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Abstract: In this paper, the problem of stability, recursive feasibility and convergence
conditions of stochastic model predictive control for linear discrete-time systems affected by
a large class of correlated disturbances is addressed. A stochastic model predictive control that
guarantees convergence, average cost bound and chance constraint satisfaction is developed. The
results rely on the computation of probabilistic reachable and invariant sets using the notion of
correlation bound. This control algorithm results from a tractable deterministic optimal control
problem with a cost function that upper-bounds the expected quadratic cost of the predicted
state trajectory and control sequence. The proposed methodology only relies on the assumption
of the existence of bounds on the mean and the covariance matrices of the disturbance sequence.
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1. INTRODUCTION

Model predictive control (MPC) is a well-established re-
ceding horizon control technique, particularly suitable to
cope with hard constraints on controls and states, see
Mayne et al. (2000); Camacho and Alba (2013); Kou-
varitakis and Cannon (2016); Rawlings et al. (2017) and
references therein. MPC strongly relies on a model to make
predictions and to ensure the stability of the closed loop
system, while satisfying the constraints. Unfortunately,
dynamical models can never fully loyally represent a real
system. The mismatches between model and reality can
be a problem since they may lead to instability and/or
constraints violation, which represents a threat to systems
safety.
Deterministic formulations of MPC are inherently inad-
equate to systematically deal with uncertainties, though;
see the surveys Mesbah (2016); Farina et al. (2016). The
worst-case approach to deal with the unavoidable uncer-
tainties have been then employed, leading to robust MPC
formulations for regulation, Mayne and Langson (2001),
and tracking Limon et al. (2010). Although this approach
is very efficient to ensure robust stability and constraints
satisfaction, it suffers from some drawbacks like the con-
servatism of the resulting control or the often unrealistic
assumptions on uncertainties boundedness. This modelling
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framework, in fact, is not suitable to cope with stochastic
descriptions of uncertainty, which often model better the
probabilistic nature of real-world systems.
These drawbacks have pushed the community to enquire
for another approach to deal with the stochastic nature of
the uncertainties and to reduce the conservativeness of the
control, see Mesbah (2016). Stochastic MPC (SMPC) has
recently emerged, in fact, with the aim of systematically
incorporating the probabilistic descriptions of uncertain-
ties into a stochastic optimal control problem.
An enormous amount of work has been done in this
area with results that are most often very conclusive. In
many works concerning SMPC, however, the stochastic
disturbance is modelled by an independent, identically
distributed sequence of random variables with known
mean and variance. This is the case, for instance, for
the methods concerning: stochastic tube MPC, Cannon
et al. (2010); Hewing and Zeilinger (2018); discounted
probabilistic constraints, Yan et al. (2021); SMPC for con-
trolling the average number of constraints violation, Korda
et al. (2014); probabilistic MPC, Farina et al. (2013); and
recursively feasible SMPC using indirect feedback, Hewing
et al. (2020). We can also cite Cannon et al. (2009a,b);
Bernardini and Bemporad (2011); Oldewurtel et al. (2013).
The assumption of independence in time, and thus un-
correlation between disturbance realizations, though, is in
general unrealistic. In addition, the disturbance mean and
covariance are in general not available in practice, nor
necessarily constant in time.
In this work, we consider linear systems excited by dis-
turbances which realisations are correlated in time. Only
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1. INTRODUCTION

Model predictive control (MPC) is a well-established re-
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cope with hard constraints on controls and states, see
Mayne et al. (2000); Camacho and Alba (2013); Kou-
varitakis and Cannon (2016); Rawlings et al. (2017) and
references therein. MPC strongly relies on a model to make
predictions and to ensure the stability of the closed loop
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dynamical models can never fully loyally represent a real
system. The mismatches between model and reality can
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equate to systematically deal with uncertainties, though;
see the surveys Mesbah (2016); Farina et al. (2016). The
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tainties have been then employed, leading to robust MPC
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framework, in fact, is not suitable to cope with stochastic
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These drawbacks have pushed the community to enquire
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control, see Mesbah (2016). Stochastic MPC (SMPC) has
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incorporating the probabilistic descriptions of uncertain-
ties into a stochastic optimal control problem.
An enormous amount of work has been done in this
area with results that are most often very conclusive. In
many works concerning SMPC, however, the stochastic
disturbance is modelled by an independent, identically
distributed sequence of random variables with known
mean and variance. This is the case, for instance, for
the methods concerning: stochastic tube MPC, Cannon
et al. (2010); Hewing and Zeilinger (2018); discounted
probabilistic constraints, Yan et al. (2021); SMPC for con-
trolling the average number of constraints violation, Korda
et al. (2014); probabilistic MPC, Farina et al. (2013); and
recursively feasible SMPC using indirect feedback, Hewing
et al. (2020). We can also cite Cannon et al. (2009a,b);
Bernardini and Bemporad (2011); Oldewurtel et al. (2013).
The assumption of independence in time, and thus un-
correlation between disturbance realizations, though, is in
general unrealistic. In addition, the disturbance mean and
covariance are in general not available in practice, nor
necessarily constant in time.
In this work, we consider linear systems excited by dis-
turbances which realisations are correlated in time. Only
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bounds on the mean and the correlation matrices are re-
quired to exist, even stationarity is not necessary. Based on
recent results on the probabilistic reachable and invariant
sets for correlated disturbances developed in Fiacchini and
Alamo (2021), we adapt the tube-based SMPC formula-
tion in Hewing et al. (2020) and extend some results in
Hewing and Zeilinger (2018); Farina et al. (2013) to the
correlated disturbance case under analysis, based only on
the knowledge of bounds on its first and second moments.
Under this “weak” assumption, we propose a tube-based
SMPC and derive its nominal asymptotic stability and
recursive feasibility, in addition to the chance constraints
satisfaction and state convergence with asymptotic aver-
age cost bound.

