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A B S T R A C T

A three-dimensional hygro-thermo-mechanical computational framework for photovoltaic (PV)
laminates as well as its numerical implementation are established in this work. Aiming at
an efficient thermo-mechanical modeling of thin-walled structures with polymeric interfaces,
the solid shell element, which incorporates the enhanced assumed strain (EAS) method and
the assumed natural strain (ANS) method for the alleviation of locking pathologies, and the
interface element with thermo-visco-elastic cohesive zone model using fractional calculus are
formulated. Besides, the finite element (FE) implementation of moisture diffusion in the 3D
setting along the polymeric interfaces is also derived with the consideration of spatial and
temporal variation of diffusivity due to its temperature and material decohesion dependencies.
Given the difference between the time scales of moisture diffusion and thermo-mechanical
problems, a staggered scheme is proposed for the solution of the coupled hygro-thermo-
mechanical governing equations. Specifically, the relative displacement and temperature fields
are firstly solved from the thermo-mechanical analysis, and then projected to the FE model
of moisture diffusion to determine the diffusion coefficient for its subsequent analysis. The
proposed method is applied to the simulation of three international standard tests of PV
modules, namely the damp heat test, the humidity freeze test, and the thermal cycling test,
and numerical predictions are compared with analytical solution for the damp heat case with
a constant temperature boundary condition, as well as experimental electroluminescence (EL)
images obtained from the thermal cycling test with the cyclic temperature boundary condition.
A very satisfactory consistency demonstrates the effectiveness and reliability of this modeling
framework.

. Introduction

Typical photovoltaic modules are laminates consisting of different layers, including tempered glass, encapsulant layers (usually
thylene vinyl acetate, EVA), a layer of interconnected silicon solar cells, and backsheet, see Fig. 1. The layer of silicon solar cells
s used to produce electric energy, while the other layers like glass and backsheet play the role of protecting the modules from the
utdoor harsh environments (Deng et al., 2021). The durability analysis of PV modules has received a great deal of attention in the
ast decades (Liu et al., 2022a; Gagliardi and Paggi, 2019; Antartis and Chasiotis, 2014; Lenarda and Paggi, 2016), and the modeling
f polymeric materials is quite challenging as it requires a multiphysics framework to accurately predict their overall performance
nd degradation (Paggi et al., 2013; Bahrololoumi et al., 2020, 2021; Silberstein and Boyce, 2010, 2011).
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Fig. 1. The general structure of a typical PV module (Liu et al., 2022a).

Fig. 2. EL images of PV modules with moisture induced dimmer areas during the damp heat test (Herrmann and Bogdanski, 2011).

The EVA layer of PV modules is usually made of polymeric materials, and permeable to moisture, which diffuses from the edges,
backsheet and interspaces between different solar cells. This moisture diffusion can induce chemical oxidation of grid lines deposited
on the surface of solar cells and subsequently lead to degradation and power loss, which has been reported in the damp heat test of
PV modules exposed to the very aggressive environment with 85 ◦C temperature and 85% relative humidity (Iseghem et al., 2012;
Köntges et al., 2017, 2014). As shown in Fig. 2, the dark bands can be observed at the edges of solar cells in the captured EL image
after different elapsed time, which were not detected in the beginning but became evident during ageing. It is important to remark
that in photovoltaics, the larger the dark – electrically inactive – area, the higher the electrical power loss of the module, see Paggi
et al. (2016). Particularly, in the damp heat accelerated ageing test, the dark bands relate to the moisture ingress into the module
from the edges of the solar cells over time. Since moisture can induce chemical reactions inside the modules and delamination
failure between different laminae, it is crucial to establish a reliable and accurate modeling strategy of moisture diffusion along
the EVA layer. The complexity regards the strong dependency of moisture diffusion coefficient of EVA on the temperature, which
indicates the coupling between the moisture and thermal fields, as shown in Kempe (2006). On the other hand, moisture diffusion
also degrades the cohesive energy of EVA layer, giving rise to the delamination failure between the different laminae (Liu et al.,
2019), such as the decohesion between solar cell and backsheet or tempered glass (Novoa et al., 2014, 2016), which corresponds
to the coupling between the mechanical and moisture fields (Dunlop, 2003).

Regarding the thermo-mechanical behavior, the EVA polymer shows a strong thermo-visco-elastic constitutive response, and its
Young’s modulus varies within a range by three orders of magnitude depending on temperature, as experimentally reported in Eitner
et al. (2011), Paggi et al. (2011). In order to approximate the power-law trend from experimental observation, the generalized
Maxwell rheological models can be used to determine the relaxation modulus with exponential type equations. However, a great
number of elements as well as model parameters have to be taken into account, which requires laborious calibration work. To
simplify the procedure of parameter identification, the fraction calculus method has been proved to be very effective for the modeling
of visco-elastic constitutive behavior (Mainardi, 2010; Di Paola et al., 2013, 2011). Thus this formulation has been adopted to
describe the rheologically complex behavior of polymeric EVA, whose microstructure changes with temperature, and, according
to Paggi and Sapora (2015), only two temperature dependent parameters are required for its complete description.

To model these coupled nonlinear hygro-thermo-mechanical problems in PV modules, a comprehensive computational framework
in the three-dimensional space, where the coupled thermo-mechanical problem and the moisture diffusion are solved in a staggered
2

manner, is required so that the dependency of diffusion properties of EVA on the thermo-mechanical fields can be accounted for
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Fig. 3. The proposed solution scheme for the 3D hygro-thermo-mechanical modeling framework.

roperly. Analytical solution for the moisture diffusion along EVA layer proposed in Kempe (2006) assumes constant diffusivity
ithout any update based on the actual temperature, and the spatial variation due to temperature dependency is ignored. Although

t might be feasible in the steady state temperature case, such as in the damp heat test, its validity for cyclic temperature boundary
onditions in the humidity freeze and in the thermal cycling tests is hard to guarantee. Besides, since moisture can also diffuse from
he channel cracks and interspaces between the solar cells, it is almost impossible to obtain analytical solution in these complex
ases. To overcome the limitations of analytical solution methods, the finite element modeling methodology in the three-dimensional
etting is proposed to simulate the coupled problems in this work. The thermo-mechanical phenomena in the PV laminate, which is
uch faster than moisture diffusion, is firstly solved through a monolithic fully implicit solution scheme, see Fig. 3. The calculated

emperature and displacement fields inside the EVA layer are then projected to the nodes of another finite element model specific
or moisture diffusion, so that the diffusion properties at the corresponding time and space can be determined accordingly. With
pdated diffusion coefficient from thermo-mechanical solution at each time increment, the moisture diffusion can be solved by the
ewton–Raphson scheme in a standard way.

For the sake of computational efficiency, the EVA layers are modeled using zero-thickness interface finite elements with a thermo-
isco-elastic cohesive zone model based on fractional calculus, and a thermo-mechanical solid shell formulation incorporating
he EAS and ANS methods to remedy potential locking pathologies, which is kinematically compatible with the 3D interface
lement, is established here for the modeling of the different thin-walled laminae in PV modules such as glass layer, backsheet
nd silicon solar cell layer. Modeling thermo-mechanical responses in thin-walled structures necessitates the consistent derivation
f formulations accounting for the stress and heat transfer across the internal interfaces. To use the 3D constitutive laws without
urther modifications, recent advances in shell element formulation aim at incorporating the three-dimensional effects into the
orresponding implementation. To achieve this, it is pointed out in Rah et al. (2013), Vu-Quoc and Tan (2003) that a linear normal
train distribution through the thickness direction has to be embodied in the shell element formulation. In this regard, two paths
ave been followed: (i) shell formulations that include the linear distribution using either quadratic displacement distribution or
nhanced strain methods through the reference surface of body in the thickness direction (Başar and Ding, 1997; Betsch et al., 1996;
rank, 2005; Büchter et al., 1994; Parisch, 1995; Simo et al., 1990; Liu and Xia, 2021), and (ii) shell formulations relying on the
olid shell concept through the parametrization of the top and bottom surfaces of the body (Miehe, 1998; Reinoso and Blázquez,
016; Harnau and Schweizerhof, 2002; Klinkel and Wagner, 1997; Schwarze and Reese, 2009; Liu and Xia, 2019; Liu et al., 2022b).
he latter has been extensively developed in the past decades since the complex update procedure regarding the rotation tensor
an be completely avoided. However, the extension of solid shell formulation to thermo-mechanical applications has received very
imited attention, see Braun et al. (1994), Bathe and Dvorkin (1985), Bischoff and Ramm (1997), Hauptmann et al. (2000). Besides,
o alleviate the locking pathologies in shell formulations complying with the low-order kinematic interpolation, different numerical
trategies have been proposed such as the EAS method (Korelc and Wriggers, 1996; Simo et al., 1993; Simo and Rifai, 1990; Valente
t al., 2003), the ANS method (Betsch and Stein, 1995; Dvorkin and Bathe, 1984), and combination of them (Cardoso et al., 2008;
ruttmann and Wagner, 2006; Kasper and Taylor, 2000).

This work is structured as follows. In Section 2, the primary aspects of coupled thermo-mechanical analysis along with the
efinition of kinematics and constitutive formulation, the thermo-visco-elastic cohesive zone model through the fractional calculus
ethod, as well as temperature and gap dependent moisture diffusion are presented in detail. The weak forms of the governing

quations for the hygro-thermo-mechanical problems and the corresponding finite element discretization are given in Section 3.
n particular, the Hu–Washizu variational principle with thermo-mechanical solid shell formulation accounting for the EAS and
NS methods to alleviate locking effects is outlined in Section 3.1, while Section 3.2 and Section 3.3 cover the 3D thermo-
echanical interface and moisture diffusion finite element implementation, respectively. Details of the numerical algorithm for
3

he implementation of the hygro-thermo-mechanical framework with staggered solution scheme are provided in Section 4. Then
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Fig. 4. The finite thermo-mechanical deformation of a three-dimensional body from the reference configuration to the current configuration.

his modeling methodology is applied to simulate the three international standard tests of PV laminates, and validated with the
nalytical solution as well as experimental data, which is presented in Section 5. Finally, some concluding remarks of the proposed
odeling framework are drawn in Section 6.

. Hygro-thermo-visco-elastic modeling framework for the PV laminate

In this section, the modeling framework for the thermo-mechanical coupling in thin-walled PV laminae separated by thermo-
isco-elastic interfaces and moisture diffusion along the polymeric layers is presented. Moisture diffusion takes place in the polymeric
ncapsulant layers of laminate, which usually percolates from the free edges and towards the center of solar cell panels. The
ncapsulant layers are made of visco-elastic polymer materials and permeable to moisture, which is one of the dominant factors
eading to the electrical degradation of PV modules during the service life. Besides, moisture diffusion can also degrade the adhesion
trength of encapsulant layers, causing delamination failure between silicon solar cells and backsheet or the glass superstrate. In
rder to effectively model the cohesive mechanical behavior of encapsulant layers, a 3D cut-off traction–separation law is formulated.

.1. Coupled thermo-mechanical kinematics and formulation

For thermo-mechanical boundary value problems in solids, displacement and absolute temperature fields are usually chosen as
he independent fields in the coupled governing equations. In the 3D setting, let 0 ⊂ R3 denotes the reference configuration, while
𝑡 ⊂ R3 denotes the current configuration. The position vectors of material points in the reference and current configurations are
represented by 𝐗 and 𝐱, respectively. The displacement field is denoted as 𝐮(𝐗, 𝑡) ∶ 0×[0, 𝑡] → R3, which is a vector valued function
during the time interval [0, 𝑡]. The absolute temperature field 𝑇 (𝐗, 𝑡) ∶ 0 × [0, 𝑡] → R+ is a smooth scalar-value function. As shown
in Fig. 4, the body motion denoted by 𝝋(𝐗, 𝑡) ∶ 0 × [0, 𝑡] → R3 maps the material point 𝐗 in the reference configuration onto its
corresponding point 𝐱 in the current configuration.

