

 Int. J. Agile Systems and Management, Vol. 12, No. 3, 2019 261

 Copyright © 2019 Inderscience Enterprises Ltd.

Conceptual model for pair design and pair testing
based on the characteristics of pair programming

Timo Alexander Missler*
Faculty of Technology,
University of Applied Sciences Emden/Leer,
Constantiaplatz 4, 26723 Emden, Germany
Email: timo.missler.occup@gmail.com
*Corresponding author

Eva-Maria Schön and María José Escalona
Department of Computer Languages and Systems,
University of Seville,
Av. Reina Mercedes S/N, 41012 Sevilla, Spain
Email: eva.schoen@iwt2.org
Email: mjescalona@us.es

Jörg Thomaschewski
Faculty of Technology,
University of Applied Sciences Emden/Leer,
Constantiaplatz 4, 26723 Emden, Germany
Email: joerg.thomaschewski@hs-emden-leer.de

Abstract: Pair programming is a method that is widespread in the field of agile
software development (ASD) and is acknowledged as state of the art of
programming. This article initially addresses the question of what constitutes
the key attributes of pair programming. Therefore, we analysed the extent to
which these attributes can be applied to the development-related areas of
human-centred design (HCD) and the quality assurance (QA) of software. The
results of this analyses lead to the presentation and consideration of a new
conceptual model for the application of the attributes of pair programming in
the context of pair design (HCD) and/or pair testing (QA). The discussion
shows that a transferability and application is appropriate and that both HCD
and QA benefit, particularly in terms of the product quality and product
throughput time.

Keywords: pair programming; human-centred design; HCD; software quality;
quality assurance; agile software development; ASD; conceptual model.

Reference to this paper should be made as follows: Missler, T.A.,
Schön, E-M., Escalona, M.J. and Thomaschewski, J. (2019) ‘Conceptual model
for pair design and pair testing based on the characteristics of pair
programming’, Int. J. Agile Systems and Management, Vol. 12, No. 3,
pp.261–277.

 262 T.A. Missler et al.

Biographical notes: Timo Alexander Missler received his MSc in Computer
Science and Media Applications at the University of Applied Science
Emden/Leer (Germany) in 2018. He has been working in the biopharmaceutical
industry for over ten years, with the emphasis on project management and SAP
consulting. As of 2018, he changed into the role of IT Architect for enterprise
architecture in operations, focusing on the digitalisation and agilisation of the
pharma business. His current research interests are agile software development
and digitalisation in the context of the pharma industry.

Eva-Maria Schön received her PhD in Computer Science from the University
of Seville (Spain) in 2017. In her industry projects, she focuses on agile
coaching and human-centred design. Her research interests are agile software
development, requirements engineering and human-computer interaction.

María José Escalona received her PhD in Computer Science from the
University of Seville, Spain in 2004. Currently, she is a Full Professor in the
Department of Computer Languages and Systems at the University of Seville.
She manages the web engineering and early testing research group. Her current
research interests include the areas of requirement engineering, web system
development, model-driven engineering, early testing and quality assurance.
She also collaborates with public companies like the Andalusian Regional
Ministry of Culture and Andalusian Health Service in quality assurance issues.

Jörg Thomaschewski received his PhD in Physics from the University of
Bremen (Germany) in 1996. He became a Full Professor at the University of
Applied Sciences Emden/Leer (Germany) in September 2000. His research
interests are Internet applications for human-computer interaction, e-learning,
and software engineering. He leads the ‘Research Group for Agile Software
Development and User Experience’ and is the author of various online
modules, such as ‘Human-Computer Communication’, which are used by the
Virtual University (online) at many university sites. He has broad experience in
research, training and consulting.

1 Introduction

Increasing numbers of companies are making use of agile process models, such as scrum
(Schwaber, 2004), Kanban (Anderson, 2010) and extreme programming (XP) (Beck,
2000) for their product development. Through such use, the companies are hoping to gain
advantages such as a reduced time-to-market or a flexible response to changing market or
customer requirements.

In agile software development (ASD), a variety of agile techniques is used to develop
the product in a cross-functional team on a collaborative basis. These agile techniques
include, for example, the creation of user stories (Cohn, 2004), continuous delivery
(Humble and Farley, 2010) and pair programming (Beck, 2000).

Pair programming is a technique in the field of ASD in which two programmers
share one place of work and work together on the drafting, development and test
implementation of source code – with the key goal of improving the quality of software
(Williams and Kessler, 2003).

Although the concept has already existed for several decades (Constantine, 1995), it
only became really well known with the advent of agile methods. In particular, XP (Beck,

 Conceptual model for pair design and pair testing 263

2000) enabled pair programming to gain a high profile in the area of software
development (Williams and Kessler, 2003). The strengthened levels of interest led to a
critical discussion surrounding pair programming in the research literature. In addition to
higher costs, the key points of criticism include possible problems with the technical and
personal collaboration, which means the discussions of the method remain controversial
to this day (Cockburn and Williams, 2001; Ally et al., 2005; Hulkko and Abrahamsson,
2005; Dybå et al., 2007; Hannay et al., 2009; Plonka and Van der Linden, 2012).

In this article, we initially addresses the question of what constitutes the key attributes
of pair programming and we propose a conceptual model for the transferability of the
attributes of pair programming to the new areas of pair design [human-centred design
(HCD)] and pair testing [quality assurance (QA)]. To the best of our knowledge, there is
no leading publication concerning such a model or conceptual model. In this respect, we
aim to address the following research questions:

• RQ1: What are the key attributes of pair programming?

