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ABSTRACT

Flash droughts are defined as fast and intense dryings of the land system. In 
these episodes, declines in precipitation deficits are often accompanied by rapid in-
tensifications of evaporative demand, leading to sharp soil moisture decreases and 
noticeable agricultural and environmental impacts. This research presents a straight-
forward framework for global historical characterization of precipitation-deficit-re-
lated flash droughts, examining the extent to which this type of hazard can be de-
scribed using only pentad rainfall data. The Drought Exceedance Probability Index 
was applied to global gridded high-resolution rainfall data for 1979 - 2020. Sharp up-
surges in the pentad index series were detected and counted to analyze the occurrence 
of precipitation-deficit flash droughts. The precipitation characteristics associated to 
flash drought incidence were explored to learn if some rainfall regimes or times of 
the year are more prone to the phenomenon, which could help societies become more 
prepared for the risk. It was observed that climates with marked inter-annual and 
intra-annual rainfall variability record more flash droughts, especially when that vari-
ability is significant during the local wet seasons. This is the case of regions with 
erratic rainfall generation mechanisms such as Mediterranean climates or monsoon 
climates. The episodes mainly occur during what is expected to be the humid time 
of the year, when they can produce greater impact. The methodology used was able 
to detect the most intense events described in previous studies that used variables as-
sociated to soil moisture dryness, confirming the role of acute precipitation deficits 
in triggering them.
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1. INTRODUCTION
1.1 Background and State of the Art Regarding Flash 

Droughts

Drought is defined by the World Meteorological Or-
ganization in the Integrated Drought Management Program 
Glossary as a “prolonged absence or marked deficiency of 
precipitation or a period of abnormally dry weather, suf-
ficiently prolonged for the lack of precipitation to cause 
a hydrological imbalance”. According to that definition, 
droughts can occur anywhere and can generate significant 
impacts due to disruption of the usual climatic, moisture and 
water availability rhythms. Due to these significant impacts 
on agriculture, ecology, environment and economy, it is of 
great significance to continue analyzing the spatiotemporal 
behaviour and change trend of drought occurrence for disas-
ter prevention and mitigation (Yan et al. 2021).

However, activities and the environment are not just 
disrupted by prolonged drought periods (Otkin et al. 2018). 
Anomalously rapid intensification of droughts has also 
proven detrimental, especially for vegetation when occur-
ring during the respective growing season (Li et al. 2020a). 
Such droughts are known as flash droughts and are gaining 
more attention in the years of publication of this study.

Related research published to date has analyzed the 
evolution at high temporal resolution of one or several in-
dexes based on hydrometeorological variables such as pre-
cipitation and soil moisture, though also evapotranspiration, 
temperatures, and other meteorological parameters, in or-
der to identify and describe flash drought (FD) events in 
specific areas (Mo and Lettenmaier 2015, 2016; Wang et 
al. 2016). Specifically, the phenomenon has been character-
ized by applying straightforward calculations that depict the 
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rapid decline of the variables mentioned above (Ford and 
Labosier 2017; Koster et al. 2019) or of indications such as 
their anomalies with respect to normal values (Zhang et al. 
2017; Yuan et al. 2018; Li et al. 2020a, b), the Evaporative 
Stress Index (Otkin et al. 2013, 2018; Christian et al. 2019), 
the Standardized Precipitation-Evapotranspiration Index 
(SPEI) (Noguera et al. 2020) or the Evaporative Demand 
Drought Index, based on potential evapotranspiration data 
(Pendergrass et al. 2020).

Most emphasis has been on FDs’ impacts on soil mois-
ture depletion and the indexes used are therefore meant to 
track that aspect. The effects of such droughts on the veg-
etation itself, runoff, groundwater or surface storage have 
received less attention, although propagation to those stages 
of the hydrological cycle is usually more sensitive to pro-
longed deficits or to the clustering of several consecutive 
droughts; basin characteristics also make it harder to iden-
tify direct connections (Van Loon 2013).

The United States National Integrated Drought Infor-
mation System states in its website that contrary to conven-
tional droughts, in which precipitation deficit is the essential 
feature, FDs usually include abnormally high temperatures 
and evapotranspiration rates. Researchers have accordingly 
defined two main categories of FDs: precipitation-deficit 
FDs and heat-wave FDs, though they are not always ana-
lyzed separately. A heat-wave FD caused by high tempera-
ture may entail an increase in evapotranspiration and soil 
moisture depletion over a short period. A precipitation-
deficit FD is due to a severe precipitation shortfall which 
may be accompanied by a decrease in evapotranspiration 
and rising temperature (Mo and Lettenmaier 2016; Zhang et 
al. 2017; Wang and Yuan, 2018; Liu et al. 2020).

Several studies have focused on defining how far defi-
cits must drop for a drought to be considered a flash drought. 
The definition of Mo and Lettenmaier (2016) indicated a 
5-day period of soil moisture below the 40th percentile; that 
threshold was employed and adapted by Zhang et al. (2017) 
and Yuan et al. (2018), who also used abrupt percentile de-
clines and the existence of evapotranspiration and precipita-
tion anomalies to refine the characterization of events. Ford 
and Labosier (2017) described an FD as soil moisture de-
clining from above the 40th to below the 20th percentile over 
a 20-day period, as those values have proven critical for the 
generation of environmental impacts (Svoboda et al. 2002).

In all the aforementioned efforts, the authors agree on 
two essential aspects for distinguishing FDs: the episodes 
are (1) beyond a certain rate (speed) of intensification and 
(2) exceed a well-defined deficit threshold in order to be 
classified as droughts.

Most published research has been applied to regional 
or country case studies. For example, a rapid decline in soil 
moisture is used to identify and characterize FDs in south-
ern Africa in 2015 and 2016 (Yuan et al. 2018). Wang et 
al. (2016) examined long-term variability of FDs in China. 