The mechanical boundary conditions are imposed on the boundary of deformable body in the reference configuration 𝜕0, which
is divided by disjoint sets 𝜕0,𝑢 ⊂ 𝜕0 and 𝜕0,𝑡 ⊂ 𝜕0 with 𝜕0,𝑢 ∩ 𝜕0,𝑡 = ∅. The Dirichlet boundary condition 𝐮 = 𝐮̄ is applied
on 𝜕0,𝑢, while Neumann boundary condition characterized by prescribed tractions 𝝈 ⋅ 𝐧 = 𝐭̄(𝐗, 𝑡) is applied on 𝜕0,𝑡. Similarly, the
temperature boundary condition 𝑇 = 𝑇0 is prescribed over 𝜕0,𝑇 ⊂ 𝜕0, while the heat flux boundary condition 𝑞 = 𝑞 is prescribed
over 𝜕0,𝑞 ⊂ 𝜕0, such that 𝜕0,𝑇 ∩ 𝜕0,𝑞 = ∅. Besides, the deformable body can also be divided into parts 𝑖

0(𝑖 > 0) such that
0 = ∪𝑖𝑖

0, which could be assigned with different mechanical and thermal constitutive behaviors.
The deformation gradient, which is defined as the gradient of deformation map with regard to the reference configuration, can

e expressed as

𝐅𝑢 ∶= 𝜕𝐗𝝋(𝐗, 𝑡) = ∇𝐗𝝋(𝐗, 𝑡), (1)

here ∇𝐗[∙] denotes the Lagrangian gradient operator. This operator represents the map of line element d𝐗 in the reference
onfiguration onto the corresponding line element d𝐱 = 𝐅𝑢d𝐗 in the current configuration. The Jacobian of the deformation is
efined as the determinant of deformation gradient 𝐽 𝑢 ∶= det[𝐅𝑢] > 0, where det[∙] represents the determinant operator.

The covariant tangent vectors 𝐆𝑖(𝝃) and 𝐠𝑖(𝝃) are defined as the partial derivatives of position vectors with respect to the
onvective coordinates 𝜉𝑖 in the reference and current configurations, respectively

𝐆𝑖(𝝃) ∶=
𝜕𝐗(𝝃)

, 𝐠𝑖(𝝃) ∶=
𝜕𝐱(𝝃)

, 𝑖 = 1, 2, 3. (2)
4

𝜕𝜉𝑖 𝜕𝜉𝑖
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The contravariant vectors are defined by 𝐆𝑖 ⋅𝐆𝑗 = 𝛿𝑗𝑖 and 𝐠𝑖 ⋅𝐠𝑗 = 𝛿𝑗𝑖 , and the metric tensors are defined as 𝐆 = 𝐺𝑖𝑗𝐆𝑖⊗𝐆𝑗 = 𝐺𝑖𝑗𝐆𝑖⊗𝐆𝑗 ,
= 𝑔𝑖𝑗𝐠𝑖 ⊗ 𝐠𝑗 = 𝑔𝑖𝑗𝐠𝑖 ⊗ 𝐠𝑗 . The left and right Cauchy–Green deformation tensors, which are derived from displacement field vectors,
re given by

𝐂𝑢 ∶= [𝐅𝑢]T𝐠[𝐅𝑢], 𝐛𝑢 ∶= [𝐅𝑢]𝐆−1[𝐅𝑢]T. (3)

The Green–Lagrange strain tensor 𝐄𝑢 is defined as

𝐄𝑢 ∶= 1
2
[

𝐂𝑢 −𝐆
]

. (4)

In order to alleviate the locking effects according to Bischoff and Ramm (1997), an incompatible strain tensor 𝐄̃ is incorporated
nto the displacement derived quantities, and the total Green–Lagrange strain by additive decomposition takes the form of

𝐄 ∶= 𝐄𝑢 + 𝐄̃. (5)

This decomposition constitutes the fundamentals of assumed strain method, and thus the enhanced right Cauchy–Green tensor
is given by

𝐂 ∶= 𝐂𝑢 + 𝐂̃ = 2(𝐄𝑢 + 𝐄̃) +𝐆. (6)

Then the enhanced deformation gradient 𝐅 can be derived by the polar decomposition theorem. The displacement derived
eformation gradient can be decomposed as 𝐅𝑢 ∶= 𝐑𝐔𝑢, where 𝐑 and 𝐔𝑢 represents the rotation and right-stretch tensors,
espectively. Based on Eq. (6), the modified right-stretch tensor 𝐔 that accounts for the incompatible strain is calculated as

𝐔 ∶=
√

𝐂. (7)

Since the calculation of rotation tensor is straightforward, the modified deformation gradient 𝐅 can be computed as

𝐅 ∶= 𝐑𝐔. (8)

he modified corresponding Jacobian is given by 𝐽 = det[𝐅].
Consider 0 ⊂ 0 from the continuum body 0 in the reference configuration with the delimiting boundary 𝜕0, and its spatial

counterpart 𝑡 ⊂ 𝑡, with the boundary 𝜕𝑡 in the current configuration. It is postulated in Cauchy stress theorem that there is a
inear dependency between the normal vector 𝐧 of 𝜕𝑡 and traction 𝐭 through Cauchy stress tensor 𝝈, which is given by

𝐭 = 𝝈 ⋅ 𝐧. (9)

In line with this theorem, the first Piola–Kirchhoff stress tensor 𝐏, which is also known as nominal stress tensor, is defined as

𝐏 = 𝐽𝝈 ⋅ 𝐅−1. (10)

The first Piola–Kirchhoff traction vector 𝐓̂ is defined as 𝐓̂ = 𝐏 ⋅ 𝐍, which satisfies the force equality 𝐓̂d𝑆 = 𝐭d𝑠, and 𝐍 denotes the
ormal direction in the reference configuration. Accordingly, the second Piola–Kirchhoff stress tensor 𝐒, which is a symmetrical
tress tensor, is given by

𝐒 = 𝐅−1 ⋅ 𝐏 = 𝐽𝐅−1 ⋅ 𝝈 ⋅ 𝐅−1. (11)

Analogously, Stokes heat flux theorem in the current configuration reads

𝑞𝑛 = 𝐪 ⋅ 𝐧, (12)

here 𝑞𝑛 and 𝐪 represent the scalar and vector heat flux, respectively, and 𝐧 denotes the normal direction in the current
onfiguration. The material heat flux 𝐐 can be determined from the equality condition 𝐪 ⋅𝐧d𝑠 = 𝐐 ⋅𝐍d𝑆, and thus its definition can

be expressed as

𝐐 = 𝐽𝐅−1 ⋅ 𝐪. (13)

Recalling the theoretical developments outlined in Weber and Anand (1990), Bargmann and Steinmann (2006), the Helmholtz
free energy function for the thermo-elastic Kirchhoff–Saint-Venant constitutive material law is given by

𝛹 (𝐄, 𝑇 ) = 1
2
𝜆 (tr[𝐄])2 + 𝜇tr[𝐄2] − 3𝜅𝛼tr[𝐄]

(

𝑇 − 𝑇0
)

+ 𝜌0𝑐𝑝

[

(

𝑇 − 𝑇0
)

− 𝑇 log 𝑇
𝑇0

]

, (14)

where 𝜅 is the bulk modulus, 𝜆 and 𝜇 are the Lame constants, 𝜌0 is the mass density, 𝛼 represents the thermal expansion coefficient
and 𝑇0 stands for the reference temperature.

The second Piola–Kirchhoff stress tensor can be obtained from the constitutive relationship, which reads

𝐒 ∶= 𝜕𝐄𝛹 = 𝜆 (tr[𝐄]) 𝟏 + 2𝜇𝐄 − 3𝜅𝛼
(

𝑇 − 𝑇0
)

𝟏, (15)

where 𝟏 is the second-order identity tensor. The constitutive operators in the curvelinear setting take the form

C = 𝜕2 𝛹 =
[

𝜆𝐺𝑖𝑗𝐺𝑘𝑙 + 𝜇
(

𝐺𝑖𝑘𝐺𝑗𝑙 + 𝐺𝑖𝑙𝐺𝑗𝑘)]𝐆 ⊗𝐆 ⊗𝐆 ⊗𝐆 , (16a)
5

𝐄𝐄 𝑖 𝑗 𝑘 𝑙
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Fig. 5. The traction versus separation curves of the polymeric interface: (a) sliding and shearing modes, and (b) the opening mode.

𝐙 = 𝜕2𝑇𝐄𝛹 = −3𝜅𝛼𝐺𝑖𝑗𝐆𝑖 ⊗𝐆𝑗 . (16b)

where C is the fourth-order material stiffness tensor, and 𝐙 is the second-order tensor associated with the coupling term of the
Helmholtz function.

Assuming isotropic conductivity 𝐤 = 𝑘𝑔𝑖𝑗𝐠𝑖 ⊗ 𝐠𝑖 (Kuhl et al., 2004), the material heat flux vector in the curvilinear setting can
be expressed as

𝐐 = −𝐽𝐅−1𝐤𝐅−T∇𝐗𝑇 = −𝐽𝑘
(

𝐆𝑖 ⊗ 𝐠𝑖
) (

𝑔𝑘𝑙𝐠𝑘 ⊗ 𝐠𝑙
) (

𝐠𝑗 ⊗𝐆𝑗
)

∇𝐗𝑇 = −𝐽𝑘𝐂−1∇𝐗𝑇 . (17)

here 𝐂−1 stands for the inverse of right Cauchy–Green tensor. The formulation can be further simplified as 𝐐 = −𝑘0𝐆∇𝐗𝑇 under
sotropic assumption, where 𝑘0 represents the thermal conductivity in the reference configuration.

.2. Thermo-visco-elastic cohesive interface model of polymeric layers

Assuming that the polymeric layers can be treated as zero-thickness imperfect interfaces, the displacement and temperature
ields inside the encapsulant layers are allowed to be discontinuous through the thickness direction. The cohesive zone model
ssumes the existence of free energy density per unit undeformed area, and thermo-mechanical coupling can be achieved by making
onductivity properties dependent on the cohesive damage and interface tractions dependent on the temperature field. Let define the
isplacement gaps along the interfaces in three-dimensional setting as: ∆ = (𝛥𝑛, 𝛥𝑡, 𝛥𝑠), where 𝛥𝑛, 𝛥𝑠, 𝛥𝑡 stand for normal, tangential

and shear displacement gaps, respectively, and temperature gap 𝛥𝑇 along the interface, which play the role of internal variables for
the description of the debonding process along polymeric interfaces.

