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Abstract
This study investigates the discrete extended Kalman filter as applied to multibody systems
and focuses on accurate formulation of the state-transition model in the framework. The pro-
posed state-transition model is based on the coordinate-partitioning method and lineariza-
tion of the multibody equations of motion. The approach utilizes the synergies between
the integration of states and estimator covariances without overly simplifying the integrator
structure. The proposed method is analyzed with a forward dynamics analysis of a four-bar
mechanism. The results show that the stability of the state-transition model in the forward
dynamics analysis is significantly enhanced with the proposed method compared with the
forward Euler-based methods. The computational efficiency of the novel method was signif-
icantly lower in comparison to forward Euler-based methods, which was found to be mainly
due to the computation of the Jacobian matrix of the nonlinear state equation. However, the
increase in computational cost can be considered acceptable in Kalman-filtering applica-
tions, where the exact Jacobian of the state equation is needed.
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1 Introduction

Modern mechanical system solutions are becoming increasingly dependent on sensing tech-
nologies. For example, both onroad and offroad heavy mobile machinery is equipped with
numerous sensors for monitoring and control purposes. In this regard, the reliability of the
sensors and the quality of the measurement signals become critical. Reliable sensing is es-
pecially important for health- and safety-critical applications. Research has shown that the
quality of measurement data can be enhanced by the use of state-estimation algorithms [1],
which form the topic of this paper.

The use of multibody system dynamics, together with state-estimation algorithms, offers
an approach to estimate the behavior of a mechanical system [2]. Within multibody dynam-
ics, state-estimation algorithms have been used in estimation of vehicle dynamics [3, 4], for
systems with hydraulic actuators [5], and in railway applications [6]. Kalman-filter-based
techniques, in particular, can be seen as a valuable approach since they provide an optimal
solution for the linear estimation problem, given that the uncertainties of both the system
model and the measurements are known [7]. However, the original Kalman filter cannot be
applied directly to nonlinear systems such as multibody systems, and nonlinear variants have
to be used instead [8]. Of the many possible variants, the extended Kalman filter [1] and the
unscented Kalman filter [9] are commonly employed for multibody models, as in [10].

The extended Kalman filter was first introduced in the 1960s for state estimation of the
spacecraft-navigation problem [11]. Application of the extended Kalman filter to multibody
system models was pioneered over a decade ago in [12]. In general, Kalman filters are based
on two models: a state-transition model that determines the dynamical behavior of the sys-
tem and a state-update model that is based on the statistical properties of the system. In the
case of the continuous extended Kalman filter (CEKF), the state-transition and the state-
update models are seamlessly fused together, whereas for the discrete extended Kalman
filter (DEKF), they are considered as two separate stages [13]. In the state-transition stage
of the DEKF, the a priori values of the state variables and their covariances are evaluated
based on their values at the previous time step and the control applied during the time step.
Correspondingly, in the state-update stage, the a priori values of state variables are cor-
rected based on the measurement data, and the a posteriori values of the state variables and
covariances are obtained.

Currently, a fundamental approach has been to combine the extended Kalman filter with
an inherently nonlinear multibody system model by using different trajectories for the inte-
gration of state variables and covariances. In the case of CEKF, this is performed by com-
bining the nonlinear equations of motion and the linear Kalman filter equations into a set of
nonlinear equations. The resultant nonlinear equations can be solved using iterative integra-
tion techniques [12], such as an implicit single-step trapezoidal rule [14]. Correspondingly,
the evolvement of the covariances is evaluated using the tangent trajectory of the nonlinear
system. Another approach presented in the literature is the use of the error-state extended
Kalman filter, where simulation of the system and incorporation of the measurements are
separated from each other [15]. In this approach, the state space is modified by using the
errors between the simulated output and measured output as EKF states. This results in an
a priori estimate of the state vector to be located in the origin of the state space, which
simplifies the state-transition stage.

The discrete extended Kalman filter has been proposed in some studies [13, 16] to avoid
the need for computationally expensive integration techniques. In this method, the state-
transition model is often simplified by assuming constant accelerations through the simula-
tion time interval and using a modified version of the forward Euler method for the state-
transition model [13, 16]. However, the approach can overly simplify the state-transition
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model in the case of large acceleration variations within a time step, since the assumption of
constant acceleration through a time step is not valid.