Zhang et al. (2017) analyzed FD features in the Gan River 
Basin, linking them to phenological cycles for the period 
1961 - 2013. The initial assessments of Mo and Lettenmaier 
(2016) opened a series of studies by them and other authors 
regarding types of FDs and the challenges they pose in the 
United States (US).

The first quasi-global characterization approach ap-
peared in Koster et al. (2019), which used soil moisture 
reanalysis data to define FD events, the ultimate purpose 
being to assess the contribution of evapotranspiration and 
precipitation anomalies to their development.

Some research work has gone beyond characterization, 
aiming to improve FD early warning and prediction capac-
ity based on daily data. Li et al. (2020a) used meteorologi-
cal and soil moisture data at this timescale to characterize 
intensification rates of the phenomenon in China’s Pearl 
River Basin, defining the respective typical time and space 
dynamic propagation patterns. Mo and Lettenmaier (2016) 
followed a similar approach with modelled data in the US. 
In the same country, Otkin et al. (2018) and the National 
Weather Service conducted studies about the development 
and evolution of FD events, intending to predict their onset 
in sub-seasonal timescales.

In sum, the published research examples have used 
moderate to high data demand frameworks which allow 
for accurate interpretation of FD events from local to re-
gional scale.

1.2 Research Rationale and Objectives

Global-scale spatiotemporal patterns and proneness to 
experiencing FDs have not been sufficiently studied, beyond 
the aforementioned efforts by Koster et al. (2019). This re-
search was inspired by the results of that study, which held 
that precipitation deficit played a relevant role in generat-
ing sudden soil moisture declines, and intends to produce a 
straightforward framework for historical characterization of 
precipitation-deficit-related FD events at global scale, and 
to present the results of that characterization. This docu-
ment hence analyzes how the precipitation-driven phenom-
enon behaves, without the involvement of other processes 
and elements of the hydrological system, also considering 
broader availability and accuracy of the data compared to 
other variables.

The Drought Exceedance Probability Index (DEPI) 
is used for this analysis due to its computational simplic-
ity, since it only requires rainfall data to be calculated, and 
because it shows a great ability to reflect the onset, end, 
intensity, and actual duration of the meteorological drought 
(Limones et al. 2020). The time series of the DEPI index 
are examined to determine how many FDs have occurred in 
all land domains of the world (except deserts, namely those 
pixels recording less than 250 millimeters of annual precipi-
tation, which were masked) and when.
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Furthermore, the rainfall conditions associated to FD 
incidence are explored to ascertain whether some regions 
and regimes are more prone to the phenomenon. The fre-
quency of events within a year will be compared to local 
rainfall schedules and expected precipitation peaks to obtain 
a sense of their potential impact on vegetation.

The last part of the paper makes a global-scale assess-
ment of the temporal evolution and trends in FD occurrence.

2. MATERIALS AND METHODS
2.1 Flash Drought Identification

This research focuses on characterizing precipitation-
deficit flash droughts, understood and measured here simply 
as intense and fast declines in precipitation deficits.

2.1.1 Using a Simple Framework Based on Precipitation 
Values

Even though previous studies do not consider that 
abrupt rainfall deficits anticipate a rapid decline in the more 
complex indexes used to define FDs (combining precipita-
tion with evapotranspiration and often other variables re-
garding soil moisture), it has been confirmed that a sudden 
drop in precipitation values (measured exclusively by ob-
serving rainfall indexes) occurs at the onset time of their 
identified FDs (Ford and Labosier 2017; Chen et al. 2019; 
Li et al. 2020a). This means that the abrupt decline in rain-
fall drought indexes is coupled with rapid impacts on soil 
(Koster et al. 2019) and vegetation health, even if there are 
other participating or prevailing parameters.

It may be especially interesting to evaluate whether 
the method presented is sufficient to reveal what have been 
defined as precipitation or water deficit driven FDs (Mo 
and Lettenmaier 2016). However, the same research pa-
pers also define what are called heat-driven FDs, which 
occur when the acute precipitation deficit combines with 
other extreme weather anomalies that augment evapora-
tive demand. In such cases, the soil suffers more severe 
moisture depletion; it is important to confirm whether 
these events are captured when following our character-
ization framework.

On the other hand, droughts measured by precipitation 
are also fully natural, upstream phenomena not affected by 
water, land-use or soil management, which are included in 
some of the variables participating in other FD characteriza-
tion frameworks.

Apart from its central role in drought generation, pre-
cipitation is almost always the variable with the highest 
temporal variability of all potential participants in a drought 
index, which entails that temperature or evapotranspiration 
have a more moderate responsibility regarding drought de-
tection from a statistical standpoint (Vicente-Serrano et al. 
2010; Asadi Zarch et al. 2011).

2.1.2 DEPI Drought Index Calculation on Pentad 
Precipitation Data

The DEPI is a meteorological drought index based on 
the calculation of cumulative rainfall anomalies (Limones et 
al. 2020) in a manner similar to the Standardized Precipita-
tion Index (SPI) of McKee (McKee et al. 1995) or the de-
rivative SPEI (Vicente-Serrano et al. 2010). However, each 
DEPI score represents the empirical probability of exceed-
ance of the drought level experienced in that particular time 
unit (originally months).

For this paper, the DEPI index is simply applied to 
pentad precipitation data.

The index is calculated by means of the following suc-
cessive stages (Limones et al. 2020).