Hence, the coupled thermo-mechanical model for deformable laminae body is enriched due to the presence of cohesive traction
field and heat flux through the thickness direction of polymeric layer. Under the assumption of continuity along the interface, the
out-of-plane tearing and in-plane sliding traction vectors are defined as

𝜏𝐼 =

{

𝐾𝐼 (𝑡, ⟨𝑇 ⟩)𝛥𝐼 , if 𝛥𝐼 ∈ 𝐽𝐼
0, if 𝛥𝐼 ∉ 𝐽𝐼

(18)

where 𝐽𝐼 =
(

−𝛿𝑐𝐼 ,+𝛿
𝑐
𝐼
)

, ⟨𝑇 ⟩ is the average temperature along the interface and 𝐼 = 𝑡, 𝑠, while the opening traction component 𝜎 is
defined as

𝜎 =

⎧

⎪

⎨

⎪

⎩

𝜖𝛥𝑛, if 𝛥𝑛 < 0
𝐾𝑛(𝑡, ⟨𝑇 ⟩)𝛥𝑛, if 𝛥𝑛 ∈ 𝐽𝑛
0, if 𝛥𝑛 ∉ 𝐽𝑛 and 𝛥𝑛 ≥ 0

(19)

where 𝐽𝑛 =
(

0, 𝛿𝑐𝑛
)

, and 𝜖 is the penalty parameter in compression (Corrado and Paggi, 2015). This corresponds to a tension cut-off
traction separation cohesive law, in which the interface cannot transfer tractions when the critical opening gap 𝛿𝑐𝑛 is reached. The
similar brittle behavior is assumed for the tearing and sliding modes, see Fig. 5.
6
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To obtain the structural response of encapsulant layers, the stiffness 𝐾𝑛 is related to the actual stiffness of polymeric materials
in the normal direction, which is calculated as the ration between the Young’s modulus 𝐸𝑝𝑜𝑙𝑦 and its thickness ℎ𝑝𝑜𝑙𝑦, i.e., 𝐾𝑛 =
𝐸𝑝𝑜𝑙𝑦∕ℎ𝑝𝑜𝑙𝑦. Analogously, the tearing and sliding stiffness can be expressed as: 𝐾𝑠 = 𝐾𝑡 = 𝐸𝑝𝑜𝑙𝑦∕[2ℎ𝑝𝑜𝑙𝑦(1 + 𝜈𝑝𝑜𝑙𝑦)]. Since polymeric
materials have thermo-visco-elastic constitutive behaviors, the Young’s modulus 𝐸𝑝𝑜𝑙𝑦 depends both on the average temperature
⟨𝑇 ⟩ and time history 𝑡. To synthetically characterize these dependencies, a fractional calculus approach proposed in Di Paola et al.
(2013) is adopted here instead of the use of Prony series representation, which has been proved to be very effective for parameters
identification (Paggi and Sapora, 2015; Lenarda and Paggi, 2022). Accordingly, the modulus 𝐸𝑝𝑜𝑙𝑦 is given by

𝐸𝑝𝑜𝑙𝑦(𝑡, 𝑇 ) =
𝑎(𝑇 )ℎ(𝑡, 𝑇 )−𝛼(𝑇 )

𝛤 (1 − 𝛼(𝑇 ))
(20)

where 𝑎 and 𝛼 are two temperature dependent functions, such that 0 < 𝑎, 𝛼 < 1, and 𝛤 (𝑡) is the Euler gamma function

𝛤 (𝑡) = ∫

∞

0
𝑒−𝑥𝑥𝑡−1 d𝑥 (21)

he function ℎ(𝑡, 𝑇 ) is a time history and temperature dependent function, which is used to model the rheologically complex
olymeric materials when the time–temperature superposition principle is not applicable. This can be ascribed to the change of
olymer microstructure driven by temperature above a threshold. Hence, this history function ℎ(𝑡, 𝑇 ) is equal to the difference
etween the current time 𝑡 and 𝑡0 corresponding to the microstructure modification.

With regard to the heat conduction, it is assumed that the heat flux across the interface is oriented in the direction orthogonal
o the thin polymeric surface. Thus, 𝑞1 = 𝑞2 = 0 and 𝑞 = 𝑞3 is expressed as

𝑞 =

⎧

⎪

⎨

⎪

⎩

−ℎ0
(

1 − 𝛥𝑛
𝛿𝑐𝑛

)

⟨𝑇 ⟩ if 𝛥𝑛 ∈ 𝐽𝑛
0 if 𝛥𝑛 ∉ 𝐽𝑛

(22)

where ℎ0 is the thermal conductivity of interface without crack opening, i.e., 𝛥𝑛 = 0. Note that the heat conductivity is assumed
to be a decreasing function of gap opening so that the partial heat transfer in case of damaged interface can be taken into account
properly (Sapora and Paggi, 2014).

2.3. Moisture diffusion along the polymeric interfaces

Durability tests of photovoltaic laminates, including damp heat test, humidity freeze test, and thermal cycling test, are
characterized by time-dependent temperature and moisture conditions in accordance with prescribed ramps inside a climate
chamber. Moisture diffusion mainly takes place along the encapsulant polymeric layers between the solar cell and tempered glass
or backsheet. Generally, the aim of the numerical method is to predict the moisture content 𝑐(𝑥1, 𝑥2, 𝑥3, 𝑡) inside the polymeric layer
for each material point and time.

The boundary value problem for moisture diffusion, in which an imposed moisture content 𝑐∗ is applied to the boundary, can
be described as follows

⎧

⎪

⎨

⎪

⎩

𝜕𝑐
𝜕𝑡

(

𝑥1, 𝑥2, 𝑥3, 𝑡
)

−𝐷∇2𝑐
(

𝑥1, 𝑥2, 𝑥3, 𝑡
)

= 0 in 𝑝𝑜𝑙𝑦 ×
[

0, 𝑡𝑓
]

𝑐
(

𝑥1, 𝑥2, 𝑥3, 0
)

= 0 in 𝑝𝑜𝑙𝑦

𝑐
(

𝑥1, 𝑥2, 𝑥3, 𝑡
)

= 𝑐∗ in 𝜕𝑝𝑜𝑙𝑦 ×
(

0, 𝑡𝑓
]

(23)

where 𝐷 is the moisture diffusion coefficient.
It should be pointed out that the moisture diffusion is characterized by a different time scale from that of the thermo-mechanical

roblem. The characteristic velocity of moisture diffusion is related to the diffusion coefficient 𝐷, while that of temperature diffusion
s governed by the ratio 𝑘0∕𝜌𝑐𝑝. Given the characteristic values for polymeric layers, the ratio between these two physical phenomena
s

[

𝑘0∕
(

𝜌𝑐𝑝
)]

∕𝐷 ≈ 106.

ence, the moisture diffusion is dependent on the coupled thermo-mechanical problem and not viceversa since heat transfer is
bout six order faster than moisture diffusion. Based on the experimental evidence reported in Kempe (2006), the moisture diffusion
oefficient should be considered as temperature and gap dependent based on an Arrhenius type function

𝐷 =

⎧

⎪

⎨

⎪

⎩

𝐴 exp
(

− 𝐸𝑎
𝑇𝑅

)

, if 𝛥𝑛 ≤ 𝛿𝑐𝑛
𝐴 exp

(

− 𝐸𝑎
𝑇𝑅

)

𝛥𝑛
𝛿𝑐𝑛
, if 𝛥𝑛 > 𝛿𝑐𝑛

(24)

For the purpose of accounting for the debonding effect of the encapsulant layer on the moisture diffusion, 𝐷 is assumed to be a
inear increasing function of the interfacial gap 𝛥𝑛 when it overcomes the critical value 𝛿𝑐𝑛. Given the different time scales of moisture

diffusion and heat transfer, a staggered scheme is adopted for the solution of this computational framework, where the diffusion
coefficient 𝐷 is determined by the average temperature and gap displacement at the previous time increment computed from the
7

coupled thermo-mechanical problem.
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3. Variational form and finite element interpolation

In this section, the derivations for the variational form and finite element formulation of the coupled thermo-mechanical problem
ith cohesive interface and 3D moisture diffusion are outlined. Section 3.1 introduces the multi-field Hu–Washizu variational
rinciple and discretization for the coupled thermo-mechanical problem, which is particularized for solid shell formulation
ncorporating the EAS and ANS method to alleviate the locking effects. Subsequently, Section 3.2 presents the consistent linearization
f the governing equations for the thermo-mechanical cohesive interface. Finally, the finite element implementation of the 3D
oisture diffusion along the encapsulant polymeric layers is detailed in Section 3.3.

.1. Implementation of the coupled thermo-mechanical problem and solid shell formulation

In the following, the variational basis and finite element interpolation of the initial boundary value problem with the coupled
hermo-mechanical solid shell formulation are presented. The laminae in photovoltaic modules are usually made of thin-walled
tructures, including tempered glass, silicon solar cell, and backsheet, and to accurately simulate their mechanical behaviors, a
olid shell formulation incorporating the EAS and ANS methods for the alleviation of locking effects is derived from the mixed
u–Washizu variational principle.

The weak form of energy balance equation in absence of heat sources and dissipative mechanism in the reference configuration
s given by

𝑇 (𝐮, 𝐄̃, 𝑇 , 𝛿𝑇 ) = ∫0

𝜌0𝑐𝑝𝑇̇ 𝛿𝑇d𝛺 − ∫0

𝑇𝐙 ∶ 𝐄̇𝛿𝑇 d𝛺 + ∫0

∇ ⋅𝐐𝛿𝑇 d𝛺 = 0, (25)

where 𝛿𝑇 is the virtual temperature field. Invoking the Gauss’s theorem, the third term relevant to the divergence of heat flux can
be reformulated as

∫0

∇ ⋅𝐐𝛿𝑇 d𝛺 = ∫𝜕0,𝑞

𝑄𝑁𝛿𝑇 d𝜕𝛺 − ∫0

𝐐∇𝐗𝛿𝑇 d𝛺, (26)

where 𝑄𝑁 = 𝐐 ⋅ 𝐍 denotes the Neumann boundary condition on 𝜕0,𝑞 . Subsequently, Eq. (25) can be rewritten as

𝑇 (𝐮, 𝐄̃, 𝑇 , 𝛿𝑇 ) = ∫0

𝜌0𝑐𝑝𝑇̇ 𝛿𝑇 d𝛺 − ∫0

𝑇𝐙 ∶ 𝐄̇𝛿𝑇 d𝛺 + ∫𝜕0,𝑞

𝑄𝑁𝛿𝑇 d𝜕𝛺 − ∫0

𝐐∇𝐗𝛿𝑇 d𝛺 = 0. (27)

By inserting the Duhamel’s law, i.e., simplified Eq. (17) under isotropic assumption, the previous expression can be formulated
s

𝑇 = ∫0

𝜌0𝑐𝑝𝑇̇ 𝛿𝑇 d𝛺 − ∫0

𝑇𝐙 ∶ 𝐄̇𝛿𝑇 d𝛺 + ∫𝜕0,𝑞

𝑄𝑁𝛿𝑇 d𝜕𝛺 + ∫0

[

∇𝐗𝛿𝑇
]T 𝑘0𝐆∇𝐗𝑇 d𝛺 = 0, (28)

ith the internal residual 𝑇
int and external counterpart 𝑇

ext being identified as

𝑇
int = ∫0

𝜌0𝑐𝑝𝑇̇ 𝛿𝑇 d𝛺 − ∫0

𝑇𝐙 ∶ 𝐄̇𝛿𝑇 d𝛺 + ∫0

[

∇𝐗𝛿𝑇
]T 𝑘0𝐆∇𝐗𝑇 d𝛺 = 0, (29)

𝑇
ext = ∫𝜕0,𝑞

𝑄𝑁𝛿𝑇 d𝜕𝛺. (30)

Analogously, the weak form of the linear momentum balance governing can be derived in this procedure. However, low-order
hell elements usually suffer from various locking pathologies, such as volumetric locking, Poisson thickness locking, transverse
hear locking and so on. To alleviate such deficiencies, the mixed formulation proposed in Gruttmann and Wagner (2006), Klinkel
t al. (2006), Simo and Armero (1992) is adopted here, which incorporates the ANS and EAS methods through the enhancement of
he displacement derived strain field by several collocation points and a set of incompatible strains. In this three-field Hu–Washizu
ariational principle, the displacement 𝐮, the incompatible strain 𝐄̃, and stress 𝐒 are the independent unknown variables for this
umerical strategy.

Given the use of EAS method, the strain field can be decomposed into a displacement derived compatible part 𝐄𝑢 and an enhanced
ncompatible part 𝐄̃ (Bischoff and Ramm, 1997; Hauptmann et al., 2000), i.e., 𝐄 = 𝐄𝑢+𝐄̃. Accounting for the orthogonality condition
etween the stress spaces and enhanced strain fields, the stress field can be removed from the subsequent derivations. Hence, the
eak form of the linear momentum balance equation can be expressed as

𝑢(𝐮, 𝐄̃, 𝑇 , 𝛿𝐮) = ∫0

𝐒 ∶ 𝛿𝐄𝑢 d𝛺 − ∫0

𝜌0𝜸̄𝛿𝐮 d𝛺 − ∫𝜕0,𝑡

𝐭̂𝛿𝐮 d𝜕𝛺 = 0, (31)

𝐸̃ (𝐮, 𝐄̃, 𝑇 , 𝛿𝐄̃) = ∫0

𝐒 ∶ 𝛿𝐄̃ d𝛺 = 𝐸̃
int = 0, (32)

here 𝐸̃
int represents the internal contribution from the enhanced strain field to the functional. Here the internal residual 𝑢

int and
xternal residual 𝑢

ext corresponding to the kinematic compatible part can be defined as

𝑢
int = 𝐒 ∶ 𝛿𝐄𝑢 d𝛺, (33)
8

∫0
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Fig. 6. The position of collocation points in the parametric space for the ANS method.

