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Abstract
The knowledge of reactor parameters such as effective multiplication factor keff ,
effective delayed neutron fraction βeff and their uncertainties is important for the
study of nuclear reactor dynamics and for nuclear reactor safety analysis. In this
work we will do a S/U analysis with the SUMMON code, based on first order per-
turbation theory, of several simulations performed with Monte Carlo code MCNP
for 25 benchmark reactors, mainly from ICSBEP and IRPhE reactor databases.
In the case of keff , it has been found that the uncertainty due to nuclear data is
much larger than the statistical uncertainties from the Monte Carlo method. On
the other hand, the evaluation of βeff with the conventional method (Bretscher’s
method) has non negligible statistical uncertainties. A perturbative method will
be used (Chiba’s method) to improve statistical uncertainties. Three covariance
matrices from three different nuclear data libraries will be used for the uncertainty
analysis: JEFF-3.3, JENDL-4.0u and ENDF/B-VIII.0.

For the keff , we have observed a good statistical convergence and a wide
range of reaction contributors in the uncertainty due to nuclear data, which is
usually larger with JEFF-3.3 library. For βeff , Chiba’s method appears as the best
method due to the improvement in statistical uncertainty and the removal of false
contributors in the uncertainty due to nuclear data, being ν̄d the nuclear data with
the most important contribution. In general, JENDL-4.0u has been found to be
the best library for the uncertainty evaluation for βeff .





Resumen
El conocimiento de los parámetros de los reactores como el factor de multipli-
cación efectivo keff , la fracción de neutrones retardados efectiva βeff y sus incer-
tidumbres es importante para el estudio de la dinámica y el análisis de seguridad
de los reactores nucleares. En este trabajo haremos un análisis S/U con el código
SUMMON, basado en la teorı́a de perturbación de primer orden, de varias sim-
ulaciones realizadas con el código de Monte Carlo MCNP para 25 reactores de
referencia, principalmente provenientes de las bases de datos de reactores ICS-
BEP y IRPhE. En el caso de keff , se ha encontrado que las incertidumbres de-
bidas a datos nucleares son mucho mayores que las incertidumbres estadı́sticas
del método de Monte Carlo. Por otro lado, el cálculo de βeff con el método
convencional (método de Bretscher) tiene unas incertidumbres estadı́sticas no de-
spreciables. Usaremos un método perturbativo (método de Chiba) para mejorar
las incertidumbres estadı́sticas. Tres matrices de covarianzas de tres librerı́as de
datos nucleares distintas serán usadas para el análisis de la incertidumbre: JEFF-
3.3, JENDL-4.0u y ENDF/B-VIII.0.

Para la keff , hemos observado una buena convergencia estadı́stica y un am-
plio rango de contribuyentes a la incertidumbre debida a datos nucleares, la cual
es normalmente mayor con la librerı́a JEFF-3.3. Para la βeff , el método de Chiba
aparece como el mejor método debido a la mejora en la incertidumbre estadı́stica
y la eliminación de los falsos contribuyentes a la incertidumbre debida a datos nu-
cleares, siendo ν̄d el dato nuclear con la contribución más importante. En general,
JENDL-4.0u ha sido encontrada como la mejor librerı́a para la evaluación de las
incertidumbres para la βeff .
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1 Introduction and motivation
Nuclear energy is an important source of energy in some of the main developed
countries. The first prototypes of nuclear reactors date from the middle of twen-
tieth century (USA). We can find the first commercial reactors in the 1950s and
1960s that we call in our days Generation I. The majority of the reactors operating
nowadays are known as Generation II and include a wide range of technologies
such as BWR, PWR, CANDU, RBMK, etc. Spain counts currently with seven
reactor units in an operational status (Pressure Water Reactor and Boiling Water
Reactor) that, according to IAEA [1], generated 55609 GWh (the 21.2% of total
production) in 2017. Spain has also three reactor units in a permanent shutdown
status.

Nuclear technology is being considered as one of the fundamental tools in the
fight against climate change. To consider the impact of nuclear energy in nature
properly, we have to take into account the whole nuclear power fuel cycle: ura-
nium mining, uranium conversion and enrichment, fuel fabrication, power genera-
tion, used fuel management and waste management. Concerning CO2 emissions,
the estimations is at 5.5 g CO2 eq./kWh [2], a value comparable with the renew-
able range. On the other hand, and contrary to popular belief, this kind of energy
is not only one of the cleanest but one of the safest together with renewable energy.
To check some data about that question, see reference [3].

Now, the future of fission nuclear energy is focused on the development of
new nuclear fuel cycles and advanced systems with more efficiency in fuel uti-
lization, that can reduce the levels of radioactive waste produced to be confined in
geological repositories, and with even better safety standards and reduced prolif-
eration risks. One of these systems is the Accelerator Driven sub-critical System
(ADS) for nuclear waste transmutation, which is based on a sub-critical reactor
with a spallation neutron source provided by a high power-accelerator. Other
ones are Generation IV reactors, which include several technologies like very-
high-temperature reactor (VHTR), molten salt reactor (MSR), lead-cooled fast
reactor (LFR), supercritical-water-cooled reactor (SCWR), sodium-cooled fast re-
actor (SFR) and gas-cooled fast reactor (GFR). The last two could allow the reuse
of the spent nuclear fuel by its reprocessing. Another new concept is the Small
Modular Reactor (SMR) that is based in the technologies previously mentioned.
It is characterized by reactors under 300 MW of electric power and the possibility
to transport and install them in different locations. They are expected to let access
to nuclear energy to countries and regions that cannot count currently with this
technology. As mentioned before, these new systems are under development. In
this stage, it is very important to perform computer simulations (for example, with
Monte Carlo codes) to obtain information about the behaviour and dynamics of
these new designs.

To characterize this behaviour, we are interested in the evaluation of the major
reactor parameters and its errors due to nuclear data, which is the main theme of
this thesis. These parameters are mainly three: the multiplication factor k is the
ratio between the number of neutrons produced in fission and the number of neu-
trons lost; the delayed neutron fraction β is the fraction of neutrons produced and
emitted in the decay of the fission fragments; and the mean generation time Λ is
the mean time between the birth of a neutron and the absorption-inducing fission.
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In order to obtain a reliable evaluation of these key parameters, it is very important
to do efforts in the improvement and development of libraries of evaluated nuclear
data, new models and simulation tools.

With respect to the propagation of uncertainties, it is necessary to have into
account the different sources of errors that we can find in the calculations. In our
case, we have two different sources: statistical errors, when Monte Carlo codes
are used for our simulations, and errors due to propagation of uncertainties in the
nuclear data. In principle, we can reduce statistical errors in our simulation error
by increasing the simulation time (depending on the simulated system and/or the
computation capabilities we have, this is more or less difficult). Hence, the main
source of errors are usually the nuclear data uncertainties. In spite of the impor-
tance of these errors in reactor physics simulations, significant gaps between the
current uncertainties and the target accuracies (maximum acceptable uncertainties
due to nuclear data for a certain parameter as agreed by the industry, regulation and
research communities) are found [4]. European research projects like CHANDA
[5] and SANDA [6] aimed to prepare methodologies, facilities, detector, inter-
pretation and tools to face the challenges in the field of nuclear data for nuclear
applications. This work is included in task 4.4 of SANDA project [7]. To know
more about perspectives and needs about nuclear data applications, see reference
[8]. To do the uncertainty propagation due to nuclear data, we work with reli-
able and flexible calculation codes, in our case, we will use the SUMMON code
developed at Ciemat [9].

In chapter two of this work, we will introduce the theoretical basis where we
will explain the concept of cross section, taking some time in the particular inter-
esting case of fission (an important input parameter for the reactor response); what
is an evaluated nuclear data library, how it is organized and several examples. We
will follow with the explanation of what a nuclear reactor is and basic definitions
in reactor physics, which will be fundamental for introducing the major reactor
parameters along with a brief example of reactor dynamics that will show us the
main role of these parameters. In chapter three, we will discuss the concepts of
sensitivity and uncertainty analysis, the theory we used for the propagation of
errors (first order perturbation theory and the Sandwich Rule), introducing here
relevant definitions like sensitivity coefficient and covariance matrix, and how we
can calculate the major parameters and sensitivity profiles needed to propagate
the errors due to nuclear data using MCNP code outputs and the SUMMON code.
Next, we will talk about integral experiments and reactor databases, where we can
find the information of the benchmark experiments used in this work.

In chapter four, we will do a brief introduction of the different experiments
simulated in the thesis and we will explain the general proceeding followed since
the input of the MCNP code until the final uncertainty results. In chapter five,
we will present our results and the different analysis we performed on then and,
in chapter six, we will extract our final conclusions based on all the previous
information and results.
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2 Theoretical basis
In this chapter we will introduce basic concepts about nuclear data and their li-
braries, neutron physics theory and the main reactor parameters that characterize
the operation of a nuclear reactor.

2.1 Nuclear data libraries (ENDF, JEFF, JENDL). ENDF for-
mat: MF and MT numbers.

In this section, we will focus on the relevant nuclear data in a nuclear reactor con-
text, as well as nuclear data libraries which store these data with their uncertain-
ties, that allow us to perform our nuclear reactor simulations and the propagation
of uncertainties.

2.1.1 Cross-sections

Suppose we have an experiment where there are a set of nuclei, named targets,
and an incident beam of particles (in this work, we are interested in neutrons). We
can write the number of collisions per second like

Collisions per second = σINV, (2.1.1)

where I is the intensity of the beam, N the density of target nuclei and V the
volume of the target. The proportionality constant σ is denoted as cross-section
and it has units of area. The value of the cross section depends on the nature of
the target, (i.e. the isotopes) and the type (i.e. neutrons, protons...) and energy of
the incident particles. It is usual to find in reactor equations the product Nσ = Σ,
which is called macroscopic cross-section. If we consider σ has units of cm2, then
the units of Σ will be cm−1.

Induced Nuclear Fission

Heavy nuclei can suffer spontaneous fission but, in the context of nuclear tech-
nology, we are interested in induced fission by neutrons, which is the process that
takes place in nuclear reactors. The fission occurs when the nuclei deforms and
splits in two nuclei fragments plus neutrons and gammas. The energy necessary
to deform the nucleus is called Ecrit. When a neutron is absorbed by a nucleus,
the resulting nucleus has an energy equal to the binding energy of the last neutron,
we denoted by B, plus the kinetic energy of the nucleus.

When Ecrit > B, then we need a neutron whose kinetic energy is above the
threshold Ecrit − B to induce nuclear fission, this type of nuclei is called fission-
able (for example, 238U). When Ecrit < B, all neutrons can induce nuclear fission
and that kind of nucleus are called fissile (for example, 235U).
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Figure 2.1.1: 235U, 239Pu and 238U cross-sections obtained with [10].

For this reason, we have a non-zero fission cross section for fissile nuclei at
low energies, like we can see in figure 2.1.1. In this case, at low energies, the
cross-sections follow approximately a 1/v dependence, then they suffer some res-
onances and at high energies is rolling and smooth. It is important here to highlight
the fact that the fissile cross section is very large at low energies. By contrast, in
fissionable but non-fissile nuclei (figure 2.1.1) cross-sections tend to zero at low
energies. In nuclear reactors, the fuel contains fissile and fissionable nuclei.

The induced fission process produces several reaction products. There are a
number (usually two) of fission fragments (asymmetrical for low incident neutrons
energies and more symmetrical for high incident neutron energies). They are also
produced neutrons and gamma rays, that we separate between prompt, emitted at
the instant of fission itself, and delayed, emitted at later times by the decay of
fission fragments.

In our context, the most interesting fission product is the neutron because is the
particle that sustain the chain reaction. The chain reaction is the process in which
neutrons produced in one fission induce new fission in other fissile or fissionable
nuclei. More than 99% of the neutrons are emitted at the moment of the fission
(prompt neutrons) and less than 1% are emitted by nucleus produced on the β-
decay of certain fission fragments (delayed neutrons). These fission fragments
are called delayed-neutron precursors. The delayed neutron can be arranged into
several groups (six groups in ENDF/B and eight in JEFF, nuclear data libraries),
each emitted with an average characteristic half-live of the precursor. In spite of
representing a tiny percentage in the amount of neutrons, we will see that delayed
neutrons are very important in the reactor behaviour and let us control it.

Taking into account both prompt and delayed neutrons, we can denote the
average number of neutrons produced in fission by ν. To calculate the neutrons
emitted in fission per neutron absorbed, we use the following equation
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η = ν
σf

σa

= ν
σf

σγ + σf

(2.1.2)

where σf , σa and σγ are respectively the fission, absorption and radiative cap-
ture cross-sections. There are more reactions that compete against fission but, for
simplicity, we only take into account radiative capture.

2.1.2 Evaluated nuclear data and the ENDF format

Nuclear data (such as cross sections) are essential for any application that re-
quires particle transport calculations and interaction through materials. Nuclear
data evaluation is the process in which existing experimental data are combined
with results of nuclear models to produce standardized, quality controlled and val-
idated nuclear data libraries that can be used by nuclear calculation codes. Some
recent evaluations also include information about the uncertainty in the nuclear
data and the correlations between energy ranges and/or different reaction cross
sections.

Let us see some examples of nuclear data libraries. The ENDF/B library is
maintained by the National Nuclear Data Center (NNDC), which was the first in
introducing the ENDF format that is usually used by nuclear data libraries. The
JEFF is a merger of JEF (Joint European File) and EFF (European Fusion File). It
is maintained by the NEA Data Bank of the Organization for Economic Cooper-
ation and Development (OECD). The JENDL (Japanese Evaluated Nuclear Data
Library) is maintained by the Japanese Nuclear Data Committee (JNDC) and the
Nuclear Data Center at the Japan Atomic Energy Research Institute (JAERI). Both
libraries use the ENDF format.

The ENDF (Evaluated Nuclear Data File) is a computer format [11] to organ-
ise nuclear data developed by the US Cross Section Evaluation Working Group
(CSEWG), published through the National Nuclear Data Center (NNDC) at the
Brookhaven National Laboratory. These files contain, among others, nuclear reac-
tor cross-sections, energy and angle distributions in a determined nuclear reaction,
the decay mode and spectra from the decay of radioactive nuclei and the errors in
these parameters.