In the first stage, the rainfall anomalies of each pentad 
of the series (AP) are calculated using the expression:

AP P Pi i MEDi
= -  (1)

Where:
Pi = Precipitation of the pentad i
PMEDi

 = Median precipitation of the pentad i for the whole 
study period

In the second stage, cumulative rainfall anomalies are 
calculated from the first pentad of the series on, simply add-
ing the sum of the previous anomalies to the new one (APi). 
However, anytime a negative pentad anomaly (APi <0) is 
found after a positive accumulation of anomalies, the ac-
cumulation is restarted in that particular pentad (namely, 
the cumulative rainfall anomaly of that pentad i becomes 
equal to that negative APi, regardless of the amount accrued 
until the previous pentad). After that restart, the addition 
of anomalies continues pentad by pentad, and may become 
positive again after successive accumulations.

The methodology is a constant addition of excesses 
that ends whenever there is a negative anomaly, in order to 
give it importance.

Consequently, the calculation of this second phase is:

APAc AP APAc AP si i 1>i i
j r

i
1 1= =

=
/  (2)

Where:
APAci = Rainfall cumulative anomaly of the pentad i;
r = the value marking the start of the dry sequence and fol-
lows the expression
r = max{k : 1 ≤ k ≤ i, APk < 0, APAck - 1 ≥ 0},

Note that if APi < 0 yAPAci - 1 ≥ 0, then r = i and as 
a result APAci = APi, marking the beginning of a new dry 
sequence.

Finally, in the third stage it is necessary to sort the pen-
tad series of cumulative rainfall anomalies calculated in the 
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previous stage and to compute their empirical probability of 
exceedance, using the plotting positions method designed 
by Weibull:

Pexced APAci = DEPIi = M APAci / (n + 1) (3)

Where:
Pexced APAci = empirical probability of exceedance of the 
cumulative anomaly of pentad i, namely, the DEPI of the 
pentad i.
M APAci = position of the rainfall cumulative anomaly of 
the pentad i in the sorted series, from lowest to highest cu-
mulative anomalies, being:
M = 1 the largest negative cumulative anomaly or largest 
observed deficit;
n = total number of pentads in the series.

Consequently, the DEPI for each pentad is literally 
the probability of exceedance attributable to its cumulative 
rainfall anomaly, computed as described above. DEPI val-
ues below 0.5 indicate bulk accumulation of negative anom-
alies, less likely to be surpassed as they approach DEPI 0, 
and are consequently considered droughts.

For an exercise of global FD characterization like that 
intended by this research, the straightforward and unam-
biguous identification of historical dry sequences obtained 
from a single calculation in three stages of the DEPI index is 
easier to interpret than the series generated with multi-scale 
indexes like the SPI or SPEI, where important aspects like 
drought onset or intensity largely depend on the accumula-
tion scale.

Once the pentad time series of raw precipitation are 
converted into series of pentad DEPI values from 1979 to 
2020, FDs need to be identified within them.

Following the Ford and Labosier (2017) thresholds and 
logic, adopted with minor changes by Zhang et al. (2017), 
Yuan et al. (2018), and Liu et al. (2020), among others, the 
criteria selected to register the start of an FD in a particular 
pentad i of the series were:
(1)  The DEPI of the previous pentad (i - 1) was above the 

value 0.4 (it is the 40th percentile or an empirical probabil-
ity of exceedance of the current level of drought of 0.4), 
namely, the previous pentad was either normal or only in 
a situation of very mild drought (Limones et al. 2020);

(2)  In the considered pentad i, the DEPI values dropped 
below 0.2 probability of exceedance, suddenly entering 
moderate drought levels.

Every time those conditions appear in a series, a new 
FD is counted, even if they are only separated by one wet 
pentad, which is a virtually nonexistent situation in the se-
ries actually used.

We recommend to consult Limones et al. (2020) for 
examining their test of the usefulness of the DEPI index for 
several climates of the Earth.

Thanks to the use of the median for the DEPI formula-
tion, the series will always have half of the months marked 
as wet sequences (DEPI > 0.5) and half of the months 
marked as droughts (DEPI < 0.5), with the median value of 
the cumulative anomalies as the tipping point between the 
two. This means that some negative cumulative anomalies 
will not be marked as droughts if they are not below the 
median, because they will not be considered exceptionally 
bulky deficits. Therefore, finding a drought value (DEPI < 
0.5) happens in just half of the series, but to find a jump 
from 0.4 to below 0.2 is quite exceptional. If such situations 
take place they deserve to be marked as FD.

2.2 Data

The daily precipitation values used to calculate the 
pentad sums and for the rest of the precipitation statistics 
are obtained from the CPC Global Unified Gauge-Based 
Analysis of Daily Precipitation dataset (freely available at 
ftp://ftp.cdc.noaa.gov/Datasets/cpc_global_precip/). It is a 
widely used climate dataset on a 0.5° latitude by 0.5° lon-
gitude grid over all land domains, prepared by interpola-
tion of the values of weather station observations. It covers 
the period 1979 - 2020 at daily scale (Chen et al. 2008). 
The full extent of the precipitation dataset was used for the 
FD analysis, both spatially (the entire globe, except desert 
areas) and temporally (all days from 1979 to 2020). The 
CPC datasets covers such a long timespan at high temporal 
and spatial resolution that it permits significant historical 
characterization of FDs. As explained in the CPC database 
documentation, the dataset values were subject to extensive 
quality control and homogenization processes.

3. RESULTS: GLOBAL CHARACTERIZATION OF 
FLASH DROUGHTS

3.1 Global Distribution of Flash Drought Occurrence

Figure 1 presents a grid with the total number of FDs 
from 1979 to 2020, showing the areas where the frequency 
of occurrence of a sudden decline in precipitation drought in-
dexes is higher. There are a number of hotspots. Especially 
significant are those in various parts of Australia (with the 
maximum values of the world on the western coast), Iran, 
Pakistan, India, Bangladesh, the shores of the Mediterranean, 
the Southern African Development Community countries, 
southern Chile and Argentina and northern Mexico. Precipi-
tation is inherently sparse and erratic in some of these areas, 
so the importance and impacts of the swift occurrence of 
these anomalies are not necessarily comparable in all of them.