𝑢
ext = ∫0

𝜌0𝜸̄ ⋅ 𝛿𝐮 d𝛺 − ∫𝜕0,𝑡

𝐭̂ ⋅ 𝛿𝐮 d𝜕𝛺. (34)

The initial configuration 0 is discretized into 𝑛𝑒 non-overlapping finite elements, i.e., 0 ≈
⋃𝑛𝑒

𝑒=1 
(𝑒)
0 . For the thermo-mechanical

modeling framework stated above, it is particularized for the so-called solid shell parametrization, which assumes the approximation
of vector at any material point in terms of the counterparts on the corresponding top and bottom surfaces of the shell element.

In line with this parametrization, the position vectors and temperature of any material point in the reference and current
configurations can be computed as

𝐗(𝝃) = 1
2
(

1 + 𝜉3
)

𝐗𝑡(𝜉1, 𝜉2) +
1
2
(

1 − 𝜉3
)

𝐗𝑏(𝜉1, 𝜉2), (35a)

𝐱(𝝃) = 1
2
(

1 + 𝜉3
)

𝐱𝑡(𝜉1, 𝜉2) +
1
2
(

1 − 𝜉3
)

𝐱𝑏(𝜉1, 𝜉2), (35b)

where the subscripts 𝑡 and 𝑏 stand for the top and bottom surfaces, respectively. The parametric space is given by:  ∶= {𝝃 =
(𝜉1, 𝜉2, 𝜉3) ∈ R3

| − 1 ≤ 𝜉𝑖 ≤ +1; 𝑖 = 1, 2, 3}, where (𝜉1, 𝜉2) represent the in-plane directions and 𝜉3 identifies the thickness direction.
Based on the isoparametric concept, the approximation of position vectors 𝐗 and 𝐱 are interpolated through standard trilinear

shape functions 𝐍𝐼 as follows

𝐗 ≈
𝑛𝑛
∑

𝐼=1
𝐍𝐼 (𝝃)𝐗𝐼 = 𝐍𝐗̃, 𝐱 ≈

𝑛𝑛
∑

𝐼=1
𝐍𝐼 (𝝃)𝐱𝐼 = 𝐍𝐱̃, (36)

where 𝐗𝐼 and 𝐱𝐼 are the nodal position vectors in the reference and current configurations, respectively, with number of nodes
𝑛𝑛 = 8, and 𝐗̃ and 𝐱̃ are the respective nodal position vectors in the element level. The shape functions 𝐍𝐼 is defined as

𝐍𝐼 = 𝐝𝐢𝐚𝐠
[

𝑁𝐼 , 𝑁𝐼 , 𝑁𝐼
]

(37)

where 𝑁𝐼 = 1
8

(

1 + 𝜉1𝐼 𝜉
1) (1 + 𝜉2𝐼 𝜉

2) (1 + 𝜉3𝐼 𝜉
3), 𝐼 = 1, 2,… , 8. The interpolation of displacement and temperature fields (𝐮, 𝑇 ), the

variations (𝛿𝐮, 𝛿𝑇 ), and the increments (𝛥𝐮, 𝛥𝑇 ) are given by

𝐮 ≈
𝑛𝑛
∑

𝐼=1
𝐍𝐼 (𝝃)𝐝𝐼 = 𝐍𝐝, 𝛿𝐮 ≈

𝑛𝑛
∑

𝐼=1
𝐍𝐼 (𝝃)𝛿𝐝𝐼 = 𝐍𝛿𝐝, 𝛥𝐮 ≈

𝑛𝑛
∑

𝐼=1
𝐍𝐼 (𝝃)𝛥𝐝𝐼 = 𝐍𝛥𝐝, (38)

𝑇 ≈
𝑛𝑛
∑

𝐼=1
𝑁𝐼 (𝝃)𝑇𝐼 = 𝐍̂𝑻̂ , 𝛿𝑇 ≈

𝑛𝑛
∑

𝐼=1
𝑁𝐼 (𝝃)𝛿𝑇𝐼 = 𝐍̂𝛿𝑻̂ , 𝛥𝑇 ≈

𝑛𝑛
∑

𝐼=1
𝑁𝐼 (𝝃)𝛥𝑇𝐼 = 𝐍̂𝛥𝑻̂ , (39)

where 𝐝𝐼 and 𝑇𝐼 represent the nodal displacement and temperature, respectively, and 𝐝 and 𝑻̂ are the corresponding vectors at the
element level. The interpolation of the spatial temperature gradient in the reference configuration ∇𝐗𝑇 , its variation ∇𝐗𝛿𝑇 and its
increment ∇𝐗𝛥𝑇 reads

∇𝐗𝑇 = 𝐆−T∇𝝃𝑇 ≈ 𝐆−T∇𝝃𝐍̂𝑻̂ , ∇𝐗𝛿𝑇 ≈ 𝐆−T∇𝝃𝐍̂𝛿𝑻̂ , ∇𝐗𝛥𝑇 ≈ 𝐆−T∇𝝃𝐍̂𝛥𝑻̂ , (40)

here ∇𝝃 represents the gradient with respect to the natural coordinates in the curvilinear setting.
The Green–Lagrange strain vector is expressed as 𝐄𝑢 =

[

E11, 2E12, 2E13,E22, 2E23,E33
]T. To overcome the curvature thickness

locking, the ANS method proposed in Betsch and Stein (1995) is adopted to modify the strain component E33, which requires four
collocation points defined in convective coordinates 𝝃C𝑖

as 𝝃C1
= (−1,−1, 0), 𝝃C2

= (1,−1, 0), 𝝃C3
= (1, 1, 0), and 𝝃C4

= (−1, 1, 0),
ee Fig. 6. Besides, to prevent transverse shear locking, the ANS method proposed in Dvorkin and Bathe (1984) is also adopted in
9

his work. The corresponding collocation points are 𝝃A1
= (0,−1, 0), 𝝃A2

= (0, 1, 0), 𝝃B1
= (−1, 0, 0), and 𝝃B2

= (1, 0, 0), see Fig. 6.
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Accounting for the ANS interpolations, the strain vector is given by

𝐄𝑢 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
2

(

𝑔11 − 𝐺11
)

(

𝑔12 − 𝐺12
)

(

1 − 𝜉2
)

(

𝑔A1
13 − 𝐺A1

13

)

+
(

1 + 𝜉2
)

(

𝑔A2
13 − 𝐺A2

13

)

1
2

(

𝑔22 − 𝐺22
)

(

1 − 𝜉1
)

(

𝑔B1
23 − 𝐺B1

23

)

+
(

1 + 𝜉1
)

(

𝑔B2
23 − 𝐺B2

23

)

∑4
𝑖=1

1
4

(

1 + 𝜉1𝑖 𝜉
1) (1 + 𝜉2𝑖 𝜉

2) 1
2

(

𝑔C𝑖
33 − 𝐺C𝑖

33

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(41)

The approximation of strain variation and increment is interpolated by

𝛿𝐄𝑢 ≈
𝑛𝑛
∑

𝐼=1
𝐁𝐼 (𝝃)𝛿𝐝𝐼 = 𝐁𝛿𝐝, 𝛥𝐄𝑢 ≈

𝑛𝑛
∑

𝐼=1
𝐁𝐼 (𝝃)𝛥𝐝𝐼 = 𝐁𝛥𝐝 (42)

where 𝐁𝐼 is defined as

𝐁𝐼 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁𝐼,1
(

𝐠T1
)

𝑁𝐼,1
(

𝐠T2
)

+𝑁𝐼,2
(

𝐠T1
)

(

1 − 𝜉2
)

(

𝑁A1
𝐼,1

(

𝐠A1
3

)T
+𝑁A1

𝐼,3

(

𝐠A1
1

)T
)

+
(

1 + 𝜉2
)

(

𝑁A2
𝐼,1

(

𝐠A2
3

)T
+𝑁A2

𝐼,3

(

𝐠A2
1

)T
)

𝑁𝐼,2
(

𝐠T2
)

(

1 − 𝜉1
)

(

𝑁B1
𝐼,2

(

𝐠B1
3

)T
+ NB1

𝐼,3

(

𝐠B1
2

)T
)

+
(

1 + 𝜉1
)

(

𝑁B2
𝐼,2

(

𝐠B2
3

)T
+ NB2

𝐼,3

(

𝐠B2
2

)T
)

∑4
𝑖=1

1
4

(

1 + 𝜉1𝑖 𝜉
1) (1 + 𝜉2𝑖 𝜉

2)𝑁𝐼,3
(

𝐠𝑖3
)T

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(43)

Similarly, the interpolation of enhanced incompatible strain field 𝐄̃, its variation 𝛿𝐄̃ and its increment 𝛥𝐄̃ take the form of

𝐄̃ ≈ 𝐌(𝝃)𝝇, 𝛿𝐄̃ ≈ 𝐌(𝝃)𝛿𝝇, 𝛥𝐄̃ ≈ 𝐌(𝝃)𝛥𝝇, (44)

where 𝝇 is the enhancing modes vector to prevent locking pathologies as pointed out in Klinkel et al. (2006), Vu-Quoc and Tan
(2003), and 𝐌 denotes the interpolation matrix of incompatible strain (Simo et al., 1990), which is given by

𝐌(𝜉) =
[

det 𝐉0
det 𝐉

]

𝐓−T
0 𝐌̃(𝜉) (45)

where 𝐉 =
[

𝐆1,𝐆2,𝐆3
]T, 𝐉0 is its evaluation at the element center

(

𝜉1 = 0, 𝜉2 = 0, 𝜉3 = 0
)

, and the transformation matrix 𝐓0 takes
the form

𝐓0 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐽 2
110

𝐽 2
210

𝐽 2
310

2𝐽110𝐽210 2𝐽110𝐽310 2𝐽210𝐽310
𝐽 2
120

𝐽 2
220

𝐽 2
320

2𝐽120𝐽220 2𝐽120𝐽320 2𝐽220𝐽320
𝐽 2
130

𝐽 2
230

𝐽 2
330

2𝐽130𝐽230 2𝐽130𝐽330 2𝐽230𝐽330
𝐽110𝐽120 𝐽210𝐽220 𝐽310𝐽320 𝐽110𝐽220 + 𝐽210𝐽120 𝐽110𝐽320 + 𝐽310𝐽120 𝐽210𝐽320 + 𝐽310𝐽220
𝐽110𝐽130 𝐽210𝐽230 𝐽310𝐽330 𝐽110𝐽230 + 𝐽210𝐽130 𝐽110𝐽330 + 𝐽310𝐽130 𝐽210𝐽330 + 𝐽310𝐽230
𝐽120𝐽130 𝐽220𝐽230 𝐽320𝐽330 𝐽120𝐽230 + 𝐽22𝐽130 𝐽120𝐽330 + 𝐽320𝐽130 𝐽220𝐽330 + 𝐽320𝐽230

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (46)

here 𝐽IJ0 in the transformation matrix 𝐓0 are the components of 𝐉0. To alleviate the membrane, volumetric and Poisson thickness
ocking effects, the interpolation matrix 𝐌̃(𝜉) of the enhancing modes defined in the parametric space 𝝃 = {𝜉1, 𝜉2, 𝜉3} reads

𝐌̃ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜉1 0 0 0 𝜉1𝜉2 0 0 0 0 0 0
0 0 𝜉1 𝜉2 0 0 𝜉1𝜉2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 𝜉2 0 0 0 𝜉1𝜉2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 𝜉1 𝜉2 𝜉1𝜉2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (47)

