that these were 1++ [28], therefore the models that
predict this state as a D∗

sD̄
∗
s molecule are no longer supported.

The purpose of the Ξb → Ξ J/ψ ϕ decay studied in this work is to show that in the two-body
invariant mass distributions of the three possible pair of particles (J/ψϕ, J/ψΞ, ϕΞ) there exists
a good possibility to detect exotic hadrons. These kind of decays (A → a b c) had already been
used to detect new exotic states, such as the four Pc states or the most recent Pcs.
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From the relativistic kinematics of a three body decay the Dalitz plot can be generated, which
represents the available invariant mass for the different pairs of particles. So if we explore the Dal-
itz plots for the Ξb → Ξ J/ψ ϕ reaction (Fig. 1) we can see whether the different exotic resonances
lie inside the kinematically allowed region.

Figure 1: The solid lines represent the Dalitz plot for MϕΞ vs MJ/ψΞ (a), MJ/ψϕ vs MJ/ψΞ (b) and
MJ/ψϕ vs MϕΞ (c). The dashed lines show the mass position for different resonances that couple
to the corresponding channel. The shadowed zone is the variation we considered in this work for
the pentaquark position.

On the MJ/ψΞ vs MϕΞ Dalitz plot (Fig. 1 (a)) the dashed vertical line corresponds to the
mass predicted for the S = −2 pentaquark and the shadowed zone shows the variations of its
mass of ≃ ±50 MeV due to theoretical uncertainties. We note that, if the pentaquark with double
strangeness, disscused later in this work, appears inside the allowed kinematical region, then it
may contribute with an important peak in the corresponding invariant mass distribution. In the
MJ/ψΞ vs MJ/ψϕ Dalitz plot (Fig. 1 (b)) five X resonances lie inside the permitted kinematical
region, namely the X(4140), X(4160), X(42740), X(4550) and the X(4700). In spite of the fact
that all five may be detectable, we will not consider the last tree states since there is at the moment
no theoretical model that describes them. Finally, in the MJ/ψϕ vs MϕΞ Dalitz plot we can see
how we could observe two Ξ resonances in the invariant mass distribution. Since we do not have a
theoretical model that describes these two Ξ resonances, we will study the minimal coupling they
need to have to produce a visible effect to invariant mass distribution.

2



2. Formalism

2.1 Meson Baryon states
2.1.1 Meson-Baryon interaction

The model of the meson-baryon interaction used in this work is based on the tree-level diagrams
of Fig. 2. In this work we will only consider the s-wave amplitude, for which the most important
contribution comes from the t-channel term (Fig. 2(a)). The s- and u- channel terms (Fig. 2(b)
and (c)) contribute mostly to the p-wave amplitude and they may have effects at higher energies.
In Ref. [29] the contribution from these terms in the S = −1 sector were calculated, and were
found to be around 20% of that of the dominant t-channel around 200 MeV above the threshold.
We can expect that in the sector we study (S = −2) these terms will contribute even less, as the
intermediate baryon is more massive, and therefore they will be neglected.

Mi Mj

BjBi

(b)

Mi Mj

BjBi B∗

(c)

B∗

Mi Mj

BjBi

V ∗

(a)

Fig. 2: Leading order tree-level diagrams contributing to the meson-baryon interaction. Baryons
and mesons are depicted by solid and dashed lines, respectively.

To describe the interaction we employ effective Lagrangians that describe the couplings of the
vector meson to pseudoscalar mesons (V PP ) and baryons (V BB), which are obtained using the
hidden gauge formalism and assuming SU(4) symmetry [11]:

LV PP = ig⟨[∂µϕ, ϕ]V µ⟩, (1)

LV BB =
g

2

4∑
i,j,k,l=1

B̄ijkγ
µ
(
V kµ,lB

ijl + 2V jµ,lB
ilk

)
, (2)

where ϕ and Vµ represent the 16-plet pseudo-scalar field and the 16-plet vector field, respectively,
and ⟨ ⟩ denotes the SU(4) trace in flavour space. The g factor is a coupling constant which is
related to the pion decay constant (f = 93 MeV) and a representative mass of a light vector meson
from nonet (mV ) through the following relation,

g =
mV

2f
. (3)

Using the V PP and V BB vertices in the t-exchange diagram of Fig. 2 (a) one can obtain the
s-wave interaction kernel Vij [11] for the pseudoscalar meson baryon (PB) interaction:

Vij = g2
∑
v

Cvij ū(pj)γ
µu(pi)

1

t−m2
v

×
[
(ki + kj)µ −

k2i − k2j
mv

(ki + kj)µ

]
, (4)

where pi/j and ki/j denote the four-momentum of the baryons and mesons, respectively, and i, j
are the incoming and outgoing meson-baryon channels. The mass of the vector meson interchanged
is mv, and we approximate it, as mv = mV , being equal for all of the vector mesons without charm
quark and/or antiquark. For the charmed mesons we add a factor κc = (mV /m

c
V )

2 = 1/4 for D∗,
D∗
s mesons and κcc = 1/9 for the J/ψ in order to take account of their higher mass. This simplifies

Eq. (4) into

Vij = −Cij
1

4f2
ū(pj)γ

µu(pi)(ki + kj)µ, (5)

3



where we have taken the limit where t ≪ mV , which reduces the t-channel diagram to a contact
term, and we have included the κc and κcc factors in the Cij matrix of coefficients. This expression
can be further simplified using the Dirac algebra up to O(p2/M2), what leads to:

Vij(
√
s) = −Cij

1

4f2
(
2
√
s−Mi −Mj

)
NiNj , (6)

where Mi, Mj are the masses of the baryons in the channels i and j, Ni and Nj are the normal-
ization factors Ni =

√
(Ei +Mi)/2Mi and Ei, Ej are the energies of the corresponding baryons.

We note that although SU(4) symmetry has been employed to obtain the Cij coefficients, our in-
teraction potential is not SU(4) symmetric, since we use the physical masses of mesons and baryons.

The interaction of vector mesons with baryons is built in a similar way and involves a three-
vector V V V vertex obtained from

LV V V = ig⟨[V µ, ∂νVµ]V ν⟩. (7)

One can see that in this case we can arrive to a similar expression as Eq. (6), but multiplied
by the product of the polarisation vectors, ϵ⃗i · ϵ⃗j :

Vij(
√
s) = −Cij ϵ⃗i · ϵ⃗j

1

4f2
(
2
√
s−Mi −Mj

)
NiNj . (8)

2.1.2 The I = 1/2 S = −2 sector

For the sector we are studying (I = 1/2 S = −2) we have 9 possible pseudoscalar-meson ba-
ryon channels, πΞ(1456), K̄Λ(1611), K̄Σ(1689), ηΞ(1866), η′Ξ(2276), ηcΞ(4302), D̄sΞc(4437),
D̄sΞ

′
c(4545), D̄Ω(4565), where the values in parenthesis denote their thresholds. As can be seen,

the channels with hidden charm are about 2 GeV more massive compared with the other channels.
Therefore we can expect these two regions to be essentially independent, making only a rather
small effects on each other. The values of the Cij coefficients for the 9-channels are the ones seen
in Table 1.

πΞ K̄Λ K̄Σ ηΞ η′Ξ ηcΞ D̄sΞc D̄sΞ
′
c D̄Ωc

πΞ 2 3
2

1
2 0 0 0 0 0

√
3
2κc

K̄Λ 0 0 − 3
2 0 0 − 1

2κc −
√
3
2 κc 0

K̄Σ 2 3
2 0 0 3

2κc −
√
3
2 κc 0

ηΞ 0 0 0 κc
1√
3
κc

1√
6
κc

η′Ξ 0 0 1√
8
κc − 1√

6
κc

1√
3
κc

ηcΞ 0
√

3
2κc

1√
2
κc −κc

D̄sΞc −1 + κcc 0 0

D̄sΞ
′
c −1 + κcc

√
2

D̄Ωc κcc

Table 1: Coefficients Cij of the PB interaction in the I = 1/2, S = −2 sector

In the VB sector, the allowed channels are ρΞ(2089), K̄∗Λ(2010), K̄∗Σ(2087), ωΞ(2101),
ϕΞ(2338), J/ψΞ(4415), D̄∗

sΞc(4581), D̄∗
sΞ

′
c(4689), D̄∗Ω(4706), where we can again separate the

channels in two sets, one with the light channels and the other with the heavy ones. In this
case we can obtain the Cij coefficients directly form the those in Table 1 using these following
correspondences,

π → ρ, K → K∗, K̄ → K̄∗, D → D∗, D̄ → D̄∗, ηc → J/ψ

1√
3
η +

√
2
3η

′ → ω and −
√

2
3η +

1√
3
η′ → ϕ , (9)
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ρΞ K̄∗Λ K̄∗Σ ωΞ ϕΞ J/ψΞ D̄∗
sΞc D̄∗

sΞ
′
c D̄∗Ωc

ρΞ 2 3
2

1
2 0 0 0 0 0

√
3
2κc

K̄∗Λ 0 0 −
√
3
2

√
3
2 0 − 1

2κc −
√
3
2 κc 0

K̄∗Σ 2
√
3
2 −

√
3
2 0 3

2κc −
√
3
2 κc 0

ωΞ 0 0 0 κc
1√
3
κc

1√
6
κc

ϕΞ 0 0 1√
8
κc − 1√

6
κc

1√
3
κc

J/ψΞ 0
√

3
2κc

1√
2
κc −κc

D̄sΞc −1 + κcc 0 0

D̄sΞ
′
c −1 + κcc

√
2

D̄Ωc κcc

Table 2: Coefficients Cij of the V B interaction in the I = 1/2, S = −2 sector

and are listed in Table 2.