On the other hand, number of areas in western North 
America, Central Europe, Russia, and China register less 
extensive clusters.

The total number of identified flash droughts in Fig. 1 
clearly depends on the stringency of the thresholds used to 
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determine them (from DEPI > 0.4 to a DEPI of < 0.2). Obvi-
ously, if they are loosened there are more identified FDs in 
general, though the patterns remain similar with the hotspots 
in precisely the same listed locations (not displayed).

3.2 Rainfall Characteristics of Flash Drought Prone 
Areas

Total annual precipitation, variability of the precipita-
tion (coefficient of variation) for the twelve months of the 
year, persistence of monthly precipitation, monthly anomaly 
(precipitation minus the median of the month) autocorrela-
tion from 1 to 4 months’ lag and precipitation concentration 
index have been calculated for each pixel of the database to 
assess whether any of these parameters have any significant 
connection to the proneness to registering more FDs.

Using the pixels both with and without zero FDs in 
the total of the series, the only Pearson correlations signifi-
cantly different from 0 are those with the variability of all 
the months and with factor combinations of them, but only 
with R around 0.3. The scatterplots’ visual analysis did not 
reveal any interpretable feature. The Spearman correlations 
show similar features.

The average monthly precipitation regimes were also 
calculated for all the pixels and groups of them were ex-
tracted with cluster analysis. Two different methods were 
applied to achieve that partition: (1) K-means cluster extrac-
tion with the 12 monthly averages expressed in millimeters; 
and (2) K-means cluster extraction with the percentage of 
total annual average precipitation that corresponds to each 
of the 12 months, as a way to rescale the monthly values and 
also make them representative of their specific contribution 
to the yearly sum. Scaling (normalizing) the monthly values 
and monthly percentages for pixel clustering was tried as 
well, but it produced very similar grouping results to meth-

ods 1 and 2, respectively.
K-means was applied to the pixel regimes, with prior 

exploration of the inside groups’ sum of squares by num-
ber of clusters extracted to determine the suitable number 
of clusters. In the two cases, 12 dissimilar rainfall behaviors 
grouped all the land pixels with sufficient internal cohesion.

The number of registered FDs was compared among 
the 12 precipitation regimes, for their two different classifi-
cations. After applying the Shapiro-Wilk test and analyzing 
the plots of residuals, the data cannot be considered to be 
normally distributed, nor can it be assumed that the vari-
ance across groups is homogeneous. The Welch one-way 
test and Pairwise t-tests with no assumption of equal vari-
ances, plus the Kruskal-Wallis rank sum test, were applied 
to check whether there are differences between the groups 
in the ways they experience FDs. Table 1 and Fig. 2 sum-
marize the main results.

The results in Fig. 2 and Table 1 confirm that FDs do 
not show similar occurrence across the different rainfall pat-
terns. Semi-arid to arid regimes that receive almost all of 
their precipitation during certain seasons are prone to re-
cording more FDs, while humid regimes show fewer. On the 
other hand, the boxplot in the lower part of Fig. 2 suggests 
that more regular regimes tend to experience fewer FDs; 
however, regime type 7 is the only one with significantly 
fewer FDs. This is in agreement with the sharp declines, 
with less soil moisture, found by Koster et al. (2019) in the 
year-round wet areas of the world, even though their hy-
pothesis assigns more importance to the fact that the overall 
humid conditions do not allow for those episodes, while we 
will explain in the coming sections that this may have more 
to do with precipitation regularity than abundance.

However, some of the regime types do not have enough 
cases for statistically significant comparison, so further spe-
cific research is needed to substantiate these findings.

Fig. 1. Number of precipitation-deficit flash droughts per pixel from 1979 to 2020. CPC precipitation dataset.



Natalia Limones602

Clustering method Welch one-way test Pairwise comparison t-test Kruskal-Wallis rank sum test Interpretation and observations

(1) Extraction with the 
12 monthly averages 
expressed in millime-

ters

Including the pixels with 
zero FDs: F = 57.926, 

num df = 11, denom df = 
12049, p-value < 2.2e - 16

Including the pixels with zero 
FDs, there are significant 

differences (p values below 
0,001) in:

Including the pixels with zero 
FDs: K-W chi-squared = 1497, 

df = 11, p-value < 2.2e - 16
P values are close to 0. The 

regimes’ groups are significantly 
different with respect to the num-
ber of FDs experienced during the 
period 1901- 2019. Drier regimes 
with seasonality show more FD 
cases. There are few FD cases in 

equatorial rainfall regimes

Regime 12 - Regime 10
Regime 12 - Regime 4
Regime 4 - Regime 3
Regime 5 - Regime 3
Regime 6 - Regime 10
Regime 6 - Regime 11
Regime 6 - Regime 12
Regime 6 - Regime 5

Regime 8 with all

Without the pixels with 
zero FDs: F = 27.947, 
num df = 11.00, denom 
df = 233.65, p-value < 

2.2e - 16

Without the pixels with zero 
FDs, there are significant 

differences in:

Without the pixels with zero 
FDs: K-W chi-squared = 
158.87, df = 11, p-value < 

2.2e - 16

Regime 3 - Regime 10
Regime 3 - Regime 11
Regime 3 - Regime 12
Regime 6 - Regime 10
Regime 6 - Regime 11
Regime 6 - Regime 4
Regime 6 - Regime 5

Regime 8 with all

(2) Extraction with the 
percentage of total an-
nual average precipita-
tion that corresponds to 
each of the 12 months