By inserting the interpolation formulae, the discrete forms of internal energy balance residual Eq. (29) is given by

̂𝑇
int(𝐝, 𝝇, 𝑻̂ , 𝛿𝑻̂ ) = 𝛿𝑻̂ T

[

∫0

𝐍̂T𝜌0𝑐𝑝𝑇̇ d𝛺 − ∫0

𝐍̂T (𝐙T𝐄̇
)

𝑇 d𝛺 + ∫0

𝑘0𝐁T
𝑇𝐆∇𝐗𝑇 d𝛺

]

, (48)

here 𝐁𝑇 is the interpolation operator for the temperature gradient.
The discrete internal residual terms with regard to the kinematic compatible part, Eq. (33), and enhanced strain field, Eq. (32),

an be expressed as

̂𝑢
int(𝐝, 𝝇, 𝑻̂ , 𝛿𝐝) = 𝛿𝐝T

[

∫ 𝐁T𝐒 d𝛺
]

, (49)
10
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t

w

̂𝐸̃
int(𝐝, 𝝇, 𝑻̂ , 𝛿𝝇) = 𝛿𝝇T

[

∫0

𝐌T𝐒 d𝛺
]

. (50)

For subsequent developments, the residual vectors associated with the displacement field, the incompatible strain field, and the
emperature field, respectively, are defined as

𝐑𝑇
int = ∫0

𝐍̂T𝜌0𝑐𝑝𝑇̇d𝛺 − ∫0

𝐍̂T (𝐙T𝐄̇
)

𝑇d𝛺 + ∫0

𝑘0𝐁T
𝑇𝐆∇𝐗𝑇 d𝛺, (51a)

𝐑𝑑
int = ∫0

𝐁T𝐒 d𝛺, (51b)

𝐑𝜍
int = ∫0

𝐌T𝐒 d𝛺. (51c)

To solve the set of nonlinear residual equations, the iterative scheme is adopted for the multi-field coupled thermo-mechanical
problem, and the consistent linearization of the system derived from the concept of Gateaux directional derivative in matrix form
can be expressed as

⎡

⎢

⎢

⎣

𝐤𝑑𝑑 𝐤𝑑𝜍 𝐤𝑑𝑇
𝐤𝜍𝑑 𝐤𝜍𝜍 𝐤𝜍𝑇
𝐤𝑇𝑑 𝐤𝑇 𝜍 𝐤𝑇𝑇

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝛥𝐝
𝛥𝝇
𝛥𝑻̂

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐑𝑑
ext
𝟎

𝐑𝑇
ext

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

𝐑𝑑
int

𝐑𝜍
int

𝐑𝑇
int

⎤

⎥

⎥

⎦

(52)

where 𝐤𝑎𝑏 with {𝑎, 𝑏} = {𝑑, 𝜍, 𝑇 } are different element tangent operators.
Firstly the tangent operators derived from the linearized residual form of Eq. (51a) with respect to the energy balance reads

𝐤𝑇𝑇 = ∫0

𝐍̂T 𝜌0𝑐𝑝
𝛥𝑡

𝐍̂ d𝛺 − ∫0

𝐍̂T (𝐙T𝐄̇
)

𝐍̂ d𝛺 + ∫0

𝑘0𝐁T
𝑇𝐆𝐁𝑇 d𝛺, (53a)

𝐤𝑇 𝜍 = −∫0

𝐍̂T 𝑇
𝛥𝑡

𝐙T𝐌 d𝛺, (53b)

𝐤𝑇𝑑 = −∫0

𝐍̂T 𝑇
𝛥𝑡

𝐙T𝐁 d𝛺, (53c)

where 𝛥𝑡 is the time increment.
Analogously, the tangent operators obtained from linearization of the residual equation Eq. (51b) with respect to the displacement

field is given by

𝐤𝑑𝑇 = ∫0

𝐁T𝐙𝐍̂ d𝛺 (54a)

𝐤𝑑𝜍 = ∫0

𝐁TC𝐌 d𝛺, (54b)

𝐤𝑑𝑑 = ∫0

(

𝐁TC𝐁 +𝐐
)

d𝛺. (54c)

where 𝐐 represents the geometrical nonlinearity, which is defined as

𝐐 =
𝜕𝐁(𝐝)T
𝜕𝐝

𝐒 =

⎡

⎢

⎢

⎢

⎢

⎣

𝐐11 𝐐12 ⋯ 𝐐18
𝐐21 𝐐22 ⋯ 𝐐28
⋮ ⋮ ⋱ ⋮

𝐐81 𝐐82 ⋯ 𝐐88

⎤

⎥

⎥

⎥

⎥

⎦

(55)

here 𝐐𝐼𝐽 is defined as 𝐐𝐼𝐽 = diag
[

𝑄𝐼𝐽 , 𝑄𝐼𝐽 , 𝑄𝐼𝐽
]

for the combination of node 𝐼 and 𝐽 , and the scalar 𝑄𝐼𝐽 reads

𝑄𝐼𝐽 = 𝐒T

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑁𝐼,1𝑁𝐽 ,1
𝑁𝐼,1𝑁𝐽 ,2 +𝑁𝐼,2𝑁𝐽 ,1

(

1 − 𝜉2
)

(

𝑁A1
𝐼,1𝑁

A1
𝐽 ,3 +𝑁A1

𝐼,3𝑁
A1
𝐽 ,1

)

+
(

1 + 𝜉2
)

(

𝑁A2
𝐼,1𝑁

A2
𝐽 ,3 +𝑁A2

𝐼,3𝑁
A2
𝐽 ,1

)

𝑁𝐼,2𝑁𝐽 ,2
(

1 − 𝜉1
)

(

𝑁B1
𝐼,2𝑁

B1
𝐽 ,3 +𝑁B1

𝐼,3𝑁
B1
𝐽 ,2

)

+
(

1 + 𝜉1
)

(

𝑁B2
𝐼,2𝑁

B2
𝐽 ,3 +𝑁B2

𝐼,3𝑁
B2
𝐽 ,2

)

∑4
𝑖=1

1
4

(

1 + 𝜉1𝑖 𝜉
1) (1 + 𝜉2𝑖 𝜉

2)𝑁𝐼,3𝑁𝐽 ,3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(56)

where 𝐒 is the approximate stress field in matrix form as 𝐒 =
[

S11, S12, S13, S22, S23, S33
]T

.

Similarly, the tangent operators derived from Eq. (51c) with respect to the incompatible strain field take the form

𝐤𝜍𝑇 = 𝐌T𝐙𝐍̂ d𝛺, (57a)
11
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Fig. 7. Sketch of the interface between the two bodies during the deformation process.

𝐤𝜍𝑑 = ∫0

𝐌TC𝐁 d𝛺, (57b)

𝐤𝜍𝜍 = ∫0

𝐌TC𝐌 d𝛺, (57c)

Since inter-element continuity is not required (Reinoso and Blázquez, 2016), the consistent linearization with respect to the
incompatible strain field can be condensed out in the element level, and the condensed system of equations are given by

[

𝐤∗𝑑𝑑 𝐤∗𝑑𝑇
𝐤∗𝑇𝑑 𝐤∗𝑇𝑇

] [

𝛥𝐝
𝛥𝑇

]

=
[

𝐑𝑑
ext

𝐑𝑇
ext

]

−
[

𝐑𝑑∗
int

𝐑𝑇 ∗
int

]

(58)

where the element stiffness contributions are

𝐤∗𝑑𝑑 = 𝐤𝑑𝑑 − 𝐤𝑑𝜍𝐤−1𝜍𝜍 𝐤𝜍𝑑 , 𝐤∗𝑑𝑇 = 𝐤𝑑𝑇 − 𝐤𝑑𝜍𝐤−1𝜍𝜍 𝐤𝜍𝑇 , (59a)

𝐤∗𝑇𝑑 = 𝐤𝑇𝑑 − 𝐤𝑇 𝜍𝐤−1𝜍𝜍 𝐤𝜍𝑑 , 𝐤∗𝑇𝑇 = 𝐤𝑇𝑇 − 𝐤𝑇 𝜍𝐤−1𝜍𝜍 𝐤𝜍𝑇 , (59b)

and the condensed element internal residual vectors render

𝐑𝑑∗
int = 𝐑𝑑

int − 𝐤𝑑𝜍𝐤−1𝜍𝜍 𝐑
𝜍
int, (60a)

𝐑𝑇 ∗
int = 𝐑𝑇

int − 𝐤𝑇 𝜍𝐤−1𝜍𝜍 𝐑
𝜍
int. (60b)

3.2. Finite element implementation of cohesive interface

In the reference configuration for finite deformation setting, consider two deformable bodies (1)
0 ⊂ R3 and (2)

0 ⊂ R3 (identified
as Body-1 and Body-2 in Fig. 7). The interface contribution of cohesive traction 𝜎̄ = (𝜎, 𝜏𝑡, 𝜏𝑠) and heat flux 𝑞 to the Principle of
Virtual Work of the whole mechanical system can be expressed as

𝛱int = ∫𝛤int

𝐠Tloc ⋅ 𝐓 d𝜕𝛺 (61)

where 𝐠loc = (𝛥𝑛, 𝛥𝑠, 𝛥𝑡, 𝛥𝑇 )T is the local gap vector including both mechanical and thermal gaps, and 𝐓 = (𝜎, 𝜏𝑡, 𝜏𝑠, 𝑞) is the traction
vector conjugate to the gap vector. Note that the traction vector vanishes when the interface is undergoing rigid body motions
owning to the frame indifference of this formulation. The variational form of interface contribution is given by

𝛿𝛱int(𝐠loc) = ∫𝛤int

(

𝜕𝐠loc
𝜕𝐮̂

𝛿𝐮̂
)T

𝐓 d𝜕𝛺 = 𝛿𝐮̂T
∫𝛤int

(

𝜕𝐠loc
𝜕𝐮̂

)T
𝐓 d𝜕𝛺 (62)

where 𝐮̂ = (𝐮, 𝑇 )T is the generalized field vector.
To account for the rotations of configuration, a middle plane of the interface by averaging the position and displacement vector

of the upper and lower faces is defined. Hence, the position vector on the middle surface 𝐱̄ and 𝐗̄ can be determined by multiplying
the position vector with an averaging operator 𝐌𝑐𝑧,

𝐱̄ = 𝐌𝑐𝑧𝐱, 𝐗̄ = 𝐌𝑐𝑧𝐗 (63)
12
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Fig. 8. Sketch of the three-dimensional interface finite element.

Fig. 9. The sketch of double-glass structure in the damp heat test.

where the matrix 𝐌𝑐𝑧 is defined as 𝐌𝑐𝑧 = 1
2 (12,12) with 12 identified as 12 × 12 identity matrix.

In line with derivations proposed in Reinoso et al. (2012), the convective shear vector 𝐬, tangential vector 𝐭 and normal vector
to the middle surface, see Fig. 8, are defined via the differentiation of average position vector in the current configuration with

espect to the natural coordinates 𝜉 and 𝜂, and given by

𝐬 = 𝜕𝐱̄
𝜕𝜉

, 𝐭 = 𝜕𝐱̄
𝜕𝜂

, 𝐧 = 𝐬 × 𝐭. (64)

The gap vector 𝐠 can be determined by multiplying the nodal displacement vector of the interface element with an appropriate
perator 𝐋𝑐𝑧 = (−16,16) with 16 identified as 16 × 16 identity matrix, which provides the difference between the bottom and
pper surface displacements, and its expression is given by

𝐠 = 𝐍𝑐𝑧𝐋𝑐𝑧𝐝̂ (65)

where 𝐝̂ is the vector collecting the degrees of freedom in the element level, and 𝐍𝑐𝑧 is the interpolation matrix of interface, which
eads

𝐍𝑐𝑧 =
[

𝑁𝑐𝑧
1 4, 𝑁𝑐𝑧

2 4, 𝑁𝑐𝑧
3 4, 𝑁𝑐𝑧

4 4
]

, (66)

here 𝑁𝑐𝑧
1 = 1

4
(1− 𝜉)(1−𝜂), 𝑁𝑐𝑧

2 = 1
4
(1+ 𝜉)(1−𝜂), 𝑁𝑐𝑧

3 = 1
4
(1+ 𝜉)(1+𝜂) and 𝑁𝑐𝑧

4 = 1
4
(1− 𝜉)(1+𝜂), and 4 is the 4 × 4 identity matrix.