In the ENDF format, nuclear data are identified by a set of numbers:

• MAT number defines the isotope (or isomer).

• MF number defines the type of data.

– MF=1 descriptive and miscellaneous data

– MF=2 resonance data

– MF=3 reaction cross section vs energy

– MF=4 angular distributions

– MF=5 energy distributions

– MF=6 energy-angle distributions

– MF=7 thermal scattering data

– MF=8 radioactivity data
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– MF=9-10 nuclide productiond data

– MF=12-15 photon production data

– MF=30-36 covariance data

• MT numbers define the cross sections. For example: MT=1 total, MT=2
elastic scattering, MT=4 inelastic scattering, MT=18 fission, MT=102 cap-
ture.

In order to have files with a proper size, the data in the libraries are saved
in such a way that can be reconstructed into pointwise or multigroup data with
tools as NJOY (nuclear data processing code developed at Los Alamos National
Laboratory) [11].

2.2 Nuclear reactors and their major parameters: k, β, Λ.
In this section, we deal with the main reactor parameters that characterize the
operation of a nuclear reactor. Before that, we will see some previous concepts
which will let us understand how a nuclear reactor works.

2.2.1 Previous definitions

Here we are going to introduce the components of a nuclear reactor and provide a
classification according to the neutron spectrum.

Components of a Nuclear reactor

A nuclear reactor is a device that is designed to maintain a fission chain reaction
in a controlled manner. Now, we are going to introduce the main components of a
nuclear reactor: fuel, moderator and coolant. These elements made up the reactor
core, usually located in the reactor center. In the core is where the fission energy
production in chain reactions is produced.

Fuel contains fissile and fissionable nuclei. To make a reactor critical (see sec-
tion 2.2.2), it is necessary a certain concentration of fissile material, but the only
fissile isotope present in nature is 235U, which represents only a very small frac-
tion of natural uranium (0.72%, the remaining being non-fissile 238U) . Although
some types of reactors can achieve criticality with natural uranium (see below),
uranium fuel is usually enriched in 235U. Alternatively, the fissile content of the
fuel can be increased through conversion of fertile material. Fertile materials are
nuclei that are not fissile, but which can produce fissile isotopes from fertile ones
through neutron capture (239Pu from 238U or 233U from 232Th, see next section).

The moderator is a material situated in the core whose main purpose is to slow
down fission neutron into thermal neutrons. The interest in reducing the neutron
energy is that fission cross sections are much larger at thermal energies (see figure
2.1.1). This is mainly achieved through elastic scattering with the moderator ma-
terial. Energy transfer between neutrons and the nuclei are more efficient for low
mass nuclei, therefore light nuclei are the most efficient moderator. Hence, the
most commonly used material is hydrogen, in form of light water (H2O). How-
ever, it has the disadvantage of the relatively high capture cross section of hydro-
gen, which requires the use of enriched fuel. For this reason, other moderators
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are also used. Deuterium, in the form of heavy water (D2O) has the advantage
of the small capture cross section of deuterium, which allows fuelling a reactor
with natural uranium. On the other hand, it is more expensive than light water,
more collisions are necessary to slow down neutrons (resulting in bigger reactors)
and tritium is produced, which is radioactive and difficult to manage. Graphite
(C), for its part, is cheap and abundant, has a high density and a small capture
cross section (also allowing using natural uranium as fuel). On the other hand, its
relative high mass (A = 12) requires adding more amount of moderator, resulting
again in bigger reactors. Finally, beryllium is also used in some research reactors,
in metallic form or as BeO, but it is expensive and toxic.

Not all reactors feature a moderator. Reactors with a moderator have a thermal
neutron spectrum and hence are referred as thermal reactors. Reactors lacking a
moderator have a fast neutron spectrum and hence are referred as fast reactors.

The coolant is used to remove fission heat from the reactor. According to the
combination of moderator and coolant, several reactor families can be defined.
Light Water Reactors (LWRs), moderated and cooled by light water, are the most
common type of reactor in operation. They can be classified in turn in Pressur-
ized Water Reactors (PWRs) and Boiling Water Reactors (BWRs), depending on
whether water is allowed to boil within the reactor or not. Heavy Water Reac-
tors, moderated by heavy water and usually also cooled by it; the most common
design being the CANDU of Canadian origin. Graphite moderated reactors are
usually cooled by gas, like in the British Magnox and AGR, the French UNGG,
and some advanced concepts such as the HTR (High Temperature Reactor) and
PBMR (Pebble Bed Modular Reactor) designs, but also by water in some designs
like the Soviet RBMK.

Fast reactors cannot use light materials as coolant and hence fast reactors are
cooled by liquid metals (Liquid Metal Fast Reactors, LMFRs), most commonly
Na (Sodium Fast Reactors, SFR), or Pb/Pb – Bi (Lead Fast Reactors, LFR), or
gas (because of its low density, it does not have a relevant moderating effect (Gas
Fast Reactors, GFRs). These coolants make fast reactors more complex than ther-
mal reactors, and furthermore they need higher-enriched fuel to reach the critical
state. Nevertheless, they are of interest because they offer advantages for breeding
and nuclear waste transmutation (see next section). Finally, Molten Salt Reactors
(MSRs) are cooled by molten salts. In this type of reactors, the fuel is usually
dissolved within the molten salt coolant. These reactors may be thermal (usually
moderated with graphite) or fast. Apart from these, other components of nuclear
reactors include:

• The reflector is a layer of material that surrounds the core. It is used to
reduce neutron leakage; when a neutron reach the reflector, it suffers scat-
tering interactions so that it may return to the core. Hence, the reflector
helps us to reduce the amount of fuel required to make a reactor critical.

• The control rods are an adjustable element that we can control in order to
modify the k parameter of the reactor (we will see the k in 2.2.2). They usu-
ally are composed of a neutron-absorbing material (boron in form of B4C
or AgInCd). Hence, the insertion of the control rods reduces the neutron
population and the withdrawal decreases it.
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Burner and breeder reactors

As stated above, the only fissile isotope present in nature in non-trace quantities is
235U, which constitutes only 0.72% of the uranium resources. However, the excess
neutrons from nuclear fission can be captured in the so called fertile materials to
produce new fissile materials (239Pu from 238U or 233U from 232Th). Thus, the
conversion factor C is defined as the average number of fissile nuclei that are
produced through neutron capture in fertile materials per fissile nuclei consumed.
According the value of the conversion factor, reactors can be classified into burner
reactors (C<1) and breeder reactors (C>1).

The vast majority of commercial reactors used for energy production are burner
reactors. Breeder reactors are usually fast reactors (Fast Breeder Reactors, FBRs),
since the absence of a moderator reduces the captures in the core and hence
leaves a larger number of neutrons available for captures in fertile materials. With
breeder reactors, the humankind would be able to produce electricity with nuclear
energy for thousands of years.

It must be stressed, however, that not all fast reactors are breeders, and neither
all breeder reactors are fast reactors. In particular, fast spectrum burner reactors
are the preferred option for nuclear waste transmutation 1, taking advantage of the
fact that the fission/capture ratio is higher with a fast spectrum than with a thermal
one, and hence the actinides present in the fuel “burn” (fission) faster. On the
other hand, it is possible to design thermal breeders, in particular operating in the
thorium cycle (e.g. the LWBR [13]).

Breeding may be homogeneous or heterogeneous. In the first case, fissile and
fertile materials are intermixed in the fuel and breeding occurs in the fuel itself. In
the second case, breeding occurs in a layer surrounding the core called breeding
blanket. Since the materials in the blanket may also undergo fissions, the blanket
also needs a coolant. When the desired level of fissile isotopes is achieved, the fuel
and/or blanket material are withdrawn from the reactor and a chemical extraction
is performed to separate the bred fissile nuclei and new fuel is manufactured from
it in a process that is called fuel reprocessing.

Neutron transport

The fundamental problem in the design of a nuclear reactor is to know how the
neutron flux is distributed within the reactors and how does it evolves with time.
To find an answer to this problem, we can solve the continuity equation using the
diffusion theory. Let’s start by writing the Fick’s law

J = −D∇ϕ, (2.2.1)

where D is called the difussion coefficient and has units of cm, ϕ is the neu-
tron flux and J is the neutron current density (both with units of cm−2s−1). The
physical meaning of this equation is that there is a net flow of neutrons from the
higher neutron density region to the lower density region.

1The aim of transmutation is reducing the long term radiotoxicity of high level nuclear waste
(HLW), consisting essentially of spent nuclear fuel, through the fission of the Pu, Am and other
actinides into much shorter lived fission products. This can be achieved with critical reactors,
accelerator-driven subcritical systems (ADS) or (less commonly) fusion-driven systems (FDS)
[12].
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Now, consider an arbitrary volume V within a medium containing neutrons.
If there is a net flow of neutrons through the volume, there will be a change in the
number of neutrons in V . To take into account this fact, we use the equation of
continuity

∂N

∂t
= s− vΣaN −∇ · J, (2.2.2)

where N is the neutron density (number of neutrons in V volume) and v the
neutron velocity. Using the relation between neutron density and flux N = ϕ/v,
we can rewrite in terms of the neutron flux

∂(ϕ/v)

∂t
= s− Σaϕ−∇ · J, (2.2.3)

where the left hand side is the change in time of the neutron density, s is the
source term of neutrons, the second term in the right hand side is the density of
neutrons lose in absorption and the third term is the leakage rate, being J the
neutron current density vector. Substituting (2.2.1) into (2.2.3), we obtain the
difussion equation for neutrons

D∇2ϕ− Σaϕ+ s =
∂(ϕ/v)

∂t
. (2.2.4)

We can divide this equation by D and obtain

∇2ϕ− 1

L2
ϕ+

s

D
=

1

D

∂(ϕ/v)

∂t
, (2.2.5)

where the parameter L2 is defined as

L2 =
D

Σa

, (2.2.6)

and it has units of cm2 and is called the difussion area (and L the difussion
length).

The Group-Diffusion Method

Neutrons in reactors are emitted in fission with a continuous energy spectrum and
it broadens due to the interaction with the moderator materials. The problem is
that many of the reaction parameters we have to take into account are energy-
dependent. To analyze the slowing down and diffusion of neutrons in a reactor,
we can use the group-diffusion method.

This method consist in dividing the neutron population into N groups with N
energy intervals, where their diffusion coefficients and absorption and scattering
cross-sections are averaged in the corresponding energy range (by convention, the
most energetic group is denoted by g = 1 and the least by g = N ). The flux in
one group is defined as

ϕg =

∫
g

ϕ(E)dE. (2.2.7)

We can lose neutrons in one group by absorption or by slow down in elastic
scattering. For the absorption, we define the macroscopic group absorption cross
section as
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Σag =
1

ϕg

∫
g

Σa(E)ϕ(E)dE. (2.2.8)

With respect to the transfer of neutrons into a less energetic group, we define
Σh→g, called the macroscopic group transfer cross-section. We can earn neutrons
in our group by transfer too, so similarly we define Σg→h. The derivation of the
transfer cross-sections are complicated and are not showed in this work.

2.2.2 Multiplication factor: k

Energy in nuclear reactor is produced by way of a fission chain reaction. The chain
reaction can be characterized by the multiplication factor k. In the following point,
we are going to introduce our first reactor parameter.

One-group reactor equation

Consider a fast reactor with an homogeneous mixture of fuel and coolant. We
assume that the reactor is homogeneous. We consider only one group of neutrons,
so the diffusion equation for the reactor will be

D∇2ϕ− Σaϕ+ s =
1

v

∂ϕ

∂t
. (2.2.9)

In the case of a multiplicative system, neutrons are produced in fission reac-
tions and we can write the neutron source as

s = νΣfϕ, (2.2.10)

where Σf is the macroscopic fission cross section and ν the number of neu-
trons produced in one fission. In order for such a system to stay stable in time, i.e.
∂ϕ

∂t
= 0, we need that

D∇2ϕ− Σaϕ+ νΣfϕ = 0. (2.2.11)

that is, the numbers of neutrons produced in fission (νΣfϕ) should be equal
to the number of neutrons lost either by escape (D∇2ϕ) or capture (Σaϕ). It is
customary to define the criticality constant as

k =
νΣfϕ

−D∇2ϕ+ Σaϕ
, (2.2.12)

i.e. the ratio between the number of neutrons produced in fission (prompt and
delayed) and the number of neutrons lost by capture or escape. Alternatively, it
can be understood as the ratio between fission neutrons in one generation and the
preceding one

k =
number of fissions in one generation

number of fissions in preceding generation
. (2.2.13)

We can consider an infinite reactor (no neutron losses) and evaluate its k pa-
rameter. Using the k definition (2.2.12) and neglecting the leakage term, we obtain
the following equation

12



k∞ =
νΣfϕ

Σaϕ
=

νΣf

Σa

(2.2.14)

We can observe that the parameter k∞ only depends on the materials prop-
erties. Therefore, we can use this value in a bare reactor made with the same
materials.

Defining B2 (the geometric buckling) as

B2 =
1

D

(
1

k
Σf − Σa

)
, (2.2.15)

we can write equation (2.2.11) as

∇2ϕ = −B2ϕ (2.2.16)

We can obtain a relation between k and k∞. Dividing (2.2.12) by Σa, taking
into account the definition of k∞ (2.2.14) and using equation (2.2.16) follows

k =
k∞

1 + L2B2
(2.2.17)

It is worthwhile to remark, as we can observe, that k is independent of the
neutron flux, that is, a reactor can be critical at any power level.

When we want to increase the power of the reactor, we have to operate the
device (for example with control rods) so that we increase the number of fission
in consecutive generations until the reactor reach the desired power. This way of
operation in named supercritical k > 1. To keep this level of power, we operate
the reactor in order to get k = 1 (the number of fission in consecutive generations
remains the same) and when we reach this value we said that the reactor is critical.
To reduce the power or shut down the reactor we are interested in k < 1 and we
say that the reactor is subcritical, i.e. the number of fissions decrease between
generations.