Note that for the light PB sector, due to the fact that all C5j cofficients with j ≤ 5 are zero,
we formally have only 4 coupled channels, while this does not occur for the light V B sector and
we have 5 coupled channels in this case.

2.1.3 Resonances

The sought resonances are dynamically generated as poles of the scattering amplitude Tij , which is
unitarized via the on-shell Bethe-Salpeter equation in coupled channels. Doing that we implement
the resumation of loop diagrams to the infinite order (see Fig. 3),

Tij = Vij + VilGlVlj + VilGlVlkGkVkj + ... = Vij + VilGlTlj (10)

where Gl is the loop function, which is given by

Gl = i

∫
d4q

(2π)4
2Ml

(P − q)2 −M2
l + iϵ

1

q2 −m2
l + iϵ

, (11)

the masses Ml and ml correspond to those of the baryon and meson of the l channel, respectively,
P = p+k = (

√
s, 0) is the total four momenta in the c.m. frame, and q denotes the four momentum

in the intermediate loop. We factorise the V and T matrices on-shell out of the integrals in Eq.
(10) [30], hence obtaining the following algebraic matrix expression for the scattering amplitude,

T = (1− V G)−1V. (12)

Fig. 3: Diagrams that represent the Bethe-Salpeter equation. The empty circle corresponds to the
Tij matrix elements, the black ones represent the Vij potential and the loops are the Gl propagator
functions.

Note that the sum over the polarisation vector in the case of the vector meson baryon interaction
gives [30] ∑

pol

ϵiϵj = δij +
qiqj
M2
V

, (13)
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where, consistently with our model, we neglect the q2/M2
V term, thus all ϵ⃗iϵ⃗j factorize out from

all terms in the Bethe-Salpeter equation.

It is important to know that the loop function in Eq. (11) diverges logarithmically, so we must
renormalize it. We can employ the cut-off method, which consists in changing the infinity at the
upper limit to one large enough cut-off momentum Λ

Gcut
l =

∫
dΩq

∫ Λ

0

q2dq

(2π)3
1

2ωl(q⃗ )

Ml

El(q⃗ )

1√
s− ωl(q⃗ )− El(q⃗ ) + iϵ

, (14)

The disadvantage of this model is that such a model is not valid for energies higher than

m ∼
√
m2

bar + Λ2 +
√
m2

mes + Λ2. (15)

A different option is using the dimensional regularisation scheme, which gives rise to the fol-
lowing analytic expression

Gl =
2Ml

16π2

{
al(µ) + ln

M2
l

µ2
+
m2
l −M2

l + s

2s
ln
m2
l

M2
l

+

+
ql√
s

[
ln
(
s− (M2

l −m2
l

)
+ 2ql

√
s)

+ ln
(
s+ (M2

l −m2
l

)
+ 2ql

√
s)

− ln
(
−s+ (M2

l −m2
l

)
+ 2ql

√
s)

− ln
(
−s− (M2

l −m2
l

)
+ 2ql

√
s)
] }
,

(16)

were ql is the on-shell three-momentum of the meson in the loop, and we have introduced a
subtraction constant, a(µ), at the regularisation scale µ. In this work we will take µ = 1000 MeV
consistently with the previous approaches [30]. The value of the subtraction constant that produces
the same loop function at threshold as that obtained with a cut-off Λ is determined by

al(µ) =
16π2

2Ml

(
Gcut
l (Λ)−Gl(µ, al = 0)

)
. (17)

As can be seen, some mesons in the considered channels have with a large width (Γρ =
149.4 MeV and ΓK∗ = 50.5 MeV), but Gl in Eq. (16) does not take into account this fact.
Therefore, in order to implement the meson width we comvolute this function with the mass dis-
tribution of the particle. This method has been used in [30,31] and the resulting loop function for
these channels becomes:

G̃l(s) = − 1

N

∫ (ml+2Γl)
2

(ml−2Γl)2

dm̃2
l

π
Im

1

m̃2
l −m2

l + imlΓ(m̃l)
×Gl

(
s, m̃2

l ,M
2
l

)
, (18)

where we extend the integration limits up to twice the meson width on either side of the mass,
and the normalisation factor N is

N =

∫ (ml+2Γl)
2

(ml−2Γl)2
dm̃2

l

(
− 1

π

)
Im

1

m̃2
l −m2

l + imlΓ(m̃l)
. (19)

The energy-dependent width is given by

Γ(m̃l) = Γl
m5
l

m̃5
l

λ3/2(m̃2
l ,m

2
1,m

2
2)

λ3/2(m2
l ,m

2
1,m

2
2)
θ(m̃l −m1 −m2), (20)

where m1 and m2 are the masses of the lighter mesons into which the vector meson decays and λ
is the Källén function λ(x, y, z) = (x− (

√
y +

√
z)2)(x− (

√
y −√

z)2).
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The resonances are generated as poles of the scattering amplitude Tij in the so-called second
Riemann sheet, obtained by using the following rotation of the loop function:

GII
l (

√
s+ iϵ) = Gl(

√
s+ iϵ) + i

ql

4π
√
2
. (21)

Around the pole, the scattering amplitude can be approximated as

Tij ≃
gigj
z − zp

, (22)

from which we can obtain the coupling constants, gi, of the resonance for all channels. In addition,
we calculate the compositeness defined as:

χi =
∣∣∣g2i ∂Gi(zp)∂z

∣∣∣, (23)

which approximately gives the contribution of the i-th channel meson-baryon component in a given
resonance.

2.2 The Ξb → Ξ J/ψ ϕ decay
2.2.1 Primary decay

Studying the Ξb → ΞX → Ξ J/ψ ϕ decay we, apart from the search for the double strange-
ness pentaquark, have also a chance to study the interplay between the X(4140) and X(4160)
resonances. Similar to what was done in Refs. [32, 33], we use two independent primary decay
mechanisms, one for X(4160) and other for X(4140). Since for the X(4140) resonance we do not
have a physical model to generate it, we introduce it as a Breit-Wigner whose parameters are fitted
to experimental data. While the X(4160) can be obtained as a result of chiral unitarized coupled-
channels calculation (Ref. [27]), i.e. as a meson-meson molecule resonance strongly coupled to
D∗
sD̄

∗
s channel.

Fig. 4: Microscopic quark level Ξb → Ξ D∗
s D̄

∗
s transition, through internal emission.

Let us start with the Ξb → Ξ J/ψ ϕ decay via X(4160) production. Since the X(4160) strongly
couples to the D∗

s D̄
∗
s channel (Fig. 4), we can start considering the Ξb → ΞD∗

s D̄
∗
s weak decay

mechanism. Then, as shown in Fig. 5, the D∗
s D̄

∗
s lines form a loop, allowing multiple couple

channel interactions and generating dynamically the X(4160), which then decay into J/ψ and ϕ.
The amplitude of this process can be written as:

MP
X4160

= A(⃗ϵJ/ψ × ϵ⃗ϕ) · P⃗ΞGD∗
s D̄

∗
s

TD∗
s D̄

∗
s ,J/ψϕ

gD∗
s D̄

∗
s
gJ/ψϕ

. (24)

The A on the right side of the equation represents the strength of the Ξb → ΞD∗
s D̄

∗
s weak

decay, represented in Fig. 4, which we are not going to study in details. This value can be taken as
a constant due to the limited range of energies involved in the Ξb → Ξ J/ψ ϕ decay as it is argued
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Fig. 5: Mechanism for the Ξb → J/ψ ϕ Ξ decay involving the X(4160) resonance.

in Ref. [34]. The (⃗ϵJ/ψ × ϵ⃗ϕ) · P⃗Ξ factor denotes the P-wave operator which is the minimum partial
wave we need in the weak vertex to conserve the angular momentum, since the spins of Ξb and Ξ
is J = 1/2 meanwhile for the X(4160) are J = 2. Here the ϵi represents the polarisation of the
vector mesons in the J/ψ ϕ rest frame and P⃗Ξ the tree-momentum of the Ξ in the same frame. The
factor GD∗

s D̄
∗
s

indicates the contribution of the D∗
sD̄

∗
s loop shown in Fig. 5 and the TD∗

s D̄
∗
s ,J/ψϕ

term is the coupled-channel unitarized amplitude for the D∗
sD̄

∗
s → J/ψ ϕ process. Note that we

divide it by the corresponding couplings constants, this is done to simplify the comparison with
the X(4140) term.