To define the traction–separation law in the local frame, the local gap vector needs to be computed by multiplying the counterpart
n the global frame with a rotation matrix operator

𝐠loc = 𝐑𝑐𝑧𝐠 = 𝐑𝑐𝑧𝐍𝑐𝑧𝐋𝑐𝑧𝐝̂, (67)

nd the rotation matrix 𝐑𝑐𝑧 reads

𝐑𝑐𝑧 =

⎡

⎢

⎢

⎢

⎢

⎣

sx sy sz 0
tx ty tz 0
nx ny nz 0
0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

(68)

here its coefficients are all components of the convective vectors defined in Eq. (64).
Recalling the derivation of Eq. (62), the partial derivative of the local gap vector with respect to nodal displacements takes the

orm
𝜕𝐠loc
𝜕𝐮̂

≈
𝜕𝐠loc

𝜕𝐝̂
= 𝐑𝑐𝑧𝐍𝑐𝑧𝐋𝑐𝑧 +

𝜕𝐑𝑐𝑧

𝜕𝐝̂
𝐍𝑐𝑧𝐋𝑐𝑧𝐝̂ = 𝐑𝑐𝑧𝐁𝑐𝑧 +

𝜕𝐑𝑐𝑧

𝜕𝐝̂
𝐁𝑐𝑧𝐝̂. (69)

where 𝐁𝑐𝑧 = 𝐍𝑐𝑧𝐋𝑐𝑧 is introduced to simplify the equation. By inserting Eq. (69) into Eq. (61), where 𝐮 is replaced by the nodal
vector 𝐝̂, the general variational form of interface element formulation is given by

𝛿𝛱int = 𝛿𝐝̂T
(

𝐑𝑐𝑧𝐁𝑐𝑧 +
𝜕𝐑𝑐𝑧 𝐁𝑐𝑧𝐝̂

)T
𝐓 d𝜕𝛺 = 𝛿𝐝̂T𝐟int (70)
13
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Fig. 10. The contour plot of moisture diffusion along the EVA layer inside the double-glass laminate during the damp heat simulation.

where the vector 𝛿𝐝̂ represents the admissible virtual nodal vector, and 𝐟int is the internal force vector of interface at the element
level. The consistent linearization for the interface finite element formulation at the (k + 1)𝑡ℎ iteration is given by

𝐊e,𝑘𝛥𝐝̂𝑘+1 = −𝐟𝑘int (71a)

𝐝̂𝑘+1 = 𝐝̂𝑘 + 𝛥𝐝̂𝑘+1 (71b)

where 𝐊e,𝑘 = 𝜕𝐟int
𝜕𝐝̂

is the element stiffness evaluated at the (k)𝑡ℎ iteration, which reads

𝐊e = ∫𝛤int

[

2𝐁T
𝑐𝑧
𝜕𝐑T

𝑐𝑧

𝜕𝐝̂
𝐓 +

(

𝐁T
𝑐𝑧𝐑

T
𝑐𝑧 + 𝐝̂T𝐁T

𝑐𝑧
𝜕𝐑T

𝑐𝑧

𝜕𝐝̂

)

𝜕𝐓
𝜕𝐝̂

]

d𝜕𝛺. (72)

It should be pointed out that the second derivative of the rotation matrix with respect to the nodal vector is omitted for convenience
in the formulation (Reinoso and Paggi, 2014). The derivative of cohesive traction vector can be derived by chain rule as follows,

𝜕𝐓
𝜕𝐝̂

= 𝜕𝐓
𝜕𝐠loc

𝜕𝐠loc

𝜕𝐝̂
= 𝐂𝑐𝑧𝐑𝑐𝑧𝐁𝑐𝑧 +

𝜕𝐑𝑐𝑧

𝜕𝐝̂
𝐁𝑐𝑧𝐝̂ (73)

where 𝐂𝑐𝑧 is the material tangent stiffness of the interface. In small displacement setting, the second term of Eq. (73) with respect
to the partial derivative of rotation matrix can be neglected. After substituting Eq. (73) into Eq. (72), the final element stiffness
14
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a

Fig. 11. The comparison of moisture concentration vs. distance from the edge of laminate curves between diffusion simulation and damp heat test after 1000 h
s well as experimental data in Miami.

Fig. 12. Temperature profile imposed inside the chamber during the humidity freeze test.

matrix form of interface can be expressed as

𝐊e = ∫𝛤int

𝐁T
𝑐𝑧𝐑

T
𝑐𝑧𝐂𝑐𝑧𝐑𝑐𝑧𝐁𝑐𝑧 d𝜕𝛺. (74)

3.3. Finite element implementation of 3D moisture diffusion

The weak form and finite element discretization of 3D moisture diffusion along the polymeric encapsulant layer will be presented
in this section. Since a staggered scheme is adopted for the solution of hygro-thermo-visco-elastic problem, the finite element
mesh for moisture diffusion can be different from that of thermo-mechanical model. Hence, an appropriate interpolation scheme
is required to project the nodal temperatures from the thermo-mechanical problem to the nodes of mesh for moisture diffusion to
determine the diffusion coefficients as stated in Eq. (24). In the sequel, the finite element mesh for moisture diffusion coincident
with the discretization for the thermo-mechanical interface of encapsulant layers is adopted for convenience, but without any loss
of generality.

By multiplying Eq. (23) with a test function 𝛿𝑐(𝐗, 𝑡), the weak form for moisture diffusion after integration by parts can be
constructed as follows

∫0

𝐷∇𝐗𝑐 ⋅ ∇𝐗𝛿𝑐 d𝛺 + ∫0

𝛿𝑐 𝜕𝑐
𝜕𝑡

d𝛺 = 0. (75)

The interpolation of moisture concentration and its variation in a generic material point 𝐗 and at the time point 𝑡 is given by

𝑐(𝐗, 𝑡) ≈
𝑛𝑛
∑

𝑁𝐼 (𝝃)𝑐𝐼 = 𝐍𝑐 𝐜̃, 𝛿𝑐(𝐗, 𝑡) ≈
𝑛𝑛
∑

𝑁𝐼 (𝝃)𝛿𝑐𝐼 = 𝐍𝑐𝛿𝐜̃, (76)
15
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Fig. 13. (a) Relaxation modulus of EVA vs. time curves at different temperatures, (b) temperature dependent fractional calculus coefficient 𝑎(𝑇 ), (c) temperature
dependent exponent 𝛼(𝑇 ).
Source: Adapted from Paggi and Sapora (2015).
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Fig. 14. The temperature contour plot of the cross section of the double glass laminate at time point A in the first cycle during humidity freeze simulation.

Fig. 15. The temperature contour plot inside EVA at six different time points in the first cycle during humidity freeze simulation.
17
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Fig. 16. The temperature versus distance from edge curves at six different time points in the first cycle during humidity freeze simulation.

here 𝐍𝑐 = [𝑁1, 𝑁2, 𝑁3, 𝑁4, 𝑁5, 𝑁6, 𝑁7, 𝑁8] is the shape function matrix, and 𝐜̃ is the moisture concentration nodal vector. Besides,
the interpolation of the spatial concentration gradient ∇𝐗𝑐 and its variation ∇𝐗𝛿𝑐 can be expressed as

∇𝐗𝑐 ≈ 𝐆−T∇𝝃𝐍𝑐 𝐜̃ = 𝐁𝑐 𝐜̃, ∇𝐗𝛿𝑐 ≈ 𝐆−T∇𝝃𝐍𝑐𝛿𝐜̃ = 𝐁𝑐𝛿𝐜̃, (77)

Introducing Eqs. (76) and (77) into Eq. (75), the variational form of moisture diffusion is given by

𝛿𝐜̃T ∫0

(

𝐷𝐁T
𝑐∇𝐗𝑐 + 𝐍T

𝑐 𝑐̇
)

d𝛺 = 𝛿𝐜̃T𝐟 𝑐int (78)

where 𝐟 𝑐int is the internal residual vector, which is defined as

𝐟 𝑐int = ∫0

(

𝐷𝐁T
𝑐∇𝐗𝑐 + 𝐍T

𝑐 𝑐̇
)

d𝛺. (79)

The linearization for moisture diffusion at the (k + 1)𝑡ℎ iteration in the Newton–Raphson iterative solution scheme reads

𝐊𝑐,𝑘𝛥𝐜̃𝑘+1 = −𝐟 𝑐,𝑘int (80a)

𝐜̃𝑘+1 = 𝐜̃𝑘 + 𝛥𝐜̃𝑘+1 (80b)

where 𝐊𝑐 is the element stiffness for moisture diffusion, which is given by

𝐊𝑐 = ∫0

(

𝐷𝐁T
𝑐 𝐁𝑐 +

1
𝛥𝑡

𝐍T
𝑐𝐍𝑐

)

d𝛺 (81)

. Staggered solution scheme for the multi-field framework

In this section, the staggered computational procedure for the solution of the thermo-mechanical problem with solid shell
lements and interface finite elements, along with temperature-dependent 3D moisture diffusion, is outlined.

With regard to the thermo-mechanical governing equations incorporating the solid shell formulation, let consider the time
ncrement

[

𝑡𝑛, 𝑡
(𝑘)
𝑛+1

]

, where 𝑡𝑛 and 𝑡(𝑘)𝑛+1 stand for the previous converged increment and prospective current increment at iteration k,
espectively. Given the data {𝐝𝑛, 𝝇𝑛, 𝐓̂𝑛} at the previous converged increment, the nonlinear incremental solution requires the Newton
terations at the intermediate state {𝐝(𝑘)𝑛+1, 𝝇

(𝑘)
𝑛+1, 𝐓̂

(𝑘)
𝑛+1}. Note that {𝐝𝑛, 𝝇𝑛, 𝐓̂𝑛} and {𝐝(𝑘)𝑛+1, 𝝇

(𝑘)
𝑛+1, 𝐓̂

(𝑘)
𝑛+1} denote the nodal displacement

ector, the enhancing vector, and the nodal temperature vector at the previous converged increment and prospective current
ncrement at (k)𝑡ℎ iteration, respectively. Based on the static condensation described in Section 3.1, the nodal displacement and
emperature vectors are defined as unknowns in the element level, and the increment of enhancing vector in the (k)𝑡ℎ iteration of
ext time increment, 𝛥𝝇(𝑘)𝑛+1, should be determined. According to the procedure proposed in Reinoso and Blázquez (2016), 𝛥𝜻 (𝑘)𝑛+1 is
iven by

𝛥𝝇(𝑘)𝑛+1 = −
[

𝐤𝜍𝜍,𝑛
]−1

[

𝐑𝜍
int,𝑛 + 𝐤𝜍𝑑,𝑛𝛥𝐝

(𝑘)
𝑛+1 + 𝐤𝜍𝑇 ,𝑛𝛥𝐓̂

(𝑘)
𝑛+1

]

(82)

t should be pointed out that the increments 𝛥𝐝(𝑘)𝑛+1 and 𝛥𝐓̂(𝑘)
𝑛+1 are provided by the solver, while the element matrices at the previous

ncrement
[

𝐤
]−1, 𝐑𝜍 , 𝐤 , 𝐤 , and 𝝇 are all stored as internal variables. The numerical algorithm for the finite element
18
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Fig. 17. The contour plot of moisture diffusion along the EVA layer during the humidity freeze simulation.

implementation of the thermo-mechanical problem with solid shell and interface element formulation is detailed in Algorithm 1. The
Newton–Raphson iteration is performed until the machine precision is achieved, i.e., the tolerance of residual vector is up to 10−15.