We start by analysing the key attributes of pair programming based on the existing
literature. As demonstrated in previous studies, the attributes of pair programming can
also be transferred to the related areas of software development (Schön et al., 2015). This
leads us to our second research question:

• RQ2: How can the attributes of pair programming be transferred to
development-related areas such as HCD and QA?

We also analyse the transfer of the attributes of pair programming to a pair design
process in terms of HCD (International Organization for Standardization, 2010) and to a
pair testing process in terms of QA. In addition, we create a conceptual model for the
application of pair design and/or pair testing in the context of ASD.

The first pair testing work in the area of usability tests began in 1984. In this case,
two test subjects are used in a usability test in order to carry out the pair-user testing
(O’Malley et al., 1984). One test subject focuses on the actual completion of the test and
the other test subject on the administration of the test. In this respect, O’Malley et al.
(1984) describe an approach which, with the allocation of roles between the test driver
and scenario driver demonstrates similarities with pair programming (Wildman, 1995)
and implies a transferability of the attributes.

In Section 2, classic pair programming and the advantages and disadvantages
discussed in the literature are clarified. In Section 3, the initial situation and the
relationship between pair programming, pair design and pair testing are set out and the
literature on pair design and pair testing is discussed. On this basis, in Section 4, we
present and evaluate a conceptual model for the application of pair design (HCD) and/or
pair testing (QA). The discussion in Section 5 includes a summary and a forecast for
future research work.

2 Background pair programming

In the early 1980s, in his deliberations on ‘dynamic duos’ in the area of software
development, Constantine (1995) alludes to the faster creation of software code with
fewer errors. In the mid-1990s, Coplien and Harrison (2004) published the organisational

 264 T.A. Missler et al.

template developing in pairs, in which they describe the collaboration of compatible
designers as being more effective. They argue that this is due to the unassailable nature of
major problems, which appear unresolvable to the individual. In 1998, with the term
collaborative programming, Nosek (1998) published the first empirical study on the
effectiveness of pair programming. XP finally succeeded in raising the profile of pair
programming, and found key use in both the original (Beck, 2000) and the revised
version (Beck, 2005) of XP.

2.1 Basic principles of pair programming

At the heart of pair programming is the simultaneous collaboration between two
programmers who share one workplace and complete their tasks together. Although the
name pair programming appears to suggest otherwise, in addition to the actual
programming, the method normally includes all of the tasks necessary in the software
development work, starting from the architecture and design of the appropriate
components through to the review, the integration and the integration tests (Williams and
Kessler, 2003).

Figure 1 The interplay between the driver and navigator in pair programming

In terms of the collaboration, with pair programming two different roles are defined: the
role of the driver and that of the navigator (see Figure 1):

• The driver is the productive part of the pair and carries out the actual development.
S/he focuses on the operational goals of the software development and is primarily
responsible for resolving the actual problems and for producing clean and
run-capable code.

• The navigator takes a superior position and focuses on the strategic goals. His/her
task is to provide immediate feedback to the driver and to check the results of the
driver on a direct basis. In this respect, the focus is on the general improvement of
the operational decisions and considerations surrounding the existing and future
tasks and alternatives.

A key aspect of this role allocation is the communication between the two developers.
The driver should provide commentary on his/her work and substantiate his/her
decisions, while the navigator should question such decisions accordingly or provide
added input. This places the navigator in the situation of being able to support the driver

 Conceptual model for pair design and pair testing 265

in the event of any questions or to be available to them for brainstorming (Williams and
Kessler, 2003; Freudenberg et al., 2007; Shore and Warden, 2007).

To ensure an appropriate interplay between both roles, a regular changing of roles is
of considerable importance. Figure 1 illustrates the overall interplay between the roles as
regards the tasks.

Changing between roles ensures a continuous exchange of perspectives and
knowledge surrounding the software between the participants. In bigger teams, it also
serves the purpose of conveying a common basis of knowledge and concept. Pair
programming does not provide any specific details on when this change should take
place. This is instead determined by the pairs themselves at the appropriate point in time,
using fixed periods or work packages for instance. In this respect, however, the changes
generally occur based on an informal spoken arrangement (Williams and Kessler, 2003;
Shore and Warden, 2007). In addition to a straightforward role change, the teams
themselves can also be rotated – the talk is therefore of dynamic rather than static teams
(Williams and Kessler, 2003; Swamidurai and Umphress, 2014).

The pairing itself also plays a key role. Therefore, when the team is put together,
firstly, the question is raised as to which developers with different experience (beginners
and experts) can be combined in an appropriate and productive way, and secondly, the
influence that certain character attributes can have on the collaboration. This context and
its influence on the composition in the pairing are considered in Chao and Atli (2006),
Lui and Chan (2006), Braught et al. (2010) and Agrawal et al. (2014).

With regard to the analysed literature in this section, we propose to derive the
following characteristics for pair programming (see Table 1).
Table 1 Attributes of pair programming

ID Attribute Description
C1 Collaboration Both individuals share a workplace and work closely together.
C2 Role allocation There is a clear division of roles between the two individuals (driver

and navigator).
C3 Role change Both individuals change between both roles on a continuous basis and

therefore get both perspectives.
C4 Communication Open, direct and continuous communication is the key component of

the collaboration and enables the exchange of information between
the individuals as well as feedback.

This Table 1 allows us to answer the first research question RQ1: what are the key
attributes of pair programming?