Including the pixels with 
zero FDs:

F = 39.672, num df = 
11, denom df = 11042, 

p-value < 2.2e - 16

Including the pixels with zero 
FDs, there are significant 

differences in:

K-W chi-squared = 1540.6, df 
= 11, p-value < 2.2e - 16

P values are close to 0. The 
regimes’ groups are significantly 
different with respect to the num-
ber of FDs experienced during the 
period 1901- 2019. More irregular 

regimes frequently show more 
FDs in their series

Regime 2 - Regime 10
Regime 2 - Regime 11
Regime 3 - Regime 1
Regime 3 - Regime 10
Regime 3 - Regime 11
Regime 3 - Regime 2
Regime 8 - Regime 7
Regime 8 - Regime 1
Regime 8 - Regime10
Regime 8 - Regime 11
Regime 8 - Regime 3
Regime 7 - Regime 1
Regime 7 - Regime 10
Regime 7 - Regime 11
Regime 7 - Regime 2
Regime 6 - Regime 1
Regime 6 - Regime 10
Regime 6 - Regime 11

Regime 12, 4, and 5 are only 
similar among themselves

Without the pixels with 
zero FDs

F = 12.177, num df = 
11.00, denom df = 341.28, 

p-value < 2.2e - 16

Without the pixels with zero 
FDs, there are significant 

differences in:

K-W chi-squared = 38.212, df 
= 11, p-value = 7.206e - 05

Regime 2 - Regime 11
Regime 3 - Regime 11
Regime 3 - Regime 12
Regime 4 - Regime 11
Regime 4 - Regime 12
Regime 5 - Regime 11
Regime 5 - Regime 12
Regime 7 - Regime 3
Regime 7 - Regime 4
Regime 7 - Regime 5
Regime 8 - Regime 11
Regime 8 - Regime 7

Table 1. Results of the tests applied to assess similarity in the occurrence of flash droughts in the different rainfall regimes, using two different 
clustering methods. See Fig. 2 for their graphic depiction.
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Fig. 2. Boxplots displaying the occurrence of flash droughts in the different rainfall regimes, using two different clustering methods: (1) (Up) Ex-
traction with the 12 monthly averages expressed in millimeters, (2) (Down) Extraction with the percentage of total annual average precipitation that 
corresponds to each of the 12 months. The arrows mark the regimes that are significantly different to the rest, in agreement with Table 1.
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3.3 Incidence of Flash Droughts Within the Year

For each of the pixels, the ten highest pentad rainfall 
averages of the climograph have been identified and the per-
centage of the total number of FDs occurring in those ten 
pentads calculated. The results are depicted in Fig. 3.

As the figure shows, the great majority of the areas re-
cording FDs suffered most of them during a peak precipita-
tion time of the year in their local regimes, except the south 
of Australia and the coasts of the US and Argentina. This 
is very logical if we consider the formulation of the DEPI 
drought index and, in particular, the definition of anomaly 
on which it is based: a departure from the median of the pen-
tad. Pentads in wet months have larger medians and that can 
result in an occasional, sharp and bulk negative anomaly if 
there is little rain. But this is only possible if in that particu-
lar place the variability of the rainfall of that wet month (and 
pentad) allows for it. This is in agreement with the signifi-
cant correlation between the total number of FDs in a pixel 
and the variability of some of the months within it.

Such is the case of the monsoon regions, but also of 
other areas of the world with erratic rainfall generation 
mechanisms like the Mediterranean climates. It is important 
to note that when the onset of some of these rainfall mecha-
nisms is delayed with respect to the average situation, even 
if the final total quantities in the season end up matching the 
normal ones, the methodology used will record an FD in the 
expected onset pentad if the deficit is severe enough. This is 
a positive aspect, considering that the moisture deficit in the 
system can cause a stress that does not necessarily recover 
totally if compensated later, as has been studied for mon-
soon (Bhuiyan and Kogan 2010) and subtropical (Bodner et 
al. 2015) vegetation.

At the same time, those anomalies in the wettest times 
of the year will be more exceptional if the rest of the time it 
is not frequent to register large ones (because the other parts 
of the year are drier or more regular), which explains why 
more irregular (seasonal) climates with intra-annual precipi-
tation variability are more prone to developing FDs. This 
characteristic of a certain climate also explains its capacity 
to pass from normality to a considerable drought condition 
in a short time.

Theoretically, if a large anomaly is more frequent in 
wet pentads, it should be rated as less exceptional, but con-
sidering its potential repercussion in a system that expects 
significant rainfall in those particular pentads and not so 
much in other pentads, it should not be contemplated as a 
statistical bias1 but rather as a useful approach to indicat-
ing a real, fast and intense threat to water availability. The 
monthly frequency of FDs measured with soil moisture per-

1   Also, the same issue of comparison (or combination) of time intervals of different nature appears for some of the multivariable indexes used in other papers. 
For example, Yuan et al. (2019) or Li et al. (2020a) detect FDs by observing and comparing sudden drops in soil moisture, temperature and/or precipita-
tion, regardless of the time of the year in which they occur.

centiles presented by Koster et al. (2019) for the US also 
points to events in Texas and the Great Plains concentrating 
in their wettest and warmest months, presumably meaning 
that the impacts in that variable are more sensitive to bulk 
rainfall deficits in that part of the year in which the soil usu-
ally refills, while anomalies in drier months do not have a 
rapid and noticeable response.

3.4 Temporal Evolution of the Incidence of Flash 
Droughts

The study period was divided into eight sections, for 
which the number of FDs recorded per pixel was counted: 
1979 - 1985, 1986 - 1990, 1991 - 1995, 1996 - 2000, 2001 - 
2005, 2006 - 2010, 2011 - 2015, 2016 - 2020.