An interesting approach using an exponential integration scheme in the forward dynam-
ics is presented in [17], where exponential integration is used for simulation of a pendulum.
Later, the approach is also applied in force estimation using the discrete extended Kalman
filter [18]. In a recent study, exponential integration is used for the simulation of stiff vis-
coelastic contacts of a multibody system [19]. In the study, the linear contact effect is inte-
grated with an exponential integration scheme, while the nonlinear dynamics are integrated
using a forward Euler integration scheme [19]. As stated in [17], exponential integration has
a long tradition in control engineering [20] [21], where computational efficiency is of great
interest. However, exponential integration schemes seem to be somewhat overlooked in the
multibody dynamics literature.

The objective of this study is to introduce a novel method for the state-transition model of
the discrete extended Kalman filter (DEKF) for application with multibody systems. The aim
is to create an accurate state-transition model for the DEKF by using the linearized equations
of motion together with an exponential integration scheme. Unlike [17], this paper shows
how exponential integration is employed for the multibody equations of motion resultant
from the coordinate-partitioning method. Moreover, the present study extends the work in
[18] by including symbolic computations from [22], discretization of the continuous time-
frame noise components, comparisons to forward Euler-based methods, and by combining
exponential integration to the classical coordinate-partitioning method.

Based on energy-balance analysis of the numerical examples in this study, the proposed
procedure is found to be more accurate and more numerically stable than forward Euler-
based discretization approaches. The proposed method utilizes the computational synergies
of integration of the state variables and integration of the covariances to be based on the
same linearized system model, which brings advantages over other Kalman-filter technolo-
gies. Moreover, the proposed procedure derives the fundamental steps from the nonlinear
continuous model to the linearized discrete system model and shows the underlying assump-
tions behind the different approximations. The stability enhancement of the state-transition
model that is achieved using the novel procedure will open up new application areas for the
DEKF, such as problems including large linear stiffness.

The paper is organized as follows: Sect. 2 presents the formulation of a nonlinear state-
space model for a multibody system, Sect. 3 presents the linearization and discretization
procedures for the nonlinear state-space model, and Sect. 4 shows the synergies that the
novel formulation uses in the Kalman-filter framework. These sections are followed by nu-
merical examples (Sect. 5) and the conclusion (Sect. 6).

2 Multibody systems

The first step in a state-estimator design is to define the underlying mathematical model of
the system (or plant). In the case of multibody dynamics, the plant model is a mathemati-
cal description of interconnected bodies. It is important to note that the proposed estimator
methodology is not developed specifically for a multibody formulation. However, the se-
lected multibody formulation should produce the second time derivatives of the selected
set of coordinates as an explicit function of the coordinates themselves and their first time
derivatives. Moreover, the chosen set of coordinates should be linearly independent, mean-
ing that they are only coupled by the dynamics of the system.
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In this study, the set of independent coordinates is formed using the generalized global
coordinates (also referred to as the reference-point coordinates) and a classical coordinate-
partitioning approach. First, a system is considered consisting of Nb interconnected bodies
described by a set of Nq = 6Nb coordinates. The system kinematics is constrained with
Nm constraint equations that allow Nf degrees of freedom. The constraint equations are
assumed to be scleronomic and holonomic. Using the coordinate-partitioning method with
dependent coordinates as presented in [23], the generalized accelerations q̈ can be evaluated
as:

[
�q

RTM

]
q̈ =

[
c

RTQ

]
, (1)

where � ∈ R
Nm×1 is the constraint vector, �q ∈ R

Nm×Nq is the Jacobian of the constraints,
R ∈ R

Nq×Nf is the velocity-transformation matrix, Q ∈ R
Nq×1 is the vector of external gen-

eralized forces, and M ∈ R
Nq×Nq is the mass matrix of the system. The vector c is the

negation of the second time derivative of constraints with zero accelerations. In the case of
scleronomic constraints, vector c can be evaluated as c = −�̇qq̇ [23]. The velocity transfor-
mation matrix R can be solved as [23]:

[
S R

] =
[
�q

B

]−1

, (2)

where S ∈ R
Nq×(Nq−Nf ), and B ∈ R

Nf ×Nq is a constant Boolean matrix each row of which
represents a mapping from the complete set of coordinates to a respective independent co-
ordinate. According to [24], the equations of motion in terms of independent accelerations
can be written as:

z̈ = (RTMR)−1RT(Q − MSc) ≡ M̄
−1

Q̄, (3)

where z̈ ∈ R
Nf ×1 is the vector of independent accelerations. Although the matrix S does

not have a clear physical interpretation, the matrix-vector product Sc does, as it represents
the solution of generalized accelerations with zero independent accelerations [23]. Using
a notation where the independent velocities are w ≡ ż and constructing a state vector X ∈
R