Notations: The set of natural numbers is denoted N,
for any x ∈ Rn and M ∈ Rn×n ∥x∥M := x⊤Mx and
Γ ≻ 0 (Γ ⪰ 0) denotes that Γ is a symmetric definite

(semi-definite) positive matrix. If Γ ⪰ 0 then Γ
1
2 is the

matrix satisfying (Γ
1
2 )2 = Γ. For all Γ ⪰ 0 and r ≥ 0,

the ellipsoidal set E (Γ, r) is defined by {x = Γ
1
2 z ∈ Rn :

z⊤z ≤ r}; if moreover Γ ≻ 0, then E (Γ, r) = {x ∈ Rn :
x⊤Γ−1x ≤ r}. The spectral radius of P ∈ Rn×n is ρ(P ).
Given two sets X,Y ⊆ Rn, their Pontryagin difference is
X ⊖ Y = {x ∈ X| x + y ∈ X, ∀y ∈ Y }. The χ squared
cumulative distribution function of order n is denoted
χ2
n(x). Probabilities are denoted Pr{A}; the expectation

of A is denoted E{A}.

2. PROBLEM FORMULATION

Consider the discrete-time LTI systems given by

xk+1 = Axk +Buk + wk, (1)

where x ∈ Rn is the state, u ∈ Rm the control input and
w ∈ Rn is an additive disturbance given by a sequence of
random variables that can be correlated in time. Through-
out the paper, we make the underlining assumptions of
perfect knowledge of the state and stabilizability of (A,B).
The objective is to design a SMPC that stabilizes (1) and
ensures the satisfaction of chance constraints of the form

Pr{x ∈ X|x0} ≥ 1− px, Pr{u ∈ U|x0} ≥ 1− pu, (2)

where X and U are convex sets with the origin in their
interior and px and pu the tolerated violation probability
of each constraint. As in Hewing et al. (2020), the proba-
bilities are to be understood with respect to knowledge at
the initial time step t = 0.
In this paper, no assumption on {wk}k∈N is posed other
than the existence of a bound on the mean and correlation
matrices and an exponentially vanishing cross-correlation.
Neither stationarity, i.i.d. assumption, nor the knowledge
of the mean or the variance of the {wk}k∈N sequence are
required, in opposition with what done in the literature
Hewing et al. (2020); Hewing and Zeilinger (2018); Farina
et al. (2013); Yan et al. (2021). This is crucial in practice,
as no exact knowledge of the matrices nor guarantee on
the stationarity are often available.

Assumption 1. There exist m, b, γ ∈ R, with γ ∈ [0, 1),
such that the sequence wk satisfies

µ⊤
k µk ≤ m, ∀k ∈ N,

∥cov(wi, wj)∥22 ≤ b γj−i, ∀i ≤ j,

with µk = E{wk} and cov(wi, wj) = E{(wi − wj)(wi −
wj)

⊤}, for all k, i, j ∈ N.

3. PRELIMINARIES

In this section, we consider a system given by

ek+1 = AKek + wk (3)

where ek ∈ Rn, AK = A+BK ∈ Rn×n, wk is an additive
disturbance sequence similar to the one in (1) andK makes
AK Schur stable (i.e. ρ(AK) < 1).
We recall here a result from Fiacchini and Alamo (2021).

Proposition 1. If Assumption 1 is satisfied, then non-
negative α, β, γ ∈ R and Γ̃ ∈ Rn×n exist, with γ ∈ [0, 1)

and Γ̃ ≻ 0, such that

Γk,k ≺ Γ̃, ∀k ∈ N, (4)

Γi,jΓ̃
−1Γ⊤

i,j ⪯ (α+ βγj−i)Γ̃, ∀i ≤ j, (5)

hold, with Γi,j = E{wiw
⊤
j }, for all i, j ∈ N.

Note that only bounds on the mean and the covariance of
{wk}k∈N are required to obtain the bounds (4) and (5).
We give here a notion that has been introduced in (Fiac-
chini and Alamo, 2021, Definition 1) and plays a key role
in the characterization and determination of probabilistic
reachable and invariant sets for the considered systems.

Definition 1. The random sequence {wk}k∈Z in (3) is said
to have a correlation bound Γw for matrix AK if the
recursion (3), with e0 = 0, satisfies

E{ek+1e
⊤
k+1} ⪯ AKE{eke⊤k }A⊤

K + Γw, ∀k ≥ 0. (6)

If (4) and (5) are satisfied, it is possible to obtain tight
correlation bounds, see Fiacchini and Alamo (2021).
We recall here the notion of probabilistic reachable set.

Definition 2. It is said that Ωk ⊆ Rn with k ∈ N is a
sequence of probabilistic reachable sets for system (3), with
violation level ε ∈ [0, 1], if e0 ∈ Ω0 implies Pr{ek ∈ Ωk} ≥
1− ε for all k ≥ 1.

A condition for a sequence of ellipoids to be probabilistic
reachable sets in terms of correlation bound, given in
Fiacchini and Alamo (2021), is recalled here.

Proposition 2. Suppose that the random sequence {wk}k∈N
has a correlation bound Γw ≻ 0 for matrix AK with
ρ(AK) < 1. Given r > 0, consider the system (3) with
e0 = 0, and the following recursion

Γk+1 = AKΓkA
⊤
K + Γw (7)

with Γ0 = 0 ∈ Rn×n. Then E (Γk, r) are probabilistic
reachable sets with violation level n/r for every r > 0,
for k ∈ N. If, moreover, wk is a Gaussian process with null
mean, then E (Γk, r) are probabilistic reachable sets with
violation probability 1− χ2

n(r).

