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A B S T R A C T   

Finite element modelling is performed to numerically predict the behaviour of civil engineering structures. Due 
to the different assumptions adopted during the modelling phase, this initial model does not always reflect 
adequately the actual structural behaviour. In this context, the results of experimental structural dynamic 
properties can be used to improve initial numerical model via the implementation of the so-called finite element 
model updating method. After this process, the updated model better reflects the actual structural behaviour. 
Due to its simplicity, for practical engineering applications, the updating process is usually performed consid
ering the maximum likelihood method. According to this approach, the updating problem may be formulated as 
the combination of two sub-problems: (i) a bi-objective optimization sub-problem; and (ii) a decision-making 
sub-problem. The bi-objective function is usually defined in terms of the residuals between the experimental 
and numerical modal properties. As optimization method, nature-inspired computational algorithms have been 
usually considered due to their high efficiency to cope with non-linear optimization problems. Despite this 
extensive use, this method presents two main limitations: (i) the high simulation time required to compute the 
Pareto optimal front; and (ii) the necessity of solving a subsequent decision making problem (the selection of the 
best solution among the different elements of the Pareto front). In order to overcome these limitations, in this 
paper game theory has been adopted as computational tool to improve the performance of the updating process. 
For this purpose, the updating problem has been re-formulated as a game theory problem considering three 
different game models: (i) non-cooperative; (ii) cooperative; and (iii) evolutionary. Finally, the performance of 
proposal has been assessed when it is implemented for the model updating of a laboratory footbridge. As result of 
this study, game theory has been shown up as efficient tool to improve the performance of the updating process 
under the maximum likelihood method since it allows a direct estimation of the solution reducing the simulation 
time without compromising the accuracy of the result.   

1. Introduction 

In civil engineering, numerical simulation is used to predict the 
behaviour of structures together with their response to characteristic 
loads and their combinations. This is most often done via the use of the 
finite-element (FE) method. However, due to the errors that occur 
during numerical modelling (such as discretization, parameterization 
and idealisation), these numerical models may not always reflect 
adequately the actual behaviour of structure [1]. In order to reduce 
these errors, the FE model updating (MU) method can be used. Ac
cording to this method, the value of some physical parameters of the 

numerical model is modified in order to reduce the relative difference 
between the experimental and numerical behaviour of the structure. In 
order to characterize the experimental behaviour of the structure, re
sults obtained from both on-site static and/or dynamic tests and 
continuous monitoring are normally considered [2]. After the updating 
process, the numerical model better simulates the behaviour of the 
structure. Consequently, the updating process can be used to improve 
the performance of numerical models when they are employed to 
simulate the behaviour of structures for different civil engineering ap
plications, such as: (i) the accurate assessment of the actual behaviour of 
structure [3–6]; (ii) the establishment of methods for damage detection 
[7–10]; (iii) the establishment of strategies for structural health 
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monitoring [11–14]; and (iv) the determination of strategies for optimal 
maintenance of infrastructures [15–17]. Hence, the FEMU process can 
be considered as an inverse problem which main objective is to estimate 
the value the most relevant physical parameters which govern the 
behaviour of civil engineering structure [18]. 

Thus, the updating problem may be formulated as a parameter 
estimation problem. Two type of estimators can be considered to cope 
with this problem: (i) deterministic (point estimators); and (ii) stochastic 
methods (interval estimators). As a conventional point estimator, the 
maximum likelihood (ML) method [19] has been widely employed to 

obtain the expected value of the considered physical variables. As an 
internal estimator, Bayesian inference [20] has been used to estimate the 
probability density function of the updating parameters. The good bal
ance between the required simulation time and the accuracy of the so
lutions have caused that the ML method is usually considered for the 
model updating of complex civil engineering structures [20]. According 
to this method, the updating problem can be transformed into an opti
mization problem. The objective of this optimization problem is to find 
the value of the updating parameters (the most relevant physical pa
rameters of the model) which minimizes the relative differences 

Nomenclature 

FE Finite element 
SHM Structural Health Monitoring 
FEMU Finite Element Model Updating 
MSE Modal Strain Energy 
(

rf
t

)
Frequency residuals 

(
rm
t
)

Mode shape residuals 
MAC Modal Assurance Criterion 
t mode number 
fnum
t tth numerically – obtained natural frequency value 

f exp
t tth experimentally obtained natural frequency 

ϕnum
t numerically obtained normalized mode shape vector 

ϕexp
t experimentally obtained normalized mode shape vector 
(
ϕnum

t
)T transpose numerically obtained normalized mode shape 

vector 
(
ϕexp

t
)T transpose experimentally obtained normalized mode shape 

vector 
θ physical parameters vector/design parameters vector 
F(θ) Objective function 
f1(θ) f2(θ) objective functions 
nr size of the residual vector 
nf size of the residuals vector related to the natural 

frequencies 
nm size of the residuals vector related to the mode shapes 
f1(θ), f1(θ) first and second sub-objective functions for the bi- 

objective approach 
β Band angle 
BL Boundary line 
MLM maximum likelihood method 
GT Game Theory 
θl lower bound of the physical parameter’s vector/design 

parameters vector 
θu lower bound of the physical parameter’s vector/design 

parameters vector 
hd(θ) equality constraint’s non upper limit and non-low limit 
gg(θ) inequality constraint’s non upper limit and non-low limit 
m dimension of the objective function/ number of game 

players 
n size of the physical parameter’s vector /design parameters 

vector 
S 1,⋯, Sm strategy space of the game players 
dg1,⋯,dgm design goals of the game 
i player 
U (i, a) utility of item a for player i 
θ*

i vector of the optimal values of design variables 
V number of the fragments 
Δθj step length 
Θ(j, i) effect of θj on the objective function fi 
Δ(j, i) impact index of jth design variable to ith objective function 

d(j, i) space distance of jth design variable to ith objective 
function 

Mo(j) moment of jth design variable to all objective functions/ 
comprehensive degree of influence of jth design variable to 
all objective function 

λ threshold of moment 
GEP gene expression programming 
MDO multidisciplinary design optimization (MDO) 
ui utility function 
fi reference value of the objective function 
fk
i value of the objective function in the kth game round 

fk− 1
i value of the objective function in the (k-1) th game round 

ξ convergence criterion 
POE Pareto optimal Equilibrium 
wii, wij Degree of cooperation 
SPS Sandwich Plate System 
Esteel modulus of elasticity of steel of numerical model 
ρsteel material density of steel component of numerical model 
νsteel Poisson ratio of steel component of numerical model 
Epoly modulus of elasticity of polyurethan component of 

numerical model 
ρpoly material density of polyurethan component of numerical 

model 
νpoly modulus of elasticity of polyurethan component of 

numerical model 
klon longitudinal stiffness of numerical model supports 
ktrans transversal stiffness of numerical model supports 
PS population size of Harmony search optimization algorithm 
Imax Maximum number of the iterations of Harmony search 

optimization algorithm 
tof objective function tolerance of the Harmony search 

optimization algorithm 
Ps,new new population size of the Harmony search optimization 

algorithm 
HMCR Harmony memory pitch adjustment 
PAR Pitch adjustment rate of the Harmony memory search 