It is worth noting that the history variables ℎ at the integration points need to be determined due to the time dependency of
visco-elastic constitutive equation, Eq. (20). To model relaxation, this history variable is set to zero in case of any temperature
change, which is stored as a state variable in the interface element implementation, while updated by the current time increment
if the temperature value remains constant compared with that of previous increment, see Algorithm 1. Hence, the drawback of
temperature–time superposition principle for thermo-visco-elastic modeling of polymeric materials is overcome.

Once the temperature and displacement field in the coupled thermo-mechanical problem are solved in a given time increment,
these nodal values are transferred to the moisture diffusion problem, which is solved by the Euler backward time integration scheme
using the same temporal interval with that of the thermo-mechanical analysis. As stated in Section 2.3, given the time scale difference
between the moisture diffusion and thermo-mechanical phenomena, the coefficient in the current increment of moisture diffusion
19
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analysis is determined from the nodal temperature and gap values at the previous time increment. The detailed computational
procedure of moisture diffusion is outlined in Algorithm 2.

Algorithm 1: Numerical implementation procedure of the coupled thermo-mechanical formulation
if Solid shell element then

Data: d𝑛, 𝐓̂𝑛, 𝛥d
(𝑘)
𝑛+1, 𝛥𝐓̂

(𝑘)
𝑛+1

Result: d𝑛+1, 𝐓̂𝑛+1

Initialization of 𝝇𝑛, 𝐑
𝜍
int,𝑛, 𝐤𝜍𝑑,𝑛,

[

𝐤𝜍𝜍,𝑛
]−1;

while ||R∗
𝑑 || > tolerance do

Compute 𝛥𝝇(𝑘)𝑛+1 = −
[

𝐤𝜍𝜍,𝑛
]−1

[

𝐑𝜍
int,𝑛 + 𝐤𝜍𝑑,𝑛𝛥𝐝

(𝑘)
𝑛+1 + 𝐤𝜍𝑇 ,𝑛𝛥𝐓̂

(𝑘)
𝑛+1

]

;

Update the enhancing vector 𝝇(𝑘)𝑛+1 = 𝝇𝑛 + 𝛥𝝇(𝑘)𝑛+1;
for n ← 1 to 8 integration points do

Compute the curvilinear basis 𝐆(𝑘)
𝑛+1 and 𝐠(𝑘)𝑛+1;

Compute the B matrices 𝐁(𝑘)
𝑛+1 and 𝐁(𝑘)

𝑇 ,𝑛+1;
Modify the 𝐁(𝑘)

𝑛+1 matrix according to the ANS method;
Compute C(𝑘)

𝑛+1, 𝐒
(𝑘)
𝑛+1, and 𝐙(𝑘)

𝑛+1;
Compute the EAS operator 𝐌(𝑘)

𝑛+1;
end
Compute the element stiffness matrices 𝐤(𝑘)𝑑𝑑,𝑛+1, 𝐤

(𝑘)
𝑑𝜍,𝑛+1, 𝐤

(𝑘)
𝜍𝑑,𝑛+1, 𝐤

(𝑘)
𝜍𝜍,𝑛+1, and 𝐤(𝑘)𝑇𝑇 ,𝑛+1;

Compute the internal force vectors 𝐑𝑑(𝑘)
int,𝑛+1, 𝐑

𝜍(𝑘)
int,𝑛+1, and 𝐑𝑇 (𝑘)

int,𝑛+1;
Perform the static condensation and final assembly ;

end
nd
lse if Cohesive interface element then
Data: d𝑛, 𝐓̂𝑛, 𝛥d

(𝑘)
𝑛+1, 𝛥𝐓̂

(𝑘)
𝑛+1

Result: d𝑛+1, 𝐓̂𝑛+1
while ||R∗

𝑑 || > tolerance do
Compute the operators 𝐋𝑐𝑧 and 𝐌𝑐𝑧;
for n ← 1 to 4 integration points do

Compute the shape function 𝐍(𝑘)
𝑐𝑧,𝑛+1 ;

Compute the matrix 𝐁(𝑘)
𝑐𝑧,𝑛+1 = 𝐍(𝑘)

𝑐𝑧,𝑛+1𝐋𝑐𝑧;
Compute the rotation matrix in the curvilinear system 𝐑(𝑘)

𝑐𝑧,𝑛+1;
Compute the local gap 𝐠(𝑘)loc,𝑛+1 = 𝐑(𝑘)

𝑐𝑧,𝑛+1𝐁
(𝑘)
𝑐𝑧,𝑛+1𝐝̂

(𝑘)
𝑛+1;

Compute the temperature value at the integration point 𝑇 (𝑘)
𝑖𝑛𝑡,𝑛+1;

if |𝑇 (𝑘)
𝑖𝑛𝑡,𝑛+1 − 𝑇𝑖𝑛𝑡,𝑛| > tolerance then
Compute the history variable ℎ(𝑘)𝑖𝑛𝑡,𝑛+1 = ℎ𝑖𝑛𝑡,𝑛;

else
Compute the history variable ℎ(𝑘)𝑖𝑛𝑡,𝑛+1 = ℎ𝑖𝑛𝑡,𝑛 + 𝛥𝑡;

end
Compute the stiffness matrix 𝐂(𝑘)

𝑐𝑧,𝑛+1 and the traction vector 𝐓
(𝑘)
𝑛+1;

end
Compute the element stiffness matrix 𝐊e(𝑘)

int,𝑛+1;
Compute the internal residual vector 𝐟 (𝑘)int,𝑛+1;

end
end
20
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Algorithm 2: Numerical implementation procedure of the moisture diffusion along the interface

Data: 𝐜̃𝑛, 𝛥𝐜̃
(𝑘)
𝑛+1

Result: 𝐜̃𝑛+1
Initialization of 𝐝𝑛 and 𝐓̂𝑛;
while ||𝐟 𝑐𝑖𝑛𝑡|| > tolerance do

for n ← 1 to 8 integration points do
Compute the shape function 𝐍(𝑘)

𝑐,𝑛+1;
Compute the B matrix 𝐁(𝑘)

𝑐,𝑛+1;
Compute the temperature value at the integration point 𝑇𝑖𝑛𝑡,𝑛 with 𝐓̂𝑛;
Compute the normal gap at the integration point 𝛥𝑖𝑛𝑡,𝑛 with 𝐝𝑛;
if 𝛥𝑖𝑛𝑡,𝑛 ≤ 𝛿𝑐𝑛 then

Compute the coefficient 𝐷(𝑘)
𝑖𝑛𝑡,𝑛+1 = 𝐴 exp

(

− 𝐸𝑎
𝑇𝑖𝑛𝑡,𝑛𝑅

)

;

else
Compute the coefficient 𝐷(𝑘)

𝑖𝑛𝑡,𝑛+1 = 𝐴 exp
(

− 𝐸𝑎
𝑇𝑖𝑛𝑡,𝑛𝑅

) 𝛥𝑖𝑛𝑡,𝑛
𝛿𝑐𝑛

;

end
end
Compute the element stiffness matrices 𝐊(𝑘)

𝑐,𝑛+1;
Compute the internal force vectors 𝐟 𝑐(𝑘)𝑖𝑛𝑡,𝑛+1;
Perform the final assembly ;

end

5. Numerical applications to photovoltaics

In this section, three international standard tests for photovoltaics, including damp heat test, humidity freeze test, and thermal
ycling test, are simulated by the proposed computational framework. Note that the damp heat test requires constant temperature
nd humidity testing environments, which uncouples the moisture diffusion from the thermo-mechanical problem and thus allows
he derivation of analytical solution useful for benchmark targets, while the latter require the fully coupled solution scheme due
o the spatial variation of temperature. Besides, the role of cracks in silicon on moisture diffusion pattern is also investigated and
ompared with experimental electroluminescence images.

.1. Damp heat test

As prescribed by the international standard, the damp heat test is conducted in the environmental chamber with the constant
emperature of 85 ◦C and relative humidity of 85% RH. This humidity environmental condition corresponds to the initial
oundary condition with a moisture concentration 𝑐∗ = 0.0056 g/cm3 imposed on the free edges of the photovoltaic laminate.

Since temperature is kept constant in this test, the moisture diffusion problem can be solved independently from the coupled
thermo-mechanical problem with a constant diffusivity.

In this work, the specimen is a double-glass PV laminate of span 𝑙 = 40 mm separated by EVA. The thickness of glass laminae
is 3 mm, and the thickness of EVA is 0.5 mm. As glass is not permeable, the moisture will only diffuse from the free edges of EVA
towards the central part in this test, see Fig. 9. The analytical solution was obtained in Crank (1979), which will be treated as a
benchmark of the computational scheme proposed above. Assuming the initial laminate is dry, the spatial and temporal solution 𝑐
can be obtained as

𝑐 = 𝑐∗ + 4𝑐∗
𝜋

∞
∑

𝑚=0

1
2𝑚 + 1

sin
[

(2𝑚 + 1)𝜋𝑥
𝑙

]

e
(

−𝐷(2𝑚+1)2𝜋2𝑡∕𝑙2
)

(83)

The mesh size of finite element model is 1 mm, and there are 1600 solid diffusion elements in total. The contour plot of moisture
concentration inside the EVA is shown in Fig. 10 and, as clearly seen, water concentration gradually diffuses from the edges into the
middle area of EVA during simulation. At 100 h, the most area of EVA is still dry with almost zero concentration, see Fig. 10(a), while
after 1000 h, the dry area becomes obviously smaller. To quantitatively validate the computational diffusion model, the predicted
moisture concentration with respect to the distance from the edge after 1000 h (the black solid line in Fig. 11) is compared with that
obtained from the analytical solution (the black dotted line in Fig. 11), and they agree with each other very well. Besides, this model
is also used to simulate the experimental results obtained from Miami as reported in Kempe (2006), and numerical predictions also
agree very well with the data from the impermeable double-glass laminate exposed to Miami environment for 1 year, 2 years, and
21

3 years, which further proves the reliability of the diffusion modeling method proposed in this work.
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Fig. 18. The comparison of moisture concentration versus distance from edge curves after 700 h and 1000 h between the damp heat and humidity freeze
simulations.

Fig. 19. The comparison of time history of moisture concentration at the positions 3 mm, 5 mm, and 8 mm away from the edge between the damp heat and
umidity freeze simulations.

.2. Humidity freeze test

In the humidity freeze test of PV laminates, as requested by the international standard, the modules are subjected to the cycling
emperature condition from −40 ◦C to 85 ◦C with the constant humidity condition of 85% RH. The temperature ramp can be

expressed as

𝑇 ∗(𝑡) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑡
𝑡∗1
𝑇 ∗
1 0 ≤ 𝑡 < 𝑡∗1

𝑇 ∗
1 𝑡∗1 ≤ 𝑡 < 𝑡∗2
𝑡∗3−𝑡
𝑡∗3−𝑡

∗
2
𝑇 ∗
1 𝑡∗2 ≤ 𝑡 < 𝑡∗3

𝑡−𝑡∗3
𝑡∗4−𝑡

∗
3
𝑇 ∗
2 𝑡∗3 ≤ 𝑡 < 𝑡∗4

𝑇 ∗
2 𝑡∗4 ≤ 𝑡 < 𝑡∗5
𝑡∗6−𝑡
𝑡∗6−𝑡

∗
5
𝑇 ∗
2 𝑡∗5 ≤ 𝑡 < 𝑡∗6

(84)

where 𝑇 ∗
1 = 85 ◦C, 𝑇 ∗

2 = −40 ◦C, and 𝑡∗1 = 1.0 h, 𝑡∗2 = 21.0 h, 𝑡∗3 = 22.0 h, 𝑡∗4 = 22.5 h, 𝑡∗5 = 23.5 h, 𝑡∗6 = 24.0 h, as shown in Fig. 12.
Compared with the damp heat test, this case is much more complex and almost impossible to obtain the analytical solution

ue to the spatial and temporal temperature variation inside the EVA, to which a non-constant temperature boundary condition is
pplied. Particularly, the cohesive properties and diffusivity of EVA need to be updated during simulation, and to be specific, the
22

iscoelastic parameters 𝛼(𝑇 ) and 𝑎(𝑇 ) for the calibration of Young’s modulus of EVA are temperature dependent as experimentally
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Fig. 20. EL images of the minimodule taken at different cycles during the thermal cycling test.
Source: Adapted from Berardone and Paggi (2019).