2Nf ×1 from the independent positions and velocities, the state space of the system can be
written as:

Ẋ ≡
[

ż
ẇ

]
=

[
w

(RTMR)−1RT(Q − MSc)

]
≡ f(X), (4)

where f is the function defining the nonlinear state space of the system.
Methods to solve the independent positions and velocities using Eq. (4) are discussed

in the following sections. However, the resultant independent positions and velocities still
need to be mapped into dependent positions and velocities to update the matrices R and S
and the vector c accordingly. The dependent velocities can be mapped explicitly using the
velocity-transformation matrix R as a mapping [23]:

q̇ = Rż. (5)

However, the position problem cannot be solved explicitly but requires an implicit solution
of the roots of the constraint-vector elements. In this study, the position problem is solved
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using the well-known Newton–Raphson iteration technique as:

qd
h+1 = qd

h − [(�d
q)

−1]h[�]h, (6)

where h refers to the index of iteration, qd to the dependent part of the complete set of
coordinates, and �d

q to the respective columns of the Jacobian of the constraint vector. The
initial guess for the position problem is crucial for fast convergence. When considering a
system with scleronomous constraints and assuming the R matrix does not change rapidly
inside a time step, an approximation of �q ≈ R�z can be concluded from Eq. (5). Using
this approximation, the initial guess for the position problem of Eq. (6) can be calculated as:

[q(h=0)]k+1 = qk + Rk[zk+1 − zk], (7)

where k is the index of the time step.

3 Linearized discrete state-transition model

In general, nonlinear differential equations cannot be solved in closed form and a numerical
integration scheme needs to be used. The integration methods used can be divided into
explicit and implicit methods, where implicit methods require application of an iterative
algorithm. On the other hand, it should be noted that many of the advanced explicit methods
are so-called multistage methods, such as Runge–Kutta methods [25], where the function to
be integrated is evaluated multiple times within a time step similarly to iterative algorithms.
This creates a challenge for computationally critical applications because of the recurring
function evaluations and the difficulty of forecasting the necessary computational time in
the case of an iterative algorithm.

An alternative way to solve the problem is to evaluate a tangent frame of the function.
In this approach, the tangent frame represents the instantaneous linear approximation of the
behavior of the nonlinear function. The transformation to the tangent frame enables the use
of discrete linear control theory methods to explicitly solve the differential equations with a
single-point exponential integration scheme.

3.1 State-space model linearization

A common linearization approach in control theory is to find the equilibrium point for the
system and perform linearization near that point [21]. However, the resultant model is valid
only in the near neighborhood of that equilibrium point. For this reason, an approach is
presented here where an arbitrary state vector can represent an artificial equilibrium point
by introducing a virtual actuation Uv . The multibody system, modeled with the nonlinear
state-space model (4) Ẋ = f(X), can be augmented with a null-valued virtual control vector
Uv ∈ 02Nf ×1 as:

Ẋ = f(X) + Uv ≡ g(X,Uv), (8)

where g is the augmented nonlinear state-space model. It is important to note that an arbi-
trary selection of Uv leads to a nonphysical model, because the velocities can be controlled
independently from the accelerations. However, as long as Uv = 0, Eq. (8) is equal to Eq. (4).
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Now, the system g can be defined to have an equilibrium point at (X = Xref , Uv = Uv,ref )
as:

Ẋref = f(Xref ) + Uv,ref = 0 −→ Uv,ref = −f(Xref ), (9)

where Xref can be arbitrarily chosen. The linearization around the fixed equilibrium point
can be evaluated by introducing small deviations x and uv from the equilibrium point as:

Ẋref + ẋ = g(Xref + x,Uv,ref + uv), (10)

which can be linearized as:

g(Xref + x,Uv,ref + uv) ≈ g(Xref ,Uv,ref ) + ∂g
∂X

∣∣∣
(Xref ,Uv,ref )

x + ∂g
∂Uv

∣∣∣
(Xref ,Uv,ref )

uv, (11)

where, given that Ẋref = g(Xref ,Uv,ref ) = 0, one may write:

ẋ ≈ ∂g
∂X

∣∣∣
(Xref ,Uv,ref )

x + ∂g
∂Uv

∣∣∣
(Xref ,Uv,ref )

uv, (12)

where:

x = X − Xref (13)

uv = Uv − Uv,ref (14)

∂g
∂X

∣∣∣
(Xref ,Uv,ref )

= ∂f
∂X

∣∣∣
Xref

(15)

∂g
∂Uv

∣∣∣
(Xref ,Uv,ref )

= I. (16)

By substituting the expressions from Eqs. (9), (14), (15), and (16) into Eq. (12), the lin-
earization simplifies to a standard form of a linear time-invariant (LTI) system:

ẋ = Ax +Buv, (17)

where:

A = ∂f(X)

∂X

∣∣∣
Xref

, (18)

B = I, (19)

uv = f(Xref ). (20)

Using the definition of the nonlinear state-space model of Eq. (4), the Jacobian matrix of
f(X) with respect to state vector X can be written as [26]:

∂f(X)

∂X
=

⎡
⎢⎢⎣

∂ ż
∂z

∂ ż
∂ ż

∂ z̈
∂z

∂ z̈
∂ ż

⎤
⎥⎥⎦ =

⎡
⎣ 0 I

∂(M̄
−1

Q̄)

∂z
∂(M̄

−1
Q̄)

∂ ż

⎤
⎦ ≡

[
A11 A12

A21 A22

]
. (21)
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3.2 Discretization using finite-series expansion

A linear continuous-time state-space model can be transformed into its discrete-time equiv-
alent using the zero-order hold (ZOH) discretization method as described in [27]. In this
approach, the control is assumed to be constant through a discrete time interval. The assump-
tion of ZOH is valid for the model presented by Eq. (17), since the control uv is constant in
the tangent frame and, accordingly, it is constant through the discretization time interval as
[27]:

xk+1 = Fxk +Gf(Xref ), (22)

where:

F = I +A�t�, (23)

G = ��tB, (24)

� =
∞∑

n=0

An�tn

(n + 1)! , (25)

and �t is the size of the discretization time step. It is important to note that for the sake of
compactness, the notation A ≡ A(Xref ) is used here.

Now, Eq. (22) can be converted back to the original state space using Eq. (13) as:

Xk+1 − Xref = F(Xk − Xref ) +Gf(Xref ). (26)

This discretization represents the exact solution of the nonlinear ODE inside the tangent
trajectory of the ODE limited only by the accuracy of the approximation of � . Therefore,
the new linearization should be performed on each time step, since using the previous lin-
earization equates to doubling the length of the time step. When the linearization is updated
on each time step, the reference-state vector can be expressed as Xref = Xk , producing a
state-transition model as:

Xk+1 =�������0
F k(Xk − Xk) +Gkf(Xk) + Xk. (27)

The same result is obtained in [17] with a slightly different derivation. To demonstrate the
different terms of the transition model (Eq. 22), the matrices F and G can be written with an
approximation order of n = 1 in Eq. (25). In this work, this is referred to as the second-order
approximation since both F and G include second powers of the time step. With this order
of approximation, the matrices can be written as:

F =

⎡
⎢⎢⎢⎢⎢⎣

I + ∂ z̈
∂z

�t2

2

∂ z̈
∂ ż

�t2

2
+ I�t

(
I�t + ∂ z̈

∂ ż
�t2

2

)
∂ z̈
∂z

I + ∂ z̈
∂z

�t2

2
+ ∂ z̈

∂ ż

(
∂ z̈
∂ ż

�t2

2
+ I�t

)

⎤
⎥⎥⎥⎥⎥⎦

, (28)

G =

⎡
⎢⎢⎢⎢⎣

I�t I
�t2

2

∂ z̈
∂z

�t2

2

∂ z̈
∂ ż

�t2

2
+ I�t

⎤
⎥⎥⎥⎥⎦ . (29)
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The state-transition matrix F can also be found in the literature [13]. The matrix blocks
F11 and F12 of Eq. (28) coincide with the results obtained in [13]. The terms F21 and F22

are, however, different, since they are obtained in [13] as F21 = (∂ z̈/∂z)�t and F22 = I +
(∂ z̈/∂ ż)�t . The reason for this difference is the higher-order crosscoupling of accelerations,
velocities, and positions in the present study.