optimization algorithm 
θ0

initial initial values of the design variables 
NCGT non-cooperative game theory 
CGT cooperative game theory 
EGT Evolutionary game theory 
θ∗HS Optimal solution of the bi-objective optimization problem 

using Harmony search optimization algorithm 
tNCGT simulation time algorithm based on non-cooperative game 

model required for the bi-objective optimization 
tCGT simulation time algorithm based on cooperative game 

model required for the bi-objective optimization 
tEGT simulation time algorithm based on evolutionary game 

model required for the bi-objective optimization 
tHS simulation time Harmony search algorithm required for 

the bi-objective optimization  
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between the actual behaviour of the structure and the predictions of the 
numerical model. Among the different methods proposed to select the 
most relevant updating parameters [21], the sensitivity method [22] has 
been considered for its good balance between its accuracy and its ease 
implementation. Hence, the ratio between the modal strain energy 
(MSE) associated with the considered physical parameters and the 
overall MSE of the structure is established as selection criterion [23]. 
The selected parameters must be sensitive to both the uncertainties and 
the output of the model. Thus, any change in these parameters will affect 
the correlation between the experimental and numerical response of the 
structure. Therefore, the optimization algorithm minimizes the relative 
differences between the experimental and numerical response of the 
structure via the modification of the value of these physical parameters. 

The differences between the experimental and numerical behaviour 
of the structure may be described in terms of residuals. Two types of 

residuals are usually considered: (i) frequency residuals 
(

rf
t

)
; and (ii) 

mode shape residuals 
(
rm
t
)
. These residuals can be defined in different 

way, but they are normally defined as: (i) asbosulte relative difference 
(Eq. (1)) for the natural frequencies ; and (ii) modal assurance criterion 
(Eq. (2), (3)) for the mode shapes . Both types of residuals are defined as 
follows: 

rf
t (θ) = |Δft| =

⃒
⃒
⃒
⃒
f num
t − f exp

t

f exp
t

⃒
⃒
⃒
⃒ (1)  

rm
t (θ) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅((
1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
MAC (ϕexp

t ,ϕnum
t )

√ )2

MAC (ϕexp
t ,ϕnum

t )

)√
√
√
√ (2)  

MAC (ϕexp
t ,ϕnum

t ) =

⃒
⃒
(
ϕnum

t

)tϕexp
t

⃒
⃒2

((
ϕnum

t

)T ( ϕnum
t

) )
•
((

ϕexp
t

)T ( ϕexp
t

) ) (3)  

where t is a mode number; fnum
t is the tth numerically – obtained natural 

frequency value; f exp
t is the tth experimentally obtained natural fre

quency; ϕnum
t is the numerically obtained normalized mode shape vector; 

ϕexp
t is the experimentally obtained one; and ()T express the transpose 

function. 
The objective function of the optimization problem may be defined 

in terms of these residuals. Two different approaches can be considered 
for this purpose: (i) the single-objective approach (via the weighted sum 
of the residuals); and (ii) the bi-objective approach (considered a 
different term for each residual). The bi-objective approach has been 
considered here since it allows determining the entire set of optimal 
solutions (the so-called, the Pareto front). According to this approach, 
the differences between the experimental and numerical behaviour of 
the structure are characterized via the squared sum of the mentioned 

residuals (natural frequencies 
(

rf
t

)
and mode shapes 

(
rm
t
)
) as Eq. (4) 

expresses: 

min( f1(θ) f2(θ) ) =
(∑nf

t=1
rf

t (θ)
2 ∑nm

t=1
rm

t (θ)
2
)

(4) 

As solution of this bi-objective optimization problem, a set of 
possible solutions is obtained (the Pareto front). A subsequent decision- 
making problem must be solved, the selection of the best solution among 
the different elements of the Pareto front [24]. As criterion to select the 
best solution, the best balanced element of the Pareto front (considering 
the balance between the variations of the different residuals) is usually 
considered [25]. The best balanced solutions is denominated as the 
“knee” point [26]. Different criteria have been proposed for the defini
tion of the “knee” point. Four of the most usually implemented criteria 
are: (i) the minimum distance from equilibrium point [27]; (ii) the 
maximum band angle [28]; (iii) maximum distance from boundary line 
[29]; and (iv) fuzzy logic approach [30]. In order to illustrate how to 
determine the “knee” point, Fig. 1 shows some of them. 

The main limitation for the implementation of the FEMU via a bi- 
objective optimization problem is the high simulation time required to 
compute the Pareto front. For this reason, a wide research work has been 
performed in order to solve the bi-objective optimization problem 
without computing the mentioned front. Several methods have been 
proposed to this end. All these methods may be classified in two groups 
[27]: (i) methods based in the transformation of the bi-objective prob
lem into a weighted sum single-objective problem; and (ii) other type of 
methods. Among the first group, it can be remarked: (i) the optimally 
weighted method proposed by Christodoulou et al. [31]; (ii) the adap
tive weighted sum method proposed by Kim and Weck [32]; and (iii) the 
direct estimation method proposed by Ponsi et al. [25]. Alternatively, 
among the second group, it can be highlighted: (i) the min–max method 
[33]; (ii) the ideal point method [34]; (iii) the weight square method 
[35]; (iv) the virtual objective method [36]; and (v) the interactive 
programming method [37]. 

To solve the FEMU problem formulated according to the ML method, 
different computational algorithms have been proposed [20]. The main 
limitation, to be overcome for these algorithms, is the nonlinear rela
tionship among the updating parameters and the objective function. 
Therefore, global optimization algorithms must be employed to cope 
with this problem. Among global optimization algorithms, nature 
inspired computational algorithms have been widely used to solve the 
FEMU of civil engineering structures [38]. Some of the most commonly 
computational algorithms implemented for model updating applications 
are: (i) genetic algorithm [39]; (ii) particle swarm optimization [40]; 
(iii) harmony search (HS) [41]; and (iv) simulated annealing [42]. In 
order to improve the performance of these algorithms (reducing the 
simulation time without compromising the accuracy of the solution 
obtained) different techniques can be used: (i) the parallelization of the 
problem [19]; (ii) the hybridization of the algorithm (combining local 
and global computational algorithms) [40]; and (iii) the collaborative 
combination of different machine learning tools [43]. 

In order to improve the performance of the updating process of 
complex civil engineering structures, it is necessary to reduce the 
requited simulation time. Among the different mentioned methods 
[44–49], this paper focuses on the direct estimation of the solution of the 
bi-objective problem without computing the Pareto front. For this pur
pose, game theory (GT), a mathematical technique previously imple
mented to solve successfully multi-objective optimization problems, has 
been adapted herein for the updating problem. Therefore, according to 
this method, the conventional bi-objective optimization problem may be 
transformed into a GT problem via the definition of the bi-objective 
function as several utility functions. Using this transformation of the 
objective function, it is possible to obtain the solution of the bi-objective 
optimization problem directly without computing the Pareto front. In 
this manner, the bi-objective optimization problem is divided into two 
single-objective optimization problems. In order to minimize each 
single-objective optimization problem, a global optimization algorithm 
must be used. Among the different computational algorithms, a nature- 

Fig. 1. Different methods to solve the decision-making problem (to find the 
optimal solution on the Pareto front): a) minimum distance from equilibrium 
point, b) maximum band angle, c) maximum distance from boundary line 
(Legend: POS - Pareto optimal solution; EP - Equilibrium Point; dEP - distance 
from equilibrium point; β - band angle; BL - boundary line; dBL - distnace from 
boundary line ). 
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inspired computational algorithm, HS algorithm, has been considered in 
this study due to its good balance among the simulation time required, 
the accuracy of the solution obtained and its ease implementation. 