2.2.3 Mean generation time and fraction of delayed neutrons: Λ and β

To introduce this two parameters, we are going to consider the following problem
based on a reactor with delayed neutrons. Suppose an infinite homogeneous reac-
tor with six groups of delayed neutrons and that all processes are occurring at one
neutron energy (one-group calculation). The diffusion equation is

∂N

∂t
= Dv∇2N − ΣavN + s. (2.2.18)

Let us define β as the fraction of the fission neutrons are delayed (it depends on
the fuel). Using (2.2.14), it follows that s(prompt neutrons) = (1− β)k∞ΣavN
and s(delayed neutrons) = λiCi, where Ci is the precursor concentration in
atoms/cm3 and λi is the decay constant of one precursors group. Substituting
this expressions into (2.2.19)

∂N

∂t
= Dv∇2N − ΣavN + (1− β)k∞ΣavN +

6∑
i=1

λiCi + s0, (2.2.19)
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where s0 are the neutrons not produced in fission. Let us consider that each
delayed neutron appears after the decay of one precursor, the production rate of
precursors can be written as βk∞ΣavN . The set of equations that rules the pre-
cursor population is (i = 1, ..., 6)

dCi

dt
= βik∞ΣavN − λiCi. (2.2.20)

We are interested in solving the problem formed by (2.2.19) and (2.2.20). We
assume the solutions of N and Ci are separable solutions in space and time (valid
only if the reactor is near the critical state and there are no localized perturbations,
see reference [14])

N(r, t) = f(r)n(t), Ci(r, t) = gi(r)ci(t). (2.2.21)

Substituting (2.2.21) into (2.2.19) and (2.2.20), it follows

dci
dt

= βik∞Σav
f(r)
gi(r)

n(t)− λici(t), (2.2.22)

dn

dt
= Dv

∇2f

f
n(t)− Σavn(t) + (1− β)k∞Σavn(t)+

+ Σiλi
gi(r)
f(r)

ci(t) +
s0
f
.

(2.2.23)

With the hypothesis we made, this last two equations have to be independent
of position. For that reason, we assume f/gi = 1 and s0/f = q(t). Using (2.2.16),
we obtain ∇2f/f = −B2, which is a constant.

Let us define the absorption lifetime as

Λ∞ =
1

vΣa

, (2.2.24)

the mean time a neutron travels before being absorbed. With this definition,
we can introduce the neutron lifetime

Λ0 =
Λ∞

1 + L2B2
. (2.2.25)

the mean time a neutron travels before leakage or being absorbed. We define
the mean generation time as

Λ =
1

νvΣf

=
1/v

k∞Σa

=
Λ∞

(1 + L2B2)k
=

Λ0

k
, (2.2.26)

which is understood as the mean time between the birth of a neutron and the
absorption-inducing fission. When k ≈ 1 and there are not delayed neutrons,
Λ ≈ Λp

0, where Λp
0 is the prompt neutron lifetime, which is defined as the average

time between the emission of the prompt neutron and their absorption. The most
part of the life of a prompt neutron is like a thermal neutron because to slow down
to thermal energies require much less time. Therefore, in an infinite reactor we
can write Λp

0 ≈ Λt
∞ where Λt

∞ is the mean difussion time, the average lifetime of
a thermal neutron in an infinite system.
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With the mean generation time definition, defining the reactivity2 as

ρ =
k − 1

k
, (2.2.27)

and using the diffusion area definition and the equation (2.2.17), we can rewrite
our differential equation system as

dn

dt
=

ρ− β

Λ
n+ Σiλici + q, (2.2.28)

dci
dt

=
βi

Λ
n− λici, (2.2.29)

that is known as point kinetics equations.

Step-Input Response

To clarify how the parameters β and Λ play an important role in the temporal
dynamic of a nuclear reactor, let us see the example of a sudden reactivity change
in a critical system (step-input response).

The former differential equation system, for a constant reactivity and in the
abscence of a external source has the following solution

n(t) =
7∑

i=1

Aie
ωit (2.2.30)

Consider now we only have one group of precursors, a critical system with a
constant neutron population, n(t ≤ 0) = n0, and we make a sudden change in
reactivity in t = 0. Therefore, q(t) = 0 and ρ(t < 0) = 0, ρ(t ≥ 0) = ρ0. For that
problem, the following solution can be found [14]

n(t) ≈ n0

β − ρ0
[β exp (ω1t)− ρ0 exp (ω2t)] , (2.2.31)

where ω1 and ω2 are

ω1 ≈
λρ0

β − ρ0
, (2.2.32)

ω2 ≈
ρ0 − β

Λ
. (2.2.33)

The parameter ω1 is related with the delayed neutrons. If ρ0 < β, ω2 is neg-
ative and the second term of (2.2.31) tends to zero in time. Then, the neutron
density (and the power of the reactor) is dominated by the first term, in other
words, by the delayed neutrons, as we can see in figure 2.2.1. Since the delayed
neutron decay constants (λ) are on the order of 0.1 s−1 , this will result in rel-
atively long reactor periods (in the order of seconds or larger, depending on the

2The reactivity is an alternative to the criticality constant to measure the departure from the
critical state. It is zero for a critical system, negative in a subcritical system and positive in a
supercritical system. Like k, it is an adimensional quantity and it is customary to express it in
parts per cent mille (pcm).
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value of ρ0), which will make the reactor controlable by insertion or extraction of
control rods.

On the other hand, if ρ0 > β, the timescale of the reactor power variation will
be largely determined by Λ. Typical values for this parameter may vary between
∼ 10−3 s for thermal reactors and ∼ 10−8 s for fast reactors, thus resulting in
reactor periods too short to control the reactor by means of control rods. It is beta
the parameter that fixes the limit between these two regimes, hence the importance
of an accurate knowledge of this parameter for reactor design.

t0

n(t)=A1eω1t+ A2eω2t

A2eω2t

A1eω1t

n0

Figure 2.2.1: Neutron density as a function of time for a step input response and one
group of delayed neutrons. The dashed lines are the terms of equation (2.2.31).

Effective major parameters: βeff andΛeff

Up to now, we defined the major parameters β and Λ in a system with a single
energy group and a single region. In a real system, these parameters have to be
weighted by the neutron flux (both its spatial and energy distributions) and they
are also weighted by the so-called adjoint flux, which can be interpreted as the
number of new fissions that can be induced by a given neutron (hence also referred
as ”neutron importance”). For details, see for instance [15]. So, we have to define
the effective major parameters.

Mathematically, we can define the effective delayed neutron fraction as

βeff =
⟨ϕ∗, F̂dϕ⟩
⟨ϕ∗, F̂ ϕ⟩

, (2.2.34)

where F̂ is the fission operator (F̂ = νΣf , i.e. the operator number of neutrons
produced by fission), F̂d is the operator number of delayed neutrons produced by
fission (F̂d = νdΣf ) and ϕ∗ is the adjoint flux. The brackets denote an integral
over the entire space and all energies and velocities of the neutrons.

In the same way, we can define the effective neutron generation time as

Λeff =
⟨ϕ∗,

1

v
ϕ⟩

⟨ϕ∗, F̂ ϕ⟩
, (2.2.35)

where v is the neutron speed. Λeff can be understood also as the inverse of
the average neutron production probability or the average time before one neutron
produces another.
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3 S/U calculations and Reactor databases
In this chapter we will introduce the mathematical tools used for the sensitivity
and uncertainty analysis and the different reactor databases we have used in this
work.

3.1 Propagation of errors in nuclear data to reactor parame-
ters: Sandwich rule and covariance matrices. The SUM-
MON code. Sensitivity coefficients and sensitivity profiles.

In this subsection, we are going to introduce the main concepts of uncertainty
and sensitivity analysis we will use in this thesis (first order perturbation theory,
sandwich rule, sensitivity coefficient, etc.), the SUMMON code and the sensitivity
coefficients of the reactor parameters.

3.1.1 Uncertainty and sensitivity analysis

Sensitivity analysis allow us calculating the variation of a response of our system
under changes in its input parameters and studying the importance of different
nuclear data in this response. Uncertainty analysis allows us calculating the errors
in our system response due to nuclear data uncertainties.

We will focus on local analysis, which accounts only for the first order contri-
bution to the total response variation and works only in the neighbourhood of the
nominal values of different parameters (input data) [16]. So, we can consider the
response of the major reactor parameters (like keff

3, βeff and Λeff ) linear with
respect to local variation in the nuclear data provide to the system that we are
going to study.

Next, we will introduce the Sandwich rule, essential in uncertainty analysis,
which is based in the first order perturbation theory, where the sensitivity coeffi-
cient concept will appear, fundamental idea in sensitivity analysis.

First order perturbation theory

Let us define R = f(α1, ..., αk) as the response of our system and (α1, ..., αk)
the real values of our system input parameters that are unknown and we can write
them as

(α1, ..., αk) = (α0
1, ..., α

0
k) + (δα1, ..., δαk) = α0 + δα, (3.1.1)

where α0 are the nominal values taken as the expected values and δα their
uncertainties taken as the standard deviation. We can expand the system response
with a Taylor series around α0

3This is an usual notation for the multiplication factor.
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R(α1, ..., αk) = R(α0) +
k∑

i1=1

(
∂R

∂αi1

)
α0

δαi1+

+
1

2

k∑
i1i2=1

(
∂2R

∂αi1∂αi2

)
α0

δα2
i1
δα2

i2
+ ...

...+
1

n!

k∑
i1,...,in=1

(
∂nR

∂αi1 ...∂αin

)
α0

δαn
i1
...δαn

in .

(3.1.2)

Therefore, assuming linearity

R(α1, ..., αk) = R(α0) +
k∑

i=1

(
∂R

∂αi

)
α0

δαi = R0 +
k∑

i=1

Siδαi, (3.1.3)

where R0 = R(α0) and Si = (∂R/∂αi)α0 .
The terms Si are the sensitivity coefficient of R due to change in αi. They are

commonly expressed in relative terms (dimensionless):

SR,αi
=

αi

R

∂R

∂αi

. (3.1.4)

In this work, R is the reactor parameter and α is the nuclear data (usually, the
value of a cross section in a specified energy range). A set of sensitivity coef-
ficients covering the complete energy range make up a sensitivity profile. Since
the nuclear data depends on energy, we usually plot this sensitivity profiles as a
function of energy, as we can see in figure 3.1.1. In the next section, we will cal-
culate the sensitivity coefficients for the main reactor parameters (keff , βeff and
Λeff ). With this coefficients and the covariance matrix, we will be able to obtain
the variance of the response due to nuclear data errors. As we will see, when the
sensitivity coefficients are calculated with Monte Carlo codes, which are based on
stochastic methods, the sensitivity coefficients will have statistical errors.

Figure 3.1.1: Sensitivity profile for fission and capture of 235U in the
HEU-MET-INTER-001 benchmark experiment [17].
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Sandwich Rule

Using first perturbation theory, we can obtain the variance of the response due to
nuclear data uncertainties

σR = var(R) = E[(R− E[R])2] = E[(R−R0)2] =

=

∫ ( k∑
i=1

Siδαi

)2

p(α1, ..., αk)∂α1...∂αk =

=
k∑

i=1

S2
i

∫
(δαi)

2p(α1, ..., αk)∂α1...∂αk+

+2
k∑

i ̸=j=1

SiSj

∫
(δαi)(δαj)p(α1, ..., αk)∂α1...∂αk =

=
k∑

i=1

S2
i var(αi) + 2

k∑
i ̸=j=1

SiSjcov(αi, αj)) = SVαS
T

(3.1.5)

where Vα is the covariance matrix of the (α1, ..., αk) nuclear data and p is a
propability function. This equation is known as the Sandwich Rule.

Correlations may appear between the energy ranges of a given cross section
(or other nuclear parameters), between different cross section of a given isotope
or between different cross sections of different isotopes. Information about data
uncertainties and correlations is containing in covariance matrices.

We can rewrite sandwich rule by using another two types of matrices. One
with the correlation coefficients corr(αi, αj) = cov(αi, αj)/

√
var(αi)var(αj)

(dimensionless and with a range between -1 and 1), or with the relative covariance
rcov(αi, αj) = cov(αi, αj)/(E[αi]E[αj]) (dimensionless).

Applying the equation (3.1.5) to the variance of the response, we obtain the
variance due to statistical errors of that quantity

std2σR
= std2S(VαS

T )2 + (SVα)
2std2ST (3.1.6)

To sum up, our response is always affected by two types of uncertainties. One
due to statistical errors in the parameters for the use of Monte Carlo codes to
calculate the response, measuring the statistical fluctuation (it can be controlled
by increasing the number of particles simulated). The other due to nuclear data
uncertainties (when nuclear data is the main source of input data uncertainties).
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Figure 3.1.2: (a) Correlation matrix for the fission cross section of 235U [10]; (b)
Correlation matrix for the elastic scattering and fission cross section of 235U [10].

3.1.2 The SUMMON code

Sensitivity and Uncertainty Methodology for MONte carlo codes [9] (SUMMON)
is a tool to perform sensitivity and uncertainty analyses of the most relevant crit-
icality safety parameters in a nuclear reactor (keff , βeff and Λeff ) and reactivity
responses (i.e. reactivity differences between two reactor states or configurations).
SUMMON was designed to work with sensitivity profiles calculated by any code
providing that they are supplied in the SDF format [18], and covariance matri-
ces from any nuclear data library, providing that they are in the Boxer format
[19]. In this work, we have used sensitivity profiles calculated with MCNP 6.2
(KSEN card) [20] and the JEFF-3.3 library. Sensitivity profiles were provided in
a 33 energy group structure [21], using covariance matrices from several libraries
(JEFF-3.3, ENDF/B-VIII.0 and JENDL-4.0u).

Like we saw in the former section, assuming a linear system response (which
is valid in many cases of interest), we can use local sensitivity and uncertainty
analysis, which is efficient in computer time. On the contrary, global analysis
accounts with high-order terms and requires large computational resources. Thus,
the methodologies implemented in SUMMON are based on local analysis [9].