2.2 Costs and benefits

The framework conditions of the pair programming result in immediate cost and benefit
effects. Those in favour of this technique mention superior code in terms of a higher
quality of software, and directly connected with this, a lower rate of error and generally
lower throughput times during the development. This is based on the combined
knowledge of both developers as well as the simultaneous review by the navigator
(Williams et al., 2000; Cockburn and Williams, 2001; Menzies et al., 2003; Padberg and
Müller, 2003; Williams and Kessler, 2003; Dybå et al., 2007; Begel and Nagappan, 2008;
Hannay et al., 2009; Radermacher and Walia, 2011; Sun et al., 2015). In addition to this,

 266 T.A. Missler et al.

the direct collaboration frequently leads to a higher degree of discipline, a superior work
ethic and a solid flow of work, because the developers encourage one another, which
drives things forwards together (Williams et al., 2000; Cockburn and Williams, 2001;
Menzies et al., 2003; Williams and Kessler, 2003; Begel and Nagappan, 2008; Wray,
2010; Swamidurai and Umphress, 2014). Another key benefit is the mentoring of the
participants. Due to the direct collaboration, there is a continuous exchange of specialist
or project knowledge (Cockburn and Williams, 2001; Williams and Kessler, 2003;
Hulkko and Abrahamsson, 2005; Begel and Nagappan, 2008; Wray, 2010; Radermacher
and Walia, 2011; Sun et al., 2015). In addition to this, on the basis of the interaction, pair
programming contributes directly to the team building and supports a feeling of
collective responsibility towards the product, because the individuals know more about
and better identify with the product as a whole (Cockburn and Williams, 2001; Hulkko
and Abrahamsson, 2005; Begel and Nagappan, 2008).

On the other hand, the literature generally addresses the higher costs of pair
programming, as the completion of a task appears to result in double the personnel costs
(Williams et al., 2000; Cockburn and Williams, 2001; Williams and Kessler, 2003; Dybå
et al., 2007; Begel and Nagappan, 2008; Hannay et al., 2009). The constant collaboration
can also cause distractions and problems to which just one employee would not be
exposed (Williams and Kessler, 2003; Begel and Nagappan, 2008). Firstly, the pairing
can lead to interpersonal problems, because pair programming generally requires a very
close collaboration. Secondly, in terms of required agile attributes such as teamwork and
communication skills, the pairing is not suitable for every kind of person and requires
special attention to apply successfully (Williams et al., 2000; Williams and Kessler,
2003; Dybå et al., 2007; Begel and Nagappan, 2008; Walle and Hannay, 2009; Agrawal
et al., 2014; Ashmore et al., 2018). In addition to this, unequal pairings can mean one
participant is over- or under worked (Begel and Nagappan, 2008; Braught et al., 2010;
Wray, 2010; Plonka et al., 2012).

There have been several studies on the evaluation of the costs and benefits of pair
programming, and the added value is to be viewed in the context of the application at all
times. In this respect, the meta-analysis by Hannay et al. (2009) shows that there are
numerous influencing factors regarding the success of pair programming and that the
benefits of this technique cannot be generalised. The current studies also show that
personal and organisational factors can have a major influence on costs and benefits
(Braught et al., 2010; Plonka and Van der Linden, 2012; Agrawal et al., 2014;
Swamidurai and Umphress, 2014; Socha and Sutanto, 2015).

With inverted pair programming, Swamidurai and Kannan (2014) and Swamidurai
and Umphress (2015) have proposed an alternative approach to pair programming in
which the collaboration only takes place during the design and the test phase. The actual
programming is completed on the basis of individual work. The initial examinations
show that the use of pairing has a positive impact during the design and test phase. In
comparison with traditional pair programming it is evident that the same, or superior
level of quality, can be achieved in less time and with lower costs (Williams et al., 2000;
Cockburn and Williams, 2001; Menzies et al., 2003; Padberg and Müller, 2003; Williams
and Kessler, 2003; Dybå et al., 2007; Begel and Nagappan, 2008; Hannay et al., 2009;
Radermacher and Walia, 2011; Sun et al., 2015). The model from Swamidurai and
Kannan (2015) therefore provides indications regarding the transferability of the
attributes of pair programming to the areas of pair design (HCD) and pair testing (QA)
that we are examining.

 Conceptual model for pair design and pair testing 267

3 Pair design and pair testing

In their study, Schön et al. (2015) show that the concept of pair programming (see
Table 1) can not only be used in programming, but can also optimise the operation in
other domains, such as in conceptual design or QA.

3.1 Pair design

There have been several studies that address the specific question of the extent to which
pairing has a positive impact on the quality of the software design, and the extent to
which the resulting quality of the software can be influenced (Al-Kilidar et al., 2005;
Müller, 2006; Canfora et al., 2007; Lui et al., 2008; Swamidurai and Kannan, 2014;
Swamidurai and Umphress, 2015). Although these studies address a separation of design
and implementation, this generally takes place in view of the software development, and
accordingly, in view of the design of the software from the architectural and technical
point of view. Swamidurai and Kannan (2014) and Swamidurai and Umphress (2015) as
well as Müller (2006) show that in the area of technical software design, pair design has
a positive impact on the quality and the development time. In addition, Al-Kilidar et al.
(2005), Lui et al. (2008) and Canfora et al. (2007) show that pairing has a positive impact
on the quality of the software design. Al-Kilidar et al. (2005) only confirm this context
for tasks of low and middling complexity.

Our use of pair design (HCD) corresponds to the understanding and application in the
context of the HCD.