Thus, the main contribution of this paper is to assess the possibility of 
implementing the GT to improve the performance (reduction of simu
lation time without compromising the accuracy of the solution) of FEMU 
of civil engineering under the ML method. Additionally, the perfor
mance of three different game models has been assessed when they are 
implemented for the FEMU of a benchmark structure. As reference, the 
updating process of this structure is also performed considering a con
ventional bi-objective optimization method. As result of this study, the 
advantage of using GT to cope with the updating problem is highlighted. 

The paper is organized as follows. In the second section, a literature 
review has been presented about the implementation of GT to solve 
optimization problems. Three different game models (non-cooperative, 
cooperative and evolutionary) have been included. In the third section, 
the performance of the proposal has been assessed when it is imple
mented for the model updating of a laboratory footbridge. Additionally, 
this updating problem has been solve using a conventional method (bi- 
objective optimization solved via the Pareto front and subsequent 
decision-making problem). Later, in section fourth, the results obtained 
using the three different game models have been compared with the 
ones obtained by the use of the conventional method. In the fifth section, 
concluding remarks have been included to finish the paper. 

2. GT for multi-objective optimization 

In a various field of science (such as politics, economy, biology, so
cial sciences [50]) and engineering applications [51], the latest trends in 
solving multi-objective optimization problems is the implementation of 
solution methods based on GT. Generally, GT is a mathematic discipline 
that deals with decision making in situations of conflict and cooperation 
between rational individuals. Using this discipline, each nature phe
nomenon is modelled as a game. Each of these terms, nature phenom
enon and game, has some rules, which are or are not allowed. There are 
also information that may or may not be available, decisions that can be 
made, and the most important, these decisions have an outcome that 
depends on the decisions of the remaining players. 

According to this, the main elements of the game are: (i) the players; 
(ii) the player strategies; (iii) the utility; (iv) the available information; 
and (v) the equilibrium. The optimal solution of the game is the optimal 
strategy; an action that maximizes the player’s utility, considering both 
that there are other players, and that the ultimate utility of an action is 
affected not only by the decision of a particular player but also by the 
decisions of the remaining players. 

The basic idea of solving an optimization problem using GT is to 
transform this problem into a GT problem taking into account the 
following considerations: (i) each term of the multi-objective function is 
a player; (ii) the design variables of the objective functions are their 
strategy; and (iii) the objective function values for different set of design 
variables are the utilities [45]. To solve the optimization problem, 
different game models can be used: (i) non-cooperative game theory 
(NCGT) model; (ii) cooperative game theory (CGT) model; and. (iii) 
evolutionary game theory (EGT) model. 

As the name implies, the NCGT model [52], is a game model in which 
players do not cooperate, while in the CGT game model [48] there are 
players who cooperate during the game. In addition to the NCGT and 
CGT models, which propose a fixed behaviour of players during the 
game (they cooperate or not) there is also an EGT model. This last game 
model assumes that players change their behaviour during the game as 
the game evolves [47] (they decide whether to cooperate or not). 

Compared to conventional optimization methods, which obtain so
lutions by merging multiple objective functions, GT methods obtain 
solutions by partitioning design variables. Selected design variables, 
which can show the correlations between each optimization goal and the 
corresponding design variable, are assigned to each game player. Thus, a 

multi-objective optimization problem is transformed into multiple 
single-objective optimization problems, reducing the complexity of the 
original problem. Thus, the bi-objective optimization problem, which 
characterizes the FEMU , can be solved considering the bi-objectives 
either via the construction of evaluation functions (if a conventional 
solution method is considered) or via a mapping function (if GT is taken 
into account) [48]. 

2.1. General problem 

The main aim of a general multi-objective optimization problem is to 
find the value of the design variables, θ = [ θ1 θ2⋯ θn ], which min
imizes the objective function, F(θ) = [ f1(θ) ⋯ fm(θ) ], subjected to 
the following constraints (θl ≤ θi ≤ θu(i = 1,⋯, n); hd(θ) =
0(d = 1,⋯, p) and ge(θ) = 0(e = 1,⋯, q)) where θi represents each term 
of the design variable vector; θl and θu are respectively the lower and 
upper bounds of the search domain; m is the number of terms of the 
objective function (m = 2 for a bi-objective optimization problem); n is 
the number of design variables; p is the number of the equality con
straints; and q is the number of the inequality constraints. 

The general multi-objective optimization problem may be trans
formed into a GT problem considering the following rules: (i) the m 
terms of the objective function are transformed into the m game players; 
(ii) the design variable vector, θ, can be divided into the game strategy 
S1,S2,⋯,Sm; (iii) the values of objective functions for a particular set of 
design variables are the corresponding utilities in the game; and (iv) the 
constraints of the multi-objective optimization problem are the con
straints of the game. 

Therefore, the multi-objective optimization problem can be re- 
defined as a GT problem, in which the game is represented as G =

{
S1,

⋯, Sm; dg1,⋯, dgm
}

where S 1,⋯, Sm are a strategy set; dg1,⋯, dgm are m 
design goals; and the following rules can applied to the strategy set: S1 ∪

⋯ ∪ SM = θ and Su ∩ Sv = 0 (u, v = 1,⋯, m; u ∕= v). 
To perform the transformation of the multi-objective optimization 

Fig. 2. General flowchart of the GT method to solve the multi-objective opti
mization problem considering the three mentioned game models: NCGT, CGT, 
and EGT. 
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problem into the GT problem it is important to perform the division of 
the design variable vector, θ, into each player strategy space (S1,⋯, Sm). 
This can be done using the different methods: (i) fuzzy clustering [53]; 
(ii) sorting partition method under threshold limit [54]; (iii) spatial 
game method [55]; and (iv) k-means cluster method [56]. Herein the 
determination of the game player’s strategy space is performed using the 
sorting partition method (section 2.2) due to its ease implementation 
and good performance when it has been implemented to solve structural 
optimization problems [54]. 

The general flowchart to solve a general multi-objective optimization 
problem according to the GT method considering the three mentioned 
game models (NCGT, CGT and EGT) is shown in Fig. 2. The step by step 
procedure for each mentioned game model is described in detail in: (i) 
section 2.3 for NCGT model; (ii) section 2.4 for CGT model; and (iii) 
section 2.5 for EGT model. 