We recall now the notion of probabilistic invariant set.

Definition 3. The set Ω ∈ Rn is a probabilistic invariant
set for the system (3), with violation level ε ∈ [0, 1], if
e0 ∈ Ω implies Pr{ek ∈ Ω} ≥ 1− ε for all k ≥ 1.

Constructive conditions to obtain probabilistic reachable
and invariant ellipsoids are given in (Fiacchini and Alamo,
2021, Proposition 5). They only require the knowledge of

the upper bound Γ̃ on the covariance term that ensures
the satisfaction of (4) and (5).

4. MODEL PREDICTIVE CONTROL PROPERTIES

The different ingredients of SMPC are first presented.
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satisfaction and state convergence with asymptotic aver-
age cost bound.
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cumulative distribution function of order n is denoted
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of A is denoted E{A}.
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Consider the discrete-time LTI systems given by

xk+1 = Axk +Buk + wk, (1)

where x ∈ Rn is the state, u ∈ Rm the control input and
w ∈ Rn is an additive disturbance given by a sequence of
random variables that can be correlated in time. Through-
out the paper, we make the underlining assumptions of
perfect knowledge of the state and stabilizability of (A,B).
The objective is to design a SMPC that stabilizes (1) and
ensures the satisfaction of chance constraints of the form

Pr{x ∈ X|x0} ≥ 1− px, Pr{u ∈ U|x0} ≥ 1− pu, (2)

where X and U are convex sets with the origin in their
interior and px and pu the tolerated violation probability
of each constraint. As in Hewing et al. (2020), the proba-
bilities are to be understood with respect to knowledge at
the initial time step t = 0.
In this paper, no assumption on {wk}k∈N is posed other
than the existence of a bound on the mean and correlation
matrices and an exponentially vanishing cross-correlation.
Neither stationarity, i.i.d. assumption, nor the knowledge
of the mean or the variance of the {wk}k∈N sequence are
required, in opposition with what done in the literature
Hewing et al. (2020); Hewing and Zeilinger (2018); Farina
et al. (2013); Yan et al. (2021). This is crucial in practice,
as no exact knowledge of the matrices nor guarantee on
the stationarity are often available.
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such that the sequence wk satisfies
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k µk ≤ m, ∀k ∈ N,
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In this section, we consider a system given by
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where ek ∈ Rn, AK = A+BK ∈ Rn×n, wk is an additive
disturbance sequence similar to the one in (1) andK makes
AK Schur stable (i.e. ρ(AK) < 1).
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and Γ̃ ≻ 0, such that
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hold, with Γi,j = E{wiw
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Note that only bounds on the mean and the covariance of
{wk}k∈N are required to obtain the bounds (4) and (5).
We give here a notion that has been introduced in (Fiac-
chini and Alamo, 2021, Definition 1) and plays a key role
in the characterization and determination of probabilistic
reachable and invariant sets for the considered systems.

Definition 1. The random sequence {wk}k∈Z in (3) is said
to have a correlation bound Γw for matrix AK if the
recursion (3), with e0 = 0, satisfies
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K + Γw, ∀k ≥ 0. (6)

If (4) and (5) are satisfied, it is possible to obtain tight
correlation bounds, see Fiacchini and Alamo (2021).
We recall here the notion of probabilistic reachable set.

Definition 2. It is said that Ωk ⊆ Rn with k ∈ N is a
sequence of probabilistic reachable sets for system (3), with
violation level ε ∈ [0, 1], if e0 ∈ Ω0 implies Pr{ek ∈ Ωk} ≥
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reachable sets in terms of correlation bound, given in
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Proposition 2. Suppose that the random sequence {wk}k∈N
has a correlation bound Γw ≻ 0 for matrix AK with
ρ(AK) < 1. Given r > 0, consider the system (3) with
e0 = 0, and the following recursion

Γk+1 = AKΓkA
⊤
K + Γw (7)

with Γ0 = 0 ∈ Rn×n. Then E (Γk, r) are probabilistic
reachable sets with violation level n/r for every r > 0,
for k ∈ N. If, moreover, wk is a Gaussian process with null
mean, then E (Γk, r) are probabilistic reachable sets with
violation probability 1− χ2
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We recall now the notion of probabilistic invariant set.

Definition 3. The set Ω ∈ Rn is a probabilistic invariant
set for the system (3), with violation level ε ∈ [0, 1], if
e0 ∈ Ω implies Pr{ek ∈ Ω} ≥ 1− ε for all k ≥ 1.

Constructive conditions to obtain probabilistic reachable
and invariant ellipsoids are given in (Fiacchini and Alamo,
2021, Proposition 5). They only require the knowledge of

the upper bound Γ̃ on the covariance term that ensures
the satisfaction of (4) and (5).

4. MODEL PREDICTIVE CONTROL PROPERTIES

The different ingredients of SMPC are first presented.

4.1 Control policy and decoupled dynamics

As usual, the considered MPC controller relies on the
following dual control policy

uk = vk +Kek (8)

where v is the nominal control, e the bias between the
nominal and the actual state and K a state feedback gain
such that A + BK is Schur. In particular, suppose that
S ≻ 0 is such that the Lyapunov condition

(A+BK)⊤S(A+BK)− S ⪯ −Q−K⊤RK, (9)

holds. Notice that such S exists from ρ(A+BK) < 1.
Defining ek = xk − zk and replacing (8) in (1) yields

zk+1 = Azk +Bvk, (10a)

ek+1 = (A+BK)ek + wk, (10b)

with z nominal state, (10a) nominal dynamic and (10b)
error dynamics. Since (10b) is asymptotically stable, the
SMPC aims at finding a nominal control vk that steers the
nominal state towards the origin minimizing a quadratic
criterion, and satisfying the chance constraints.