3.2 Pair testing

The concept of pair testing mostly relates to the QA tasks downstream from the
implementation, and forms part of the classic pair programming.

Williams et al. (2000) generally express the view that pair testing is a non-critical
phase of the pair programming and are of the view that it is a process that can be shared
around the team members at the same time. As long as the pair creates the test cases
together, the shared completion of the test does not offer any noteworthy benefits.

Vanhanen and Lassenius (2005) noticed that although pairs write code that contains
fewer errors, they are in fact less accurate with the tests, and therefore perform more
poorly than individual programmers.

In contrast to this, Swamidurai and Kannan (2014) and Swamidurai and Umphress
(2015) ascertained that on the basis of the collaboration, pair testing is highly beneficial
to the quality and development time, and that it also reduces the overall costs.

With regards to the control activities carried out in the pair programming, there are
studies by Müller (2004, 2005) that address the question of whether the completion of
reviews and/or peer reviews can be an alternative to pair programming per se. There, he
concludes that if their work is checked and/or corrected by independent programmers,
pairs are not found to provide work, which is of superior quality to individual
programmers.

 268 T.A. Missler et al.

3.3 Findings and research gap

With regard to RQ2 (how can the attributes of pair programming be transferred to
development-related areas such as HCD and QA?), we were able to find some relevant
articles (O’Malley et al., 1984; Wildman, 1995; Müller, 2004, 2005, 2006; Al-Kilidar
et al., 2005; Canfora et al., 2007; Lui et al., 2008; Swamidurai and Kannan, 2014;
Swamidurai and Umphress, 2015).

Based on analysed literature (see Sections 3.1 and 3.2), we are able to conclude that
the characteristics of pair programming can be mapped to pair design and pair testing.
When considering pair design, it becomes evident that there are several studies
(Al-Kilidar et al., 2005; Müller, 2006; Canfora et al., 2007; Lui et al., 2008; Swamidurai
and Kannan, 2014; Swamidurai and Umphress, 2015) in which the focus is on design in
the context of the programming. It has not proven possible to find any publications in the
research literature on the monitoring of pair design from the perspective of HCD (see
HCD). It is clear that there is a research gap here. In terms of pair testing, studies that
address the topic of QA were found (Wildman, 1995; Müller, 2004, 2005). A study was
also found that examines pair testing in the context of the human-centred development
(O’Malley et al., 1984).

4 Conceptual model for pair design and pair testing

The basis for our conceptual model of pair design (HCD) and pair testing (QA) is
depicted by the four attributes of pair programming (see Table 1). The initial situation
surrounding of pairing in HCD and QA can be easily compared with pair programming.
The division into the three work phases of design, implementation and test suggest that
both the allocation of roles and the changing of roles can be transferred from pair
programming in the same and/or similar form. In all three fields, the design phase
consists of the generation and gathering of ideas regarding the implementation of
requirements. The subsequent implementation phase is oriented to the implementation
and/or completion of these ideas in the form of field-specific artefacts. These are tested in
the subsequent test phase and verified with regards to the requirements. The application
of the four attributes from the pair programming (C1 to C4) is taken into account in our
conceptual model as follows.

4.1 Overview of conceptual model

In the following, we use the characteristics of pair programming (see Table 1) to derive
our conceptual model.

Like pair programming, our conceptual model is also based on attribute C1
(collaboration). The existing role designations of driver and navigator can be transferred
to pair design (HCD) and pair testing (QA). Accordingly, the driver can be considered
the driving force behind the creation and implementation of ideas and solutions and the
completion of individual tasks. The navigator, by contrast, plays a strategic role. S/he
controls, checks and assesses the individual results in terms of the overall concept.

The collaboration between driver and navigator generally takes place at a shared
place of work. The driver plays the leading role and uses all of the required work

 Conceptual model for pair design and pair testing 269

equipment alone and independently. This ensures that the navigator is not able to act
independently of the driver.

According to attribute C2 (role allocation), the driver and navigator assume different
tasks. The driver takes on the generating part of the collaboration and addresses the
actual completion of all necessary activities. The navigator plays a strategic role, as with
pair programming. S/he checks and/or assesses all the activities of the driver as regards
the compliance with the framework conditions, and provides continuous feedback. S/he is
also available as a brainstorming partner for the provision of additional ideas and/or
approaches and for steering the activities of the driver.

According to attribute C3 (role change), this approach is indispensable, as it is only
possible to convey the overall picture and the detailed knowledge to both participants,
enabling them to apply their ideas and abilities, in this way. S/he is encouraged by the
driver to avoid interruptions to individual activities. The composition of the pairs is also
an important part of the role changing. In pair design (QA), it is important to take a
variety of different points of view and ideas into account in order to achieve the best
possible level of quality. A dynamic pairing in which the individual people in the pairs
can change on a regular basis enables additional people to be included in the process.

The communication between the driver and navigator described in attribute C4
(communication) takes a key role in our conceptual model for pair design (HCD) and
pair testing (QA). An open, direct and continuous communication is indispensable for a
successful collaboration. It enables the permanent exchange of information and feedback
between the individuals and therefore ensures further development of ideas and concepts.
During the implementation and verification, it also supports the completeness and
accuracy of the results (Cockburn and Williams, 2001; Williams and Kessler, 2003;
Hulkko and Abrahamsson, 2005; Freudenberg et al., 2007).

In addition to the general transfer of attributes C1 to C4 there are certain
particularities of pair design (HCD) and pair testing (QA) that are highlighted in the two
following sections.