The trends in the number of FDs experienced per pixel 
during the eight sub-periods were examined. Figure 4 shows 
only the pixels around the world whose trend line fits signif-
icantly, considering a p-value threshold of 0.05. In general, 
there are only scattered pixels in which significant trends 
are observed, towards both more and less frequency of FDs. 
If the p-value threshold is relaxed, more regional patches 
appear around the pixels observed in Fig. 4. Only in Yemen, 
Morocco, the State of Arizona and Australia there are exten-
sive regions with consistent significant (increasing) trends. 
Studies like Wang et al. (2015) endorse the trend in intensi-
fication of the phenomenon in the central US.

3.5 Comparison of the Observed Manifestation of DEPI 
Flash Droughts with Methods and Events Studied 
in Earlier Research

We have performed a straightforward test of the simili-
tude of the recognition of FD with DEPI and the most used 
methods, which include other variables: Mo and Letten-
maier (2015, 2016) and the Ford and Labosier approach, 
broadly replicated and adapted. The territory of the United 
States has been used for the purpose, considering the wealth 
of hydroclimatic information available and the fact that its 
territory contains a broad variety of rainfall regimes and dif-
ferent proneness to experience FD, according to the previ-
ous chapters and to the mentioned studies.

The Smerge 0.125° resolution product, developed by 
merging the North American Land Data Assimilation Sys-
tem (NLDAS) land surface model output, has been used for 
the daily soil moisture anomalies of the 0 - 40 cm layer. 
The Modern-Era Retrospective analysis for Research and 
Applications version 2 (MERRA-2) is a NASA atmospher-
ic reanalysis for the satellite era using the Goddard Earth 
Observing System Model. We used the MERRA-2 2-meter 
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Fig. 3. Percentage of total flash droughts that occurred in one of the ten pentads of highest average precipitation in each of the pixels with one or 
more events.

Fig. 4. Significant increasing (red) and decreasing (blue) trends in precipitation-deficit FD incidence during the study period 1979 - 2020. Beige 
pixels are desert areas, do not have FDs or do not show a significant trend.
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air temperature daily means at a spatial resolution of 0.5° 
× 0.625. Last, the evapotranspiration daily values were ob-
tained from the NASA Global Land Data Assimilation Sys-
tem Version 2 (GLDAS-2), offered at a resolution of 0.25°.

The indices explained in literature were applied to the 
series aggregated by pentads and the temporal coincidence 
in the identified FD has been measured. Table 2 shows a 
sample of the results for seven points throughout the US, 
both for the comparison of occurrence pentad by pentad (la-
beled as “no lag”) and for the comparison of each pentad 
in the DEPI with the same and the following pentad in the 
other indices (labeled as “including the following pentad”).

The two first blocks of rows show two similar ap-
proaches by the same authors. Since the second approach 
(Mo and Lettenmaier 2016) is focused on precipitation 
deficit-related FD, it recognizes situations in which evapo-
transpiration and precipitation are anomalously low and the 
match with the events identified with DEPI is very signifi-
cant, with the exception that the DEPI methodology is more 
restrictive and marks less events.

The opposite situation is observed with the Ford and 
Labosier methodology, which marks few FD because of 
its strict criteria: soil moisture needs to pass quickly from 
normality to below the 20th percentile. A 79% of the FDs 
by Ford and Labosier events not captured by the method 
presented in this paper occur in rainfall drought moments 
(when DEPI is low), but not exactly at the same time as 
the DEPI index marks a drought swift intensification. Other 
variables clearly play a role in the events that are not identi-
fied, which confirms the need to distinguish between pre-
cipitation deficit FD and heat-wave FD.

It is observed that the coincidence increases signifi-
cantly when we compare also with the subsequent pentad of 
the series of FD of the other indices, namely the DEPI FDs 
often occur around a pentad before the FDs are identified 
with other methods.

The rainfall regimes plotted in yellow (4), found in 
Florida for this example, show significantly less connection 
between methods. In these cases, the relationship between 
the entire series of precipitation anomalies or precipitation 
indices like the DEPI and the other relevant variables for 
the definition of FD are less strong (see Table 3), indicating 
that a lack of rainfall does not induce the same swift distur-
bance in soil moisture or evapotranspiration. These rainfall 
regimes are found in tropical areas, where the humid sea-
son coincides with the warm season and in which rainfall 
drought and drought in the soil are not so concomitant.

The same table shows that the DEPI index has close 
connection with the evolution of soil moisture in the stud-
ied regimes, beyond what is already captured by the rainfall 
anomalies, especially when a lag of one time step is added 
in the correlation calculation. This reveals that the particu-
lar temporal accumulation in the calculation of DEPI makes 
it suitable to understand better the moisture circumstances, 

even if its swift declines are not always followed by rapid 
declines in the soil water.

Apart from this exercise, the description of FD occur-
rence in other studies has been compared to the results of 
this research.

The analysis conducted by Noguera et al. (2020) with 
the SPEI scale 1 index for Spain revealed many more FD 
events in a slightly longer study period (in their case 1961 - 
2018), compared to this one, due to the fact that their index 
(SPEI-1) fluctuates much more, as unlike the DEPI it does 
not consider previous water deficit or surplus conditions. 
However, the distribution patterns of the areas in which this 
phenomenon is becoming more prominent and the tempo-
ral trends they register (significant decrease of the number 
of events in the same pixels inland, increase in the south 
and on the Mediterranean coast) considerably match the re-
sults obtained here. Since the SPEI takes evapotranspiration 
into account, if there were FD events triggered largely by 
an anomaly in that variable, these would not be identified 
with DEPI, which might explain why higher concordance 
between the two studies was not found.