4.2 Cost function

The cost function often used for SMPC is the following:

Ju = E
{
∥xN∥2S +

N−1∑
i=0

∥xi∥2Q + ∥ui∥2R
}
, (11)

with Q ≻ 0, R ⪰ 0 and (Q
1
2 , A) an observable pair. Matrix

S ≻ 0 should be appropriately chosen, for instance satisfy-
ing (9). Cost function (11) presents many advantages, since
it can be reduced to a deterministic quadratic function
in terms of mean and covariance of xi and ui, for i.i.d.
disturbance sequences with zero mean and known second
moment, as in Hewing and Zeilinger (2018); Hewing et al.
(2020); Farina et al. (2013). Unfortunately, this is not the
case considered in this paper, since we assume unknown
mean and covariance matrices and we do not impose i.i.d.
assumptions on the disturbances. Since it is not possible
to directly deal with (11), we look for a cost function that
bounds it and which minimization is tractable. Although
this does not ensure the decrease of (11), it provides a
decreasing bound for it.
We introduce two results that are going to be used later.

Lemma 3. Given M ≻ 0 we have ∥a + b∥2M ≤ 2(∥a∥2M +
∥b∥2M ), for all a, b ∈ Rn.

Proof. Notice that for every pair of vectors a and b

0 ≤ ∥a− b∥2M = ∥a∥2M + ∥b∥2M − 2a⊤Mb.

Thus, 2a⊤Mb ≤ ∥a∥2M+∥b∥2M . From here we finally obtain

∥a+ b∥2M = ∥a∥2M + ∥b∥2M +2a⊤Mb ≤ 2(∥a∥2M + ∥b∥2M ).

Lemma 4. Let P ∈ Rn×n be some positive semi-definite
matrix and consider symmetric matrices M ∈ Rn×n and
M ∈ Rn×n such that M ⪯ M . Then

tr{PM} ≤ tr{PM}. (12)

Proof. Recall that M ⪯ M means that

y⊤My ≤ y⊤My, ∀y ∈ Rn. (13)

Since P ⪰ 0, there is N ∈ Rn×n such that P = N⊤N .
Defining y = N⊤x for all x ∈ Rn and from (13), we have

x⊤NMN⊤x = y⊤My ≤ y⊤My = x⊤NMN⊤x

for all x ∈ Rn, which implies that NMN⊤ ⪯ NMN⊤

and then also that tr{NMN⊤} ≤ tr{NMN⊤}. From the

property tr{AB} = tr{BA} and P = N⊤N then (12)
holds and the result is proved.

Another useful lemma follows.

Lemma 5. Given c ∈ Rp, D ∈ Rp×n, and M ∈ Rp×p ≻ 0,
suppose that the sequence {wk}k∈N admits a correlation
bound Γw for matrix AK = A+BK. Assume also that Γk

is given by recursion (7) and consider ek given by (10b)
with e0 = 0. Then the following inequality holds

E{∥c+Dek∥2M} ≤ 2(∥c∥2M + tr{D⊤MDΓk}). (14)

Proof. First, we prove that if e0 = 0, then

E{eke⊤k } ⪯ Γk (15)

holds, where Γk is given by the recursion (7). We proceed
by induction, by noticing first that (15) holds trivially for
k = 0 from e0 = 0. Suppose now that (15) holds for a given
k ∈ N. Then, from the Definition 1 and (7) it follows that

E{ek+1e
⊤
k+1}⪯AKE{eke⊤k}A⊤

K+Γw⪯AKΓkA
⊤
K+Γw=Γk+1,

and hence (15) is satisfied for k+1 and, by induction, also
for all k ∈ N. Denote ψk = E{∥c + Dek∥2M}. With this
notation, and from Lemma 3, we obtain

ψk = E{∥c+Dek∥2M} ≤ 2E{∥c∥2M + ∥Dek∥2M}
= 2∥c∥2M+ 2E{e⊤k D⊤MDek}
= 2∥c∥2M + 2E{tr{e⊤k D⊤MDek}}.

From tr{AB} = tr{BA}, we have

ψk ≤ 2∥c∥2M + 2E{tr{D⊤MDeke
⊤
k }}

= 2∥c∥2M + 2tr{D⊤MDE{eke⊤k }}.
Since E{ekeTk } ≤ Γk, we finally conclude from Lemma 4:

ψk ≤ 2∥c∥2M + 2tr{D⊤MDΓk}.

The following proposition presents an upper bounding
function of the cost (11), that depends on the nominal
state and control input z and v and on the correlation
bound together with recursions (7).

Proposition 6. Consider the linear system (1), where the
disturbance admits the correlation bound Γw for matrix
AK = A + BK. Consider also the control policy (8), the
decoupling (10), the recursion (7), and the value function
(11). If z0 = x0 (i.e. e0 = 0), then (11) is bounded from
above by the following cost function

J = 2
(
∥zN∥2S +

N−1∑
i=0

∥zi∥2Q + ∥vi∥2R

+ tr{SΓN}+
N−1∑
i=0

tr{(Q+K⊤RK)Γi}
)
. (16)

Proof. By applying (14) to each term of (11) we get, for
all i = 0, . . . , N − 1, the following inequalities

E{∥xi∥2Q} = E{∥zi + ei∥2Q} ≤ 2(∥zi∥2Q + tr{QΓi}),
E{∥xN∥2S} = E{∥zN + eN∥2S} ≤ 2(∥zN∥2S + tr{SΓN}),
E{∥ui∥2R} = E{∥vi+Kei∥2R} ≤2(∥vi∥2R + tr{K⊤RKΓi}),
and then (11) is bounded from above by (16).