4.2 Particularities of pair design (HCD)

With regards to attribute C2 (role allocation), in pair design (HCD) it is the driver who is
responsible for the generation of ideas, implementation proposals and specific designs.
His/her work is limited to individual, partial aspects or functions for implementation. As
the work advances, s/he also draws on the known methods of the HCD for support. S/he
has the goal of implementing all of the requirements surrounding the product and verifies
his/her initial drafts regarding individual requirements. The navigator focuses on the
overall idea and/or the overall draft. S/he considers the individual components in the
context of the product requirements and attempts to integrate a coherent and complete
overall concept on their basis. During the verification of the drafts, s/he focuses on the
functional completeness and on a coherent integration in the overall products.

In contrast to pair programming with regard to the attribute of C3 (role change), it is
recommended that the change in pair design (HCD) is linked to the level of detail of the
work steps. For the successive and increasingly detailed activities of the design process,
we propose to complete at least one role change for each design stage to enable both
individuals to make an active contribution to the design (see Figure 2). On the one hand,
the allocation of roles forces the designers to consider the product from both the

 270 T.A. Missler et al.

operational and strategic level; while on the other hand, the allocation of roles supports
the consideration of the ideas of both individuals. A role change should take place at least
once in the four following levels of detail:

a gaining a personal understanding of the tasks

b generation of ideas

c creation of low-fi prototypes

d creation of high-fi prototypes.

Figure 2 Role change in pair design (HCD) (with a minimum number of role changes)

The role change also remains a dynamic interplay between both individuals and supports
the creative and iterative design process. A role change within the work phases should
not take place too frequently, however, as otherwise, it may not be possible for ideas to
be brought to their conclusion, and the creative process will therefore be interrupted.

With our conceptual model for pair design (HCD) we are therefore able to
demonstrate that the attributes of pair programming can be transferred to HCD. In this
respect, the tasks regarding attribute C2 (role allocation) are aligned to the refinement of
product requirements. And it is clear that attribute C3 (role change) has to be connected
to the level of detail for the work steps.

4.3 Particularities of pair testing (QA)

With the driver, the tasks according to attribute C2 (role allocation) are aligned to the
conceptualisation and formulation of test cases, the subsequent completion and
documentation and the final checking of the results. Throughout this time, the navigator
checks the contents and formulations for their completeness and purpose as regards the
product and/or the aspects and requirements in need of checking. During the completion
and documentation, s/he monitors the correctness and completeness. Similar to pair-user
testing (O’Malley et al. 1984) s/he is available for the clarification of questions of
comprehension. Based on test cases, s/he guides the driver through all of the test
activities so that s/he (the driver) is able to focus fully on the completion and the
documentation. During the subsequent verification, s/he checks the work of the driver as
regards the compliance with the formal aspects and the completeness of the contents.
This enables any possible additional review activities to be replaced.

 Conceptual model for pair design and pair testing 271

In terms of the manifestation of attribute C3 (role change), a stricter approach should
be used for pair testing (QA). According to Vanhanen and Lassenius (2005), in the case
of familiar topics, pairs tend to be less accurate during the testing phase. For this reason,
the role change should be determined based on the contents of the individual phases in
order to reduce such a degree of blindness towards the contents. During the execution
phase of test cases, changing between the roles is recommended (see Figure 3).

Figure 3 Role change during pair testing (QA)

The result of this is that during the creation of the test cases, the driver is ultimately
responsible for the execution. Conversely, it forces the navigator out of the strategic
perspective in the creation phase into the operational perspective with the active
completion of the test cases. This supports the detection of discrepancies, which would
otherwise have been taken for granted.

With our conceptual model for pair testing (QA) we provide a concept for
transferring the attributes of pair programming to the area of QA. Further, attribute C2
(role allocation) is configured on the basis of the collaboration between the tester and test
coordinator. Attribute C3 (role change) is also applied very strictly, and specifically links
the role change to the drafting, implementation and test phases.

5 Discussion and limitations

The described application of attributes C1–C4 of the pair programming (see Table 1) to
the pair design (HCD) and pair testing (QA) models also results in a transfer of the
known advantages and disadvantages (see chapter 2). Following Schön et al. (2017) these
can be assigned to the four dimensions of ‘product’, ‘project’, ‘process’ and ‘human’ of
the software development process. Based on this allocation, it becomes clear that the
majority of the advantages and disadvantages are not connected to the actual product and
can accordingly be seen as being independent. The affected aspects and the degree of
transfer are shown in Table 2.

 272 T.A. Missler et al.

Table 2 List of advantages and disadvantages for pair design (HCD) and pair testing (QA)

 Dimension Aspect Pair design (HCD) Pair testing (QA)

Advantages

Product Error rate + o
Quality + +

Project Throughput time + +
Process Mentoring + +

Team building + +
Sense of responsibility + +

Human Work flow + +
Work ethic + +
Discipline + +

Disadvantages

Product/
Costs

+ o
Project
Process Diversion + +

Excessive/insufficient
workload

+ +

Human Suitability + +
Personality + +

Notes: + = aspect transferable, o = aspect partially transferable, – = aspect not
transferable.