3.3 Partial derivatives of the equations of motion using analytical solutions

The analytical solutions for the partial derivatives of independent accelerations with respect
to independent positions and velocities were originally developed in [22] and further dis-
cussed in [15]. However, for the convenience of the reader, they are reproduced here. The
Jacobian of independent accelerations with respect to the independent coordinates (term
A21 in Eq. 21) can be expressed as:

∂ z̈
∂z

= −(RTMR)−1ā − (RTMR)−1 ∂(RTMR)

∂z
(RTMR)−1Q̄, (30)

where

(RTMR)

∂z
= (RT

z MR + RTMzR + RTMRz), (31)

and ā ≡ −Q̄z is the partial derivative of the projected vector of generalized forces with
respect to independent coordinates. Correspondingly, the Jacobian of the independent accel-
erations with respect to the independent velocities (term A22 in Eq. 21) can be expressed
as:

∂ z̈
∂ ż

= −(RTMR)−1b̄, (32)

where b̄ ≡ −Q̄ż is the partial derivative of the projected vector of generalized forces with
respect to independent velocities. The matrices ā and b̄ can be presented as:

ā ≡ −∂Q̄
∂z

= −(Q̄q − Q̄q̇S�̇q)R, (33)

b̄ ≡ −∂Q̄
∂ ż

= −Q̄q̇R, (34)

where:

Q̄q ≡ ∂Q̄
∂q

= RT
q(Q − MSc) − RT

(
a + MqSc + M

∂(Sc)
∂q

)
, (35)

Q̄q̇ ≡ ∂Q̄
∂q̇

= −RT(b + MScq̇). (36)

In Eq. (35), a ≡ −Qq can be considered as a stiffness matrix of the system and correspond-
ingly in Eq. (36), b ≡ −Qq̇ can be considered as a damping matrix of the system. In Eq. (35),
the partial derivatives of R and Sc with respect to q can be expressed as:

RT
q = −RT�T

qqST, (37)
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∂(Sc)
∂q

= S(−�qqSc + cq). (38)

The last calculation step in the derivation is to find the partial derivatives cq and cq̇ in
Eqs. (36) and (38). These partial derivatives can be found as:

cq = −�̇qqq̇, (39)

cq̇ = −2�̇q. (40)

3.4 Lower-order approximations

To analyze the accuracy of the proposed discretization method, it is compared with two dif-
ferent lower-order approximation methods, both of which are called forward Euler methods
in the literature. To distinguish between these two methods, they are named in this study
as the Forward Euler and the Augmented Forward Euler method. The original Forward
Euler can be derived from Eqs. (23–25) by using the approximation order of n = 0. A state-
transition model equivalent to the resultant model is used in the framework of DEKF in [28]
and [29]. In this approximation, the partial derivatives naturally disappear from matrix G.
However, the partial derivatives may not be taken into account in evaluation of matrix F .
Here, it is presented in a form where they are neglected. Thus, the matrices F and G can be
written as:

F =
[

I I�t

0 I

]
, (41)

G =
[

I�t 0
0 I�t

]
. (42)

In the Augmented Forward Euler scheme proposed in [16] and [13], the forward Euler is
applied to the acceleration term of the previous time step producing the velocity of the
current time step. Consequently, the position of the current time step can be evaluated as
a trapezoid of known velocities at the previous and current time steps. This model can be
derived from Eqs. (28) and (29) by assuming the partial derivatives of accelerations to be
zero. This approximation produces a matrix F identical to Eq. (41). However, the matrix G
differs from the one presented in Eq. (42) and can be expressed as:

G =
⎡
⎣I�t I

�t2

2
0 I�t

⎤
⎦ . (43)

4 Discrete extended Kalman filter applied to an instantaneously linear
system

The discrete extended Kalman filter (DEKF) is similar to the original linear discrete Kalman
filter (DKF); the only difference being that the linear state-space model changes as a function
of states. For this reason, the equations derived for the DKF are also applicable in the case
of DEKF. The equations shown in this section are heavily based on the derivations shown in
[21]. However, due to the different field of study, the idea is briefly reproduced here focusing
on the practical implications in the context of multibody systems. Additionally, the necessity
of a state-transition model for the incorporation of measurements is demonstrated.
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4.1 Discrete extended Kalman filter

Equation (17) describes the instantaneous multibody system dynamics in the standard form
of the linear time-invariant (LTI) system. A standard (LTI) state-space model can be aug-
mented by adding noise components to the system model and forming an expression for the
measurement vector y:

ẋ = Ax +Bu +B1W

y = Hx +V

}
, (44)

where H is the measurement matrix, W is the plant noise vector, V is the measurement noise
vector, and matrix B1 is the mapping of the plant-noise components to the time derivatives
of the state variables. The plant noise W and measurement noise V vectors can be assumed
to be white noise with power spectral densities of Rwpsd and Rvpsd, respectively. The discrete
equivalent system of Eq. (44) can be presented as:

xk+1 = Fxk +Guk +G1Wk

yk = Hxk +Vk

}
, (45)

where cov(Wk) = Rw and cov(Vk) = Rv and matrix G1 determines the influence of
process-noise components on the system states. The explicit definition of matrix G1 and
Rw can be avoided by defining their counterparts in continuous time. In the case of multi-
body systems, it is often practical to assume that the system kinematic relationships are
accurately defined, leading to the process noise affecting only the acceleration level. Conse-
quently, matrix B1 can be written as:

B1 =
[

0
I

]
. (46)

The discrete plant-noise covariance matrix �P is defined as:

�P = G1RwGT
1 =

∫ �t

0
F(τ )B1RwpsdBT

1F
T(τ )dτ =

∫ �t

0

[
F12(τ )

F22(τ )

]
Rwpsd

[
F12(τ )

F22(τ )

]T

dτ. (47)

The realization of this integral depends on the order of approximation of F . However, when
using the approximation order of n = 0 in Eqs. (23) and (25) and the definition of A12 = I
in Eq. (21), the plant covariance matrix can be written as:

�P
k =

[
�P

k(11) �P
k(12)

�P
k(21) �P

k(22)

]
, (48)

where the entries are:

�P
k(11) = Rwpsd

�t3

3
(49)

�P
k(12) = Rwpsd

�t2

2
+RwpsdA22

�t3

3
(50)



Linearized state transition model for the discrete extended Kalman filter 65

�P
k(21) = Rwpsd

�t2

2
+A22Rwpsd

�t3

3
(51)

�P
k(22) = Rwpsd�t + (

RwpsdA22 +A22Rwpsd

) �t2

2
+A22RwpsdA22

�t3

3
. (52)

Unlike the plant noise, the sensor noise is often considered to be independent of the
discretization time step. Thus, the discrete covariance Rv can be directly used as a tuning
parameter of the filter.

The Kalman filter for the system can be described using the state-transition model (27)
as:

X̂k+1 = X̄k+1 +Kk+1[Yk+1 − h(X̄k+1)], (53)

where:

X̄k+1 = Gkf(X̂k) + X̂k. (54)

In the above equations, the vector X̄k+1 represents the estimate after state transition, X̂k+1 is
the estimate after state update, Kk+1 is the Kalman gain, Yk+1 is the vector of measurements,
and h() is the measurement function. The evolution of the Kalman gain, the covariance
matrix before measurement P−

k+1, and the covariance matrix after measurement P+
k+1 can be

calculated using the following set of equations [1]:

P−
k+1 = F kP+

k F
T
k + �P

k , (55)

P+
k+1 = P−

k+1 − P−
k+1HT[HP−

k+1HT +Rv]−1HP−
k+1, (56)

Kk+1 = P+
k+1HTR−1

v , (57)

where, in the case of the nonlinear measurement function h(), H is the Jacobian of h() with
respect to X evaluated at the reference point X = Xref .

5 Numerical examples

The algorithm of the discrete extended Kalman filter (DEKF) using the state-transition struc-
ture proposed in this paper is depicted in Fig. 1. In the figure, the step from the previous time
step to the current time step is denoted by the unit time delay, z−1 blocks. Thus, calculation
of the current time step starts by definition of the generalized coordinates q and indepen-
dent velocities ż calculated at the previous time step. In this paper, the main objective is the
development of the state-transition model, which is illustrated by the gray blocks in Fig. 1.
For this reason, the numerical example also tests the accuracy of this part, while the blocks
Covariance update and Correction are neglected. However, it is important to note that the
state-transition matrix F calculated in the Discretization block is also crucial for the correc-
tion part of the estimator. This synergy is one of the advantages of the introduced method.

For the sake of simplicity, two variations of the classical closed-loop four-bar mechanism
are selected as numerical examples. In the numerical examples, the forward dynamics of the
system is analyzed when the system is assumed to be affected by gravity.