Now we will discus the X(4140) production process which is shown in Fig. 6 and and the
associated amplitude is

MP
X4140

=
B̃

2MX(4140)[MJ/ψϕ −MX(4140) + i
ΓX(4140)

2 ]
, (25)

where the X(4140) is parameterised with a Breit-Wigner, where MJ/ψϕ is the invariant mass
of the J/ψϕ system and MX(4140) and ΓX(4140) are the mass and width of X(4140) resonance,
respectively. A new constant connected to the strength of the Ξb → Ξ X(4140) weak decay is
B, and since we need to have the same units for the strength parameters of different reactions
to compare them, we have introduced B̃ via the following relation, B̃ = BMX(4140). Now A and
B̃ have the same units and can be compared. In this process we do not need to have a P-vertex
since the quantum number of the X(4140) is J = 1, therefore the minimum partial wave needed
to conserve the angular momentum is L = 0.

Fig. 6: Mechanism for the Ξb → J/ψ ϕ Ξ decay involving the X(4140) resonance

We will not go into more detailed calculations, since the main aim of this work is to point out
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the possibility to use the Ξb → Ξ J/ψ ϕ decay to study already discovered and and potentially
possible exotic states and to encourage to the experimental collaborations to explore this reaction.

2.2.2 Final state interaction

Once we discussed the generation of the Ξ J/ψ ϕ final state in Ξb decay we want to focus on
studying the final state interaction in the Ξ J/ψ and Ξ ϕ channels. For the case of the final state
interaction of Ξ J/ψ pair the Ξ and J/ψ legs from Fig. 5 and 6 have to be closed, forming a
loop, which can dynamically generate the S = −2 pentaquark. The Ξ ϕ final state interaction can
produce excited Ξ states and has to be studied in a similar way.

Fig. 7: Final state interaction between J/ψ Ξ (a) and ϕ Ξ (b) in the presence of the X(4160)
resonance.

The amplitude associated to the process with the final state interaction of the J/ψΞ pair driven
by the Ξb decay via X(4160) resonance is:

MJ/ψΞ
X4160

= A(⃗ϵJ/ψ × ϵ⃗ϕ) ·
(
P⃗Ξ − P⃗ϕ

2

)
TJ/ψΞ,J/ψΞI

J/ψΞ
X4160

, (26)

which is associated to the diagram shown in Fig. 7(a), where the superscript denotes the final
state interaction channel. This expression is derived in the Appendix A, and the expression for
the integral IJ/ψΞX4160

is also given. We would like to remind the reader that for the decay via
X(4160) the weak decay vertex has to be a P-wave one. Therefore the operator assigned to the the
Ξb → D∗

s D̄
∗
s Ξ is proportional to the momentum of Ξ and the loop integral (Fig. 7(a)) becomes

a tree-vector. To evaluate this loop integral we use the J/ψ Ξ rest frame, where the loop became
proportional to (P⃗Ξ − P⃗ϕ) times an scalar loop

(
I
J/ψΞ
X4160

)
. The term TJ/ψΞ,J/ψΞ captures the final

state interaction contribution from J/ψ Ξ, which in this work we will model using Breit-Wigner
form:

TJ/ψΞ,J/ψΞ =
g2J/ψ Ξ

MJ/ψ Ξ −M + iΓ2
, (27)

were gJ/ψ Ξ is the coupling of the S = −2 pentaquark to the J/ψ Ξ channel. MJ/ψ Ξ denotes the
invariant mass of the J/ψ Ξ system and the M and Γ factors represents the mass and the width
of the S = −2 pentaquark. gJ/ψ Ξ, M , Γ will be obtained from the molecular model of a vector
meson interacting with a baryon explained in the section 2.1.

For the final state interaction of the ϕ Ξ pair we can repeat similar calculations and obtain (see
Appendix A):

MϕΞ
X4160

= A(⃗ϵJ/ψ × ϵ⃗ϕ) ·
(
P⃗Ξ + P⃗ϕ

2

)
TϕΞ,ϕΞI

ϕΞ
X4160

(28)
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where the TϕΞ,ϕΞ factor also has a Breit-Wigner form, as in the Eq. (27), but in this case M and Γ
are the experimental mass and width of Ξ(2500). Since we do not have any model which can give
us the value of gϕΞ, we will invert the problem and will study for which values of gϕΞ it is feasible
to see this state using the Ξb → Ξ J/ψ ϕ reaction.

Now we go to the final states interaction in the presence of the X(4140) resonance. The
corresponding diagrams are given in Figs. 8(a) and 8(b) and the associated analytical expressions
are

MJ/ψΞ
X4140

= B̃TJ/ψΞ,J/ψΞI
J/ψΞ
X4140

, (29)

MϕΞ
X4140

= B̃TϕΞ,ϕΞI
ϕΞ
X4140

. (30)

These expressions are explained in more detail in Appendix A. The terms IJ/ψΞX4140
and IϕΞX4140

are
scalar loop integral analogous to those in Eqs. 26 and 28.

Fig. 8: Final state interaction between J/ψ Ξ (a) and ϕ Ξ (b) in the presence of the X(4140)
resonance.

2.2.3 Full amplitude

Now we proceed to combine the various terms to form the full invariant amplitude. Firstly we put
together the X(4140) terms into a MX4140

amplitude, and similarly for X(4160) terms,

MX4140
= MP

X4140
+MJ/ψΞ

X4140
+MϕΞ

X4140
, (31)

MX4160
= MP

X4160
+MJ/ψΞ

X4160
+MϕΞ

X4160
. (32)

We also implement this useful re-definition,

M4140 → B̃M4140, (33)

M4160 → AM4160. (34)

Finally we mix this terms obtaining the full amplitude denoted as M,

M = |A|2|M4160|2 + |B̃|2|M4140|2 = |A|2
(
|M4160|2 + |β|M4140|2

)
. (35)

where the bar represents the sum over polarisations and β = |B̃|2/|A|2. Note that since the weak
decay goes in P-wave for the X(4160) contribution, and in S-wave for the X(4140) contributions,
this cancels the cross term in |M4160 +M4140|2 as these two partial waves are orthogonal and
do not interfere. It is also important to comment that although the the overall factor |A|2 is not
known, it is not relevant for our shape obtained distributions. The form of the distributions, and
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not its absolute value, will be our main observable, for example, the position of the peak and it
width can be measured even in such a situation. So our final results will be given in arbitrary
units, therefore we will set it as |A|2 = 1 from here to the end of this work.

The β acts like a relative weight between the X(4140) and X(4160). In this work we will not
calculate its value and we do not have any experimental result to compare it, so we take the value
of β from the Ref. [33] to solve this issue. In this reference the authors study the interplay between
X(4160) and X(4140) in the B+ → J/ψ ϕ K+ decay. The mechanism involving the X(4160) in
this reaction is rather similar at the quark level to our diagram shown in Fig. 4, but without the
spectator s quark in the initial and final state. Hence the topology of the diagrams is similar also
in the case of X(4140). Therefore the β value at our reaction may have a similar value, but we do
not expect it to be the exactly the same, since the partial waves involved in the their weak decay
vertex are P-wave and D-wave for the X(4140) and X(4160) resonances respectively.

Finally, we explain how we deal with the sum over the polarisations appearing in Eq. (35). For
the MX(4140) this calculation is trivial and it only produces a constant, which can be reabsorbed
into β, but for the MX(4160) amplitude the calculation are more complicated adding cross term
contributions. The full derivaton is presented in the Appendix B.

First of all, we introduce the following definitions:

MP
4160 = (⃗ϵJ/ψ × ϵ⃗ϕ) · P⃗Ξ M̃P

4160, (36)

MJ/ψΞ
4160 = (⃗ϵJ/ψ × ϵ⃗ϕ) · K⃗2 M̃J/ψΞ

4160 , (37)

MϕΞ
4160 = (⃗ϵJ/ψ × ϵ⃗ϕ) · K⃗1 M̃ϕΞ

4160, (38)

where K⃗1 ≡ (P⃗Ξ + P⃗ϕ)/2 and K⃗2 ≡ (P⃗Ξ − P⃗ϕ)/2. Then, we shown (in Appendix B) that the sum
over the polarisations leads to

|M4160|2 = |P⃗Ξ|2|M̃P
4160|2 + |K⃗2|2|M̃J/ψΞ

4160 |2 + |K⃗1|2|M̃ϕΞ
4160|2 + 2P⃗Ξ · K⃗2ℜ(M̃P

4160M̃∗J/ψΞ
4160 )

+2P⃗Ξ · K⃗1ℜ(M̃P
4160M̃∗ϕΞ

4160) + 2K⃗1 · K⃗2ℜ(M̃J/ψ
4160M̃∗ϕΞ

4160),

(39)

where ℜ is the real part of the complex argument.
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3. Results

3.1 Molecular resonances
3.1.1 Light sector

We fist start the discussion with the results for the light channels for the pseudoscalar meson baryon
interaction, where we employ the dimensional regularization model to compute the loop function.
The first calculations are done employing values of subtractions constants which are determined
by imposing the loop function to coincide, for a regularization scale of µ = 1000 MeV, with to the
loop function computed with the cut-off scheme with Λ = 800 MeV at the corresponding threshold
(Eq. (17)). We chose this value as it corresponds to the mass of the interchanged vector meson
on the t-channel diagram which is integrated out when we take the t → 0 limit. Will refer to
this procedure as Model PB 1. The resulting amplitude are shown in Fig. 9, where we represent∑
j |Tij | as a function of the c.m. energy for all different i channels in different colours. There

amplitudes show a board peak (barely visible) at low energies and a narrower one right below the
K̄Σ threshold. This behaviour is the reflection of two poles, which have the properties shown in
Table 3). Note that these states have a well defined spin-parity of Jπ = 1

2

−, since they are formed
with a scalar meson (Jπ = 0−) and a baryon (Jπ = 1

2

+
) interacting in s-wave (L = 0).