2.2. Determination of game player’s strategy space 

Before starting the definition of the objective function considering 
the GT method, it is important to perform the division of the selected 
design variables, θ, into the strategy spaces (S1,S2,⋯,Sm) of each game 
player i = (1, 2,⋯,m). Herein this is performed via the sorting partition 
method [55] which sort the item based on the utility, U(i, a), of item a 
for player i according to the following steps:  

• Optimize m single objective, and then obtain the optimal solution 
f1
(
θ*

1
)
, f2
(
θ*

2
)
,⋯, fm

(
θ*

m
)
, where θ*

i =
{

θ*
1i, θ

*
2i,⋯, θ*

ni
}
(i = 1,2,⋯,m)

• Every θj is divided into V fragments with a step length Δθj in its 
feasible space. The effect of θj on the objective fi is first computed as 
follows: 

Θ(j, i) =

∑V

v=1

⃒
⃒
⃒fi

(
θ*

1i,⋯, θ*
(j− 1)i, θj(v), θ*

(j+1)i,⋯, θ*
ni

) ⃒
⃒
⃒

V • Δθj
−

fi

(
θ*

1i,⋯, θ*
(j− 1)i, θj(v − 1), θ*

(j+1)i,⋯, θ*
ni

)

V • Δθj

(5) 

The normalization gives an impact index Δ(j, i) defined as follows: 

Δ(j, i) =
Θ(j, i)

∑n

l=1
Θ(l, i)

(j = 1, 2,⋯, n; i = 1, 2,⋯, m ) (6)    

• d(j, i) is defined as the space distance of θj to fi as follows: 

d(j, i) =

1
Δ(j, i)

∑m

h=1

1
Δ(j, h)

(j = 1, 2,⋯, n; i = 1, 2,⋯, m ) (7) 

Mo(j) is defined as the moment of θj to all objective functions. It 
represents the comprehensive degree of influence of θj to all objective 
functions as follows: 

Mo(j) =
1

∑m

h=1

1
Δ(j, h)

(j = 1, 2,⋯, n ) (8) 

The component λ is defined as the moment threshold as follows: 

λ =

∑n
j=1Mo(j)

2
(9) 

The determination of game player’s strategy space, sorting of all the 
design variables to each objective function (which represents each game 
player) is achieved based on the descending order of d (j, i). If different 
design variables have the same space distance to the same objective 
function, the sorting of the design variables is perfromed according to 
the impact index following this rule; the higher ranking is assigned to the 

objective function that has the greater impact index. The selection of the 
design variable is performed until the accumulative moment is greater 
or equal than the moment threshold, λ. The following rules must be 
taken into account for the assignment of the design variables to each 
game player’s strategy space (terms of the objective function):  

• the design variable θj(j = 1,2,⋯, n) is assigned to the player’s 
strategy space for whom it has the highest rank,  

• the design variable θj(j = 1,2,⋯, n) is assigned to the strategy space 
based on the highest impact index Δ(j, i) if it has the same highest 
ranking among different game players. 

The following sub-sections describe in detail the three mentioned 
game models (NCGT, CGT and EGT). Thus, a literature review has been 
included for each model. Additionally, the computational steps needed 
to solve the bi-objective FEMU problem has been enumerated to make 
easier their practical implementation. 

2.3. NCGT model 

In the NCGT model, players’ benefits are based on their non coop
erative behaviour. Therefore, the solution of the game can be found via 
the application of either the Nash or the Stackelberg equilibrium [57]. 
The main difference between these two criteria is the players’ position: 
(i) all players share the same position according to the first criterion; and 
(ii) there is a leader according to the second criterion. Thus, each player 
makes his decision independently of the other players according to the 
Nash equilibrium, while the players make their decision based on the 
leader’s decision according to the Stackelberg equilibrium. 

Using NCGT models Özyildirim and Alemdar [52] have performed 
the optimization of the non-renewable resources model considering the 
Nash equilibrium criterion. 

Bezoui et al. [58] proposed a new method for solving bi-objective 
optimization problems which transforms a multi-objective linear opti
mization problem into a GT problem that can be solved considering the 
Nash equilibrium criterion. 

Based on a gene expression programming (GEP) and Nash Equilib
rium, Xiao et al. [59] have proposed a new approach for multi-objective 
multidisciplinary design optimization (MDO) problems in NC 
environments. 

Chatterjee and Khas [60] in their study have shown that Nash 
equilibrium of finite n-person NCGT is equivalent to an optimal solution 
of the optimization model with zero optimal value. 

Spallino and Rizo [53] proposed a NCGT method based on evolu
tionary strategy in order to solve the multi-objective optimization 
problem of composite laminated structures. In their method, each game 
players are an equal body, and eventually found a Nash equilibrium 
point through negotiation function. These authors showed the efficiency 
of the proposed method in comparison with the evolutionary strategy 
and single-objective optimization. 

Using three different game model, Holmerg et al. [61] have devel
oped a robust GT method to uncertain loading and exemplified the 
design of both 2D and 3D structures. The authors showed that the nature 
of the proposed NC games, between the structure and the external loads, 
is such that convergence is difficult to obtain – an element may be very 
important for some loads but completely unnecessary for others. This 
typically leads to oscillations in the design variable values. 

Merging genetic algorithms and Nash strategy, Sim and Kim [62] 
introduced the Nash genetic algorithm in order to find a Nash equilib
rium through a genetic process in which agent populations can evolve 
into evolutionarily stable strategies (ESS) through the Darwinian se
lection process. 

Regardless of the successful implementation of the NC game model in 
solving optimization problems, a Nash equilibrium is usually a local 
optimal profile. If it is not unique and sufficient to assure a global 
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optimum solution [63]. In order to ensure a global optimal solution, 
some more powerful algorithms need to be developed: (i) the use of GT 
metaheuristic [46]; and (ii) a better determination of the strategy space 
[64]. 

The transformation of a FEMU problem into a NCGT problem can be 
formulated based on the following utility function: 

ui =
fi

fi
(i = 1, 2,⋯m) (10)  

where fi is the considered term of the objective function, while fi is its 
reference value (which can eliminate differences in magnitude for each 
objective function, fi is often set as the initial design value). 

Based on the single-objective optimization of each game player’s 
utility function, the best solution (best strategy) is obtained. For the 
proposed game model, after determination of the strategy space and 
generation of the initial feasible strategy, the single-objective optimi
zation of the utility function (Eq. (10)) is performed considering the ith 

game player’s strategy space and fixing the supplementary set according 
to the player’s payoff. 

After that, the permutation of the defined strategies is performed, 
and its feasibility is assessed according to all the constraints. If feasibility 
is dissatisfied, the new initial feasibility is formulated, otherwise, the 
convergence criterion is checked. If the convergence criterion (9) is 
satisfied, the game is over, otherwise, the single objective optimization 
is repeated until all the conditions are met. 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑m

i=1

(
f k

i − f k− 1
i

)2

√

≤ ξ = 0.001 (11) 

The complete flowchart to solve the FEMU problem considering the 
NCGT model is shown in Fig. 3. 

2.4. CGT model 

In the CGT model, players cooperate and abide by a binding agree
ment. Therefore, players’ benefits are based on their cooperation. In this 
game model, there are three types of agreements: (i) competitive; (ii) 
coalition; and (iii) selfless agreement [65]. The main characteristics of 
the mentioned game model are [54]: (i) self-interest for competitive 
game; (ii) mutuality for coalition game model, and (iii) collectivistic for 
selfless agreement. 