3.1.3 Sensitivity coefficients and sensitivity profiles

As stated above, for this work we have sensitivity profiles calculated for the crit-
icality constant keff with the KSEN card of the code MCNP. In this section, we
are going to explain how SUMMON calculate sensitivity coefficients to param-
eters other than keff from the sensitivity coefficients to the criticality constant
keff .

Multiplication factor and reactivity sensitivity coefficients

Let us start by the simple case of calculating the sensitivity coefficient of a reac-
tivity response (i.e. a reactivity difference between two reactor states or configu-
rations). The reactivity for the initial state is

ρ1 = 1− 1

keff,1
, (3.1.7)

and we perform a perturbation in the system, which lead to a new state with
the following keff
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1

keff,2
=

1

keff,1
+∆

(
1

keff,1→2

)
, (3.1.8)

ρ2 = 1− 1

keff,2
. (3.1.9)

The change in reactivity can be written as

ρ1→2 = ρ2 − ρ1 =
1

keff,1
− 1

keff,2
. (3.1.10)

Using now the sensitivity coefficient definition (3.1.4), we get the following
equation

Sρ1→2,α =
α

ρ1→2

∂ρ1→2

∂α
=

α

ρ1→2

(
∂(1/keff,1)

∂α
− ∂(1/keff,2)

∂α

)
=

=
−keff,2Skeff,1,α + keff,1Skeff,2,α

keff,2 − keff,1
.

(3.1.11)

where Skeff,1,α and Skeff,2,α are the sensitivity coefficients of keff,1 and keff,2
respectively. This sensitivity coefficient can be written as

Sρ1→2,α = f(keff,1, keff,2, Skeff,1,α, Skeff,2,α), (3.1.12)

where f can be considered a linear function of the variables in the context of
the first perturbation theory (keff,1, keff,2, their sensitivity coefficients and their
standard deviation are calculated by MCNP with the KSEN card). Assuming
this linearity, we can evaluate the standard deviation of the sensitivity coefficient
std2Sρ1→2,α

using (3.1.5) but, in that case, uncertainty is due to the stochastic nature
of the Monte Carlo code. This kind of propagation is performed by SUMMON.
It also consider negligible the correlation between both states due to stochastic
Monte Carlo calculations and, to be conservative (due to the difficulty to calculate
the correlation between keff and the sensitivity coefficients), it takes full positives
or negative correlations depending on the case, maximizing the standard deviation
of the sensitivity coefficient [9].

Effective delayed neutron fraction sensitivity coefficient

A common way to calculate βeff with Monte Carlo codes has been proposed by
Bretscher [22] and is sometimes referred as the ”prompt method”:

βeff ≈ 1− kp
keff

, (3.1.13)

where kp is the effective multiplication factor of the prompt neutrons. With the
definition of sensitivity coefficient (3.1.4) and the former equation, we can obtain
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Sβeff ,α =
α

βeff

∂βeff

∂α
=

α

βeff

∂

∂α

(
1− kp

keff

)
=

=
α

βeff

(
− 1

keff

∂kp
∂α

+
kp
k2
eff

∂keff
∂α

)
=

=
kp

keff − kp

(
α

keff

∂keff
∂α

− α

kp

∂kp
∂α

)
=

=
kp

keff − kp

(
Skeff ,α − Skp,α

)
,

(3.1.14)

where Skeff ,α and Skp,α are the sensitivity coefficients of keff and kp respec-
tively (all of them and their standard deviation are obtained by MCNP with the
KSEN card). The kp parameter can be calculated with Monte Carlo codes by
switching off the sampling of delayed neutrons, in MCNP this is achieved with
the TOTNU card [20]. The statistical (Monte Carlo) standard deviation of βeff

and Sβeff ,α are also obtained in SUMMON using error propagation as explained
above. Once again, SUMMON assumes negligible correlations between the two
states (the prompt neutrons state and the normal) and full possitives or negatives
correlations depending on the case.

To reduce statistical errors, we can use a variation of prompt method which
consider a new state where we introduce a scaling factor a in order to adjust the
perturbation from the reference state (Chiba’s approximation, that is a perturbative
method) [23]. Performing analogous calculation, we obtain

βeff ≈ 1

a

(
k̄eff
keff

− 1

)
, (3.1.15)

Sβeff ,α =
α

βeff

∂βeff

∂α
=

k̄eff
keff − k̄eff

(
Skeff ,α − Sk̄eff ,α

)
(3.1.16)

where k̄eff and Sk̄eff ,α are the multiplication factor and its sensitivity coef-
ficient of the new state, calculated along with their standard deviation, using a
nuclear data library in which ν̄d is multiplied by (a + 1). In the particular case
a = −1, equation (3.1.15) is the Bretscher’s method equation (3.1.13). Like in
the previous case, we can evaluate the standard deviation of βeff and Sβeff ,α with
SUMMON.

Chiba’s method reduce the statistical uncertainty of βeff and Sβeff ,α compared
with the prompt method [24]. The statistical error of both, the delayed neutron
fraction and the sensitivity profile are proportional to ∼ 1/a. A disadvantage
is that larger value of a introduces systematic errors in the calculations and that
Chiba’s method requires modified nuclear data files. Both method are available in
SUMMON, but Chiba’s method can be used only if the Monte Carlo code we are
employing supports the modified nuclear data files.
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3.2 Reactor databases (ICSBEP, IRPhE).
In this section, we are going to talk about the definition of integral experiments
and its relevance in nuclear research and the main databases used to store the data
of these experiments.

3.2.1 Integral experiments and zero power reactors

Zero power reactors (or mock-ups reactors) are experimental reactor with very
low power, so that they do not have changes in temperature during relevant opera-
tion and they do not need a coolant. They consist in very simplified reactor models
whose purpose is to measure the main reactor parameters in experiments, which
can be used later to validate neutronic calculations. These experiments are known
as integral experiments because the parameters being measured depend on many
cross sections of many isotopes in all the energy range (on the other hand, differ-
ential experiments, which are conducted in accelerator facilities, try to measure
cross sections for each isotope and energy range). For a historical introduction to
this kind of reactors and some examples see [25].

3.2.2 Reactor databases

The data obtained in integral experiments, in particular, those conducted with zero
power reactors, are stored in integral experiment databases. In this thesis, we will
focus on two of them, ICSBEP [26] and IRPhE [27].

ICSBEP

ICSBEP (International Criticality Safety Benchmark Evaluation Project) is a data
base whose purpose is to compile critical and subcritical benchmark experiment
data into a standardised format that allows to validate calculation tools and cross-
section libraries. In 1992, the CSBEP was created by the US Department of
Energy, in the National Engineering and Environmental Laboratory (INEEL). In
1995, it was renamed as ICSBEP when it was transferred to the OECD-NEA (Nu-
clear Energy Agency).

ICSBEP database is focussed in the keff , to search experimental results for
other parameters of ICSBEP experiments we have to go to bibliography. ICSBEP
is not a public database, but a set of its data is available through the DICE tool
[17].

The experiments are classified by fissile fuel (highly enriched uranium, mixed
enrichment uranium, ...), physical form of the fissile material (metal, compound,
...) and neutron energy range where the majority of the fissions occur (fast,
thermal, ...). For that reason, reactors are labelled with a specific nomencla-
ture: [Fuel]-[Physical form of fuel]-[neutron energy spectrum]-[case] (for exam-
ple, HEU-MET-INTER-001 is high enriched uranium in metal form with interme-
diate energy spectrum, case 1).

Eighteen experiments have been selected from ICSBEP. There are twelve 235U
systems, one with intermediate neutron energy spectrum, nine with fast neutron
energy spectrum and two with thermal neutron energy spectrum. There is one
233U system with fast neutron energy spectrum. There are five 239Pu systems, two
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with intermediate neutron energy spectrum and three with fast neutron energy
spectrum.

IRPhE

IRPhE (International Handbook of Evaluated Reactor Physics Benchmark Exper-
iments) is a database which contains experimental reactor physics data obtained
at several nuclear facilities around the world. It is also maintained by the NEA.
As ICSBEP, this is not a public reactor database, but a set of its data is available
through the IDAT tool [28].

In ICSBEP, with exceptions, we only find keff but, in IRPhE we can also find
reaction rate distribution, spectral characteristics, isotopic composition, reactivity
coefficients, etc. Data of βeff is only included for some reactors. The information
is organised by reactor type and use a similar format to ICSBEP with subsec-
tions for each measurement type. From IRPhE, we have selected two reactors:
SNEAK-7A and SNEAK-7B (239Pu systems with fast neutron spectrum)

Other sources

The reactors MASURCA R2, MASURCA ZONA2, FCA-XIX-1, 2 and 3 have
been selected from an international program of benchmark experiments developed
at CEA (France) and JEARI (Japan) to improve the accuracy of prediction of βeff

[29].
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4 Work methodology
In this section, we will introduce the experiments we have studied and explain the
methodology we have used in the thesis to achieve our final results.

4.1 Benchmark experiments
In this subsection, we will perform a brief description of the benchmark experi-
ments used in this work from different databases.

4.1.1 235U systems

Table 4.1.1: Benchmark experiments of 235U systems data from [17] and
[29]. wt%.

Database name/
βeff Ref.

Reactor name
& lab. Comments

HEU-MET-INTER
-001/ [30], [31]

The Uranium/Iron
Benchmark Assembly
ANL (USA) 1980s

Highly enriched metallic
uranium (93.18% 235U) cylinder
reflected by stainless steel
(Fe, Cr, Ni)

IEU-MET-FAST
-010/ [32], [30]

U9 Benchmark
Assembly
ANL (USA) 1981

Intermediate enriched metallic
uranium (8.88% 235U) cylinder
reflected by depleted uranium

IEU-MET-FAST
-020/ [26]

The FR0 Series 1
Studsvik (Sweden)
1964

Intermediate enriched metallic
uranium (20.05% 235U)
cylinder reflected by copper

IEU-MET-FAST
-021/ [26]

The FR0 Series 4
Studvik (Sweden)
1965

Intermediate enriched metallic
uranium (20.05% 235U)
cylinder reflected by natural
uranium

IEU-MET-FAST
-022/ [26]

The FR0 Experiments
Studvik (Sweden)
1965

Intermediate enriched metallic
uranium (20.05% 235U)
cylinder reflected by copper

LEU-COMP-
THERM-006/
[33], [31], [30]

JAEA (Japan) 1963-75

Low enriched uranium
oxide (2.60% 235U) array
reflected and moderated
by light water

LEU-COMP-
THERM-067/

[26]

IPEN/MB-01
IPEN (China) 2014

Low enriched uranium
oxide (4.35% 235U)
configuration reflected and
moderated by light water

HEU-MET-FAST
-001/ [30], [31]

Godiva
LANL (USA) 1950s

Unreflected, highly enriched
metallic uranium (93.71% 235U)
sphere

HEU-MET-FAST
-028/ [30], [31],

[34]

Topsy
LANL (USA) 1964-66

Highly enriched metallic uranium
(93.24% 235U ) sphere reflected
by natural uranium
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Table 4.1.2: Benchmark experiments of 235U systems data from [17] and
[29]. wt%.

Database name/
βeff Ref.

Reactor name
& lab. Comments

IEU-MET-FAST
-007/ [30], [31]

Big Ten
LANL (USA) 1971-80

Intermediate enriched metallic
uranium (10.06% 235U)
cylinder reflected by depleted uranium

FCA-XIX-1/
[35], [29], [30]

FCA
JAERI (Japan) 1995-98

235U core surrounded by an
inner blanket of depleted uranium
oxide and sodium and an outer
blanket of depleted uranium metal

MASURCA R2/
[29], [30]

MASURCA
CEA (France) 1993-94

235U core surrounded by a
blanket of 50-50 UO2 − Na
mixture blanket

HEU-MET-FAST
-062/ [36]

Coral-I
CIEMAT (Spain) 1968

Highly enriched metallic uranium
(89.74% 235U) cylinder
reflected by natural uranium

HEU-MET-FAST
-100/ [26], [27]

Orsphere
ORNL (USA) 1972-75

Unreflected, highly enriched
metallic uranium (93.20% ) sphere

4.1.2 239Pu systems

Table 4.1.3: Benchmark experiments of 239Pu systems data from [17] and
[29]. wt%.

Database name/
βeff Ref.

Reactor name
& lab. Comments

MIX-COMP-FAST
-005/ [32], [30]

ZPR-9
ANL (USA) 1976-77

Mixed (Pu,U)-Carbide fuel
with metallic plutonium
(87.22% 239Pu and
0.21% 235U) cylinder
reflected by uranium carbide
and stainless steel (Fe, Cr, Ni)

PU-MET-INTER
-002/ [32]

ZPR-6
ANL (USA) 1981-82

Metallic plutonium (95.31%
239Pu) cylinder moderated by
graphite and reflected by iron and
stainless steel (Fe, Cr, Ni)

PU-MET-INTER
-004/ [37]

ZPR-3
ANL-W (USA) 1969

Metallic plutonium (95.47%
239 Pu) cylinder moderated by
graphite and reflected by lead

PU-MET-FAST
-001/ [31], [30] LANL (USA) 1954-55

Metallic plutonium (95.18%
239Pu) sphere

PU-MET-FAST
-006/ [31], [30],

[34]

Flattop
LANL (USA) 1964-66

Metallic plutonium (94.84%
239Pu) sphere reflected by
natural uranium
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Table 4.1.4: Benchmark experiments of 239Pu systems data from [28] and
[29]. wt%.

Database name/
βeff Ref.

Reactor name
& lab. Comments

FCA-XIX-2/
[35], [29], [30]

FCA
JAERI (Japan) 1995-98

239Pu and natural uranium
core surrounded by an inner
blanket of depleted uranium
oxide and sodium and an outer
blanket of depleted uranium
metal

FCA-XIX-3/
[35], [29], [30]

FCA
JAERI (Japan) 1995-98

239Pu core surrounded by an
inner blanket of depleted uranium
oxide and sodium and an outer
blanket of depleted uranium metal

SNEAK-LMFR-
EXP-001/ [30]

SNEAK-7A
KIT (Germany) 1970-71

PuO2 − UO2 fast critical assembly
reflected by depleted UO2 with some
graphite moderator

SNEAK-LMFR-
EXP-001/ [30]

SNEAK-7B
KIT (Germany) 1970-71

PuO2 − UO2 fast critical assembly
reflected by depleted UO2

MASURCA
ZONA2/

[29], [30]

MASURCA Zona2
CEA (France) 1993-94

PuO2 − UO2 fast critical assembly
reflected by depleted UO2 with
sodium to simulate coolant

4.1.3 233U systems

Table 4.1.5: Benchmark experiments of 233U systems data from [17]. wt%.