66 L. Pyrhönen et al.

Fig. 1 Functional block diagram
of proposed algorithm

Fig. 2 Four-bar mechanism in
the first numerical example

5.1 Numerical example 1: configuration with gravity forces only

In the first numerical example, a classical four-bar mechanism affected by gravity is inves-
tigated. The mechanism is depicted in Fig. 2 and the system’s physical properties are given
in Table 1. The gravitational force acts downwards in Fig. 2. The bodies are modeled as
slender beam-like rigid bodies and all joints attached to points A–D are assumed to be ideal
revolute type. The rotation of the first body θ1 is chosen as an independent coordinate and
its initial value is set to be π/3. The system is simulated for 10 seconds using both the state-
transition model proposed in Sect. 3.2 with the second-order approximation and with the
lower-order state-transition models presented in Sect. 3.4. To analyze the effect of the time
step, the system is simulated with two different time steps, 1 ms and 10 ms.

5.2 Numerical example 2: configuration with additional spring

In the second numerical example, the structure of the four-bar mechanism is modified by
splitting Body-2 into two separate bodies at its center and attaching the resultant bodies
together with a revolute joint. Additionally, a rotational spring with a spring constant k =
5000 kN m/rad is attached to this joint. The modified configuration is depicted in Fig. 3,
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Table 1 Parameters used in the
numerical example

Parameter Numerical
value

Unit

Length, Body-1 2 m

Length, Body-2 8 m

Length, Body-3 5 m

L 10 m

Mass, Body-1 2 kg

Mass, Body-2 8 kg

Mass, Body-3 5 kg

Gravity 9.81 m/s2

Fig. 3 Four-bar mechanism with
a spring

where the additional joint is located at point E. As a result of this modification, the number
of degrees of freedom of the system is increased from 1 to 2 and consequently one more
independent coordinate is needed. The additional independent coordinate is chosen to be the
rotation of the left part of Body-2, denoted as θ21. This angle is initialized to be θ21 = 0.4
rad.

5.3 Numerical results

The performance of the proposed method is analyzed using two criteria: accuracy and com-
putational efficiency. Energy balance is used as a measure of the method accuracy and mean
time to compute one transition step in the MATLAB environment (tic command) as a
relative measure of computational cost.

5.3.1 Numerical example 1: numerical results

In Figs. 4a and 4b, the energy balance is presented as a sum of potential and kinetic energies
of the system. The energy balance is shifted so that it has initially the value of zero. In
Figs. 4a and 4b, a two-sided logarithmic y-axis is used where the dashed horizontal line
represents all the values with equal or smaller magnitude than the ± signed value on the
y-axis.

5.3.2 Numerical example 2: numerical results

The energy balance of the second numerical example is shown in Figs. 5a and 5b. The energy
balance is calculated as a sum of the potential energies of the gravitational forces and the
spring force and the kinetic energy of the system. In Fig. 5b, the energy-balance graphs of the
Augmented Forward Euler and Forward Euler go beyond the edges of the figure. Outside the
figure, their respective values extend to infinity within 10 time steps, whose peaks are here
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Fig. 4 Energy-balance comparison with different integration schemes

Fig. 5 Energy-balance comparison with different integration schemes

ignored for illustrative reasons. To investigate the effect of the Taylor-series approximation
order n, the system is simulated with n varying from 1 to 4.

To investigate the ability of the simulation to track the fast vibration resulting from the
spring force, the relative angle between the left and right parts of the split Body-2 is pre-
sented in Figs. 6a and 6b for the first second of the simulation. Also, a ground-truth solution
for the vibration is provided using the MATLAB ode45 solver [30]. These figures show that
at the beginning of the simulation, the solutions with Forward Euler-based discretization
methods start to diverge from the solution obtained by the ode45 nonlinear solver, while
the Taylor-series-based method provides consistent results. The figures also show that the
diverging behavior is amplified with a larger time step.

5.3.3 Computational efficiency

The computational times of the analyzed methods are shown in Fig. 7. The hardware used in
the computations was a HP ZBook Power G8 with an 11th Generation Intel Core i7-11800H
processor. The evaluation time in the MATLAB environment varies quite considerably and is
not fully deterministic, meaning that the length of the maximum evaluation time can differ
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Fig. 6 Relative angle of rotational spring with different integration schemes

Fig. 7 Average computational
time per time step

significantly between the repeating executions of the same simulation. For this reason, the
mean value of evaluation time is considered here as it is not as prone to vary between the
executions.