The CGT model is more frequently used than the NCGT model to 
cope with different optimization problems. Dhingra and Rao [66] 

combined the CGT model and fuzzy set theory to developed a new multi- 
objective optimization method to deal with the design of high speed 
mechanisms. Xie et al. [64] proposed a four step GT based method for 
multi-objective optimization based on the idea that design objectives are 
used as players and that design variables are decomposed into a set of 
strategies of all players. By introducing the induced game and trans
forming the bi-objective optimization problem into the two-player game 
problem. Monfared et al. [67] ensure the finding the Pareto optimal 
equilibrium (POE) point more precisely. The authors showed that there 
is at least one POE point for the class of linear bi-objective optimization 
problems and that the objective space of multi-objective optimization 
problem is exactly the payoff space. Rao [44] presented a method for 
solving the multi-objective optimization problem using the CGT model 
and concepts for generating the Pareto optimal solution. Vincent [51] 
studied the role of GT in the process of engineering design and multi- 
criteria optimization and multiple optimizers. Cheng and Li [68] used 
a CGT model to find the compromise solution among conflicting 
objective and combining this game model with genetic algorithms, to 
propose a new multi-objective optimization algorithm. Annamdas and 
Rao [49] proposed a propose an algorithm to solve multi-objective 
optimization problem using a modified CGT model together with the 
PSO. 

The transformation of a FEMU problem into a CGT problem can be 
formulated based on the following utility function: 

ui = wii
fi

fi
+
∑m

j=1(j∕=i)
wij

fj

fj
(i = 1, 2,⋯m) (12)  

where 
∑m

j=1wij = 1 are weighting factors. 
The value of wij refers to the degree of cooperation. The greater this 

value, the lower degree of cooperation. It is worth noting that the wii and 
wij are respectively self-interest and altruistic factors. Their choice in the 
CGT model should follow two general principles: (i) principles of equi
librium, (the self-interest factor is the sum of all altruistic factors); and 
(ii) the principle of consistency (all game players select the same 
altruistic factor during the construction of the profit function). 

Based on the single-objective optimization of each player’s utility 
function, the best strategy is obtained. The complete flowchart to solve 
the FEMU problem considering the CGT model is shown in Fig. 4. 

2.5. EGT model 

In the EGT model, the players’ behaviour evolve as a game evolves 

Fig. 3. General flowchart of the GT method to solve the multi-objective opti
mization problem based on the NCGT model. 

Fig. 4. General flowchart of the GT method to solve the multi-objective opti
mization problem based on the CGT model. 
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(the players change their behaviour during the game) [47]. Thus, they 
cooperate or not according to the outcome (results) of the game. This 
game model consists of two main components: (i) evolutionary stable 
strategy [69]; and (ii) replicator dynamic [70]. 

On the one hand, in evolutionary stable strategy, a population 
composition is observed that is resistant to the emergence of individuals 
pursuing a strategy unrelated to the strategy pursued by other in
dividuals in the population (the so-called mutants). For mutants within a 
population, it is very important that the efficiency they achieve by 
following their strategy is lower than the efficiency achieved by the rest 
of the population. On the other hand, replication dynamics is concerned 
with the question of whether an equilibrium is reached in a population 
that is out of equilibrium and, if so, which strategies lead to this 
equilibrium. 

Xie et al. [71] proposed a three steps optimization method based on 
the EGT model. The first step consists of the definition of the players, the 
design variables and the strategy space via the objective function and 
fuzzy clustering. The second step is reserved to select each player’s 
behaviour using the evolution rules (the players change their behaviour 
as a game evolves). In each player’s strategy space, each player’s utility 
function is optimized in order to obtain the player’s best strategy. In this 
round, all players’ strategies conform the group strategy. Thus, the final 
equilibrium is obtained based on the convergence criterion via the 
multi-round game. Meng et al. [54] proposed a novel computationally 
efficient method to form the players’ strategy space, called the sorting 
partition method under threshold limit. The proposed method is pre
sented via the game profit functions constructed according to both the 
NCGT and CGT models. The proposed method enables the EGT method 
to converge potentially faster. In addition, it was shown that the 
complexity of the problem can be reduced by transforming the original 
high-dimensional optimization problem into three low-dimensional 
optimization problems. Jin et al. [45] used an EGT model to transform 

an optimization problem into a game strategic problem using adaptable 
dynamic game evolution process. They proposed a large frequency offset 
precision estimator using the multi-objective optimization theory 
together with the evolutionary game optimization. 

Greiner et al. [72] give a review of the evolutionary algorithms and 
metaheuristic techniques based on GT. This research study takes into 
account for NCGT games (Nash equilibrium and Stackelberg game) and 
CGT games (Pareto optimality). Meng et al. [45] compared the three 
mentioned game models (NCGT, CGT and EGT). For the optimum design 
of four bar joist rack structures, m design objectives were considered as 
m game players, while the design variables were divided into the 
players’ strategy space using fuzzy clustering. Based on the three 
mentioned GT models, authors concluded that the EGT model is the best 
model in terms of computational efficiency and accuracy. Both CGT and 
NCGT models have limitations. Regarding CGT model, its efficiency is 
limited, and domain decomposition does not significantly help improve 
efficiency, as the objective functions of all the domains are related. 
Regarding the NCGT model, the optimal solution in its own domain may 
be inconsistent with the global optimal solution, because each optimi
zation algorithm aims to obtain the optimal in its own domain without 
considering the other domains. 

Two characteristics of player’s behaviour alternates when the EGT 
model is used to solve the FEMU problem. These characteristics depend 
on the value of the individual player’s utility function and whether the 
player’s benefits is computed according to either a NCGT (Eq. (8)) or a 
CGT model (Eq. (10)). 

In the EGT model (Fig. 5), game starts as either a NCGT model 
(Fig. 3) or a CGT model (Fig. 4), determining each player’s game 
strategy and establishing the utility function according to the equation 
(10) and (12). The first round of the game is characterized by the CGT 
model (the utility function is defined via the equation (12)). In the kth 

round of game, if the value of the objective function is higher than the 

value of the initial design, 
(

f (k− 1)
i > fi

)
, then the player selects the 

NCGT model (Eq. (10)) while otherwise the player chooses CGT model 
(Eq. (12)). According to both the selected behaviour (CGT/NCGT 

Fig. 5. General flowchart of the GT method to solve the multi-objective opti
mization problem based on the EGT model. 

Fig. 6. a) 3D laboratory footbridge model with b) ground plan and charac
teristic cross-section C–C of the laboratory footbridge c) characteristic cross 
section A-A, d) characteristics cross section B-B (Legend: 1 - connection with the 
floor; 2 - connection between UB 457 x 191 x 82; 3 - UB 457 x 191 x 82; 4 - UC 
203 x 203 x 60; 5 - transversal stiffners; 6 - SPS panels; 7 - splice plate. All 
dimensions are in millimetres). 
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models) and the corresponding utility function, ui, the single objective 
optimization in strategy space, Si, which belongs to the player i is per
formed. The optimal values obtained are combined and their feasibility 
is tested. If it is dissatisfied then each player’s strategy space is randomly 
generated, while otherwise the convergence criterion (Eq. (11)) is 
checked. If it is reached, the game is over, while otherwise, the single- 
objective optimization is performed again. The complete flowchart to 
solve the FEMU problem considering the EGT model is shown in Fig. 5. 