Database name/
βeff Ref.

Reactor name
& lab. Comments

U233-MET-FAST
006/ [31], [30]

[34]

Flattop
LANL (USA) 1964

Highly enriched metallic
uranium (98.13% 233U) reflected
by natural uranium

4.2 Simulation and analysis procedure
In this work, twenty five MNCP inputs mainly from ICSBEP and IRPhE databases
have been modified to adapt them for sensitivity calculations with the MCNP code
(v6.2) and the JEFF-3.3 library. Modifications consisted mainly in modifying the
isotopic compositions, implementing the 33-group structure in the KSEN card de-
scribed in subsection 3.1.2 and other required modifications to apply Bretscher’s
and Chiba’s methodologies for βeff calculations. Once MCNP outputs were avail-
able, sensitivity data (senstivity profiles and their statistical uncertainty) were con-
verted into the SDF format described in subsection 3.1.2 in order to work with
the SUMMON code. Version 2.2 of SUMMON has been used in this work. With
SUMMON we have evaluated the uncertainty due to nuclear data and its statistical
error with three covariance matrices from different nuclear data libraries (JEFF-
3.3, JENDL-4.0u and ENDF/B-VIII.0). Notice that covariance matrices from all
three libraries were combined with sensitivity profiles calculated with JEFF-3.3;
this has been done in this way because sensitivity profiles require long calculation
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times and usually change little between libraries, while on the other hand the use
of a covariance matrix from one library or another may have a large impact in the
results.
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5 S/U analysis of the results
In this section, results of S/U analyses for the keff and βeff will be presented.
They have been performed using the SUMMON code, sensitivity profiles calcu-
lated with MCNP 6.2 and the JEFF-3.3 library, and covariance matrices from the
JEFF-3.3, ENDF/B-VIII.0 and JENDL-4.0u libraries. This section is divided in
four parts. In the first one (subsection 5.1) we will present the general results
obtained for keff and βeff , in the last case with both Bretscher’s and Chiba’s
methodologies. Then (subsection 5.2) we will present an analysis of the system-
atic errors introduced in the calculation of βeff with Chiba’s methodology. In
subsection 5.3 we will present an analysis of the statistical (Monte Carlo) errors
in the results. Finally, in subsection 5.4 we will discuss the most relevant reactions
contributing to the uncertainty and the differences between libraries.

Given the huge amount of data produced in this work, only the most relevant
results are presented here. Full results are available in [38].

5.1 Uncertainty in reactor parameters
In this subsection, we will analyze the different values of the reactor parameters
and their uncertainties, both statistical and due to nuclear data.

5.1.1 Effective multiplication factor keff

Let us start with the multiplication factor keff . Observing figure 5.1.1, we can
observe that the uncertainty due to nuclear data is between 0.5% and 2% (be-
tween 500 and 2000 pcm), being FCA-XIX-2 with ENDFB the reactor with the
lower uncertainty (%) and IEU-MET-FAST-010 with JEFF the one with the larger
uncertainty (%). In general, it seems that the relative uncertainty due to nuclear
data is larger for the uranium systems than for plutonium systems (observing data
for the three libraries). Looking at tables for keff in appendix A, we can observe
that statistical errors of keff are very similar for all the reactors, between 0.001%
and 0.004% (between 1 and 4 pcm) and are smaller than the uncertainties due
to nuclear data. Hence, they are not visible in figure 5.1.2. We have not taken
into account these statistical errors in error bars of figure 5.1.3 due to their small
contribution.

It is worth remarking that the relative large values of the uncertainty due to
nuclear data (∼1000 pcm) are a major factor to be taken into account to determine
the precision requirements of Monte Carlo calculations. I.e. it may make little
sense to calculate a keff with 10 pcm statistical precision if the uncertainty due
to nuclear data is 100 times larger. In this way, uncertainty calculations can be
a powerful tool to optimize computational resources (for this work, all keff were
obtained with a very high precision because this was required for βeff calcula-
tions, as it will be shown later).

In keff tables in appendix A, we find that the statistical uncertainties of the
uncertainties due to nuclear data are usually between 10−4% and 10−2% (between
0.1 and 10 pcm) and they are not visible in 5.1.1. This statistical uncertainty
in the uncertainty due to nuclear data comes from the statistical uncertainty in
the sensitivity profiles when they are calculated with a Monte Carlo code. In
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figure 5.1.4, we can see some examples of sensitivity profiles for the multiplication
factor for the MIX-COMP-FAST-005 case. We can observe that these profiles,
that belong to two of the major contributors to the keff uncertainty due to nuclear
data in MIX-COMP-FAST-005 (ν̄p and radiative capture cross section), have small
statistical uncertainties (compare with the sensitivity profiles in figure 5.2.3, which
were affected by large statistical uncertainties), that are the source of statistical
error of the uncertainty due to nuclear data.

Looking at figure 5.1.2 along with figure 5.1.3, we can observe that both the
experimental values and the simulation results are compatible among them within
the error bars, at least, for one of the libraries in each case 4. In general, we can
observe that JEFF produces the largest nuclear data related errors and JENDL and
ENDFB switch their positions depending on the case and, usually, nuclear data
uncertainties are larger than the experimental ones. We will take a better look of
the differences between libraries in subsection 5.4.

Figure 5.1.1: Uncertainties due to nuclear data (%) for keff .

Figure 5.1.2: Experimental and calculated (MCNP) effective multiplication factor of
the Benchmark reactors.

4FCA-XIX-1, FCA-XIX-2, FCA-XIX-3, SNEAK-7A, SNEAK-7B do not have experimental
data of the keff because they are benchmarks specially designed for the measurement of βeff .
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Figure 5.1.3: Calculated vs. experimental ratio for the effective multiplication factor.

(a) SP for the keff due to ν̄p. (b) SP for the keff due to (n,γ) cross section.

Figure 5.1.4: Examples of sensitivity profiles for keff for the MIX-COMP-FAST-005
reactor.

5.1.2 Bretscher’s method βeff

Now, let us see our results for the delayed neutron fraction. We start by ana-
lyzing the Bretscher’s method results. Observing βeff tables in appendix A and
figure 5.1.5, we can see that Monte Carlo statistical errors are between 0.2% and
1.2% (between 1.4 and 4.4 pcm), but in general are lower than uncertainty due to
nuclear data, that is between 0.6%, PU-MET-FAST-001 with ENDFB, and 12%,
PU-MET-INTER-002 with JENDL (between 1.14 and 34.7 pcm). With respect
to the statistical error of the uncertainties due to nuclear data, we have values
between 0.007% and 3.6% (between 0.1 and 1.2 pcm), not negligible as we can
see in figure 5.1.5 (due to larger statistical uncertainties in sensitivity profiles for
Bretscher’s method, as we see in subsection 5.2). In JEFF, there are some reactors
where the order or magnitude of the statistical and nuclear data uncertainties of
the parameter are of the same order. The same thing happens with some 239Pu
systems in ENDFB (for PU-MET-FAST-001, the statistical uncertainty exceeds
the one due to nuclear data).

It can be noted that the lowest relative nuclear data uncertainties are usually
obtained with the JEFF-3.3 library. This is due to the fact that the most relevant
data contributing to the uncertainty in βeff is ν̄d, and the JEFF-3.3 only contains
covariance information for this reaction for the case of 233U (U233-MET-FAST-
006). JENDL-4.0u for its part contains covariance information for ν̄d for 235U and
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239Pu and ENDF/B-VIII.0 only for the 235U. We will analyze this fact further in
section 5.4.

In the figures 5.1.6 and 5.1.7 we have represented the βeff along with the
uncertainty due to nuclear data for JENDL. For JENDL, statistical uncertainties
are usually an order of magnitude lower than uncertainty due to nuclear data, so
they are not visible in the these figures and their contributions to the error has not
been included in figure 5.1.8. Since the values of β (not effective, i.e the mean
delayed neutron fraction of the isotopes not weighted by the flux or the neutron
importance, see 2.2.3) are much larger for 235U sytems than for 239Pu or 233U
systems, they are presented in different figures. Regarding on 235U cores in figure
5.1.6, we can observe that βeff ranges between 650 pcm and 800 pcm, and, on
the other cases in figure 5.1.7, the range is widely open and is between 200 pcm
and 450 pcm (in this case, the wide range makes our study more difficult on the
error bars, so it is convenient to combine the information in the figures 5.1.7 and
5.1.8, where C/E values are shown).

The uncertainty in the calculated results due to nuclear data are in general
larger than in the experimental measurement, except for IEU-MET-FAST-020,
021, 022, SNEAK-7A and 7B, where experimental errors are much more larger
than nuclear data uncertainties. Observing figures 5.1.6, 5.1.7 and 5.1.8 we can
check that the calculated results are compatible with the experimental values, tak-
ing into account the uncertainty due to nuclear data.

Figure 5.1.5: Uncertainties due to nuclear data (%) for βeff calculated with Brestcher’s
method.
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Figure 5.1.6: Experimental and evaluated with Bretscher’s method effective delayed
neutron fraction of the Benchmark reactors with 235U.

Figure 5.1.7: Experimental and evaluated with Bretscher’s method effective delayed
neutron fraction of the Benchmark reactors with 239Pu. A 233U system has also been

included (U233-MET-FAST-006).

Figure 5.1.8: Calculated with Bretscher’s method and experimental ratio for effective
delayed neutron fraction.
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5.1.3 Chiba’s method βeff

Regarding the βeff tables of appendix A, we can observe two remarkable results
in Chiba’s method, in comparison with Bretscher’s method. First, the statistical
errors of the parameter are between 0.01% and 0.09% (between 0.1 and 0.3 pcm),
so with a perturbation of a = 20 we have achieved an improvement in one or two
order of magnitudes for the Monte Carlo statistical error of the delayed neutron
fraction. For the case of the statistical error of the uncertainty due to nuclear data,
the improvement reaches up to three orders of magnitude. Indeed, for Chiba’s
method is between 0.001% and 0.2% (between 0.004 and 0.7 pcm).

In figure 5.1.9, we observe that the uncertainties due to nuclear data are be-
tween 0.6%, LEU-COMP-THERM-067 with JEFF and 6.6% U233-MET-FAST-
006 with JEFF, (between 1.15 and 32.8 pcm). There is not a clear separation be-
tween the relative uncertainties due to nuclear data of 235U and plutonium systems,
with the largest one for the 233U system. For 239Pu systems with Chiba’s method,
the biggest relative uncertainties due to nuclear data are clearly for JENDL, for
235U systems are for ENDFB and for 233U system is for JEFF. This fact will be
later discussed in subsection 5.4.

Looking at the results of both methods in βeff tables, it is observed that the
uncertainty due to nuclear data for Chiba’s method is always approximately equal
or lower than the one obtained with Brestcher’s method. This effect will be ex-
plained in the following subsection 5.2.

Let us take a look on figures 5.1.10, 5.1.11 and 5.1.12 . The values shown here
correspond to βeff obtained with Chiba’s method with a perturbation of a = 20
for 235U, 233U/239Pu systems and C/E, respectively. The error bars size is due
to uncertainties propagated from nuclear data (statistical uncertainties will not
be visible in figure 5.1.10 and 5.1.11 and their contributions to the error have
not been included in figure 5.1.12). We can observe the same clear separation
between βeff values for 235U systems and 235U/239Pu than we saw for Bretscher’s
method. In spite of the use of a large perturbation for Chiba’s method, we can
observe compatible results between Chiba’s method evaluated delayed fraction
and the experimental values. To have a better understanding of our results, in next
section, we will analyze the impact of the perturbation (parameter a) of Chiba’s
method in the results of βeff calculated with this method.
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Figure 5.1.9: Uncertainties due to nuclear data (%) for βeff calculated with Chiba’s
method.

Figure 5.1.10: Experimental and evaluated with Chiba’s method effective delayed
neutron fraction of the Benchmark reactors with with 235U.
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Figure 5.1.11: Experimental and evaluated with Chiba’s method effective delayed
neutron fraction of the Benchmark reactors with 239Pu. A 233U system has also been

included (U233-MET-FAST-006).

Figure 5.1.12: Calculated with Chiba’s method and experimental ratio for effective
delayed neutron fraction.

5.2 Systematic errors in Chiba’s method
A major issue with Bretscher’s method is that the delayed neutron fraction is cal-
culated as a small difference between two similar numbers, see equation (3.1.13),
which can result in large statistical error in βeff and its sensitivity profiles. For
that reason, in Chiba’s method βeff is calculated with equation (3.1.15) (in the
particular case of a = −1, it is the Bretscher’s method equation). As stated in
section 3.1.3, the statistical error of both, the delayed neutron fraction and the
sensitivity profile are proportional to ∼ 1/a. Hence, a larger value of a reduces
the statistical uncertainty in βeff results. On the other hand, a larger value of a
introduces systematic errors in the calculations.

In this subsection, we are going to analyze the results that we have obtained
by varying the Chiba’s method perturbation parameter for each reactor. For rea-
sons we will explain in section 5.4, in this analysis we only take into account
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JENDL library. This analysis has been performed with four reactors: HEU-MET-
INTER-001, MIX-COMP-FAST-005, IEU-MET-FAST-010 and IEU-MET-FAST-
007. Let us start with the study of the change in the value of βeff with the a
parameter.