When considering the ‘product’ and ‘project’ dimensions (see Table 2), the pairing in
HCD and QA of software along the lines of pair programming have a positive impact.
Through the direct collaboration, the pairs are able to become complementary to one
another and collectively have a greater degree of specialist knowledge, more experience,
and exchange knowledge with each other. A continuous assessment of all the ideas and
work steps also take place. This enables errors to be discovered and fixed at an earlier
stage, which ultimately results in a lower throughput time for the entire project. Due to
the continuous strategic monitoring, the change between the operational and strategic
perspectives supports the creation of complete artefacts. There have already been several
studies in the area of pair programming (Müller, 2006; Canfora et al., 2007; Lui et al.,
2008; Swamidurai and Umphress, 2015) which confirm the positive effects of pairing in
the design phase of software development and demonstrate the possibility of its
transferability to related areas. There are also studies (Swamidurai and Kannan, 2014;
Swamidurai and Umphress, 2015) that confirm these benefits for the test phase.
However, the studies by Vanhanen and Lassenius (2005) show that pairs tend to be less
accurate during the completion of the testing, which is why to date, the error rate in the
pair testing (QA) can only be viewed as being partially transferable.

With regards to the consideration of the ‘human’ dimension (see Table 2), it is
possible to determine that the advantages do not result from the concept of pair
programming, but directly from the collaboration in pairs. Therefore, these aspects are
relevant to both pair design (HCD) and pair testing (QA), because a continuous
collaboration in a team also takes place here. The same applies to the aspects of team
building and the shared sense of responsibility of the ‘process’ dimension (see Table 2).
The sustained and direct interaction between the two individuals, as determined by the

 Conceptual model for pair design and pair testing 273

process, brings them together and supports the common spirit. The direct collaboration on
the individual tasks and the role change also increase the identification with and
understanding of the product.

Another advantage of the ‘process’ dimension is the mentoring, which takes place
due to the interaction between the actors. The ongoing communication, the feedback and
the consideration of the work steps mean that there is a constant exchange of knowledge
and experience between driver and navigator. The role change also means that this
transfer of knowledge takes place in both directions, and in addition to specialist
knowledge, it also includes the exchanging of proven approaches, the correct use of tools
and processes internal to the team or the organisation (Cockburn and Williams, 2001). In
comparison to the areas of team building and sense of responsibility, mentoring is to be
seen as being of limited use in pair testing (QA). Firstly, the QA mostly involves
standardised approaches (Copeland, 2003), so that there are fewer task-specific learning
effects. Secondly, in this area, it is frequently the case that traditional reviews are
completed that have a similar added value (Müller, 2004, 2005) and also support an
exchange of knowledge without the use of pair testing (QA).

The advantages are set against the transfer of the stated disadvantages (see Section 2),
because they are predominantly independent of the product and can be transferred to pair
design (HCD) and/or pair testing (QA). With regard to the dimensions of ‘product’ and
‘project’, the use of pairing means that two individuals are generally required. Double
individuals therefore initially means higher costs. The improvement of the quality and the
throughput time as well as the extended generation of ideas means that the use of two
individuals does not necessarily mean twice the costs, however. Hannay et al. (2009)
study completed on pair programming show time savings of approximately 10% with
improved quality. The current use of reviews in the scope of the QA of software further
weakens the disadvantage of the additional costs for pair testing (QA), as the review
activities are already included in the application of pair testing (QA).

Moreover, the disadvantages of the ‘process’ dimension are transferred to pair design
(HCD) and/or the pair testing (QA) as they themselves are justified in the pairing.
Regardless of the area of application, a permanent collaboration will lead to diversions if
the communication is no longer oriented to the actual matter. Pairing requires a constant
communication and also requires a minimum level of empathy and willingness to
compromise in order to avoid conflicts and to ensure that things run smoothly (Begel and
Nagappan, 2008). The possibility of team members having an excessive/insufficient
workload in terms of the ‘process’ dimension is based on methodological differences
and/or a lack of specialist knowledge (Vanhanen et al., 2007). Therefore, these aspects
need to be taken into consideration in the composition of the team in pair design (HCD)
and pair testing (QA). As a general rule, a regular verification of the communication and
a possible adaptation of the pairs are beneficial for the collaboration.

The preceding discussion of the role allocation, the role change and the resulting
advantages and disadvantages shows that an application of the rules of the pair
programming in the form of pair design (HCD) and pair testing (QA) is easily
conceivable and can also be put to effective use.

In this respect, use in pair design (HCD) appears to be ideal, because the tasks and
activities are very similar. In both cases, it relates to the development and implementation
of creative solutions under specific parameters, so that the rules can also be applied to the
collaboration between the designers.

 274 T.A. Missler et al.

In pair testing (QA) a similar picture becomes evident. The test phase may represent
a less critical activity (Williams et al., 2000) in pair programming, but the pairing can
still contribute to an increase in quality (Swamidurai and Kannan, 2014; Swamidurai and
Umphress, 2015). The completion of reviews is also an important factor for the quality
(Müller, 2004, 2005). There is also a need for further clarification in terms of pair testing
(QA). Firstly, it is not clear in the theoretical consideration as to whether the navigator is
necessary in the test phase, and is able to contribute to a further increase in quality or a
reduction in the throughput time. Secondly, it is necessary to clarify whether the findings
by Vanhanen and Lassenius (2005), of pairs being less accurate during the testing also
holds true in the pair testing (QA) and/or whether this disadvantage is sufficiently
minimised due to the suggested role change.

Hannay et al. (2009) report that the use of pair programming is neither beneficial nor
effective in every situation. The same statement can also refer to pair design (HCD) and
pair testing (QA) – the application of such methods depends on the appropriate context,
consisting of the actual task, the people involved and the organisational environment, and
does not present a conclusive solution for all of the tasks and problems.

In addition to the aforementioned drawbacks and limitations our proposed model has
not been validated in industry, so far. Hence, there may be some more benefits or further
limitations due to contextual settings in organisations.