Since (10a) and (10b) are decoupled, the gain K is known
and (10a) depends on the nominal control input v only,
then it is possible to ignore the correlation bound propa-

gation cost terms of (16) (i.e. tr{SΓN} +
∑N−1

i=0 tr{(Q +
K⊤RK)Γi})) on the MPC optimization problem cost.
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4.3 Deterministic formulation of chance constraints

The MPC that is to be built, has to ensure the satisfaction
of the chance constraints (2). Instead of directly work-
ing on these constraints, for the intractability and non-
convexity of the problem they pose, we consider tightened
hard constraints on the nominal state and control which
satisfaction guarantees the satisfaction of (2), as often
done, see Cannon et al. (2010); Farina et al. (2013); Hewing
and Zeilinger (2018); Hewing et al. (2020). In our case, the
constraints tightening is done by leveraging the sequence
of reachable sets given by Proposition 2, resulting in the
following hard constraints on the nominal state and control

zk∈Zk=X⊖ E (Γk, rx), vk∈Vk=U⊖KE (Γk, ru), (17)

for all k = 0, . . . , N − 1, where rx and ru depend on the
violation probabilities tolerances px and pu. The satisfac-
tion of (17) is enough to guarantee (2), see Proposition 2.
The terminal set Zf has to be such that zN ∈ Zf implies
the satisfaction of (2) with x = xk and u = Kxk for all
k ≥ N . For this, consider first Xu := {x : Kx ∈ U} and
the sets Zx and Zu defined by

Zu := Xu ⊖ E (Wru , 1), Zx := X⊖ E (Wrx , 1),

where Wru and Wrx are given in (Fiacchini and Alamo,
2021, Proposition 5) with r = ru and r = rx, respectively
and AK = A + BK. The terminal set Zf is the maximal
positively invariant set, contained in Zx ∩ Zu, for system
(10a) under the state feedback controller vk = Kzk and
can be computed with standard methods for deterministic
systems, see Blanchini and Miani (2008).

5. SMPC SCHEME

Combining all the ingredients, the resulting tractable
stochastic MPC optimization problem to be solved at any
time t for the stochastic system (1) is stated as follows:

min
v0,...,vN−1

{
∥zN∥2S +

N−1∑
k=0

∥zk∥2Q + ∥vk∥2R

}
(18)

subject to

zk+1 = Azk +Bvk, ∀k = 0, . . . , N − 1 (19)

Γk+1 = AΓkA
⊤ + Γw, ∀k = 0, . . . , N − 1 (20)

zk ∈ Zk = X⊖ E (Γk, rx), ∀k = 0, . . . , N − 1 (21)

vk ∈ Vk = U⊖KE (Γk, ru), ∀k = 0, . . . , N − 1 (22)

zN ∈ Zf , (23)

(z0,Γ0) ∈ {(z1(t− 1),Γ1(t− 1)}, (24)

where z1(t − 1) and Γ1(t − 1) are the nominal state
predicted one step ahead at t−1 and the correlation bound
propagated one step ahead at t− 1, if t ≥ 1, respectively:

z1(t− 1) = Az0(t− 1) +Bv0(t− 1)

Γ1(t− 1) = (A+BK)Γ0(t− 1)(A+BK)⊤ + Γw,

while (z1(t− 1),Γ1(t− 1)) = (x0, 0) if t = 0. The feedback
gain K and the matrix S are determined by solving an
LQR problem (9) with weight matrices Q and R.
Condition (24) means that the initial value of problem
(18)-(24) is set to the first element of the predicted tra-
jectory sequence z1(t − 1) and to the propagation of the
covariance bound of the error Γ1(t − 1) for every t ≥ 1.
This choice has a direct consequence on the feasibility of
(18)-(24) and on the satisfaction of the chance constraints

(2), as discussed also in Farina et al. (2013); Hewing and
Zeilinger (2018); Hewing et al. (2020); Mayne (2018).
In what follows, denote vk(t), zk(t),Γk(t), with k =
0, . . . , N−1 and zN (t) the input, trajectory and covariance
bounds obtained as solution of the problem (18)-(24) at
time t. The explicit dependence on t is avoided when clear
from the context, to simplify the notation. The following
assumption on the initial feasibility of (18)-(24) is posed.

Assumption 2. Assume a perfect knowledge of the initial
state (i.e. z0 = x0 or e0 = 0) at t = 0 and that the problem
(18)-(24) is initially feasible for x0 = z0 at t = 0.

The properties of the SMPC (18)-(24) in terms of recursive
feasibility, constraints satisfaction and nominal asymptotic
stability are summarized in the following proposition.

Proposition 7. If Assumption 2 is satisfied, then the prob-
lem (18)-(24) is recursively feasible, the chance constraints
(2) are satisfied and the nominal system described by (10a)
is asymptotically stable under the control actions that
result from solving (18)-(24).