Fig. 21. Temperature profile imposed inside the chamber during the thermal cycling test.
23
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Fig. 22. The sketch of the PV minimodule in the thermal cycling test.

Fig. 23. The temperature contour plot of the cross section of the minimodule at time points B and E in the first cycle during the thermal cycling test.

Table 1
Mechanical and thermal properties of the PV materials.

𝐸 (GPa) 𝜌 (kg∕m3) 𝛼 𝑐𝑝 (J/kg K) 𝑘0 (W/m K)

Backsheet 2.8 1000 5.04e-5 300 0.36
Glass 73 2300 8e-6 500 0.8
Silicon 130 2500 2.49e-6 715 148

evaluated in Paggi et al. (2011) and interpreted through the fractional calculus method (Sapora and Paggi, 2014), see the plot of
modulus 𝐸, 𝑎(𝑇 ), and 𝛼(𝑇 ) in Fig. 13. Regarding the properties of moisture diffusion, the coefficient 𝐷 is determined according to
the Arrhenius type equation Eq. (24) reported in Kempe (2006). The thermal and mechanical properties of different PV materials are
taken from Eitner et al. (2011), Paggi et al. (2011), which are listed in Table 1. Besides, the critical opening of polymeric interface
𝛿𝑐𝑛 can be estimated from the experimental data of variation of Mode 1 fracture energy with respect to temperature in Novoa et al.
(2014), since the area below the traction versus separation curve is the fracture energy.

The temperature variation inside the double glass laminate is strongly dependent on the heat conduction properties of different
layers, as shown by the temperature contour of the cross-section at time point A in Fig. 14. The contour plot of temperature
distribution inside the EVA layer in the first cycle during simulation is shown in Fig. 15. At time point A, the boundary temperature
reaches 85 ◦C, and is kept constant for 20 h. As shown in Fig. 15(a)–(c), heat gradually diffuses from the edges into the middle area
of EVA during this period. At time point D, the boundary temperature drops to −40 ◦C, but the temperature in the middle area of
EVA layer is still higher than 65 ◦C due to the inertial effect of heat conduction, see Fig. 15(d)–(f). Remarkably, this spatial and
temporal variation of temperature inside EVA leads to the difference of moisture diffusion properties from that of EVA subjected to
constant condition in the damp heat test. To quantitatively describe the spatial variation of temperature inside EVA, the temperature
versus distance from edge curves at the six different time points in the first cycle is plotted in Fig. 16. As can be seen, the plateau
value, which corresponds to the central area temperature of EVA, gradually goes up from time point A to C with the evolution of
thermal conduction. At time C, the temperature at almost all the area of EVA from the edge to the center reaches around 85 ◦C,
which means the EVA layer is fully and evenly heated after 20 h. Besides, the plateau at the time period when boundary temperature
changes to −40 ◦C, which can be ascribed to the hysteresis of heat conduction, gradually goes down from time point D to F. It is
worth noting that the temperature at the central area is still higher than 30 ◦C at the end of one complete cycle due to the relatively
short duration of constant low-temperature boundary loading.

The contour plot history of moisture diffusion during the humidity freeze simulation is shown in Fig. 17. The moisture gradually
diffuses into the central area, which is very similar to the phenomena obtained from previous damp heat simulation. However, the
24
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Fig. 24. The temperature contour plot inside EVA at six different time points in the first cycle during thermal cycling simulation.

amount of moisture concentration is totally different in two cases due to the spatial variation of temperature inside EVA in the
humidity freeze simulation. As shown in Fig. 18, the difference of moisture concentration spatial variation after 700 h and 1000 h
between the damp heat and humidity freeze simulation can be observed. Note that the amount of moisture concentration in all the
area of EVA after 700 h and 1000 h in the damp heat case is higher than that in the humidity freeze case, since the moisture diffusion
coefficient in the former case is much higher at the constant high-temperature condition (85 ◦C). Furthermore, It can be seen from
Fig. 18 that the amount of moisture concentration at all the areas of EVA after 700 h in the damp heat case is even higher than
that in the humidity freeze case after 1000 h, which further demonstrates the effect of temperature on moisture diffusion. Besides
the difference of spatial variation, the temporal variation between the damp heat and humidity freeze simulation is also shown and
compared in this work, see Fig. 19. The time history of moisture concentration at three positions 3 mm, 5 mm, and 8 mm away from
the edge is also plotted, and the curves obtained from the damp heat simulations (solid lines) are higher than all the counterparts
obtained from the humidity freeze simulations (dotted lines). Thus, conclusions can be drawn that temperature plays an import role
on the moisture diffusion problem as the coefficient is determined from the Arrhenius equation, and this coupling can be described
with the proposed modeling method, which can be demonstrated by the example of humidity freeze simulation.
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Fig. 25. The temperature versus distance from edge curves at six different time points in the first cycle during thermal cycling simulation.

5.3. Thermal cycling test

In this section, as shown in Fig. 20, a minimodule composed of 3 × 3 multicrystalline solar cells with a crack in the middle one,
which was tested under the thermal cycling environmental condition with EL images taken regularly as reported in Berardone and
Paggi (2019), was simulated using the proposed modeling framework. In this case, the temperature ramp is given by
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⎪
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(85)

where 𝑇 ∗
1 = 25 ◦C, 𝑇 ∗

2 = −40 ◦C, 𝑇 ∗
3 = 85 ◦C, and 𝑡∗1 = 0.5 h, 𝑡∗2 = 1.5 h, 𝑡∗3 = 2.5 h, 𝑡∗4 = 3.5 h, 𝑡∗5 = 4.0 h, as shown in Fig. 21. The

sketch of the cross-section of the PV minimodule is shown in Fig. 22. The module consists of a tempered glass with the thickness
of 4 mm, an encapsulanting EVA with the thickness of 0.5 mm, the silicon solar cell with the thickness of 0.166 mm, another layer
of EVA, and finally a thin backsheet made of an ethylene tetrafluoroethylene core and silicon nitride coating with the thickness of
0.1 mm. The thermal and mechanical properties of all the component materials are listed in Table 1. The size of this PV module is
48 cm, and the adopted mesh size of the finite element model is 1 mm. Since backsheet is permeable to water and thus moisture can
penetrate from it and percolates along the edges of each solar cell, it is admissible in the numerical simulation to directly impose
moisture boundary condition at the edges of each solar cell embedded in the module, see Fig. 22.

The temperature contour plots of the cross-section of the minimodule at time point B and time point E are shown in Fig. 23.
Owning to the different heat conductivity properties of different layers (glass, backsheet, and silicon solar cells), the temperature
inside the PV minimodule presents significant spatial variation at both the cooling and heating stages. The temperature distribution
inside the EVA layer of the module at six time points of the first cycle during the thermal cycling simulation is shown in Fig. 24. At
time point A, heat has diffused inside the panel. From time point A to C, the thermal boundary condition is kept constant with the
temperature of 85 ◦C, and as can be clearly seen, the EVA layer is almost fully heated at the end of this heating period. When the
temperature boundary condition drops to −40 ◦C at time point D, this layer starts cooling down from its edges, but the temperature
in the most area is still very high after this period, and the lowest temperature is up to around 50 ◦C in the time point F, see
Fig. 24(f). This trend is quantified in Fig. 25 by plotting the temperature versus the distance from edge at six time points during the
first cycle. Compared with the previous curves obtained from humidity freeze simulation, the platforms are relatively lower at the
temperature level of around 0 ◦C because of the much shorter heating period with the constant temperature boundary condition
85 ◦C.

The contour plots of moisture concentration inside the EVA layer above the silicon solar cell layer during the thermal cycling
simulation are shown in Fig. 26. Notably, moisture diffusion can take place not only from the edges of the module, but also along
the interspaces between different solar cells as well as the crack indicated in Fig. 20. Thus the moisture boundary condition 𝑐∗ is
imposed on all these edges, and the numerical simulation is performed with this computational framework. As pointed out in Wolters
(1980), the moisture plays a significant role in the oxidation of silicon solar cell, which is demonstrated by the observed darkness
in the EL images shown in Fig. 20. The silicon oxidation versus time history curves at the different moisture concentration are
26

plotted in Fig. 27, and it can be seen that higher moisture concentration and longer exposure time lead to more silicon oxidation.
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Fig. 26. The contour plot of moisture diffusion along the EVA layer above the silicon solar cell layer during the thermal cycling simulation.

The contour plots of normalized oxidation of the minimodule during the thermal cycling simulation are shown in Fig. 28. The area
close to the crack of the middle solar cell starts becoming deeply oxidized resulting from moisture intrusion while all other cell
areas show much lower degradation, which demonstrates the consistency between simulation and experiment. At the 460th cycle,
as shown in Fig. 28, the upper right area of the middle solar cell during simulation is almost fully oxidized due to the moisture
intrusion from the crack channel, and the corresponding EL image (see Fig. 20) also shows much dimmer area at the same position
compared with that at the previous cycle. At this stage, electric degradation is significantly enhanced by moisture diffusion from
the crack channels and the corresponding oxidation. The contour plots of oxidation (see Fig. 28) correlates very well with the EL
images in terms of the electrically inactive area, which is a comparison impossible to be achieved by analytical methods.

6. Conclusions

In this work, a comprehensive 3D finite element computational framework has been established for the modeling of hygro-
thermo-visco-elastic problems in the thin-walled photovoltaic laminate with polymeric interface. To simulate the thermo-mechanical
response of the very thin laminae in the PV module, the consistent derivation of solid shell element formulation incorporating
the EAS and ANS methods to alleviate the different locking pathologies is proposed. Besides, a 3D thermo-mechanical interface
element formulation is developed to model the polymeric encapsulant layers between different laminae with a traction–separation
27
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Fig. 27. The silicon oxidation versus time history for different moisture concentrations.
Source: Adapted from Wolters (1980).

constitutive law using the fractional calculus method for the description of rheologically complex thermo-visco-elastic behavior.
Moreover, given the difference of time scales between the moisture diffusion and thermo-mechanical problems, a staggered scheme
is proposed to solve the partial differential equations governing the thermo-elastic and heat transfer problems in different laminae
and polymeric interfaces, and then update the diffusion coefficient in the moisture diffusion analysis as well as its subsequent
solution.

The computational methodology is successfully applied to the simulation of three standard qualification tests requested by
the International Electrotechnical Commission, namely the damp heat test, humidity freeze test, and thermal cycling test. In the
damp heat case, the numerical prediction is compared with the analytical solution together with experimental data from Miami,
and good consistency proves the validity of the modeling method. To see the difference of moisture diffusion with and without
thermo-mechanical coupling, the simulation of temperature dependent moisture diffusion in the humidity freeze case with cyclic
temperature boundary condition is performed and compared with the previous damp heat simulation, which shows the capabilities of
the proposed methodology for the modeling of spatial and temporal variation of moisture concentration inside the EVA layer. Finally,
the thermal cycling test of a PV minimodule with a central crack in the middle solar cell is also simulated with a different cyclic
temperature boundary condition from that of the humidity freeze test, and the predicted trend of crack enhanced moisture diffusion
is experimentally validated with the electric degradation EL images taken at different stages. With this proposed computational tool
at hand, it is possible to numerically perform the durability analysis of PV modules under different complex environmental conditions
and thus open new possibilities for the design of more reliable products in the PV industry. The problem of EVA swelling could
be considered in the future work to extend the present computational framework to simulate photovoltaics recycling. A potential
research path could regard the development of the computational framework in Hajikhani et al. (2021) developed for hydrogels,
which needs to be extended to EVA and the solvents used for PV recycling.
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