In figures 5.2.1 and 5.2.2, we can observe the βeff calculated with different
values of Chiba’s a parameter, the Bretscher value and the experimental result
for the cases HEU-MET-INTER-001 and MIX-COMP-FAST-005. The error bars
represent the experimental uncertainty, in the case of the experimental data, and
the uncertainty due to nuclear data for the calculated results. In both cases, there is
a very clear tendency of the value of βeff with the increasing value of a. It is easy
to see that this tendency is increasing in the case of HEU-MET-INTER-001 and
decreasing in the case of MIX-COMP-FAST-005. As the perturbation increases
and the difference between original and perturbed system is larger, the difference
in βeff between the two methods increases. In any case, both Bretscher’s and
Chiba’s results (with all three values) are compatible, within errors, with the ex-
perimental results, so the value a = 20 for the perturbation do not seem a bad
choice to estimate the delayed neutron fraction with these four benchmark reac-
tors (for the other reactors that are not present in this subsection, Chiba’s method
is always used with a = 20).

Figure 5.2.1: Experimental and Chiba’s method βeff for different values of the
perturbation.
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Figure 5.2.2: Experimental and Chiba’s method βeff for different values of the
perturbation.

Now, let us take a look at the uncertainties due to nuclear data and their sta-
tistical errors. Two major results are remarkable. First, as can be expected from
the own nature of Chiba’s method, the statistical errors of uncertainties due to nu-
clear data get lower with increasing a and are lower than the ones for Bretscher’s
method. The second is that due to larger statistical errors in Bretscher’s method,
it is possible that many irrelevant reactions can show ”falsely” large contributions
to nuclear data uncertainty (and large sensitivity profiles), which cause an over-
estimation of this uncertainty. Hence, the higher statistical accuracy of Chiba’s
method should reduce the influence of those reactions and give us a lower value
of the total uncertainty due to nuclear data [24].

In the tables 5.2.1 and 5.2.2 we can observe the different uncertainties for each
reactor. We can observe a steep fall in the uncertainty due to nuclear data and the
different statistical errors between Bretscher’s method and Chiba’s method with
a = 5 and smaller differences between different values of a for MIX-COMP-
FAST-005 and HEU-MET-INTER-001 5.

Previously, we have said that reducing statistical error helps us to distinguish
the real relevant reactions from the ones that are relevant only in Bretscher’s
method. So now, we are going to study the influence in the most relevant reactions
of the Chiba’s parameter a and the difference with Bretscher’s method.

5In general, for all the libraries and in all the reactors we observe this trend. Which a small
exception in the IEU-MET-FAST-010,-007 reactors with ENDFB, where a minimum is achieved
for a = 10 and a = 5, respectively, and there is a tiny rise for the subsequent a. These results can
be observed in [38], with the rest of the results for the Chiba analysis.
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Table 5.2.1: Experimental and evaluated delayed neutron fraction of
MIX-COMP-FAST-005 obtained for different cases. Uncertainty for the

JENDL-4.0u library. (*) Experimental uncertainty

Case MIX-COMP-FAST-005
βeff±Stat. Unc. (pcm) Unc. due to Data ± Stat. Unc. (pcm)

Experimental 381± 2* -
Brestcher 387.9± 1.4 15.9± 2.2
a = 5 384.9± 0.3 11.6± 0.3
a = 10 381.60± 0.20 11.16± 0.14
a = 20 375.60± 0.10 10.86± 0.07

Table 5.2.2: Experimental and evaluated delayed neutron fraction of
HEU-MET-INTER-001 obtained for different cases. Uncertainty for the

JENDL-4.0u library. (*) Experimental uncertainty

Case HEU-MET-INTER-001
βeff±Stat. Unc. (pcm) Unc. due to Data ± Stat. Unc. (pcm)

Experimental 659± 13.34* -
Brestcher 682.1± 2.8 27± 5
a = 5 683.8± 0.6 19.0± 0.5
a = 10 684.2± 0.3 18.30± 0.10
a = 20 684.2± 0.1 18.22± 0.04

In tables 5.2.3 and 5.2.4, we will consider only the most relevant reactions
contributing to the uncertainty, defined as those that explain at least 85% of the
uncertainty. The gaps mean that a specific reaction has a low contribution and is
not needed to sum the 85%. In the case of HEU-MET-INTER-001, we can observe
that the most relevant nuclear data for Bretscher’s method are the 235U average
number of delayed neutrons per fission (ν̄d) and the elastic cross section of 56Fe.
For Chiba’s method, we obtain a contribution for the ν̄d similar to Bretscher but,
as we increase a, the contribution to the relative uncertainty of elastic reaction and
its statistical error get lower and finally disappear of the main 85% contribution
for a = 20. This type of phenomenon explains the smaller uncertainty to nuclear
data in Chiba’s method than the one in Bretscher’s method. The contribution of ν̄d
seems to be stable for all the cases, but we observe a smooth improvement of its
statistical error with increasing a. For the reactors IEU-MET-FAST-007 and 010
we observe a very similar trend than in the previous reactor 6.

For MIX-COMP-FAST-005 reactor, the most relevant contributors to nuclear
data uncertainty for Bretscher’s method are the elastic cross section of 56Fe, the
ν̄d of 239Pu and 238U and the inelastic cross sections of 238U, that remains even for
high values of a, and hence seems to be a ”real” effect, not due to poor statistics

6The ν̄d of 235U and 238U and the elastic cross section of 238U are the most relevant contrib-
utors for Bretscher’s method. In these cases, the influence of elastic cross sections in the 85%
explanation of the uncertainty disappear beyond a = 5 and only the ν̄d influence remains. These
results are available in [38].
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(although we saw that, in general, elastic/inelastic cross sections are not a real in-
fluence in the βeff uncertainty). Beyond a = 5, there is not a relevant contribution
of elastic cross section of 56Fe.

If we observe the sensitivity profiles of elastic cross section for 56Fe for HEU-
MET-INTER-001 in figure 5.2.3 (notice the different ranges in the vertical axis),
we can see that the statistical uncertainty and the values of the sensitivity profiles
decreases with the increasing value of a, which explain the loss of contribution in
the total uncertainty due to nuclear data and the lower statistical errors.

To sum up, it has been observed that there is a clear problem of convergence
(solved with Chiba’s method for our benchmark reactors) with scattering (elastic
and inelastic) with Bretscher’s method, which causes that these reactions appear
to have some influence when we try to weight the uncertainty to nuclear data in
the delayed neutron fraction. This is an important effect to take into account when
calculating βeff by Bretscher’s method.

Table 5.2.3: Evaluated reaction uncertainties due to nuclear data (and
statistical error) of delayed neutron fraction of MIX-COMP-FAST-005
obtained for different cases. Uncertainty for the JENDL-4.0u library.

Case MIX-COMP-FAST-005 uncertainties (%)
238U (n,n’) 238U ν̄d 56Fe (n,n) 239Pu ν̄d

Bretscher 2± 3 1.895± 0.005 1.7± 2.4 1.5127± 0.0024
a = 5 1.32± 0.19 1.849± 0.003 - 1.5242± 0.0021
a = 10 1.14± 0.11 1.820± 0.003 - 1.5391± 0.0018
a = 20 1.16± 0.04 1.7689± 0.0022 - 1.5671± 0.0017

Table 5.2.4: Evaluated reaction uncertainties due to nuclear data (and
statistical error) of delayed neutron fraction of HEU-MET-INTER-001
obtained for different cases. Uncertainty for the JENDL-4.0u library.

Case HEU-MET-INTER-001 uncertainties (%)
235U ν̄d 56Fe (n,n)

Bretscher 2.627± 0.004 2± 7
a = 5 2.621± 0.003 0.8± 1.0
a = 10 2.6240± 0.0022 0.3± 0.7
a = 20 2.6274± 0.0019 -
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(a) SP for the βeff due to 56Fe cross section
with Bretscher’s method.

(b) SP for the βeff due to 56Fe cross section
with a = 5.

(c) SP for the βeff due to 56Fe cross section
with a = 10.

(d) SP for the βeff due to 56Fe cross section
with a = 20.

Figure 5.2.3: SP for the βeff due to 56Fe cross section for HEU-MET-INTER-001.

5.3 Statistical convergence of the results
In this subsection, we will check how is the accuracy of SUMMON for evaluat-
ing the statistical uncertainties of the uncertainties due to nuclear data. As stated
above, sensitivity profiles calculated with Monte Carlo codes are affected by sta-
tistical errors, and these statistical errors affect the uncertainties due to nuclear
data calculated by the sandwich rule. SUMMON propagates these errors using
classical standard deviation propagation formulae. The actual formulae are how-
ever very complex due to the need of having to take into account all correlations
between nuclear data 7.

To do this analysis, we have run ten simulations of HEU-MET-INTER-001
with different random seeds and ten times less statistics than in the simulations
we performed in the rest of the section (to use a reasonable computational time in
this part of the work). From these ten values, the (statistical) standard deviation
of the uncertainty due to nuclear data can be calculated as:

std =

√∑
i (ui − ū)2

N − 1
, (5.3.1)

where u denotes uncertainty due to nuclear data and ū its mean value. In
order to compare this statistical value with the evaluated by SUMMON for the
original simulation, we have to divide it by additionally

√
10 (because there are

ten simulations with ten times less statistic than the original simulation of HEU-
MET-INTER-001).

7SUMMON version 2.2 has been used to explore/study this issue, since it has also been used
for the S/U calculations.
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Now, let us see the results in tables 5.3.1 and 5.3.2. In the total table we
can observe the values for the statistical std of total uncertainties due to nuclear
data for βeff . In this case, there is a good agreement (up to a factor of two in
the worst cases) between statistical uncertainties evaluated with SUMMON and
the evaluated with the formulae (5.3.1), better for Chiba’s method, for the better
statistical convergence of this method 5.2.

In the contributions table, we can observe the values for the std of reaction
contributions to the total uncertainty due to nuclear data. More discrepancies can
be found here, for the three libraries and both methods, with differences that reach
one order of magnitude. So, we can conclude that SUMMON has a high accuracy
in the evaluation of statistical error of total uncertainty due to nuclear data, but
it has some problems when obtaining statistical uncertainties in the reaction con-
tributions, maybe due to internal programming of SUMMON or to the need of a
larger sample to a better evaluation with equation (5.3.1).

Table 5.3.1: Statistical uncertainties of total uncertainties due to nuclear
data for HEU-MET-INTER-001 evaluated with Eq. (5.3.1)/

√
10 and

SUMMON v2.2

Case Statistical unc. of total unc. due to nuclear data
Bretscher Chiba

JEFF-3.3
Eq. (5.3.1) 0.2194 0.01638
SUMMON 0.2128 0.01414

JENDL-4.0u
Eq. (5.3.1) 0.1658 0.00453
SUMMON 0.1164 0.00510

ENDF/B-VIII.0
Eq. (5.3.1) 0.0253 0.00170
SUMMON 0.0102 0.00212

Table 5.3.2: Statistical uncertainties of reaction contributions to total
uncertainties due to nuclear data for HEU-MET-INTER-001 evaluated with

Eq. (5.3.1)/
√
10 and SUMMON v2.2

Quantity Statistical unc. of total unc. due to nuclear data
Bretscher Chiba

Eq. (5.3.1) SUMMON Eq. (5.3.1) SUMMON
JEFF-3.3

235U (n,f)/235U (n,f) 0.0819 0.0889 0.00606 0.00532
235U χ/235U χ 0.3419 0.1385 0.02581 0.00286

JENDL-4.0u
235U ν̄d/235U ν̄d 0.009665 0.002570 0.001067 0.001435
ENDF/B-VIII.0

235U ν̄d/235U ν̄d 0.01594 0.00451 0.001486 0.002474
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5.4 Reactions contribution and libraries comparison
In this subsection, we will show the most relevant reactions contributing to the un-
certainty due to nuclear data in the multiplication factor and the delayed neutron
fraction and how different libraries will lead us to different contributions from in-
dividual reactions. In the following tables for the reaction contributions, the pairs
of nuclear data indicate the contribution due to the covariance between these nu-
clear data. The negative values indicate a negative contribution to the uncertainty
due to nuclear data. Let us start with the multiplication factor.

5.4.1 Reactions contribution for keff

Even though we could see in subsection 5.1.1 that the convariance matrices of the
JEFF library yield usually the largest nuclear data related uncertainties, the three
libraries give us similar relevant reactions 8. For the uranium systems, for which
we have an example in table 5.4.1, we find fission cross section, spectrum (χ) and
ν̄p and ν̄ of uranium isotopes. We can also find elastic and inelastic cross sections
of 238U and 235U with low statistical error in the uncertainty due to nuclear data so,
for the keff , their influence in this uncertainty must be taken into account. We can
observe that the cross uncertainty ν̄p and ν̄ has a large statistical error. Another
recurrent reaction that we can find is the radiative capture of 235U and 238U.

For the 239Pu cores, for which we have an example in table 5.4.2, we can find
very similar reactions than for the other cores, only that we change fission nuclear
data of uranium for plutonium. We can find another relevant elastic scattering
cross sections, as the one for 56Fe and 52Cr.

If we now observe the integrated sensitivity coefficients (ISCs) in energy for
the multiplication factor in table 5.4.3 (SNEAK-7A), we can infer how the dif-
ferent nuclear data affect the keff in all the energy range. In general, we report
positive ISCs for nuclear data related to fission, because this data is related with
the generation of neutrons. The elastic and inelastic scattering cross sections have
usually positive ISCs 9. The only relevant reaction that is clearly negative is the
radiative capture, a big rival of the fission reaction (remember that this reaction
consist in the absorption of a neutron and the emission of a photon, so we lose a
neutron without making new ones for the next generation). For the SNEAK-7A
reactor case, we can compare our ISCs with the most relevant found in the paper
[39] and we can observe a good agreement between them 10.

8The 235U fission cross section appears less times in JENDL than in the others, maybe JENDL
underestimates this reaction for reactor calculations (see reference [38]).

9Except in some fast reactors as MIX-COMP-FAST-005, IEU-MET-FAST-010, 020, 022 and
SNEAK-7B, where there are some scattering reactions with negatives ISCs (see reference [38]).

10An interesting result can be found for the fission spectra nuclear data. In spite of having a
negligible sensitivity profile, its uncertainty contribution is relevant in the three libraries.
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Table 5.4.1: Reaction contribution to multiplication factor uncertainty due
to nuclear data of IEU-MET-FAST-010. In brackets, % of the uncertainty

explained by the showed reactions.