Fig. 9: Solid lines represent the sum over all j channels of the modulus of the PB scattering
amplitude, |Tij | for a fixed channel i, obtained using the dimensional regularisation scheme to
compute the loop function. The vertical dashed lines represent the location of the thresholds of
the different channels.

We can observe how the lowest energy state couples strongly to the πΞ and K̄Λ channels, which
are open for decay, explaining the large width of this resonance. On the PDG [35] one can find a
state with similar mass which was weakly seen in the πΞ channel (Tab. 4). Even if our state is
50 MeV lighter and its width is larger we can see the potential of our model to generate a state in
this region. As seen in Table 3 the heavy state mostly couples to the K̄Σ and ηΞ channels and it
has a mass of 1685 MeV. In PDG data there exists a Ξ state at 1690 ± 10 MeV with a width of
20± 15 MeV which is compatible with our results.

Looking at the results, it is natural to think that we can modify the values of the subtrac-
tion constants within a reasonable range in order to accommodate the generated states to the
experimental data. Therefore, we relax the condition of the loop function to be equal, at the
corresponding threshold, to the cut-off loop function with Λ = 800 MeV [30]. By doing that we
define a the model, PB 2, in which the light resonance appears in a higher energy region and is
much wider, see Table 3, while the heavier resonance is generated with a similar mass and with a
slightly larger width. Looking at Table 4 we can see how now the mass of the light state is closer
to the experimental energy of the Ξ(1620). In this model, none of the equivalents, cut-off values
for the subtractions constants employed are smaller than Λ = 630 MeV, which is a reasonable value.
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0− ⊕ 1
2

+ interaction in the (I, S) = ( 12 ,−2) sector
Model PB 1

M(Mev) 1570.53 1685.18
Γ(MeV) 174.04 2.28

ai Λ |gi| χi |gi| χi
πΞ(1456) -1.51 800 2.44 0.428 0.12 0.001
K̄Λ(1611) -1.32 800 1.91 0.169 0.27 0.006
K̄Σ(1689) -1.27 800 0.71 0.016 1.54 0.815
ηΞ(1866) -1.47 800 0.49 0.004 1.06 0.029

Model PB 2
M(Mev) 1600.55 1685.40
Γ(MeV) 228.64 2.60

ai Λ |gi| χi |gi| χi
πΞ(1456) -1.30 630 2.70 0.501 0.15 0.001
K̄Λ(1611) -1.00 740 2.21 0.214 0.27 0.006
K̄Σ(1689) -1.27 800 0.86 0.025 1.53 0.822
ηΞ(1866) -1.47 800 0.42 0.003 1.02 0.027

Table 3: Position, subtraction constants, cut off, couplings and compositeness of the Ξ states
generated with the light channels of the PB interaction.

PDG data Model PB 1 Model PB 2
State Evidence Jπ M(MeV) Γ(MeV) M(MeV) Γ(MeV) M(MeV) Γ(MeV)

Ξ(1620) * - ∼ 1620 ∼ 40 1570.53 174.53 1600.55 228.65
Ξ(1690) *** - 1690± 10 20±15 1685.18 2.28 1685.40 2.60

PDG Model VB 2 Model VB 3
Ξ(1820) *** 3

2

−
1823± 5 24+15

−10 1823.12 0.66 − −
Ξ(1950) *** - 1950± 15 60± 20 1949.23 0.232

1935.99 8.29
1964.09 4.92

Table 4: Experimental information for the Ξ(1620), Ξ(1690), Ξ(1820), Ξ(1950) resonances and the
mass and width for the states generated with four different models.

We proceed now to discuss the results for the vector meson baryon interaction, where we con-
struct the model VB 1 in a similar way as to the model PB 1, i. e. using a regularisation scale
of µ = 1000 MeV and imposing that the loop function for each channel has the same value to the
one computed with Λ = 800 MeV at the threshold. Using this model we produce the amplitude
displayed in Fig. 10 which have two poles with properties listed in Table 5. Note that each of these
states forms a degenerate spin-parity doubled with Jπ = 1

2

−, Jπ = 3
2

−, since they are produced
from the interaction of a vector meson (Jπ = 1−) an a baryon (Jπ = 1

2

+
) in the s-wave (L = 0).

As it can be seen in Table 5, the light state couples strongly to the ρΞ channel. Note that
this state, even it has an energy lower that all the thresholds it has a non-zero width. This is
because we take into account the width of the ρ and K̄∗ in the loop function. For the higher
energy peak we can see that it strongly couples to the K̄∗Σ channel. On the PDG data one finds
two states, the Ξ(1820) and the Ξ(1950). The first state has a known spin-parity Jπ = 3

2

−. These
quantum numbers are compatible with our model. So similarly at how we did for the PB case, we
will modify the subtraction constants within a reasonable range to try to adjust our results to the
experimental data.

Modifying the values of the subtraction constants we build model VB 2, which produces two
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Fig. 10: Solid lines represent the sum over all j channels of the modulus of the PB scattering amp-
litude, |Tij | for a fixed channel i, obtained using the dimensional regularisation scheme to compute
the loop function. The vertical coloured dashed lines represent the location of the thresholds of
the different channels and the black one represents the mass position of the Ξ(1950).

1− ⊕ 1
2

+ interaction in the (I, S) = ( 12 ,−2) sector
Model VB 1

M(Mev) 1985.95 2028.40
Γ(MeV) 29.23 6.86

ai Λ |gi| χi |gi| χi
ρΞ(2089) -1.50 800 3.39 0.610 0.24 0.004
K̄∗Λ(2010) -1.42 800 1.82 0.358 0.52 0.0490
K̄∗Σ(2087) -1.46 800 0.98 0.047 2.97 0.629
ωΞ(2101) -1.50 800 0.54 0.014 1.30 0.114
ϕΞ(2338) -1.57 800 0.75 0.012 1.80 0.077

Model VB 2
M(Mev) 1823.12 1949.23
Γ(MeV) 0.66 0.232

ai Λ |gi| χi |gi| χi
ρΞ(2089) -2.19 1440 3.48 0.323 0.16 0.001
K̄∗Λ(2010) -2.00 1300 2.07 0.131 0.66 0.035
K̄∗Σ(2087) -1.87 1140 1.16 0.033 3.15 0.509
ωΞ(2101) -1.50 800 0.41 0.004 1.43 0.100
ϕΞ(2338) -1.80 990 0.56 0.005 1.98 0.100

Model VB 3
M(Mev) 1935.99 1964.09
Γ(MeV) 8.29 4.92

ai Λ |gi| χi |gi| χi
ρΞ(2089) -1.74 990 2.88 0.335 1.43 0.096
K̄∗Λ(2010) -1.42 800 1.41 0.116 1.53 0.186
K̄∗Σ(2087) -1.82 1090 2.58 0.250 2.66 0.309
ωΞ(2101) -1.50 800 0.41 0.006 1.45 0.092
ϕΞ(2338) -1.85 1040 0.56 0.006 2.00 0.081

Table 5: Position, subtraction constants, cut off, couplings and compositeness of the Ξ states
generated with the light channels of the VB interaction.

resonances at energies compatible with the experimental masses of Ξ(1829) and Ξ(1950) (see Fig.
11 and Table 5), but the width of these states are smaller compared to data. This might be solved
if we developed a model which would couple the vector mesons with the pseudoscalar mesons,
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as this would open more light channels in which these resonances could decay, increasing their
width. The values of the corresponding cut-offs for the subtraction constants are not larger than
Λ = 1500 MeV, which is a reasonable value.

Fig. 11: Solid lines represent the sum over all j channels of the modulus of the PB scattering amp-
litude, |Tij | for a fixed channel i, obtained using the dimensional regularisation scheme to compute
the loop function. The vertical coloured dashed lines represent the location of the thresholds of the
different channels and the black one represents the mass position of the Ξ(1820) and the Ξ(1950).

Another possibility to reproduce the experimental data is to generate both resonances in the
energy region where Ξ(1950) appears, eventually merging into an apparent wide peak. This is
the goal of the model VB 3, which, as seen on Fig. 12 and Table 5, generates two states close to
the energy region where the Ξ(1950) appears. Note that for this model we only need to modify
tree subtraction constants and the equivalent cut-off values are not larger than 1100 MeV for any
channel. As described on the PDG this state could be representing more than one Ξ and, as we
show here, this could be a theoretical prediction of model VB 3 if this fact is confirmed.