Additionally, computational times required to calculate the nonlinear state-space func-
tion f and its Jacobian were analyzed. The average computational times required for these
calculations were 0.14 ms and 0.26 ms per time step for numerical examples 1 and 2, re-
spectively, covering over 85% of the total computational time.

6 Conclusion

This study introduced a novel method for the forward integration of a multibody system. The
method is based on the use of a linearized state-space model for application with the discrete
extended Kalman filter. The proposed approach aims to increase simulation accuracy com-
pared to forward Euler-based methods. Moreover, the method systematizes the formation of
the system matrices.
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The study shows that the dynamics of a multibody system with holonomic and scle-
ronomous constraints can be analyzed using an instantaneously linear system model. It is
further shown that the proposed method can be numerically more advanced when compared
with forward Euler-based integration methods. However, the computational cost of the pro-
posed method with the specific implementation studied is significantly larger than with the
forward Euler-based methods.

The computational efficiency results obtained in this study can be considered insuffi-
cient to draw a definitive conclusion regarding the method’s suitability for industrial use.
The main reasons for this are the use of a high-level programming language (MATLAB),
the relatively low level of complexity of the numerical examples, the hardware used in the
computations, and nonoptimalities in the computer implementation. Nevertheless, the re-
sults show elements that can be considered promising in terms of final applications. First,
the doubling of degrees of freedom between numerical examples 1 and 2 resulted in dou-
bled computational cost, which can be considered a moderate increase. Secondly, and more
importantly, the results show that most of the computational time of the proposed method is
used in the linearization procedure. This, in turn, indicates low computational cost for the
time integration if the exact Jacobian has already been calculated for the state estimator, as
in [15].

The results of the study indicate that even though the calculation of the partial deriva-
tives of the acceleration terms causes an increase in the computational cost, it significantly
enhances the accuracy of the linearized model. Moreover, it is seen that the effect of these
partial derivatives is even more dramatic when investigating a system that includes linear
force elements (a linear spring in the case example). The energy-balance analysis of the
second numerical example (Figs. 5a and 5b) shows poor numerical stability for the system
with the forward Euler-based methods, whereas the Taylor-series-based approximation pro-
duces a more stable solution. This difference can be explained by the different assumptions
behind the approximations. In the forward Euler-based methods, the acceleration terms are
assumed to be constant throughout the time step, while in the Taylor-series approximation,
only linearity is assumed within a time step. Consequently, the Taylor-series approximation
does not suffer large acceleration changes within a time step, providing that the changes can
be well defined by a set of linear differential equations.

The great difference in the numerical stability between the different integration schemes
in the second numerical example is hypothesized as being caused by the vibrations of the
added rotational spring. The vibration phenomenon was further investigated by inspecting
the amplitude propagation of the relative angle of the rotational spring during the first sec-
ond of the simulation. The results show that when using the forward Euler-based methods,
the amplitude of the relative angle of the joint to which the spring is attached starts to in-
crease immediately after the simulation starts. On the contrary, the vibration amplitude of
the spring remains more stable with the Taylor-series-based method. Moreover, this effect
is significantly amplified with a longer time step.

The poor energy balance of Forward Euler-based methods can be also explained through
the stability theorem of linear systems. Forward Euler integration has the property of map-
ping certain eigenvalues of a stable continuous-time system onto unstable eigenvalues of
the corresponding discrete-time system [21]. In particular, the problem of instability created
by discretization is severe for undamped vibrating systems, where the eigenvalues lying on
the imaginary axis are always mapped onto unstable eigenvalues of the discrete-time sys-
tem regardless of the sampling period. This local instability of the fast eigenvalues of the
linearized dynamics can explain the poor energy balance of the Forward Euler-based ap-
proximations, although, in general, the stability of a nonlinear system can not be analyzed
through its stability in a locally linearized domain.
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The introduced method poses numerous research questions for the future. More research
is needed to test the proposed method in implementations of the Kalman filter and with sys-
tems with a level of complexity similar to final applications. Other important aspects in final
applications would be to consider actuations of multibody systems, contacts, and flexible
bodies. The authors plan to extend the procedure for hydraulically actuated systems, as has
previously been done in the case of the indirect Kalman filter [5]. For contact modeling, one
possible approach would be to model the contact forces as unknown external forces and use
the force-estimation methodology as in [18]. Moreover, it would be interesting to analyze
the motion of flexible bodies using the proposed state-transition method.
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