Quantity ∆keff/keff (%)
JEFF-3.3 (83.9%)

235U (n,f)/235U (n,f) 1.1542± 0.0011
235U χ/235U χ 0.8491± 0.0008

238U (n,n’)/238U (n,n’) 0.674± 0.008
JENDL-4.0u (90.7%)

238U (n,n’)/238U (n,n’) 1.092± 0.004
235U χ/235U χ 0.54247± 0.00012

238U (n,γ)/238U (n,γ) 0.4715± 0.0003
ENDF/B-VIII.0 (73.0%)

235U (n,f)/235U (n,f) 0.6174± 0.0005
238U (n,γ)/238U (n,γ) 0.44343± 0.00019

235U ν̄/235U ν̄p 0.4± 0.6

Table 5.4.2: Reaction contribution to multiplication factor uncertainty due
to nuclear data of PU-MET-INTER-002. In brackets, % of the uncertainty

explained by the showed reactions.

Quantity ∆keff/keff (%)
JEFF-3.3 (92.2%)

239Pu (n,γ)/239Pu (n,γ) 0.8499± 0.0005
239Pu (n,f)/239Pu (n,f) 0.7168± 0.0008

239Pu ν̄p/239Pu ν̄p 0.46022± 0.00017
JENDL-4.0u (76.2%)
56Fe (n,n)/56Fe (n,n) 0.392± 0.012
56Fe (n,γ)/56Fe (n,γ) 0.3447± 0.0003

239Pu (n,γ)/239Pu (n,γ) 0.32108± 0.00006
ENDF/B-VIII.0 (78.2%)

239Pu ν̄/239Pu ν̄ 0.26807± 0.00011
239Pu ν̄p/239Pu ν̄p 0.26745± 0.00011
52Cr(n,n)/52Cr(n,n) 0.211± 0.006

Table 5.4.3: ISCs for the multiplication factor of SNEAK-7A.

Quantity Integrated Sensitivity Coefficients for keff (%/%)
MCNP Kodeli, [39]

239Pu (n,f) 0.5485± 0.0003 0.54
239Pu ν̄p 0.7955± 0.0003 0.779
238U ν̄p 0.13257± 0.00009 0.137
239Pu ν̄ 0.7971± 0.0003 -
239Pu χ 0.0000± 0.0003 -

238U (n,γ) −0.16411± 0.00006 -
238U ν̄ 0.13450± 0.00009 -

44



5.4.2 Reaction contribution for βeff

Now, we are going to see and analyse the results for the delayed neutron fraction.
In this case, major differences between libraries are found, as we can observe in
some cases in tables from 5.4.4 to 5.4.6. For the delayed neutron fraction, the
most relevant data, as expected, is ν̄d. Having this in mind, we can classify the
benchmark experiments in three groups: 233U cores, for which there are covari-
ance matrices for ν̄d in all three libraries; 235U cores, for which there are covari-
ance matrices for ν̄d in JENDL-4.0u and ENDF/B-VIII.0 but not in JEFF-3.3, and
239Pu cores, for which there are covariance matrices for ν̄d only in JENDL-4.0u.

The reactions that appear in uncertainty tables are those that contribute to at
least the 85% of the delayed neutron fraction uncertainty due to nuclear data.
As we discussed in the former subsection 5.2, for the study of the most rele-
vant reactions we must use the results for the Chiba’s method, because of the
problems with statistical convergence of the elastic/inelastic scattering reaction in
Bretscher’s method, which cause the appearance of these reactions as relevant due
to very inaccurate sensitivity profiles. So, for the following analysis we will focus
on the best library for each of the three groups and we only take in consideration
the reactions that mainly contribute for Chiba’s method.

For the singular case of U233-MET-FAST-006 the results with the three li-
braries are in very clear agreement (see table 5.4.4), more than the 85% of the total
uncertainty due to nuclear data is explained with the ν̄d of the 233U. If we have to
choose one library of reference, we may take the JEFF in order to be conservative,
because it provides us with the largest nuclear-data related uncertainties.

For the reactors with 235U cores, we observe in the example of table 5.4.5
(IEU-MET-FAST-007) two main nuclear data that explain in general the 85% of
the uncertainties, the ν̄d of 235U and 238U.

For the third group, 239Pu systems, we can find in the example of table 5.4.6
(PU-MET-FAST-006) the ν̄d of 238U and 239Pu (ν̄d of 235U is also included in the
tables in order to compare with [39]). We can find in addition the contribution of
the 238U inelastic scattering cross section which, as we see in the subsection 5.2,
is an exception of good convergence in the elastic/inelastic reactions, so we can
consider it a real contributor to the total uncertainty due to nuclear data 11.

We have just observed that the suitability of the use of a library strongly de-
pends on the materials of the core reactor, but the only one that in general provides
good results of the most relevant reactions is JENDL because it includes the co-
variances of ν̄d for all major fissioning isotopes. For these three examples, we can
compare with the results of [39] based on the JENDL-4.0u library and see a good
agreement with the results shown in this paper 12.

If we take a look on the ISCs in the example of table 5.4.7 (SNEAK-7A), we
can infer how this nuclear data affect to βeff globally. Obviously, the ISCs of
ν̄d are large and positive because it has a direct relation with βeff

13. The ISCs
sign for the 238U inelastic scattering cross section depends on the reactor design,

11We can also observe this for MIX-COMP-FAST-005, FCA-XIX-2, SNEAK-7A, 7B and MA-
SURCA ZONA2 reactors (see reference [38]).

12For PU-MET-FAST-001, HEU-MET-FAST-028, U233-MET-FAST-006, SNEAK-7A and 7B
we have also a comparison with [39] with good agreement (see reference [38]).

13We can observe for SNEAK-7A and for MASURCA ZONA2 similar ISCs for the ν̄d of 238U
and 239Pu for each reactor (see reference [38]).
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being negative in our example. We can observe large ISCs with large statistical
uncertainties for elastic/inelastic scattering with Bretscher’s method, but, when
we observe the same ISCs evaluated with Chiba’s method we find small ISCs
with small statistical uncertainties (as we observed for the sensitivity profiles in
5.2), so these reaction have a negligible real influence to the βeff uncertainty
due to nuclear data. A remarkable issue is that the ISCs of ν̄p and ν̄ also show
large values, usually with opposite sign that those of ν̄d. The same behaviour was
presented without explanation in [39]. Finally, we can observe in general a good
agreement with this paper [39].

Table 5.4.4: Reaction contribution to delayed neutron fraction uncertainty
due to nuclear data of U233-MET-FAST-006. All the reactions showed

explain an 85% of the total uncertainty at least. The library used in [39] is
JENDL-4.0m.

Quantity ∆βeff/βeff (%)
Bretscher Chiba Kodeli, [39]

JEFF-3.3
233U ν̄d/233U ν̄d 6.597± 0.019 6.576± 0.004 -

JENDL-4.0u
233U ν̄d/233U ν̄d 5.213± 0.015 5.201± 0.004 5.097
ENDF/B-VIII.0

233U ν̄d/233U ν̄d 5.213± 0.015 5.201± 0.004 -

Table 5.4.5: Reaction contribution to delayed neutron fraction uncertainty
due to nuclear data of IEU-MET-FAST-007. All the reactions showed

explain an 85% of the total uncertainty at least. The library used in [39] is
JENDL-4.0m.

Quantity ∆βeff/βeff (%)
Bretscher Chiba Kodeli, [39]

JEFF-3.3
238U (n,n’)/238U (n,n’) 0.5± 1.9 0.31± 0.06 -

238U ν̄p/238U ν̄p 0.447± 0.023 0.4051± 0.0013 -
235U (n,f)/235U (n,f) 0.39± 0.14 0.316± 0.007 -

235U ν̄p/238U ν̄p 0.27± 0.03 - -
235U χ/235U χ - 0.406± 0.008 -

JENDL-4.0u
235U ν̄d/235U ν̄d 1.8640± 0.0018 1.9739± 0.0012 1.8570
238U ν̄d/238U ν̄d 1.4815± 0.0023 1.3102± 0.0012 -

238U (n,n)/238U (n,n) 1.3± 0.7 - -
ENDF/B-VIII.0

235U ν̄d/235U ν̄d 2.5508± 0.0025 2.6686± 0.0017 -
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Table 5.4.6: Reaction contribution to delayed neutron fraction uncertainty
due to nuclear data of PU-MET-FAST-006. All the reactions showed

explain an 85% of the total uncertainty at least. The library used in [39] is
JENDL-4.0m.

Quantity ∆βeff/βeff (%)
Bretscher Chiba Kodeli, [39]

JENDL-4.0u
235U ν̄d/235U ν̄d 0.0637± 0.0004 0.0684± 0.0003 0.066
238U ν̄d/238U ν̄d 1.241± 0.007 1.1760± 0.0019 1.191

238U (n,n’)/238U (n,n’) 2.3± 0.8 1.80± 0.03 1.712
239Pu ν̄d/239Pu ν̄d 1.340± 0.005 1.3439± 0.0010 1.347

Table 5.4.7: ISCs for the delayed neutron fraction of SNEAK-7A.

Quantity Integrated Sensitivity Coefficients for βeff (%/%)
Bretscher Chiba Kodeli, [39]

238U (n,n’) −0.06± 0.12 −0.1548± 0.0017 -0.151
238U (n,f) 0.27± 0.04 0.261± 0.004 0.276
239Pu (n,f) −0.21± 0.11 −0.224± 0.014 -0.252

238U ν̄d 0.4967± 0.0021 0.4683± 0.0012 0.488
239Pu ν̄d 0.4023± 0.0008 0.4117± 0.0014 0.402
238U ν̄p −0.25± 0.03 −0.236308500± 0.000000020 -0.233
239Pu ν̄p −0.66± 0.10 −0.66953± 0.00003 -0.7
238U ν̄ 0.25± 0.03 0.232± 0.004 0.255
239Pu ν̄ −0.26± 0.10 −0.258± 0.016 -0.298

238U (n,n) −0.5± 0.3 0.00± 0.03 -
57Fe (n,n) 0.06± 0.04 0.000± 0.004 -
56Fe (n,n) 0.12± 0.17 −0.017± 0.017 -

238U χ 0.00± 0.03 0.000± 0.003 -
239Pu (n,n) −0.14± 0.13 −0.006± 0.011 -
240Pu (n,n) 0.07± 0.04 −0.0006± 0.0008 -
240Pu (n,n’) 0.014± 0.013 −0.0020± 0.0005 -

235U ν̄d 0.05651± 0.00019 0.0594± 0.0006 -
239Pu χ 0.0± 0.1 0.000± 0.008 -
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6 Conclusions
The major conclusions of this work are the following:

1. The uncertainty of the keff due to nuclear data has been found to be between
500 and 2000 pcm (0.5-2%) for the reactor systems analysed. The statis-
tical uncertainty was about 1-4 pcm. This shows a clear dominance of the
uncertainty due to nuclear data over the statistical uncertainty. In general,
we observed larger relative uncertainties due to nuclear data for uranium
systems than for plutonium systems (with the three libraries).

2. The delayed neutron fraction has been calculated with both Bretscher’s and
Chiba’s methodologies. The first is expected to produce more accurate re-
sults while the second produces more precise results, since the second intro-
duces a larger perturbation in the system. For this reason, an analysis of the
biases introduced by Chiba’s methodology has been performed and a good
agreement between experimental and calculated values has been found for
both Bretscher’s and Chiba’s methods, for the value of the perturbations
used in this work.

3. Concerning the calculation of the uncertainty due to nuclear data, it has
been found that Bretscher’s method is affected by too large statistical errors
to be practical, and hence Chiba’s method is the preferred option. With
Chiba’s method, the uncertainty of βeff due to nuclear data range between
are between 1.15 and 32.8 pcm while statistical errors in our case are about
0.1 and 0.3 pcm, showing again a clear dominance of the uncertainty due
to nuclear data. Statistical errors of the uncertainty due to nuclear data are
between 0.004 and 0.7 pcm. Observing the data with JENDL library, there is
not a clear separation between the relative uncertainties due to nuclear data
of 235U and plutonium systems, with the largest one for the 233U system (a
clear separation can be found in pcm, but this is due to the great difference
between βeff values for the different systems).

4. About the reactions with the largest contributions to the uncertainty, a wide
range of reactions has been observed in the case keff , being fission, radiative
capture and elastic/inelastic scattering of different nuclei the most relevant
ones. The study of the ISCs has shown a positive influence of fission cross
section and a negative influence of radiative capture on the keff value, while
the sign of the influence of elastic and inelastic scattering depends on the
reactor.

5. For βeff , the largest contributor to the uncertainty due to nuclear data is the
ν̄d of the major fissioning isotopes (233U, 235U, 238U, 239Pu), while inelastic
scattering of 238U also appears to be relevant in some reactors. The study of
ISCs has shown a positive influence of ν̄d in the βeff value, with negative
or positive influence of inelastic scattering of 238U depending on the the
reactor. Furthermore, a negative and large influence of ν̄p from different
fissionable nuclei has been observed, a fact that it is not explained at the
moment.
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6. Concerning the difference between libraries for S/U analyses, for the case
of keff there is no obvious difference between the JEFF-3.3, ENDF-VIII.0
and JENDL-4.0u libraries, although JEFF-3.3 is the library that produces
the largest uncertainties due to nuclear data in most reactors analysed. On
the contrary, major differences between libraries have been observed in the
case of S/U analyses of βeff . The reason is the number of isotopes for
which covariance matrices for ν̄d are included. The three libraries contain
covariance matrices for ν̄d of 233U, so all three can be used in the case of
233U systems, with the JEFF-3.3 library providing the largest uncertainty
due to nuclear data. ENDF/B-VIII.0 contains only covariance matrix of
ν̄d of 235U but only JENDL-4.0u contains the covariance matrices of ν̄d of
233U, 235U and 239Pu. Hence, JENDL-4.0u is the most suitable library for
S/U analyses in βeff .