Fig. 12: Solid lines represent the sum over all j channels of the modulus of the PB scattering amp-
litude, |Tij | for a fixed channel i, obtained using the dimensional regularisation scheme to compute
the loop function. The vertical coloured dashed lines represent the location of the thresholds of
the different channels and the black one represents the mass position of the Ξ(1950).

3.1.2 Heavy sector

Let’s now discus the results for the four heavy channels. We will proceed in a similar way than
we did in the previous section. So we first set the regularisation scale to µ = 1000 MeV and the
subtraction constants are evaluated for all the channels mapping the loop to the value obtained
for a cut-off of Λ = 800 MeV at the threshold of each channel. Using this model, five peaks are
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generated, as we can see in Fig. 13. If we analyse this figure we can see that the four lower
energy peaks couple strongly to the D̄sΞc and D̄sΞ

′
c channels. However, the diagonal potentials of

these channels are repulsive (Cii < 0), which is an indication of the fact that these four poles are
mathematical artifacts. They appear from Eq. 12 where V G ≃ 1 but with a repulsive interaction,
which has not physical meaning.

Fig. 13: Solid lines represent the sum over all j channels of the modulus of the PB scattering
amplitude, |Tij | for a fixed channel i, obtained using the dimensional regularisation scheme to
compute the loop function. The vertical dashed lines represent the location of the thresholds of
the different channels.

In order to prove that these states have no physical interpretation we try to find the sign of the
diagonal term of the potential (Vii) at the energy where ViiGi ≃ 1. If that is positive, that would
mean that we are generating a bound state in a region where the potential is repulsive, which has
no physical sense. This is indeed what happens, as can be seen in Fig. 14, where the inverse of the
diagonal potential an the dimensional regularisation and cut-off loop functions are represented as
function of the c. m. energy for the three different channels. As we can see in Figs. 14(a) and (b)
the inverse of the potential and the dimensional regularisation loop almost intersect in a region
where the potential is repulsive, denoting to us that the states which mostly couple to D̄Ξc and
D̄Ξ′

c are only mathematical solutions of our equation but do not represent any physical state.

To avoid the fake pole problem we will now use the cut-off scheme to compute the loop func-
tions, since they are always negative in this scheme, preventing generation of any fake poles. Note
that even if the inverse of the diagonal term of the attractive potential and the real part of the
loop function are really different on Fig. 14(c), we can still generate an state. This is an effect of
the coupled channels as we will show later in this work.

As can be seen in Fig. 15, using a cut-off model with Λ = 800 MeV, the four fake poles dis-
appear and, as we expected only remains the one at higher energy, which is strongly coupled with
the D̄Ωc and D̄sΞ

′
c channels (see Table 6). This state has a well defined spin-parity Jπ = 1

2

− as it
is generated from the PB interaction in s-wave.

Comparing our results with other works in the literature using similar models can help us to un-
derstand the origin of this state. A resonance which is strongly coupled to the D̄Ωc and D̄sΞ

′
c is also

found in Ref. [11], but there the energy at which it is generated is much lower, around 3700 MeV.
This huge difference comes from the different renormalisation method used in their work, they
force the loop function to be zero at µ =

√
m2
th +M2

th, where mth and Mth are the masses of the
meson and baryon, respectively, of the lightest channel, which this case is πΞ. Therefore, we note
that we would need a cut-off value of Λ ≃ 2800 MeV in order to reproduce this behaviour of loop
function. Therefore, we can see a clear difference with our work, where we use Λ = 800 MeV. Such
a big value for the cut-off seems unreasonable in our opinion.
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Fig. 14: The purple line represents the inverse of the diagonal term of the potential, the green line
shows the loop function of the same channel, computed using a dimensional regularisation scheme,
and the blue line is similar to the green one but computed using a cut-off scheme. In (a) we have
the D̄sΞc channel, in (b) the D̄sΞ

′
c and in (c) the D̄Ωc

Fig. 15: Solid lines represent the sum over all j channels of the modulus of the PB scattering
amplitude, |Tij |, obtained using the cut-off model to compute the loop function. The vertical
dashed lines represent the location of the thresholds of the different channels.

There are other works, like Ref. [10], that use a more similar way to compute the loop-function,
but the state coupling strongly to the D̄Ωc and D̄sΞ

′
c channels is not generated. The main differ-

ence with our work is that the authors of Ref. [10] neglect the contribution of κcc, which is usually
a good approximation, since a diagonal term C99 = κcc = 1/9 is not attractive enough to produce
a bound state, as it can be checked using uncoupled channels. But, in this case the non-diagonal
terms of the interaction, C98 = −

√
2, are strong enough to produce a bound state, via the coupled-

channels. To check that we change C89 → C ′
89 = γC89, adding a gamma factor which we vary to

see how the coupled-channels affect the generation of the resonance. In Fig. 16 we can clearly see
the effect of this factor, showing that for small values of gamma (γ ∼ 0.5) the state is not generated.
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0− ⊕ 1
2

+ interaction in the (I, S) = (0,−2) sector
M(Mev) 4493.35
Γ(MeV) 73.67

Λ g |gi| χi
ηcΞ(4302) 800 −1.60 + 0.34i 1.63 0.220
D̄sΞc(4437) 800 −0.17 + 0.27i 0.32 0.019
D̄sΞ

′
c(4545) 800 −2.41 + 0.58i 2.48 0.398

D̄Ωc(4564) 800 3.59− 0.77i 3.67 0.711

Table 6: Position, cut off, couplings and compositeness of the Ξ state generated with the heavy
channels of the PB interaction.

Fig. 16: Solid lines represent the sum over all j channels of the modulus of the PB scattering
amplitude, |Tij | for a fixed channel i = D̄Ωc, obtained using the cut-off scheme to compute the
loop function. The vertical dashed lines represent the location of the thresholds of the different
channels.

We also want to analyse the influence to our results when we vary the cut-off and we introduce
a certain amount of SU(4) symmetry violation associated to the fact that the mass of the charm
quark is larger compared to that of the light quarks. Note that we already have introduced SU(4)
symmetry violation since we use the physical masses for the meson and baryon in the interaction
kernel. So, if we want to introduce an extra 30% of SU(4) symmetry violation and leave the SU(3)
symmetry untouched, we can vary the κc and κcc [30] in the range (1 ± 0.3)κc and (1 ± 0.3)κcc.
The gray area in Fig. 17 is the zone in the complex plane where the pole is generated varying
the cut-off Λ = 750 − 950 MeV and introducing a 30% of SU(4) symmetry violation. Note that
modifications of the cut-off produces variations in the mass of the resonances, but it slightly affects
to its width. By contrary modifications of the SU(4) symmetry breaking produce small changes
to the mass of the resonance, but produces important variations on its width.

Modelling an spectrum for this kind of peaks is a difficult task, but we would like to simulate
what the experiments would measure. Looking at our peak we see that it only has two open
channels, the ηcΞ and D̄sΞc but since the second one is not strongly coupled to the resonance it
will be better seen in the ηcΞ invariant mass spectrum. So to simulate the spectrum, in Fig. 18
we represent the quantity

qηc

∣∣∣∣∑
i

Ti→ηcΞ

∣∣∣∣2 (40)

versus the ηcΞ centre-of-mass energy, where Ti→ηcΞ is the scattering amplitude of the i → ηcΞ
transition and we use the ηc momentum in the ηcΞ centre-of-mass energy reference frame, qηc , as
a phase space modulator.
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Fig. 17: The symbols indicate the evolution of the pole position of resonance for different cut-off
values, represented in the plot by the different colours. For each value of the cut-off, we show
3 × 3 = 9 different SU(4) breaking results, corresponding to the possible combinations of the
values (0.7, 1.0, 1.3)κc and (0.7, 1.0, 1.3)κcc. The upper dots are obtained with 1.3κc and the lower
ones with 0.7κc. The black lines are merely to guide the eye and join the results obtained with
different cut-off values for the combinations with 1.3κc, 0.7κcc (upper line), 1.0κc, 1.0κcc (middle
line) and 0.7κc, 1.3κcc (lower line). The gray area has then to be understood as the region where
the pole can be generated assuming up to a 30% breaking of SU(4).

Fig. 18: The solid lines represent the sum of the amplitudes squared times a phase space modulator.
The dashed lines represent the thresholds of the different channels.

We now present our results in the heavy VB sector, in this case we proceeding in a similar way
as that we did in the PB sector. So we start using the subtraction constants method, also finds five
peaks, see Fig. 19. The four at lower energy are fake poles as the dominant channel they couple
has a repulsive diagonal potential term. As we did previously, we checle in Fig. 20 if at the energy
where V G ≃ 1 the potential is repulsive or attractive.

In this sector it is more obvious that the lower energy states are fake poles sine, as can be
seen in Fig. 20(a) and (b), the two lines cross twice in a region when the potential is repulsive,
indicating that they have no physical meaning. Therefore, as we proceeded in the PB sector, we
will now use the cut-off scheme to compute the loop function instead of using the dimensional
regularisation one. Note that in Fig. 20(c) now the two lines are closer that in the PB sector which
means that it will be easier to generate a state via coupled channels.