3. Validation example: FEMU of a laboratory footbridge 

The performance of the three mentioned game models (NCGT, CGT 
and EGT) is assessed when they are implemented for the FEMU of a 
laboratory footbridge. The footbridge is located at the laboratory of the 
Vibration Engineering Section of the University of Exeter (UK). It is a 
single-span footbridge. The length of the span is 15 m (Fig. 6). It consists 
of two UB 457 × 191 × 82 beams designed to be made from two 7.5 m 
long beams connected to each other. The bridge span is covered with the 
Sandwich Plate System (SPS) bolted to the UB 457 × 191 × 82 beams. At 
the beginning and at the end of the structure there are transverse UC 
203 × 203 × 60 beams, while between those two transverse beams at 
each 1.25 m there are the splice plate with a section of 200 mm × 12 
mm. The supports of the structure consist of a column section with stub 
cantilever which is directly pinned to the floor. For a detailed descrip
tion of the laboratory footbridge the readers are referred to [73]. 

This section provides the description of the following topics: (i) the 
initial numerical model of the laboratory footbridge; (ii) the dynamic 
test addressed to identify experimentally the modal properties of the 
structure; (iii) the sensitivity analysis performed to select appropriately 

the updating parameters; (iv) the FEMU of the structure considering the 
two mentioned methods (the GT method considering the three different 
models and a conventional bi-objective optimization algorithm based on 
the Pareto front); and (v) the comparison of the results obtained using 
both methods. 

3.1. Initial numerical model 

Numerical modelling of laboratory footbridge was performed using 
the commercial FE package ANSYS [74] and personal computer with 
processor of 3.59 GHz and a 16 GB RAM memory. FE model (Fig. 7) was 
developed using: (i) the 3D linear beam element, BEAM 188, for 
modelling the bolts that configure the connections between the steel 
structures and SPS panels; (ii) four node shell elements with six degrees 
of freedom, SHELL 181, for modelling the lateral beams, transversal 
plates and SPS panels (first order shear deformation theory); (iii) 
COMBIN14 for modelling support with lateral and longitudinal spring 
elements, while it is assuming that the vertical displacement was con
strained. The developed model was meshed using 31.903 elements. 

The initial values of the mechanical properties of the numerical 
model were assumed as follows. For steel components: (i) the modulus of 
elasticity was proposed as Esteel = 2.1x105 MPa; (ii) the material density, 
ρsteel = 7850 kg/m3; and (iii) the Poisson ratio, νsteel = 0.3. For poly
urethane components: (i) the modulus of elasticity was proposed as 
Epoly = 750 MPa; (ii) the material density, ρpoly = 1100 kg/m3; and (iii) 
the Poison ratio, νpoly = 0.5. The spring stiffness was determined based 
on the results of a FE analysis of a column element. Both an equivalent 
longitudinal, klon = 5.5x107 N/m, and transversal, ktrans = 1.9x107 N/m, 
stiffness were obtained. Based on this FE model, a numerical modal 

Fig. 7. a) 3D FE model of the laboratory footbridge with b) detail of connections and of c) detail of transverse stiffeners placed at every 1.25 m along the length of the 
longitudinal beam. 

Fig. 8. Numerical natural frequencies (f num
t ) and mode shapes (ϕnum

t ) obtained from the initial FEM of the laboratory footbridge for t = 1, …,7.  

S. Ereiz et al.                                                                                                                                                                                                                                    



Engineering Structures 277 (2023) 115458

9

analysis was performed to obtain the natural frequencies (fnum
t ) and the 

mode shapes (ϕnum
t ) for each considered mode t. The results of the nu

merical modal analysis are shown in Fig. 8. 

3.2. Experimental identification of modal properties of the laboratory 
footbridge 

The modal properties (natural frequencies and mode shapes) of the 
laboratory footbridge were experimentally identified via a forced vi
bration test. 

For this purpose, two types of proof mass actuators (two APS Dy
namics model 400 with 30 kg of inertial mass and one APS Dynamics 
model 113 with 13 kg of inertial mass) and several roving accelerome
ters (Honeywell QA700 and QA750) were used. The actuators were 
driven simultaneously with uncorrelated random signals generated and 
recorded using a Data Physics SignalCalc Mobilyzer spectrum analyser. 
The layout of the experimental dynamic test is shown in Fig. 9. 

As result of the identification process, the experimental natural fre
quencies 

(
f exp
t , t = 1,⋯,7

)
and associated mode shapes 

(
ϕexp

t
)

are shown 
in Fig. 10. For a detailed description of the experimental investigation 
together with the forced vibration test, readers are referred to [73]. 

3.3. Comparison of the results obtained between initial FE model and the 
experimental dynamic tests 

In order to assess both the performance of the initial numerical 
model and the accuracy of the predictions of the numerical model, a 
comparative analysis was performed. Among the different comparison 
methods [7], a correlation analysis between the experimental and nu
merical modal properties of the structure was performed.. Herein this 
correlation analysis is performed based on the Eq. (1), for natural fre
quencies, and the Eq. (3), for the mode shapes. The results of this cor
relation analysis are shown in Table 1. 

Fig. 9. Layout of the dynamic test performed to identify experimentally the modal properties of the laboratory footbridge [75].  

Fig. 10. Experimental modal properties of the laboratory footbridge – experimental natural frequencies 
(
f exp
t
)

and associated mode shapes 
(
ϕexp

t
)

for t = 1, …,7 [75].  

Table 1 
Comparison of the laboratory footbridge behaviour predicted by initial numer
ical model and its actual behaviour based on the relative differences between the 
natural frequency, 

(
Δft
)
, and the modal assurance criterion MAC

(
ϕexp

t ,ϕnum
t
)

Mode shape, 
t 

fnum
t 

[Hz] 
fexp
t 

[Hz] 

⃒
⃒Δft

⃒
⃒

[%] 
MAC

(
ϕexp

t ,ϕnum
t
)

[/] 

1  3.638  3.810  4.51  0.999 
2  5.329  5.144  3.60  0.994 
3  10.185  8.485  20.03  0.990 
4  11.310  12.366  8.54  0.877 
5  17.364  18.605  6.67  0.985 
6  20.238  20.459  1.08  0.993 
7  21.105  22.980  8.16  0.910  
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The results of the comparison analysis suggest that the initial nu
merical model reproduces poorly the real behaviour of the structure 
since the MAC ratio of some the first seven mode shapes is lower than 0.9 
(a common reference value) and the absolute difference of some natural 
frequency of these first seven mode shape is greater than 5 % (a common 
reference value). Therefore, it is necessary to improve the accuracy of 
the numerical model via a FEMU. 

Herein, the FEMU of this laboratory footbridge was performed using 
the three different GT models (NCGT, CGT and EGT). The performance 
of the GT models has been analysed in detail. Both the accuracy of the 
solution obtained and the required simulation time have been compared 
for this purpose Additionally, the results obtained have been compared 
with the ones obtained via a conventional optimization method based on 
the computation of the Pareto front and the subsequent decision making 
problem [75]. 