Proof. Consider first the recursive feasibility of prob-
lem (18)-(24) under Assumption 2, that is the condi-
tion of its initial feasibility. Suppose that, at time t,
a feasible solution is available with optimal sequence
v(t) = {v0(t), . . . , vN−1(t)}, ensuring the satisfaction of
constraints (21), (22) for k = 0, . . . , N−1 and the terminal
constraint (23) for k ≥ N . Given v(t) at t, and from the
invariance of the terminal set, a control sequence v(t),
feasible for the problem at t+1, is obtained by shifting v(t)
one step back and adding the feedback term in zN (t) as
the last element i.e. v(t) = {v1(t), . . . , vN−1(t),KzN (t)}.
Indeed, being originated from the optimal sequence at t,
the first N − 1 elements of v(t) satisfy trivially the con-
straints of the problem at t+1. The last element KzN (t) of
the control sequence v(t) also satisfies the constraints by
construction, since zN (t) belongs to a positively invariant
set for the feedback controller K, inside of which the state
and input constraints are satisfied. Then, v(t) is a feasible
control sequence for the problem at t+1, which guarantees
the recursive feasibility of the proposed MPC, provided it
is feasible at time t = 0. Moreover, as proved in Hewing
et al. (2020), the predicted error has the same covari-
ance as the closed-loop error, implying chance constraints
satisfaction. Concerning asymptotic stability, consider the
optimal cost value of (18), with initial state z0 = z0(t),
as a Lyapunov candidate function for the nominal system
(10a) and denote it V (z0(t), t). Clearly, V (. , t) is a posi-
tive definite function and the optimization solution, given
by the control sequence v(t) = {v0(t), . . . , vN−1(t)} and
the predicted state trajectory z(t) = {z1(t), . . . , zN (t)},
satisfies all the constraints of the problem. Let

V (z0(t), t)=

N−1∑
k=0

∥zk(t+1)∥2Q+∥vk(t+1)∥2R+∥zN (t+1)∥2S

where zk(t + 1) = zk+1(t) for k = 0, . . . , N − 1 and
zN+1(t) = (A + BK)zN (t) is the state sequence ob-
tained by applying v(t) = {v0(t + 1), . . . , vN−1(t + 1)} =
{v1(t), . . . , vN−1(t),KzN (t)} to the nominal system (10a)
with z0(t+ 1) = z1(t). Note that, from (9), we have

(A+BK)⊤S(A+BK)− S +Q+K⊤RK ⪯ 0. (25)

The optimality of V (z0(t+ 1), t+ 1) and (25) yield
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4.3 Deterministic formulation of chance constraints

The MPC that is to be built, has to ensure the satisfaction
of the chance constraints (2). Instead of directly work-
ing on these constraints, for the intractability and non-
convexity of the problem they pose, we consider tightened
hard constraints on the nominal state and control which
satisfaction guarantees the satisfaction of (2), as often
done, see Cannon et al. (2010); Farina et al. (2013); Hewing
and Zeilinger (2018); Hewing et al. (2020). In our case, the
constraints tightening is done by leveraging the sequence
of reachable sets given by Proposition 2, resulting in the
following hard constraints on the nominal state and control

zk∈Zk=X⊖ E (Γk, rx), vk∈Vk=U⊖KE (Γk, ru), (17)

for all k = 0, . . . , N − 1, where rx and ru depend on the
violation probabilities tolerances px and pu. The satisfac-
tion of (17) is enough to guarantee (2), see Proposition 2.
The terminal set Zf has to be such that zN ∈ Zf implies
the satisfaction of (2) with x = xk and u = Kxk for all
k ≥ N . For this, consider first Xu := {x : Kx ∈ U} and
the sets Zx and Zu defined by

Zu := Xu ⊖ E (Wru , 1), Zx := X⊖ E (Wrx , 1),

where Wru and Wrx are given in (Fiacchini and Alamo,
2021, Proposition 5) with r = ru and r = rx, respectively
and AK = A + BK. The terminal set Zf is the maximal
positively invariant set, contained in Zx ∩ Zu, for system
(10a) under the state feedback controller vk = Kzk and
can be computed with standard methods for deterministic
systems, see Blanchini and Miani (2008).

5. SMPC SCHEME

Combining all the ingredients, the resulting tractable
stochastic MPC optimization problem to be solved at any
time t for the stochastic system (1) is stated as follows:

min
v0,...,vN−1

{
∥zN∥2S +

N−1∑
k=0

∥zk∥2Q + ∥vk∥2R

}
(18)

subject to

zk+1 = Azk +Bvk, ∀k = 0, . . . , N − 1 (19)

Γk+1 = AΓkA
⊤ + Γw, ∀k = 0, . . . , N − 1 (20)

zk ∈ Zk = X⊖ E (Γk, rx), ∀k = 0, . . . , N − 1 (21)

vk ∈ Vk = U⊖KE (Γk, ru), ∀k = 0, . . . , N − 1 (22)

zN ∈ Zf , (23)

(z0,Γ0) ∈ {(z1(t− 1),Γ1(t− 1)}, (24)

where z1(t − 1) and Γ1(t − 1) are the nominal state
predicted one step ahead at t−1 and the correlation bound
propagated one step ahead at t− 1, if t ≥ 1, respectively:

z1(t− 1) = Az0(t− 1) +Bv0(t− 1)

Γ1(t− 1) = (A+BK)Γ0(t− 1)(A+BK)⊤ + Γw,

while (z1(t− 1),Γ1(t− 1)) = (x0, 0) if t = 0. The feedback
gain K and the matrix S are determined by solving an
LQR problem (9) with weight matrices Q and R.
Condition (24) means that the initial value of problem
(18)-(24) is set to the first element of the predicted tra-
jectory sequence z1(t − 1) and to the propagation of the
covariance bound of the error Γ1(t − 1) for every t ≥ 1.
This choice has a direct consequence on the feasibility of
(18)-(24) and on the satisfaction of the chance constraints

(2), as discussed also in Farina et al. (2013); Hewing and
Zeilinger (2018); Hewing et al. (2020); Mayne (2018).
In what follows, denote vk(t), zk(t),Γk(t), with k =
0, . . . , N−1 and zN (t) the input, trajectory and covariance
bounds obtained as solution of the problem (18)-(24) at
time t. The explicit dependence on t is avoided when clear
from the context, to simplify the notation. The following
assumption on the initial feasibility of (18)-(24) is posed.