Using the cut-off model, as it can be seen in Fig. 21, the four fake poles disappear and it only
remains a resonance, which couples strongly to D̄∗Ωc and D̄∗

sΞ
′
c, see Table 7. Note that this state

is degenerate in spin-parity since we have a vector-meson (JP = 1−) interacting with a baryon
(JP = 1

2

+
) in s-wave (L = 0), then it can be JP = 1

2

− or JP = 3
2

−.

19



Fig. 19: Solid lines represent the sum over all j channels of the modulus of the VB scattering
amplitude, |Tij | for a fixed channel i, obtained using the dimensional regularisation scheme to
compute the loop function. The vertical dashed lines represent the location of the thresholds of
the different channels.

Fig. 20: The purple line represents the inverse of the diagonal term of the potential, the green line
shows the loop function of the same channel, computed using a dimensional regularisation scheme
and the blue line is similar to the green one but computed using a cut-off scheme. In (a) we have
the D̄∗

sΞc channel, in (b) the D̄∗
sΞ

′
c and in (c) the D̄∗Ωc

This state is not found in Ref. [10],for the same as in PB sector, namely the assumption of a
null coefficient for the diagonal potential including the exchange of a very massive cc̄ meson. In
our case we have a small coefficient, κcc, which permits the action of coupled channels to take
place. We can check that this state is produced due to the large value of C89, similar to how we
proceeded in the PB sector. We change C89 → C ′

89 = γC89, adding the gamma factor, and then we
study how the resonance is generated for different values of gamma. The results are displayed in
Fig. 22, where we can clearly see that it is the cross term, including the coupled channel effect, the
responsible for producing dynamically generated resonances. There we can clearly see the effect of
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1− ⊕ 1
2

+ interaction in the (I, S) = (0,−2) sector
M(Mev) 4633.38
Γ(MeV) 79.58

Λ g |gi| χi
J/ψΞ(4415) 800 −1.62 + 0.38i 1.66 0.252
D̄∗
sΞc(4581) 800 −0.143 + 0.32i 0.34 0.022

D̄∗
sΞ

′
c(4689) 800 −2.49 + 0.67i 2.58 0.406

D̄∗Ωc(4706) 800 3.67 + 0.89i 3.78 0.740

Table 7: Position, cut off, couplings and compositeness of the Ξ states generated with the light
channels of the PB interaction.

Fig. 21: Solid lines represent the sum over all j channels of the modulus of the VB scattering
amplitude, |Tij | for a fixed channel i, obtained using the cut-off scheme to compute the loop
function. The vertical dashed lines represent the location of the thresholds of the different channels.

Fig. 22: Solid lines represent the sum over all j channels of the modulus of the PB scattering
amplitude, |Tij | for i = D̄∗Ωc, obtained using the cut-off scheme to compute the loop function.
The vertical dashed lines represent the location of the thresholds of the different channels.

the cross term is the reason why the resonances is dynamically generated.

3.2 Exotic hadrons in Ξb → Ξ J/ψ ϕ decay
3.2.1 The J/ψ ϕ mass distribution

We start studying the J/ψ ϕ mass distribution, which will allow us to see the X(4140)/X(4160)
interplay. As it was discussed in section 1. we consider two possibles models, one which is based
in the latest experimental results (Refs. [23, 36]) where is proposed there exists a board X(4140)
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resonance with a pole position of MR = 4146.5 MeV and a width of Γ = 83 MeV and another
model, which assumes the existence of a narrow X(4140) plus a wide X(4160) resonance, which
come from earlier experimental results [10–14] and recent theoretical results [33].

We start with the model with a wide X(4140), the corresponding results are sown in Fig. 23,
where we can see the J/ψϕ invariant mass distribution for the tree level calculations (Fig. 6), and
the corresponding spectrum when we also take into account the FSI (Figs. 8). As we can see the
effect of the FSI is rather small.This will be also true for the model with two X resonances, so in
this section we will further present only the results that include the FSI.

Fig. 23: The J/ψ ϕ mass spectrum computed using one wide X(4140) resonance. The green line
corresponds to tree level calculations only, while the purple one to whose with the FSI effects.

Once seen the results for the one resonance model we are going to discuss the results gener-
ated with two resonances, where similarly to the results to Ref. [32] we adjust β to a value which
generates two X resonances of a similar strength. The pole position for the X(4140) resonance is
MR = 4132 MeV and a width of Γ = 19 MeV, while the X(4160) can be generated as D∗

sD̄
∗
s mo-

lecule, as we explained in the section 2.2.1. The corresponding model contains a loop-function that
diverges and must be regularised. In ref [27] this loop function is regularised using a dimensional
regularisation method, but as we proved earlier such a scheme can produce fake poles, so in this
work we use the cut-off regularisation method with Λ = 650 MeV, which reproduces the results
obtained using the dimensional regularisation from [27].

The J/ψ ϕ invariant mass distribution for two X resonances can be seen in Fig. 24. Where we
can see a narrow X(4140) peak at 4132 MeV, and a rather wide X(4160) peak. Note that X(4160)
also produces a cusp around 4224 MeV, which corresponds to the D∗

sD̄
∗
s threshold. As it is men-

tioned in ref. [32], if this cusp is experimentally detected it would strongly suggest a molecular
interpretation of X(4160) as well as the existence of narrow X(4140) and wide X(4160) resonances.

We also would like to analyse the sensibility of the obtained distribution with respect to the
parameter β, and for this purpose we generated similar spectra for different values of β. As it can
be seen in Fig. 25 the effect of changing the value of β effects mainly to the height of the X(4140)
peak but, it is also important to note that for large values of β the cusp at the threshold of D∗

sD̄
∗
s

starts to disappear.

3.2.2 The J/ψ Ξ mass distribution

Now we discuss the results for the J/ψ Ξ mass distribution, which is the channel where we expect
to see the signature of the S = −2 pentaquark. The properties of the pentaquark dynamic-
ally generated by our heavy channel model are presented in Tab. 7. This state has a mass
MR = 4633.38 MeV, and a width ΓR = 79.58 MeV, and rather strongly couples to J/ψΞ chan-
nel,coupling constant is gJ/ϕΞ = −1.62+ 0.38i. We will take these values for the pole position and
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Fig. 24: The purple line represents the J/ψ ϕ mass spectrum generated using two resonance
model. The green and the blue lines show the individual contributions from X(4140) and X(4160),
respectively. The parameter β, Eq. 35, is taken as β = β0/2.6, where β0 is the value taken in
Ref. [33]

Fig. 25: The solid lines represent the J/ψ ϕ mass spectrum generated using the X(4140) and
the X(4160) resonances for different values of the weight factor β, which controls the relative
contributions of the two resonances; β0 is the value of β given in Ref. [33]

coupling as nominal ones and we will vary them within a reasonable range to explore the sensitivity
of our results with respect to the pentaquark parameters.

Fig. 26: The J/ψ Ξ spectrum, where the purple line corresponds to the tree level diagram and
the green one is obtained also taking into account the final state interactions that generates the
S = −2 pentaquark.
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In this section we proceed in a similar manner as in a previous section, and start with the
results computed with one wide X(4140) resonance. In Fig. 26 we can see the J/ψ Ξ spectrum,
where the purple line is obtained only using the tree-level diagram, while for the green line we
have also included the FSI effects. In this latter curve we should see the signal of the S = −2
pentaquark, generated in the J/ψ Ξ interaction. First of all as seen in Fig. 26, the background
shows itself a peak structure around 4730 MeV. While the effect of the pentaquark is the ap-
pearance of a bump around the nominal pentaquark mass of 4633 MeV that could be detected.
Note that the pentaquark interferes with the background positively, and even being a wide res-
onance it has an important effect on the spectrum due to it strong coupling with the J/ψΞ channel.

Fig. 27: The purple line represents the J/ψ Ξ spectrum computed with a narrow X(4140) plus
a X(4160), while the green and the blue ones show the individual contribution from the X(4140)
and the X(4160), respectively.

Let’s now consider the calculation with a narrow X(4140) and a X(4160) resonances. The
results (with FSI) can be seen in Fig. 27, where the green and the blue curves show the individual
contribution of the X(4140) and the X(4160) resonances respectively, while the purple curve is the
sum of both contributions. Note that the X(4160) contribution is dominant with respect to that
of the X(4140). It is also important to see that in contrast to the previous case the pentaquark’s
signal interferes negatively with the background. This can be seen more clearly in Fig. 28, where
we compare the compare the contributions from one and two resonance models with FSI, varying
the mass of the pentaquark and its coupling to the J/ψ Ξ channel. We do that since we know there
can exist some theoretical uncertainties, so we modify the pentaquark pole position by ±50 MeV
and we allow for a 20% of variation of the coupling of the pentaquark to the channel J/ψΞ. The
results presented in Fig. 28 clearly shows that in all cases the presence of the double strangeness
pentaquark is experimentally detectable. Actually in the case of one wide X(4140) this task seems
to be much simpler. And certainly the experimental measurement of the J/ψΞ invariant mass
spectrum form Ξb → Ξ J/ψ ϕ decay would also allow to distinguish between one wide X(4140) or
two X models.