7. Finally, the quality of SUMMON (v2.2) procedures for propagating the sta-
tistical errors in the sensitivity profiles to the uncertainty in the nuclear data
has been investigated. This has been achieved by performing Monte Carlo
simulations with different random seeds. It has been found a good accuracy
for the statistical error of the total uncertainty due to nuclear data for βeff .
On the other hand, we have observed large discrepancies, even of an or-
der of magnitude, for the statistical errors of the contributions of individual
reactions to the total uncertainty due to nuclear data.

Once we have shown and analysed our results, we can suggest different paths
to continue this research:

1. With respect to SUMMON, it is necessary to check and improve the imple-
mentation of the Sandwich Rule for the evaluation of reaction contributions
to the total uncertainty due to nuclear data; and maybe a revision of the dif-
ferent approximations carried out by the code in the statistical uncertainties
calculations of the sensitivity profiles.

2. With respect to system and parameters, it would be interesting to perform
the S/U analysis we have done for keff and βeff with other reactor param-
eters, such as the mean generation time Λ. Furthermore, the analysis per-
formed in this work can be extended to other types of reactors, as new de-
signs of small modular reactors or accelerator driven systems as MYRRHA
[40].

3. With respect to nuclear data, at least two major questions have arisen during
this work that remain to be answered: the large negative influence of ν̄p
(negative ISCs) in the sensitivity analysis of βeff and the non-negligible
influence of the fission spectra nuclear data in uncertainties due to nuclear
data for the keff , despite the very small ISCs for both reactor parameters,
that can be considered to be zero.
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A Values of keff , βeff and their uncertainties

Table A.1: Multiplication factor keff and total uncertainties for each
reactor.

Benchmark kexp
eff kMCNP

eff ± Unc. to Data±
Stat. Unc. Stat. Unc.

JEFF-3.3 JENDL-4.0u ENDF/B-VIII.0
HEU-MET 0.997 1.01018 0.018268 0.00935 0.013770
-INTER- ± ± ± ± ±

001 0.003 0.00002 0.000019 0.00005 0.000011
MIX-COMP 0.9913 0.99255 0.009689 0.008910 0.006152

-FAST- ± ± ± ± ±
005 0.0023 0.00001 0.000011 0.000015 0.000006

PU-MET 0.9878 1.00259 0.01309 0.00806 0.005552
-INTER- ± ± ± ± ±

002 0.0023 0.00002 0.00011 0.00004 0.000022
PU-MET 0.9723 0.97378 0.009692 0.006823 0.006380
-INTER- ± ± ± ± ±

004 0.0025 0.00002 0.000011 0.000015 0.000020
IEU-MET 0.9954 0.99735 0.018810 0.01437 0.006380

-FAST- ± ± ± ± ±
010 0.0024 0.00002 0.000021 0.00003 0.000020

IEU-MET 1.002 1.00562 0.015714 0.008200 0.010980
-FAST- ± ± ± ± ±

020 0.0013 0.00001 0.000008 0.000012 0.000004
IEU-MET 1.0084 1.01149 0.016834 0.010713 0.012207

-FAST- ± ± ± ± ±
021 0.0015 0.00001 0.000009 0.000019 0.000011

IEU-MET 1.0008 1.00233 0.016435 0.007472 0.011107
-FAST- ± ± ± ± ±

022 0.0013 0.00001 0.000007 0.000010 0.000003
LEU-COMP 1.0000 1.00072 0.008652 0.007082 0.0091990
-THERM- ± ± ± ± ±

006 0.0025 0.00001 0.000004 0.000003 0.0000011
LEU-COMP 1.0005 1.00163 0.00907 0.00771 0.01007
-THERM- ± ± ± ± ±

067 0.0005 0.00004 0.00008 0.00009 0.00006
PU-MET 1.000 0.99929 0.006881 0.0073271 0.013770
-FAST- ± ± ± ± ±

001 0.004 0.00001 0.000004 0.0000019 0.000011
IEU-MET 1.0045 1.00493 0.018049 0.013764 0.011716

-FAST- ± ± ± ± ±
007 0.0007 0.00001 0.000010 0.000017 0.000006

PU-MET 1.000 1.00335 0.009819 0.008137 0.007409
-FAST- ± ± ± ± ±

006 0.003 0.00002 0.000011 0.000009 0.000009

54



Table A.2: Multiplication factor keff and total uncertainties for each
reactor.

Benchmark kexp
eff kMCNP

eff ± Unc. to Data±
Stat. Unc. Stat. Unc.

JEFF-3.3 JENDL-4.0u ENDF/B-VIII.0
U233-MET 1.0000 1.00337 0.010679 0.011407 0.011621

-FAST- ± ± ± ± ±
006 0.0014 0.00002 0.000008 0.000007 0.000006

HEU-MET 1.0000 1.00013 0.013189 0.010413 0.012084
-FAST- ± ± ± ± ±

001 0.0010 0.00001 0.000010 0.000012 0.000003
HEU-MET 1.000 1.00412 0.014152 0.008806 0.012332

-FAST- ± ± ± ± ±
028 0.003 0.00001 0.000009 0.000011 0.000006
FCA 1.00761 0.014593 0.008627 0.013061
-XIX- - ± ± ± ±

1 0.00002 0.000007 0.000009 0.000004
FCA 1.21884 0.008631 0.007346 0.005784
-XIX- - ± ± ± ±

2 0.00002 0.000009 0.000013 0.000008
FCA 0.99441 0.007109 0.00669 0.005306
-XIX- - ± ± ± ±

3 0.00002 0.000013 0.00003 0.000022
1.0095 0.008618 0.007185 0.005619

SNEAK-7A - ± ± ± ±
0.00002 0.000010 0.000015 0.000008
1.00488 0.010033 0.009633 0.006579

SNEAK-7B - ± ± ± ±
0.00001 0.000011 0.000019 0.000007

MASUR- 0.99246 0.01658 0.00703 0.01207
CA - ± ± ± ±
R2 0.00002 0.00011 0.00008 0.00008

MASUR- 1.00309 0.00813 0.00689 0.00522
CA - ± ± ± ±

ZONA2 0.00002 0.00009 0.00007 0.00005
HEU-MET 0.9987 1.00338 0.013792 0.008211 0.011923

-FAST- ± ± ± ± ±
062 0.0010 0.00002 0.000012 0.000013 0.000008

HEU-MET 1.0026 1.00412 0.013210 0.010373 0.012097
-FAST- ± ± ± ± ±

100 0.0007 0.00001 0.000010 0.000012 0.000004
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Table A.3: Delayed neutron fraction βeff and total uncertainties for each
reactor. In the top of each row, the βeff and uncertainty calculated by
Bretscher’s method are found, and in the bottom, by Chiba’s method.

Benchmark βexp
eff (pcm) βeval

eff ± Unc. to Data±
Stat. Unc. (pcm) Stat. Unc. (pcm)

JEFF-3.3 JENDL-4.0u ENDF/B-VIII.0

HEU-MET
-INTER-

001
659± 13

682± 3

684.20± 0.10

32
±
6

4.47
±

0.12

27
±
5

18.22
±

0.04

34.7
±
1.9

31.208
±

0.021

MIX-COMP
-FAST-

005
381± 8

387.9± 1.4

375.60± 0.10

9.3
±
1.9

5.1
pm
0.1

15.9
±
2.2

10.86
±

0.07

8
±
3

4.34
±

0.05

PU-MET
-INTER-

002
222± 4

234± 3

233.10± 0.10

22
±
4

1.79
±

0.15

29
±
8

11.32
±

0.07

18
±
4

1.35
±

0.22

PU-MET
-INTER-

004
223± 10

250± 3

248.60± 0.10

10.7
±
1.8

1.88
±

0.10

14.2
±
1.7

10.386
±

0.017

15
±
4

1.35
±

0.09

IEU-MET
-FAST-

010
725± 15

738± 3

713.60± 0.20

11
±
3

6.06
±

0.21

21
±
3

18.21
±

0.07

22.1
±
2.4

19.95
±

0.03

56



Table A.4: Delayed neutron fraction βeff and total uncertainties for each
reactor. In the top of each row, the βeff and uncertainty calculated by
Bretscher’s method are found, and in the bottom, by Chiba’s method.

Benchmark βexp
eff (pcm) βeval

eff ± Unc. to Data±
Stat. Unc. (pcm) Stat. Unc. (pcm)

JEFF-3.3 JENDL-4.0u ENDF/B-VIII.0

IEU-MET
-FAST-

020
(7.7± 0.5) · 101

746.8±1.4

728.20±0.10

7.8
±
1.5

5.02
±

0.07

22.4
±
1.9

18.04
±

0.03

23.4
±
1.0

22.954
±

0.012

IEU-MET
-FAST-

021
(7.7± 0.5) · 101

750.3±1.4

732.20±0.10

6.7
±
1.4

5.54
±

0.08

21.0
±
2.0

18.53
±

0.05

22.6
±
0.4

21.977
±

0.011

IEU-MET
-FAST-

022
(7.7± 0.5) · 101

750.3±1.4

728.40±0.10

9.0
±
2.0

5.15
±

0.07

19.7
±
1.2

17.66
±

0.03

23.8
±
0.3

23.768
±

0.012

LEU-COMP
-THERM-

006
771±19

795.4±1.4

787.60±0.10

5.3
±
0.7

4.96
±

0.04

22.24
±

0.16

21.928
±

0.009

30.15
±

0.06

30.021
±

0.009

LEU-COMP
-THERM-

067
750±19

774.7±4.4

767.3±0.3

6
±
6

4.6
±
0.3

23
±
5

22.13
±

0.19

31
±
11

30.47
±

0.19
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Table A.5: Delayed neutron fraction βeff and total uncertainties for each
reactor. In the top of each row, the βeff and uncertainty calculated by
Bretscher’s method are found, and in the bottom, by Chiba’s method.

Benchmark βexp
eff (pcm) βeval

eff ± Unc. to Data±
Stat. Unc. (pcm) Stat. Unc. (pcm)

JEFF-3.3 JENDL-4.0u ENDF/B-VIII.0

PU-MET
-FAST-

001
194±10

188.1±1.4

188.50±0.10

1.8
±
0.4

1.53
±

0.04

4.58
±

0.07

4.529
±

0.004

1.14
±

0.12

1.150
±

0.007

IEU-MET
-FAST-

007
720±7

739.4±1.4

714.90±0.10

6.9
±
2.0

5.69
±

0.10

21
±
3

18.21
±

0.04

20.5
±
0.5

20.058
±

0.011

PU-MET-
-FAST-

006
276±7

287±3

284.10±0.10

4.0
±
1.6

3.15
±

0.07

9.2
±
1.5

7.74
±

0.06

4.1
±
0.7

2.02
±

0.04

U233-MET
-FAST-

006
360±14

376±3

374.30±0.10

25.6
±
0.6

24.853
±

0.018

21.6
±
0.6

20.94
±

0.03

20.5
±
0.3

19.965
±

0.016

HEU-MET
-FAST-

001
659±10

650.9±1.4

648.00±0.10

8.9
±
1.4

9.14
±

0.09

19.2
±
0.8

19.02
±

0.03

29.46
±

0.07

29.748
±

0.014
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Table A.6: Delayed neutron fraction βeff and total uncertainties for each
reactor. In the top of each row, the βeff and uncertainty calculated by
Bretscher’s method are found, and in the bottom, by Chiba’s method.

Benchmark βexp
eff (pcm) βeval

eff ± Unc. to Data±
Stat. Unc. (pcm) Stat. Unc. (pcm)

JEFF-3.3 JENDL-4.0u ENDF/B-VIII.0

HEU-MET
-FAST-

028
675±13

692.1±1.4

687.20±0.10

9.4
±
1.8

6.99
±

0.07

22.2
±
1.7

18.41
±

0.03

27.1
±
0.3

27.353
±

0.013

FCA
-XIX-

1
742±24

764.2±2.8

760.10±0.20

14.4
±
2.3

4.45
±

0.05

22.3
±
1.7

18.591
±

0.021

34.1
±
0.5

32.760
±

0.022

FCA
-XIX-

2
364±9

362.6±2.3

357.10±0.10

13
±
3

3.83
±

0.13

16
±
4

8.72
±

0.06

11
±
3

3.79
±

0.04

FCA
-XIX-

3
251±4

256±3

257.80±0.10

17
±
4

1.69
±

0.12

16
±
4

7.05
±

0.06

9
±
3

1.67
±

0.08

SNEAK-7A (40± 3) · 10

387±3

372.40±0.10

7
±
3

5.46
±

0.14

16
±
4

10.84
±

0.08

8.3
±
1.9

3.80
±

0.05
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Table A.7: Delayed neutron fraction βeff and total uncertainties for each
reactor. In the top of each row, the βeff and uncertainty calculated by
Bretscher’s method are found, and in the bottom, by Chiba’s method.

Benchmark βexp
eff (pcm) βeval

eff ± Unc. to Data±
Stat. Unc. (pcm) Stat. Unc. (pcm)

JEFF-3.3 JENDL-4.0u ENDF/B-VIII.0

SNEAK-7B (44.0± 3.4) · 10

437.9±1.4

417.60±0.10

10.0
±
2.1

5.53
±

0.15

19
±
4

11.95
±

0.10

8.6
±
2.3

5.14
±

0.05

MASURCA
R2 721±11

740±3

727.20±0.20

14
±
11

4.5
±
0.7

25
±
10

17.7
±
0.4

28
±
8

26.4
±
0.7

MASURCA
ZONA2 349±6

352.9±2.8

345.40±0.10

9
±
12

4.1
±
0.6

15
±
10

9.13
±

0.18

9
±
8

3.2
±
0.7

HEU-MET
-FAST-

062
663±17

7’00±3

687.50±0.20

12.7
±
2.5

6.71
±

0.09

19.5
±
1.1

18.36
±

0.04

27.31
±

0.13

27.295
±

0.018

HEU-MET
-FAST-

100
657±9

646.3±1.4

648.60±0.10

11.0
±
2.0

9.00
±

0.09

18.9
±
0.6

18.98
±

0.03

29.41
±

0.07

29.710
±

0.013
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