3.4. Sensitivity analysis and sorting variables in strategy space 

Before starting with the FEMU process, it is important to select the 
most relevant updating parameters. This parameter selection can be 
performed using different methods [76–78]. Herein a sensitivity anal
ysis has been performed for this purpose (Fig. 11). As selection criterion, 
the ratio between the modal strain energy associated with physical pa
rameters and the overall modal strain energy (MSE) of the structure has 
been considered. The selection analysis was performed in two steps. In 
the first step, a preliminary selection was performed based on engi
neering judgement. In the second step, this set of parameters was 
reduced based on the model strain energy ratio. 

For the first step, the preliminary set of parameters consists of the 
same fifteen parameters considered in previous studies [79]. After per
forming the sensitivity analysis (second step), instead of the selected 
fifteen parameters (Fig. 11.), only ten of them were included in the 
FEMU process (Table 2, Fig. 12). The remaining five were excluded due 
to their reduced effects on the modal properties of this structure. 

After performing the selection of the updating parameters, the 
strategy space of each term of the bi-objective function was defined. For 
this purpose, the sorting partition method, described in section 2.2. was 
considered. According to this method, each term of the bi-objective 
function (the natural frequency residual f1(θ), the mode shape residual 
f2(θ)) was optimized. The impact index, space distance and space 
moment were computed. According to the mentioned partition rules, the 
strategy space of each term of the bi-objective function is defined as 
follows: S1 = ( θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9) and S2=(θ1, θ9, θ10) 

The detailed information about the exploration of the strategy space 
is shown in Table 3. 

Fig. 11. Sensitivity analysis performed on the laboratory footbridge consid
ering the initial 15 updating parameters. 

Table 2 
List of the selected updating parameters of the FE model their description and 
assigned initial values based on the previous studies [79].  

Parameter Description Initial value 

θ1− 6 Young modulus of elasticity of steel (longitudinal 
beam) 

2.1⋅105 

[MPa] 
θ7 Young modulus of polyurethane of SPS panels 750 [MPa] 
θ8 Young modulus of elasticity of steel bolts 2.1⋅105 

[MPa] 
θ9 Equivalent longitudinal stiffness of support 5.5⋅107 [N/ 

m] 
θ10 Equivalent transversal stiffness of support 1.9⋅107 [N/ 

m]  

Fig. 12. Selected updating parameters of the FE model of labora
tory footbridge. 

Table 3 
Impact index, space distance, space moment, threshold o moment and ranking of all design variables.  

Design variable f1(θ) f2(θ) Mo(j) 

Δ(j,1) d(j,1) ranking Δ(j,2) d(j,2) ranking 

θ1  0.0999826  0.5000757 10  0.1000129  0.4999243 1  0.0499989 
θ2  0.1000049  0.4999847 2  0.0999988  0.5000153 9  0.0500009 
θ3  0.1000049  0.4999847 3  0.0999988  0.5000153 5  0.0500009 
θ4  0.1000049  0.4999847 4  0.0999988  0.5000153 6  0.0500009 
θ5  0.1000049  0.4999847 5  0.0999988  0.5000153 7  0.0500009 
θ6  0.1000049  0.4999847 6  0.0999988  0.5000153 8  0.0500009 
θ7  0.1000011  0.499987 7  0.0999959  0.500013 4  0.0499993 
θ8  0.100006  0.4999817 1  0.0999987  0.5000183 10  0.0500012 
θ9  0.0999934  0.5000146 8  0.0999993  0.4999854 3  0.0499982 
θ10  0.0999921  0.5000176 9  0.0999992  0.4999824 2  0.0499978  
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3.5. Solution of the updating problem based on a conventional 
optimization method 

To validate the computational efficiency of the GT algorithms, the 
FEMU is also performed using a conventional bi-objective optimization 
method based on the computation of the Pareto front together with a 
subsequent decision making problem (for the determination of the 
“knee” point). As optimization algorithm, HS algorithm has been 
considered herein due to the high performance shown to solve the FEMU 
problem of civil engineering structures [75]. For a detailed description 
of the implementation of the HS algorithm to solve the updating prob
lem, readers are referred to [75]. The updating process was performed 
linking a FE analysis software, Ansys [74], with a mathematical soft
ware, Matlab [80]. 

The following parameters of the HS algorithms were established to 
perform the optimization process [75]: (i) population size PS = 100; (ii) 
maximum number of iterationsImax = 50; (iii) objective function toler
ance tof = 1 • 10− 4; (iv) new population size Ps,new = 40; (v) harmony 
memory pitch adjustment HMCR = 0.9 and (vi) pitch adjusting rate 
PAR = 0.3. 

As result of this updating problem, Fig. 13 shows the Pareto front of 
the two terms of the bi-objective function. Additionally, the “knee” point 
of this Pareto front (the most balanced solution) has been included in 
Fig. 13. Therefore, the “knee” point is computed as θ∗HS = [1.09516,
1.01464, 1.10000,1.08621,0.97957,0.90000, 1.62927,2.21290,
0.75000, 0.75977]. 

3.6. Solution of the updating problem based on the GT method 

Subsequently, after the determination of each player’s strategy 
space, the updating problem has been solved using the three GT models 
(NCGT, CGT and EGT). As it was mentioned, the GT method transforms 
the bi-objective optimization problem into two single-objective opti
mization problems. As in the previous section, HS algorithm has been 
selected as global optimization algorithm to solve these single-objective 
optimization problems. 

The three GT models start from the same initial strategy θ0
initial =

[1,1, 1,1, 1,1, 1,1, 1,1]. For each model, the calculation is performed 
until the convergence criterion is met (Eq. (9)). Herein this convergence 
criterion, ξ = 0.001, was set. For the CGT and EGT models, the degree of 
the cooperation was established as w11 = w22 = w12 = w21 = 0.5 ac
cording to the rules described in section 2.4. For the sake of simplicity, 
only the first and last round of each model are shown in Table 4. 

As result of the updating process, Fig. 13 also illustrates the solution 
of the updating problem for the three mentioned game models. 

4. Discussion of the results 

In order to compare the results obtained according to the two 
mentioned methods, two comparison criteria have been considered: (i) 
the accuracy of the solution; and (ii) the simulation time requited to 
compute the solution. On the one hand, Fig. 13 compares graphically the 
optimum solution provided by the different methods. According to 
comparison illustrates in Fig. 13, the solution provided by the two 
method is similar. It can be remarked that the solution provided by the 
EGT model is better (the nearest to the “knee” point) than the one 

Fig. 13. a) comparison of the “knee” point obtained based on the pareto front (conventional method) with the position of the optimal solutions obtained using the 
three different game models (NCGT, CGT and EGT) b) detailed view of the position of the different solutions. 

Table 4 
Results of GT-based ML method for FEMU of laboratory footbridge.  