3.2.3 The ϕ Ξ mass distribution

Finally we present the results for the ϕ Ξ invariant mass distribution where we expect to see
the signal of the Ξ(2500). This state appear in PDG [35] as a one-star state, with a mass
MΞ(2500) = 2500 MeV and there exist two experimental groups that reported different values
for its width, which are 150 [37] and 50 MeV [38]. Based on this information we decided to gen-
erate the spectrum for tree different cases Γ = 50, 100, 150 MeV. We neither know which is the
coupling of this state to the ϕΞ channel, therefore we explore the range of values of this coupling,
which would allow to see the signal of Ξ(2500) in generated spectrum

The corresponding results are the presented in Fig. 29. The value of the coupling constant,
needed to generate a significant interference with the background, as we could expect, is larger if
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Fig. 28: J/ψ Ξ spectrum computed with one broad X(4140) resonance (left panels) or with a
narrow X(4140) plus a X(4160) state (right panels) with different values of the gJ/ψΞ coupling and
different pole positions for the resonance [4580 MeV (top), 4663.38 MeV (middle) and 4680 MeV
(bottom)]

the state has a larger width. We can see that if Γ = 50 MeV then the minimum absolute value of
the coupling is around 0.7, while for a Ξ(2500) with Γ = 150 MeV this value it is around 1.7− 1.9.
Similarly to the previous case the interference of the resonance with the background is positive
for the case of one wide X(4140) resonance, while for the case of a narrow X(4140) and X(4160)
resonances the interference is negative. Thus, we see that studying this spectrum would we also
very interesting if the coupling of Ξ(2500) is large enough.
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Fig. 29: The ϕ Ξ spectrum computed with one broad X(4140) resonance (left panels) or with
narrow X(4140) plus a X(4160) states (right panels) with different values for the coupling of the
Ξ(2500) to the ϕ Ξ channel, and different widths of the resonance [50 MeV (top), 100 MeV (middle)
and 150 MeV (bottom)]

4. Conclusions
The discovery in the last years of many exotic hadrons not fitting into the conventional quark com-
position model, has converted this topic into an important field of research. Motivated by this fact,
in the present work we studied some resonances that could be interpreted as quasi-bound states of
an interacting meson-baryon pair in the strangeness −2 and isospin 1/2 sector, employing effective
Lagrangians for describing the exchange of a vector meson in the t-channel. We also proposed a
decay process (Ξb → Ξ J/ψ ϕ) suitable to detect some of those exotic hadrons in all two-particle
channels.

First of all, in this work we find two poles, which can be associated to the Ξ(1620) and Ξ(1690)
resonances from PDG [35] in the scattering amplitude of the interaction of pseudoscalar mesons
with baryons in the light-channel sector. By modifying some parameters parameters in a reasonable
range we can reproduce the experimental masses of the Ξ(1620) and Ξ(1690), producing two states
at 1600 MeV and 1685.40 MeV. With this result we can conclude that the Ξ(1620) and Ξ(1690)
may have meson-baryon molecular origin, where the Ξ(1620) has an important πΞ component,
around 50%, with a mixture of 20% of K̄Λ. The Ξ(1690) is mainly a K̄Σ molecule with a small
component (2%) of ηΞ. Both of these resonances have well defined spin-parity (Jπ = 1

2

−
) since

they are generated from the interaction of a pseudoscalar meson (Jπ = 0−) and an octet baryon
(Jπ = 1

2

−
) in s-wave. A measurement of the spin-parity of these states could confirm or refuse this

hypothesis
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For the light-channel sector of the vector meson baryon interaction we can also find two reson-
ances in the scattering amplitude, which could be associated with two states listed in the PDG,
namely the Ξ(1820) and Ξ(1950) [35]. Similarly to what we did in the PB section, by modifying
some parameters we can bring positions of these two states closer to their experimental mass, but
the theoretical widths are much smaller than the experimental ones. This might be solved allowing
the coupling between the vector mesons with the pseudoscalar mesons and thus opening decays to
lighter channels and correspondingly increasing the width of the states dynamically generated in
our work. If this approach is assumed to represent the nature of these states, we could understand
the Ξ(1820) as a mixture of ϕΞ (33%) and K̄∗Λ (13%) components, while the Ξ(1950) would be
a mixture of K̄∗Σ (50%), ωΞ (10%) and ϕΞ (10%) one. Note that these states are degenerate in
spin-parity and form a Jπ = 1

2

−, Jπ = 3
2

− doublet. This would be compatible with the quantum
numbers of the Ξ(1820), which are Jπ = 3

2

−.

Another solution would be to generate the two resonances in the region of the Ξ(1950), pro-
ducing an apparent wide resonance. This is a possibility mentioned in the PDG, where it is said
that the Ξ(1950) may be more than one Ξ state.

We have also shown that it is important to take care of the fake poles that are generated in
regions where the potential is repulsive. These fake poles appeared in the heavy sector if we are
using a dimensional regularisation scheme to re-normalise the loop function and we avoided the
problem by using a cut-off scheme to compute the loop function. The results for the heavy channels
are quite encouraging, as they point forwards the existence of doubly strangeness pentaquarks with
hidden charm, which can be generated thanks to the coupled-channel structure of our model.

In the pseudoscalar meson baryon interaction sector we can generate one hidden charm S = −2
baryon with M = 4493 MeV and Γ = 73 MeV, which can be interpret as a D̄Ωc molecule, and
the quantum numbers of this state would be Jπ = 1

2

−. In the vector meson baryon interaction
sector we can also generate one state with M = 4633 MeV and Γ = 79 MeV and, similarly to
the previous case, this state can be understood as a D̄∗Ωc molecule which would be degenerate in
spin-parity forming a Jπ = 1

2

−, Jπ = 3
2

− doublet.

The main motivation to study the Ξb → Ξ J/ψ ϕ decay came form the Dalitz plots of Fig. 1,
which proved the potential possibility to study several exotic states that may be detected in all
three two-body invariant mass spectra.Similarly to what is done in [32] we develop two different
models for the interpretation of the X(4140) and X(4160) resonances. The first model considers
that there only exists one wide X(4140) state while the other claims the existence of a narrow
X(4140) resonance plus a X(4160) one.Consequent in the J/ψϕ mass spectrum, due to the nature
of the X(4160) as a D∗

sD̄
∗
s [27] bound system, there appears a cusp near the threshold of this

channel (4224 MeV). Therefore, if this cusp is detected, it would be a clear signal that the two-
resonances model is the one that represents the nature of the X resonances, and also that X(4160)
is a molecular state.

The X(4274), X(4350) and the X(4500) resonances may also leave a signal at higher J/ψ in-
variant masses in the Ξb → Ξ J/ψ ϕ decay, but in this work these states where not included as we
do not have a theoretical model that generates them.

In the J/ψΞ spectrum, we studied the possibility of detecting the doubly strange pentaquark
with hidden charm, which we introduce as Breit-Wigner, using the parameters obtained from the
coupled channel approach developed in this work in section 3.1.2. This permit us to keep the
model simple and do variations on the parameters easily. The results are very promising, since if
the mass of this state lies in the region 4580−4680 MeV it has a good chance to be experimentally
detected. We have also shown that in the case of a single wide X(4140) model the pentaquark
signal interferes positively with the background, while fr the two X model this interference is neg-
ative. This potentially allows to differentiate between these two situations one the corresponding
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spectrum will be measured.

Finally we also studied the ϕΞ spectrum, where we explored the possibility to detect the
Ξ(2500). For this resonance there exists a discussion about whether its width is 50 MeV or
150 MeV [35], so we studied these two possibilities plus an intermediate case of Γ = 100 MeV. Our
results presented in section 3.2.3 allows us to conclude that if the resonance has a narrow width
of 50 MeV, even with small coupling (gϕΞ ∼ 0.7− 0.9) its signal in the spectrum has high chances
to be detected, whereas if Γ = 100 MeV the coupling should be bigger than gϕΞ = 1.3, and in the
case Γ = 150 MeV the value of the coupling has to be bigger than gϕΞ = 1.9 in order to produce a
significant signal above the background.
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A Appendix A: Double loop integral
In our discussion of the Ξb → Ξ J/ψ ϕ decay we gave the expression for two final state interaction
amplitudes MJ/ψΞ

4160 , and MϕΞ
4160 which involve a loop integral that is a 3-vector. In this appendix

we demonstrate how we arrive to those two expressions. Similarly we will derive the expressions
for the MJ/ψΞ

4140 , and MϕΞ
4140 amplitudes.

Fig. 30: Feynman diagram associated to the MJ/ψΞ
4160 amplitude, where we show the corresponding

momenta for all the particle lines.