Assumption 2. Assume a perfect knowledge of the initial
state (i.e. z0 = x0 or e0 = 0) at t = 0 and that the problem
(18)-(24) is initially feasible for x0 = z0 at t = 0.

The properties of the SMPC (18)-(24) in terms of recursive
feasibility, constraints satisfaction and nominal asymptotic
stability are summarized in the following proposition.

Proposition 7. If Assumption 2 is satisfied, then the prob-
lem (18)-(24) is recursively feasible, the chance constraints
(2) are satisfied and the nominal system described by (10a)
is asymptotically stable under the control actions that
result from solving (18)-(24).

Proof. Consider first the recursive feasibility of prob-
lem (18)-(24) under Assumption 2, that is the condi-
tion of its initial feasibility. Suppose that, at time t,
a feasible solution is available with optimal sequence
v(t) = {v0(t), . . . , vN−1(t)}, ensuring the satisfaction of
constraints (21), (22) for k = 0, . . . , N−1 and the terminal
constraint (23) for k ≥ N . Given v(t) at t, and from the
invariance of the terminal set, a control sequence v(t),
feasible for the problem at t+1, is obtained by shifting v(t)
one step back and adding the feedback term in zN (t) as
the last element i.e. v(t) = {v1(t), . . . , vN−1(t),KzN (t)}.
Indeed, being originated from the optimal sequence at t,
the first N − 1 elements of v(t) satisfy trivially the con-
straints of the problem at t+1. The last element KzN (t) of
the control sequence v(t) also satisfies the constraints by
construction, since zN (t) belongs to a positively invariant
set for the feedback controller K, inside of which the state
and input constraints are satisfied. Then, v(t) is a feasible
control sequence for the problem at t+1, which guarantees
the recursive feasibility of the proposed MPC, provided it
is feasible at time t = 0. Moreover, as proved in Hewing
et al. (2020), the predicted error has the same covari-
ance as the closed-loop error, implying chance constraints
satisfaction. Concerning asymptotic stability, consider the
optimal cost value of (18), with initial state z0 = z0(t),
as a Lyapunov candidate function for the nominal system
(10a) and denote it V (z0(t), t). Clearly, V (. , t) is a posi-
tive definite function and the optimization solution, given
by the control sequence v(t) = {v0(t), . . . , vN−1(t)} and
the predicted state trajectory z(t) = {z1(t), . . . , zN (t)},
satisfies all the constraints of the problem. Let

V (z0(t), t)=

N−1∑
k=0

∥zk(t+1)∥2Q+∥vk(t+1)∥2R+∥zN (t+1)∥2S

where zk(t + 1) = zk+1(t) for k = 0, . . . , N − 1 and
zN+1(t) = (A + BK)zN (t) is the state sequence ob-
tained by applying v(t) = {v0(t + 1), . . . , vN−1(t + 1)} =
{v1(t), . . . , vN−1(t),KzN (t)} to the nominal system (10a)
with z0(t+ 1) = z1(t). Note that, from (9), we have

(A+BK)⊤S(A+BK)− S +Q+K⊤RK ⪯ 0. (25)

The optimality of V (z0(t+ 1), t+ 1) and (25) yield

V(z0(t+1),t+1)≤V(z0(t), t)≤V(z0(t),t)−∥z0(t)∥2Q−∥v0(t)∥2R
which gives V (z0(t+1), t+1)−V (z0(t), t) ≤ −∥z0(t)∥2Q−
∥v0(t)∥2R < 0 for z0(t) ̸= 0. From recursive feasibility and
Assumption 2, V (z0(t), t) is a Lyapunov function for (10a)
and the asymptotic stability of (10a) follows.

6. AVERAGE COST BOUND AND STATE
CONVERGENCE

To evaluate the cost function (16) along the trajectory of
the system under the optimal solution of the problem (18)-
(24), denote with J∗(t) the value (16) for vk(t), zk(t) with
k = 0, . . . , N − 1 and zN (t) solution of (18)-(24) at t.

Proposition 8. Consider system (1) under the control law
(8) resulting from (18)-(24) and let S ∈ Rn×n satisfy (9). If
z0(0) = x0(0), then the optimal value J∗(t) of (16) satisfies

J∗(t+1)−J∗(t)≤−E{∥x0(t)∥2Q}−E{∥u0(t)∥2R}+tr{2SΓw}
(26)

for every t ∈ N.

Proof. Suppose that at time t an optimal sequence
{v0(t), . . . , vN−1(t)} exists, giving the cost value J∗(t).
The shifted sequence {v1(t), . . . ,KzN (t)} is a suboptimal
sequence feasible at t + 1, from the invariance of the
terminal set Zf . Denoting with J(t + 1) the cost induced
by the suboptimal sequence at t+ 1, we have

J(t+ 1) = J∗(t)− 2∥z0(t)∥2Q − 2∥v0(t)∥2R + 2∥KzN (t)∥2R
− 2∥zN (t)∥2S + 2∥zN (t)∥2Q − 2tr{(Q+K⊤RK)Γ0(t)}
+ 2∥(A+BK)zN (t)∥2S + 2tr{Q+K⊤RK − S

+ ((A+BK)S(A+BK)⊤)ΓN (t)}+ 2tr{SΓw}.
From Lemma 4 with P = ΓN (t) and M and M given by
(25), and since J(t+ 1) is suboptimal, it follows

J∗(t+ 1) ≤ J(t+ 1) ≤ J∗(t)− 2(∥z0(t)∥2Q + ∥v0(t)∥2R
+ tr{(Q+K⊤RK)Γ0(t)}) + 2tr{SΓw} (27)

that, together with (14) in Lemma 5, yields (26) and
concludes the proof.