6 Conclusions and future works

This article summarises the key attributes of pair programming: collaboration, role
allocation, role change and communication (see Table 1). In addition, we presented the
advantages and disadvantages of pair programming (see Table 2).

With respect to our second research question, it proved possible to transfer the
attributes of pair programming to the development-related areas of HCD and QA. This
result was deduced by an analysis of existing literature.

Moreover, we contribute a new conceptual model for pair design and pair testing.
This conceptual model describes the application of pair design (HCD) and/or pair testing
(QA) and allows us to demonstrate how the identified attributes of pair programming can
be transferred in detail.

In future work, we will conduct empirical studies in order to validate the conceptual
model in industry. It will be necessary to assess the validity of the assumptions and
demonstrated concepts for pair design (HCD) and pair testing (QA). The validation
process will include controlled experiments with which we want to assess the feasibility,
costs and benefits of the proposed model in order to study the practical application.

References
Agrawal, A., Singh, S., Tripathi, M. and Maurya, L.S. (2014) ‘A study on role of personality traits

for pair programming team’, in Proceedings on the International Conference on High
Performance Computing and Applications (ICHPCA), IEEE, New York, pp.402–407.

Al-Kilidar, H., Parkin, P., Aurum, A. and Jeffery, R. (2005) ‘Evaluation of effects of pair work on
quality of designs’, in Proceedings of the 2005 Australian conference on Software
Engineering, IEEE, Washington, DC, pp.78–87.

 Conceptual model for pair design and pair testing 275

Ally, M., Darrach, F. and Toleman, M. (2005) ‘A framework for understanding the factors
influencing pair programming success’, in Proceedings of the 6th international conference on
Extreme Programming and Agile Processes in Software Engineering, Springer, Berlin,
Heidelberg, pp.82–91.

Anderson, D.J. (2010) Kanban: Successful Evolutionary Change for your Technology Business,
Blue Hole Press, Sequim, WA.

Ashmore, S., Townsend, A., DeMarie, S. and Mennecke, B. (2018) ‘An exploratory examination of
modes of interaction and work in waterfall and agile teams’, Int. Journal of Agile Systems and
Management, Vol. 11, No. 1, pp.67–102.

Beck, K. (2000) Extreme Programming Explained: Embrace Change 1, Addison-Wesley, Reading,
MA.

Beck, K. (2005) Extreme Programming Explained: Embrace Change 2, Addison-Wesley, Boston,
MA.

Begel, A. and Nagappan, N. (2008) ‘Pair programming: what’s in it for me?’, in Proceedings of the
Second ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, ACM, New York, pp.120–128.

Braught, G., MacCormick, J. and Wahls, T. (2010) ‘The benefits of pairing by ability’, in
Proceedings of the 41st ACM Technical Symposium on Computer Science Education, ACM,
New York, pp.249–253.

Canfora, G., Cimitile, A., Garcia, F., Piattini, M. and Visaggio, C.A. (2007) ‘Evaluating
performances of pair designing in industry’, Journal of Systems and Software, Vol. 80, No. 8,
pp.1317–1327.

Chao, J. and Atli, G. (2006) ‘Critical personality traits in successful pair programming’, in
Proceedings of the conference on AGILE 2006, IEEE, Washington, DC, pp.89–93.

Cockburn, A. and Williams, L. (2001) ‘The costs and benefits of pair programming’, in Extrem.
Program. examined., pp.223–243, Addison-Wesley, Boston, MA.

Cohn, M. (2004) ‘User stories applied: for agile software development’, Addison Wesley Signature
Series, 1st ed., Addison-Wesley, Boston, MA.

Constantine, L. (1995) Constantine on Peopleware, Yourdon Press, Englewood Cliffs, New Jersey.
Copeland, L. (2003) A Practitioner’s Guide to Software Test Design, Artech House, Norwood,

MA.
Coplien, J.O. and Harrison, N.B. (2004) Organizational Patterns of Agile Software Development,

Prentice-Hall, Inc., Upper Saddle River, New Jersey.
Dybå, T., Arisholm, E., Sjøberg, D.I.K., Hannay, J.E. and Shull, F. (2007) ‘On the effectiveness of

pair programming’, IEEE Software, Vol. 24, No. 6, pp.12–15.
Freudenberg, S., Romero, P. and Du Boulay, B. (2007) ‘Talking the talk: is intermediate-level

conversation the key to the pair programming success story?’, in Proceedings of the AGILE,
IEEE, Washington, DC, pp.84–91.

Hannay, J.E., Dybå, T., Arisholm, E. and Sjøberg, D.I.K. (2009) ‘The effectiveness of pair
programming: a meta-analysis’, Information and Software Technology, Vol. 51, No. 7,
pp.1110–1122.

Hulkko, H. and Abrahamsson, P. (2005) ‘A multiple case study on the impact of pair programming
on product quality’, in Proceedings of the 27th International Conference on Software
Engineering, IEEE, Saint Louis, MO, pp.495–504.

Humble, J. and Farley, D. (2010) Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation, 1st ed., Addison-Wesley, Boston, MA.

International Organization for Standardization (2010) ISO 9241-210: Ergonomics of
Human-system Interaction – Part 210: Human-centred Design for Interactive Systems, ISO.

Lui, K.M. and Chan, K.C.C. (2006) ‘Pair programming productivity: novice-novice vs.
expert-expert’, International Journal of Human Computer Studies, Vol. 64, No. 9,
pp.915–925.