In Fig. 30 we can see the the diagram associated to the MJ/ψΞ
4160 , where the momenta of each

particle is shown. From this diagram we can write the full expression of the MJ/ψΞ
4160 amplitude,

being:

MJ/ψΞ
4160 = iTJ/ψΞ,J/ψΞ

∫
d4q

(2π)4
(⃗ϵJ/ψ × ϵ⃗ϕ) · (K⃗2 + q⃗)GD∗

s D̄
∗
s

(K1 − q)2 −M2
X + iMXΓX

1

(K2 − q)2 −M2
J/ψ + iϵ

2MΞ

(K2 + q)2 −M2
Ξ + iϵ

, (41)

where K⃗1 = (P⃗Ξ + P⃗ϕ)/2 and K⃗2 = (P⃗Ξ − P⃗ϕ)/2. TJ/ψΞ,J/ψΞ denotes the scttering amplitude for
the corresponding channels, which we introduce as a Breit-Wigner with the S = −2 pentaquark
parameters. As it is discussed in section 2.2.2 the J/ψ ϕ interaction has to be in P-wave what leads
to appearance of the vector product of the corresponding polarisation vectors. Finally, the three
propagators are the ones corresponding to the three internal lines for the J/ψ, Ξ and X(4160)
resonance. From this expression we can separate the q0 component and rearrange some terms in
order simplify it, obtaining that

MJ/ψΞ
4160 = iTJ/ψΞ,J/ψΞ(⃗ϵJ/ψ × ϵ⃗ϕ)

∫
d3q

(2π)3
(K⃗2 + q⃗)

∫
dq0

2π

GD∗
s D̄

∗
s

(K0
1 − q0)2 − ω2

X + iMXΓX
1

(K0
2 − q0)2 − ω2

J/ψ + iϵ

2MΞ

(K0
2 + q0)2 − ω2

Ξ + iϵ
, (42)

where ωX =MX + (K⃗1 − q⃗))2, ωJ/ψ =MJ/ψ + (K⃗2 − q⃗))2 and ωΞ =MΞ + (K⃗2 + q⃗))2. If we take
a non relativistic limit this expression can be written like this,

MJ/ψΞ
4160 = iTJ/ψΞ,J/ψΞ(⃗ϵJ/ψ × ϵ⃗ϕ)

∫
d3q

(2π)3
(K⃗2 + q⃗)

∫
dq0

2π

GD∗
s D̄

∗
s

2ωX [K0
1 − q0 − ωX + iΓX

2

1

2ωJ/ψ[K
0
2 − q0 − ωJ/ψ + iϵ]

MΞ

ωΞ[K0
2 + q0 − ωΞ + iϵ]

. (43)
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From this expression we can now clearly see where are the poles of this integral, which are

q0 = K0
1 − ωX + i

Γ

2
Resonance, (44)

q0 = K0
2 − ωJ/ψ + iϵ J/ψ propagator, (45)

q0 = −K0
2 + ωΞ − iϵ Ξ propagator. (46)

Since we have two poles adobe the real axis and one below, we compute the integral using the
contour integration method choosing to close the contour in the lower half plane. Thus we only
piking the Ξ propagator pole, finding

MJ/ψΞ
4160 = TJ/ψΞ,J/ψΞ(⃗ϵJ/ψ × ϵ⃗ϕ)

∫
d3q

(2π)3
(K⃗2 + q⃗)GD∗

s D̄
∗
s

2ωX [K0
1 +K0

2 − ωΞ − ωX + iΓX

2

1

2ωJ/ψ[2K
0
2 − ωΞ − ωJ/ψ + iϵ]

MΞ

ωΞ
. (47)

To compute this integral we work in the Jackson frame (the J/ψ ϕ rest frame), where the K⃗1

and K⃗2 are almost equal since, Pϕ is small. So we can can replace K⃗1 with K⃗2, and thus now the
integral only depends on K⃗2. So we can take the integral to be proportional to this vector, giving
us

MJ/ψΞ
4160 = TJ/ψΞ,J/ψΞ(⃗ϵJ/ψ × ϵ⃗ϕ)K⃗2I

J/ψΞ
X(4160), (48)

with,

I
J/ψΞ
X(4160) =

∫
d3q

(2π)3
K⃗2 · q⃗ GD∗

s D̄
∗
s

2ωX [K0
1 +K0

2 − ωΞ − ωX + iΓX

2 ]

1

|K⃗2|2
1

2ωJ/ψ[2K
0
2 − ωΞ − ωJ/ψ + iϵ]

MΞ

ωΞ
,

(49)
where we made the shift q⃗ → q⃗+ K⃗2, and ωX =M2

X +(2K⃗2 − q⃗)2, ωJ/ψ =M2
J/ψ +(2K⃗2 − q⃗)2 and

ωΞ =M2
Ξ + K⃗2

2 .

Once we have MJ/ψΞ
4160 , to evaluate the MϕΞ

4160 is rather straightforward, as we only need to
change J/ψ to ϕ and vice versa. In the Jackson frame this is equal to interchange of K⃗2 and K⃗1,
leading us to

MϕΞ
4160 = TϕΞ,ϕΞ(⃗ϵJ/ψ × ϵ⃗ϕ)K⃗1I

ϕΞ
X(4160), (50)

with,

IϕΞX(4160) =

∫
d3q

(2π)3
K⃗1 · q⃗ GD∗

s D̄
∗
s

2ωX [K0
1 +K0

2 − ωΞ − ωX + iΓX

2 ]

1

|K⃗1|2
1

2ωϕ[2K0
1 − ωΞ − ωϕ + iϵ]

MΞ

ωΞ
, (51)

where ωX =M2
X + (2K⃗1 − q⃗)2, ωϕ =M2

ϕ + (2K⃗1 − q⃗)2 and ωΞ =M2
Ξ + K⃗2

1 .

Finally we can also deviate the expressions for MJ/ψΞ
4140 , and MϕΞ

4140 proceeding in an analogous
way with the difference that now we do not have the GD∗

s D̄
∗
s

loop-function and all interaction are
in S-wave, and consequently these amplitudes are scalars.

MJ/ψΞ
4140 = TJ/ψΞ,J/ψΞI

J/ψΞ
X(4140), (52)

with,

I
J/ψΞ
X(4140) =

∫
d3q

(2π)3
1

2ωX [K0
1 +K0

2 − ωΞ − ωX + iΓX

2 ]

1

2ωJ/ψ[2K
0
2 − ωΞ − ωJ/ψ + iϵ]

MΞ

ωΞ
, (53)
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where ωX =M2
X + (2K⃗2 − q⃗)2, ωJ/ψ =M2

J/ψ + (2K⃗2 − q⃗)2 and ωΞ =M2
Ξ + K⃗2

2 , and

MϕΞ
4140 = TϕΞ,ϕΞI

ϕΞ
X(4140), (54)

with,

IϕΞX(4140) =

∫
d3q

(2π)3
1

2ωX [K0
1 +K0

2 − ωΞ − ωX + iΓX

2 ]

1

2ωϕ[2K0
1 − ωΞ − ωϕ + iϵ]

MΞ

ωΞ
, (55)

where ωX =M2
X + (2K⃗1 − q⃗)2, ωϕ =M2

ϕ + (2K⃗1 − q⃗)2 and ωΞ =M2
Ξ + K⃗2

1 .

B Appendix B: Spin Sums

During our discussion of the Ξb → Ξ J/ψ ϕ decay we needed to compute the |M|2. In this appendix
we show in more details how we arrived to our final result, Eq. (39). So we start with M4160
amplitude in the following form:

M4160 = (⃗ϵJ/ψ × ϵ⃗ϕ) · (P⃗ΞM̃P
4160 + K⃗2M̃J/ψ

4160 + K⃗1M̃ϕ
4160), (56)

where K⃗1 = (P⃗Ξ + P⃗ϕ)/2 and K⃗2 = (P⃗Ξ − P⃗ϕ)/2. Now we take the square of the absolute value of
M4160,

|M4160|2 = εijkϵjJ/ψϵ
k
ϕε
abcϵbJ/ψϵ

c
ϕ(P

i
ΞM̃P

4160+K
i
2M̃J/ψ

4160+K
i
1M̃ϕ

4160)·(P aΞM̃∗P
4160+K

a
2M̃∗J/ψ

4160 +K
a
1M̃∗ϕ

4160),

(57)
where ε is the Levi-Civita symbol.

Note that since we are working in a reference frame where J/ψ ϕ system is in rest, the 3-
momenta of all these particles are small in comparison with their masses, therefore we can take a
non-relativistic limit, where ∑

pol

ϵjJ/ψϵ
b
J/ψ = δjb, (58)

∑
pol

ϵkϕϵ
c
ϕb = δkc. (59)

Hence performing the sum over the polarisations the Eq. (57) can be simplified to:

|M4160|2 = εijkεajk(P iΞM̃P
4160+K

i
2M̃J/ψ

4160+K
i
1M̃ϕ

4160) ·(P aΞM̃∗P
4160+K

a
2M̃∗J/ψ

4160 +Ka
1M̃∗ϕ

4160). (60)

Now, applying the εijkεajk = δia property we obtain that:

|M4160|2 = (P⃗ΞM̃P
4160 + K⃗2M̃J/ψ

4160 + K⃗1M̃ϕ
4160) · (P⃗ΞM̃∗P

4160 + K⃗2M̃∗J/ψ
4160 + K⃗1M̃∗ϕ

4160). (61)

From this expression we can straightforward derive the Eq. (39) just by computing the scalar
products.
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