Notice that the actual evolution of (16) is better repre-
sented by (27), as this inequality is sharper than (26), from
Lemma 5. Note moreover that the result in Proposition 8
does not hold for (11) but only for its bound (16). The
next proposition gives the average asymptotic cost bound
and is a direct extension of a result from Hewing et al.
(2020).

Proposition 9. Consider system (1) subject to the distur-
bance sequence {wk}k∈N that admits a correlation bound
Γw for the matrix AK = A + BK, under the control law
(8) resulting from (18)-(24). Then we have

lim
N→∞

1

N

N∑
t=0

E{∥x0(t)∥2Q + ∥u0(t)∥2R} ≤ tr{2SΓw}. (28)

Proof. From Proposition 7 and (26) we have

J∗(N+1)−J∗(0)≤
N∑
t=0

(
−E{∥x0(t)∥2Q+∥u0(t)∥2R}+tr{2SΓw}

)
.

From this, and since J∗(t) is finite for every t ∈ N, then

0= lim
N→∞

1

N
(J∗(N+1)−J∗(0))≤ lim

N→∞

1

N

N∑
k=0

(−E{∥xk∥2Q+∥uk∥2R}

+tr{2SΓw})=tr{2SΓw} − lim
N→∞

1

N

N∑
k=0

E{∥xk∥2Q + ∥uk∥2R}

and the claim follows.

A result on the convergence of state x(t) of (1) follows.

Proposition 10. Consider system (1) subject to the distur-
bance sequence {wk}k∈N that admits a correlation bound
Γw for the matrix AK = A + BK, under the control law
(8) where v results from (18)-(24) and where Assumption
2 is also satisfied. Then, we have

lim
t→∞

E{∥xt∥2} = E{∥e∞∥2} ≤ tr{Γ∞} (29)

where Γ∞ satisfies Γ∞ = AKΓ∞A⊤
K + Γw.

Proof. From Proposition 7 and (15), we have

lim
t→∞

zt = 0, E{∥et∥2} = tr{E{ete⊤t }} ≤ tr{Γt}

which implies, from xt = zt + et, that

lim
t→∞

E{∥xt∥2} = lim
t→∞

E{∥zt + et∥2}

≤ lim
t→∞

{
∥zt∥2 + E{∥et∥2}

}
≤ lim

t→∞
tr{Γt} = Γ∞.

Since, as in Kofman et al. (2012), the existence of Γ∞ is
ensured by ρ(AK) < 1, the results is proved.

7. SIMULATION EXAMPLE

We test the stochastic model predictive control scheme
(18)-(24) on a double integrator system

xk+1 =

[
1 1
0 1

]
xk +

[
0.5
1

]
uk + wk (30)

with initial state x0 = [−3.8 0]
⊤
. The cost weight matrices

are Q = diag([1, 10]) and R = 50. The feedback gain K is
the LQR controller based on the same weights Q and R.
A correlated disturbance sequence, given by a switched
linear system excited with white noise, is generated and
its correlation bound,

Γw =

[
0.0426 0.0014
0.0014 0.1088

]
,

is determined following the procedure detailed in Fiacchini
and Alamo (2021). We consider the chance constraints

Pr{|x1| ≤ 4, |x2| ≤ 1} ≥ 1− px,

Pr{|u| ≤ 1.1} ≥ 1− pu
with px = 0.35 and pu = 0.3. The prediction horizon N is
set to N = 13. The reachable sets for the nominal state
z and the input v are determined by tightening X and U,
using the sequence of probabilistic reachable sets E (Γk, r),
where Γk is given by (7) with r taken equal to rx =
Invχ2

2(1 − px) and ru = Invχ2
2(1 − pu), respectively. As a

consequence, we end up with the deterministic constraints:

Zk =
{
y ∈ R2 : |y1| ≤ 4−

√
[1 0] rxΓk [1 0]

⊤
,

|y2| ≤ 0.75−
√

[0 1] rxΓk [0 1]
⊤
}

Vk =
{
v ∈ R : |v| ≤ 1−

√
KruΓkK⊤

}
.
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Fig. 1. Stochastic tube generated by the MPC: nominal
trajectory in green; state trajectory in blue; terminal
set in black; and error expectation set in red.

The set Zf is the maximal positive invariant set for the
deterministic system zk+1 = (A+BK)zk in the set Zx∩Zu,
obtained by applying the standard iterative procedure.

Fig. 1 shows the stochastic tube, the nominal trajectory,
the terminal set, the state trajectory and the set where
the state converges in expectation. The nominal state
converges to the origin while the real state converges inside
the set E{∥e∥2} ≤ tr{Γ∞} ≈ 0.914 in expectation. Note in
Fig. 1 the tube stretching along the trajectory, as expected,
to maintain the propagating error inside the reachable
tube with the specified probability.

8. CONCLUSION

In this paper, we presented a tube-based SMPC for linear
systems affected by additive disturbances that need not to
be uncorrelated, i.i.d, nor stationary. The MPC algorithm
only relies on the bounds on the mean and the covariance
matrices of the disturbance and exploits the notion of
correlation bound to determine the probabilistic reachable
and invariant sets that shape the stochastic tube. A
nominal state value function that is an upper bound of
the expected value of the quadratic cost on the true state
and the true control input is provided. Chance constraints
satisfaction, cost decrease, average cost bound and state
convergence are guaranteed.
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