Chen et al. (2019) examined the development of five 
selected flash droughts. Despite the fact that these events 
are pinpointed using the US Drought Monitor combined 
drought indicators (incorporating the Palmer Index, Soil 
Moisture levels, streamflow percentiles, and the Standard-
ized Precipitation Index), our analysis recognized the five of 
them: 2000, 2003, 2006, 2007, and 2012 flash droughts in 
the mentioned months and areas of the country. The fact that 
other hydrological variables are used in Chen et al. (2019) 
does not add too much discrepancy in this case.

Wang et al. (2015) documented a rapid drought intensi-
fication from June to July 2012 in the Central U.S., as part of 
a trend of more difference in rainfall between both months 
in the region. This DEPI analysis found that the last pentad 
of June or the first of July 2012 registered FD in most of the 
pixels of Texas and the east of Colorado, on the one hand, 
and around the state of North Dakota, on the other hand, as 
the geographical cores of the precipitation phenomenon.

Koster et al. (2019) provide the geographical coordi-
nates of a point in Oklahoma for which the 2000 summer 
flash drought is described in detail. The event evolution is 
captured with the DEPI in the same cell. Apart from that, 
their Figs. 5, 6, and 9 show patterns in the number of flash 
droughts that correspond with those in our Fig. 1.

In the paper by Li et al. (2020a), the authors recog-
nize and describe a series of 24 flash droughts in China’s 
Pearl River Basin, using the behavior of the evaporation 
deficit, namely the difference between actual and potential 
evapotranspiration. Twenty of the FDs they identify are de-
tected in different parts of the basin at the same time with 
the method presented here, while the other listed droughts 
are marked by the DEPI, though not with the intensity 
or the quick intensification required to qualify as an FD.  
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Moreover, their second paper (Li et al. 2020b) states that 
precipitation deficit flash drought largely occurred in the 
western Pearl River Basin during the historical period, 
which coincides fully with the results presented in Fig. 1.

Finally, Nguyen et al. (2019) describe the evolution 
of several hydrometeorological variables in two consecu-
tive FDs in the Murray Darling Basin of Australia, in the 
beginning of 2018 and of 2019. The first one is perfectly 
noticeable with the DEPI, though after its onset the deficit 
is sustained for months, during which the DEPI did not re-
cover from a moderate drought state. What can therefore be 
perceived in the DEPI for January 2019 is a sharp decline 
from this modest recuperation, leading to worst drought cir-
cumstances of the entire series. It is also marked as a FD. 
However, the fact that the index used considers the accu-
mulation of the previous conditions, allows to interpret this 
second drought almost as a rapid and deep intensification of 
an already established drought, instead of a totally new FD 
which emerges.

4. SUMMARY AND CONCLUSIONS

The notion of flash drought and the analysis of the re-
spective hazard only developed recently, upon verification 
that even a short episode with rapid drought intensification 
was capable of producing disruption and losses. Global-
scale spatiotemporal patterns and proneness to experienc-
ing intense and rapid deficits of the core variables partici-
pating in the phenomenon have nevertheless not yet drawn 
much attention.

In this analysis, we use an uncomplicated framework 
to characterize historical precipitation-deficit flash drought 
events at global scale, based exclusively on identifying sud-
den drops in the series of the DEPI rainfall drought index. 
We studied flash drought characteristics using CPC Global 
Unified Gauge-Based Analysis of Daily Precipitation data 
from 1979 to 2020, the aim being to learn how the purely 

rainfall phenomenon develops and to confirm whether it is 
possible to recognize the events identified with the use of 
several variables and their particularities if only precipita-
tion at pentad temporal resolution is considered.

Most preceding studies use complex modelling and 
indexes which rely on data that is not easy to find in all 
environments and would make a global or a long-term char-
acterization like the one done here more challenging.

In this regard, the DEPI index presents advantages for 
characterizing rainfall-related flash droughts:
(1)  Its computational simplicity, because it includes defini-

tion, accumulation and standardization of rainfall anoma-
lies in just one figure per pentad, obtained in three simple 
stages. The detection of a flash drought is completed by 
comparing successive pentad values and checking if the 
declines are sharp enough, from above the 40th percentile 
(DEPI > 0.4) to below the 20th percentile (DEPI < 0.2).

(2)  Its drought onset and intensity recognition capacity. The 
DEPI calculation method restarts the accumulation of 
anomalies every time precipitation below the pentad me-
dian is found after a period of surplus accumulation; in 
the following stage, all the cumulative anomalies calcu-
lated are normalized using plotting positions (equivalent 
to percentiles), so that only the truly exceptional ones 
are marked as drought (DEPI < 0.5, half of the series of 
cumulative anomalies, the rest is wet). Therefore, only 
20% of the values of cumulative anomalies in an entire 
series have DEPI values below < 0.2 intensity, usually 
after some pentads of deficit accumulation. That implies 
that only great sudden deficits after a surplus can fall 
below the 20th percentile of cumulative anomalies in just 
a single pentad and be defined as a flash drought under 
the method used, guaranteeing that the few events rec-
ognized are indeed extraordinary. It is a more restrictive 
recognition approach than those found in other studies, 
so it will be essential to validate the thresholds used in 
forthcoming research.