 276 T.A. Missler et al.

Lui, K.M., Chan, K.C.C. and Nosek, J.T. (2008) ‘The effect of pairs in program design tasks’,
IEEE Transactions on Software Engineering, Vol. 34, No. 2, pp.197–211.

Menzies, T., Smith, J. and Raffo, D. (2003) When is Pair Programming Better?, pp.1–9 [online]
http://menzies.us/pdf/04pairprog.pdf (accessed 15 October 2018).

Müller, M.M. (2004) ‘Are reviews an alternative to pair programming?’, Empirical Software
Engineering, Vol. 9, No. 4, pp.335–351.

Müller, M.M. (2005) ‘Two controlled experiments concerning the comparison of pair programming
to peer review’, Journal of Systems and Software, Vol. 78, No. 2, pp.166–179.

Müller, M.M. (2006) ‘A preliminary study on the impact of a pair design phase on pair
programming and solo programming’, Information and Software Technology, Vol. 48, No. 5,
pp.335–344.

Nosek, J.T. (1998) ‘The case for collaborative programming’, Communications of the ACM,
Vol. 41, No. 3, pp.105–108.

O’Malley, C.E., Draper, S.W. and Riley, M.S. (1984.) ‘Constructive interaction: a method for
studying human-computer-human interaction’, in Shackel, B. (Ed.): Proceeding of IFIP
INTERACT ‘84: Human-Computer Interaction, pp.269–274.

Padberg, F. and Müller, M.M. (2003) ‘Analyzing the cost and benefit of pair programming’, in
Proceedings of the 9th International Symposium on Software, IEEE, Washington, DC,
pp.166–177.

Plonka, L. and Van der Linden, J. (2012) ‘Why developers don’t pair more often’, Proceedings of
the 5th International Workshop on Co-operative and Human Aspects of Software Engineering,
pp.123–125.

Plonka, L., Sharp, H. and Van Der Linden, J. (2012) ‘Disengagement in pair programming: does it
matter?’, in Proceedings of the 34th International Conference on Software Engineering, IEEE,
pp.496–506.

Radermacher, A.D. and Walia, G.S. (2011) ‘Investigating the effective implementation of pair
programming: an empirical investigation’, in Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education, ACM, New York, pp.655–660.

Schön, E-M., Escalona, M.J. and Thomaschewski, J. (2015) ‘Agile values and their implementation
in practice’, International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 3,
No. 5, pp.61–66.

Schön, E-M., Thomaschewski, J. and Escalona, M.J. (2017) ‘Agile requirements engineering: a
systematic literature review’, Computer Standards and Interfaces, Vol. 49, No. 1, pp.79–91.

Schwaber, K. (2004) Agile Project Management with Scrum, 1st ed., Microsoft Press, Redmond,
WA.

Shore, J. and Warden, S. (2007) The Art of Agile Development, 1st ed., edited by O’Brien, M.,
O’Reilly Media, Sebastopol, CA.

Socha, D. and Sutanto, K. (2015) ‘The ‘pair’ as a problematic unit of analysis for pair
programming’, in Proceedings of the 8th International Workshop on Cooperative and Human
Aspects of Software Engineering, IEEE, Piscataway, New Jersey, pp.64–70.

Sun, W., Marakas, G. and Aguirre-Urreta, M. (2015) ‘Effectiveness of pair programming:
perceptions of software professionals’, IEEE Software, Vol. 33, No. 4, pp.72–79.

Swamidurai, R. and Kannan, U. (2014) ‘Impact of pairing on various software development
phases’, in Proceedings of the 2014 ACM Southeast Regional Conference, ACM, New York
pp.1–6.

Swamidurai, R. and Umphress, D. (2014) ‘The impact of static and dynamic pairs on pair
programming’, in Proceedings of the 2014 IEEE 8th International Conference on Software
Security and Reliability-Companion, IEEE, Washington, DC, pp.57–63.

Swamidurai, R. and Umphress, D. (2015) ‘Inverted pair programming’, in Proceedings on the 2015
IEEE Southest Con., IEEE, Washington, DC, pp.1–6.

 Conceptual model for pair design and pair testing 277

Vanhanen, J. and Lassenius, C. (2005) ‘Effects of pair programming at the development team level:
an experiment’, in Proceedings on the 2005 International Symposium on Empirical Software
Engineering, IEEE, Washington, DC, pp.336–345.

Vanhanen, J., Lassenius, C. and Mäntylä, M.V. (2007) ‘Issues and tactics when adopting pair
programming: a longitudinal case study’, in Proceedings on the 2nd International Conference
on Software Engineering Advances, IEEE, Washington, DC, pp.1–7.

Walle, T. and Hannay, J.E. (2009) ‘Personality and the nature of collaboration in pair
programming’, in Proceedings of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, IEEE, Washington, DC, pp.203–213.

Wells, D. (2013) Extreme Programming [online] http://www.extremeprogramming.org/ (accessed
15 October 2018).

Wildman, D. (1995) ‘Getting the most from paired-user testing’, Interactions, Vol. 2, No. 3,
pp.21–27.

Williams, L. and Kessler, R.R. (2003) Pair Programming Illuminated, 1st ed., Addison-Wesley,
Boston, MA.

Williams, L., Kessler, R.R., Cunningham, W. and Jeffries, R. (2000) ‘Strengthening the case for
pair programming’, IEEE Software, Vol. 17, No. 4, pp.19–25.

Wray, S. (2010) ‘How pair programming really works’, IEEE Software, Vol. 27, No. 1, pp.50–55.