Pearson correlation of the pentad series

119.5W, 
37.5N 118W, 35N 111W, 

34.5N
102W, 
35.5N

93.5W, 
38.5N 90W, 30.5N 82W, 27.5N

N
o lag

1 pentad lag

N
o lag

1 pentad lag

N
o lag

1 pentad lag

N
o lag

1 pentad lag

N
o lag

1 pentad lag

N
o lag

1 pentad lag

N
o lag

1 pentad lag

DEPI vs Soil moisture anomalies 0,36 0,45 0,29 0,42 0,45 0,53 0,5 0,57 0,5 0,55 0,55 0,43 0,25 0,25

DEPI vs Temperature anomalies -0,5 -0,37 -0,36 -0,23 -0,41 0,08 -0,45 -0,3 -0,21 -0,3 -0,21 -0,27 -0,11 -0,12

DEPI vs Evapotranspiration anomalies 0,37 0,47 0,33 0,4 0,37 0,45 0,41 0,56 0,39 0,2 0,46 0,1 0,18 0,11

P anomalies vs Soil moisture anomalies 0,19 0,3 0,22 0,28 0,21 0,28 0,24 0,33 0,22 0,32 0,31 0,33 0,16 0,2

P anomalies vs Temperature anomalies -0,26 -0,26 -0,17 -0,13 -0,19 -0,22 -0,25 -0,3 -0,04 -0,22 -0,06 -0,17 -0,27 -0,3

P anomalies vs Evapotranspiration anomalies 0,12 0,15 0,12 0,21 0,11 0,25 0,23 0,35 0,43 0,14 0,5 0,2 0,2 0,06

Table 3. Correlation between the DEPI temporal series and the series of anomalies in the variables considered in other FD studies, compared to 
the correlation with the evolution of rainfall anomalies in seven points of the United States.
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On the other hand, with DEPI, the accumulation does not 
end or restart if the deficit continues over the course of pen-
tads, so the same drought sequence can become gradually 
more intense without an imposed limit. Indexes that do not 
consider enough temporal accumulation in their formulation 
(like those used in most flash drought identification studies 
to date) will recognize any new intense drop as a new flash 
drought, while with the DEPI it will be marked as just a 
growth in severity within the same drought event. The DEPI 
can therefore help distinguish between a new flash drought 
and an intensification of an existing drought.
(3)  Its suitability for application to different climates, re-

gardless of the magnitude of their precipitation totals, 
allowing for the study and comparison of droughts (and 
flash droughts) around the world. This is only possible if 
standardized or normalized indexes are used.

One of the study’s main contributions is the confir-
mation that there are dominant seasons and areas for flash 
droughts to arise, mostly in the local humid seasons and in 
climates with variable precipitation, both inter-annual and 
intra-annual (seasonal regimes), especially when that vari-
ability is significant in the wet parts of the year due to ir-
regular precipitation generation mechanisms. This effect is 
supported by the DEPI formulation: before normalization, 
its accumulation adds up all anomalies together, coming 
from all types of pentads, drier ones and wetter ones. How-
ever, very variable wet pentads can have larger positive 
and negative anomalies than dry ones and are consequently 
more likely to produce sharp declines and flash droughts. It 
is useful that those fast anomalies are highlighted because 
they appear at the same time as flash droughts detected us-
ing edaphic-based characterizations methods, indicating 
that missing substantial precipitation in one of the few times 
of the year in which a significant amount is expected is po-
tentially harmful for soil moisture and vegetation.

Related to the above, despite other studies pointing to 
evapotranspiration as the driver for magnification of flash 
drought conditions, the results obtained also indicate a 
relevant role played by intensification of the precipitation 
deficit, given that many of the events identified with the 
SPEI, evaporative deficit or soil moisture are recognized by 
simply using a precipitation index. However, the fraction 
of the events triggered or amplified by sudden temperature 
anomalies is not recognized with this method.

As pointed out by other authors (Li et al. 2020a) and 
mentioned above, the most recurrent intensification thresh-
olds used in FD literature are empirical and need to be fur-
ther tested, both in terms of comparing the results of using 
other levels with what was obtained with the current ones 
(from above the 40th percentile to below the 20th), and in 
terms of confirming when a flash drought produces actual 
impacts on the ground. When comparing the events rec-
ognized in other regional studies with the intensification 
perceived with the DEPI in the corresponding pixels at the 

same time, it was found that more than 85% of the discrep-
ancies corresponded to drought events that were close to be-
ing catalogued as flash drought but were not classified as 
such because of the strict limits established.

Finally, the pentad scale is confirmed as being suitable 
for providing a sense of past events’ spatial distribution and 
overall behavior and is sufficient for the delivery of peri-
odic retrospective outlooks. The method could be applied 
to daily, near real time precipitation data to track the onset 
of new FDs.

The study was unable to confirm remarkable pat-
terns of temporal evolution or trends in the number of flash 
droughts experienced.

Further research will focus on the application of an 
index modification that includes proxies for hydrological 
budgets such as atmospheric evaporative demands, an ef-
fort nowadays possible thanks to new global datasets of 
modelled data like GLEAM or MERRA-2. As with the 
Standardized Evapotranspiration Deficit Index or the SPEI 
indexes, the inclusion of these variables will bring differ-
ent perspectives about the quantification of flash droughts, 
incorporating those events that are boosted by heat waves 
with anomalously high evapotraspiration (Noguera et al. 
2020). Moreover, other globally modeled variables will be 
explored both for definition of events and to more thorough-
ly verify in detail the propagation of a meteorological flash 
drought to soil moisture, as begun by Koster et al. (2019). 
The comparison of results with those in this paper will ex-
pand the knowledge on where, when and why precipitation 
plays a more dominant role in flash droughts’ materializa-
tion and severity than temperatures and evapotranspiration, 
and vice versa.

Also, it is essential to compare specific flash droughts 
with observed anomalies in the Normalized Difference 
Vegetation Index (NDVI), the Vegetation Condition Index, 
or similar, to assess the vegetation response to this variety 
of drought and the differences observed regarding the im-
pacts caused by slow-onset conventional droughts. Impacts 
in other stages of the hydrological cycle are worth confirm-
ing as well.

Finally, it is important to perform a detailed analysis 
of the clusters in which the phenomenon is becoming more 
prominent in order to understand its implications.
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