Design variable Initial Strategy NCGT CGT EGT 

1st Round 7th Round 1st Round 3rd Round 1st Round 3rd Round 

θ1 1 1.09991 1.10000  1.10000  1.08708  1.10000  1.10000 
θ2 1 1.02509 0.93008  0.92537  0.97482  0.92537  0.96332 
θ3 1 0.92183 1.04725  1.01903  1.02494  1.01903  0.97898 
θ4 1 0.90285 0.91996  0.94027  0.94766  0.94027  1.01693 
θ5 1 0.99868 1.09260  1.08017  1.01102  1.08017  0.96853 
θ6 1 0.98103 0.93418  0.91443  1.05940  0.91443  0.95996 
θ7 1 1.99623 1.64775  1.25622  1.58442  1.25622  1.69470 
θ8 1 2.49993 2.26194  2.50000  2.36780  2.50000  2.30245 
θ9 1 0.75526 0.75000  0.75001  0.75659  0.75001  0.75000 
θ10 1 0.79990 0.75295  0.78434  0.77154  0.78434  0.75421 
f1(θ) 2.74E-02 7.97E-03 7.69E-03  8.50E-03  7.65E-03  8.50E-03  7.57E-03 
f2(θ) 1.51E + 01 1.10 4.79E-03  4.94E-03  4.74E-03  4.94E-03  4.71E-03 

T [s] 21462 12276 13262  
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provided by the remaining game models. On the other hand, the simu
lation time required to perform the updating process, according to the 
different methods, can be computed as: (i) for the NCGT method; 
tNCGT = 21462s; for the CGT method, tCGT = 12726s; for the EGT 
method, tEGT = 13262s; and (iv) for the conventional method, tHS =

27289s. It can be also remarked that the CGT model is the quickest 
method (reduced simulation time). Based on these two comparison 
criteria, it can be concluded that the GT method can be successfully used 
to solve the FEMU of civil engineering structures according to the ML 
method. The GT method allows reducing the simulation time required to 
perform the FEMU process without compromising the accuracy of the 
solution. The time reduction is caused by the direct estimation of the 
“knee” point without the necessity of computing the Pareto front. 
Additionally, it can be concluded that the EGT model is the best option 
to perform the FEMU of civil engineering structures since it is the most 
balanced alternative considering the two comparison criteria. 

Finally, the numerical natural frequencies and associated mode 
shapes of the updated model of the footbridge considering the updating 
physical parameters provided by the GT method are shown in Table 5 
and Table 6 respectively. Additionally, the relative differences and MAC 
ratio of each mode shape have been computed. The good performance of 
the solution provided by the GT method it is illustrated in Table 5 and 
Table 6. Both the relative differences and the MAC ratios provided by the 
GT method are similar to the ones obtained by the conventional opti
mization algorithm. 

5. Conclusion 

Due to its ease implementation, accuracy, and the requir
edsimulation time, FEMU for real-world engineering applications is 
usually performed via the ML method. According to this method, the 
updating problem can be formulated as a bi-objective optimization 
problem. However, this method presents two main limitations: (i) a high 
simulation time to compute the so-called Pareto front (a set with all the 
possible solutions to the problem); and (ii) the necessity of solving a 
subsequent decision making problem, the selection of the best solution 
among the different elements of the Pareto front. In order to cope with 
these limitations, this paper focuses on the implementation of GT as a 

computational tool to improve the performance of the updating process. 
For this purpose, the efficiency (the accuracy and required simulation 
time) of three different game models NCGT, CGT and EGT) have been 
assessed when they are implemented for the model updating of a 
benchmark structure (a laboratory footbridge). Additionally, the per
formance of the proposal has been compared against the results of a 
conventional method (the optimization of a bi-objective function using 
the HS algorithm). Three main conclusions can be obtained from this 
this research study:  

1) The FEMU can been easily formulated as a GT problem considering 
different game models: (i) NCGT; (ii) CGT; and (iii) EGT.  

2) Game theory (independently of the considered game model) allows 
obtaining an accuracy estimation of the so called “knee point” (the 
best balanced solution of a bi-objective optimization problem) 
reducing significantly the simulation time in comparison with the 
conventional methods (bi-objective optimization solved via the use 
of the Pareto front and subsequent decision-making problem).  

3) The EGT model shows the best performance among the three 
considered game models since it allows obtaining both the most 
accuracy solution and a reduced simulation time. 

To sum up, it may be remarked that the EGT model has shown the 
best performance when it is implemented to solve the FEMU problem of 
civil engineering structures under the ML method. Despite the high ef
ficiency shown by the GT method to cope with this problem, further 
studies are needed to improve its accuracy when this mathematical tool 
is used for the FEMU of complex civil engineering structures. In this case, 
it can be necessary the use of a decomposition domain method to reduce 
the possible inconsistence of the solution due to the isolation of each 
player in its local domain. 
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Pavić. Format analysis – Suzana Ereiz, Javier Fernando Jiménez 
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nando Jiménez Alonso. Methodology - Suzana Ereiz, Javier Fernando 
Jiménez Alonso. Project administration - Ivan Duvnjak, Javier Fer
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Table 5 
Correlation between experimental and updated natural frequencies using conventional HS optimization and different game models (NCGT, CGT, EGT).  

Vibration mode, 
t 

fexp
t 

[Hz] 
HS NCGT CGT EGT 

fupd,HS
t 
[Hz] 

⃒
⃒ΔfHS

t
⃒
⃒

[%] 
fupd,NCGT

t 
[Hz] 

⃒
⃒ΔfNCGT

t
⃒
⃒

[%] 
fupd,CGT

t 
[Hz] 

⃒
⃒ΔfCGT

t
⃒
⃒

[%] 
fupd,EGT

t 
[Hz] 

⃒
⃒ΔfEGT

t
⃒
⃒

[%] 

1  3.854  3.875  0.54 %  3.882  0.73 %  3.866  0.31 %  3.883  0.75 % 
2  5.489  5.505  0.29 %  5.510  0.38 %  5.500  0.20 %  5.513  0.44 % 
3  8.365  8.358  0.08 %  8.336  0.35 %  8.397  0.38 %  8.342  0.27 % 
4  11.896  11.946  0.42 %  11.967  0.60 %  11.913  0.14 %  11.973  0.65 % 
5  18.662  18.596  0.35 %  18.621  0.22 %  18.565  0.52 %  18.642  0.11 % 
6  20.016  20.155  0.69 %  20.191  0.87 %  20.100  0.42 %  20.198  0.91 % 
7  22.506  22.357  0.66 %  22.386  0.53 %  22.328  0.79 %  22.418  0.39 %  

Table 6 
Correlation between experimental and updated mode using conventional HS 
optimization and different game models (NCGT, CGT, EGT).  

Vibration mode, 
t 

MAC
(
ϕexp

t ,ϕnum
t
)

[/] 

HS NCGT CGT EGT 

1  0.999  0.999  0.999  0.999 
2  0.994  0.994  0.994  0.994 
3  0.988  0.988  0.988  0.988 
4  0.905  0.880  0.880  0.880 
5  0.987  0.987  0.987  0.987 
6  0.993  0.993  0.993  0.993 
7  0.974  0.961  0.968  0.972  
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the work reported in this paper. 
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[15] Jiménez-Alonso JF, Sáez A. Model updating for the selection of an ancient bridge 
retrofitting method in Almeria. Spain Struct Eng Int 2016;26:17–26. https://doi. 
org/10.2749/101686615X14355644771333. 

[16] Chen H-P. Monitoring-Based Reliability Analysis of Aging Concrete Structures by 
Bayesian Updating. J Aerosp Eng 2017;30:1–8. https://doi.org/10.1061/(asce) 
as.1943-5525.0000587. 

[17] Pachón P, Castro R, García-Macías E, Compan V, Puertas EE. Torroja’s bridge: 
Tailored experimental setup for SHM of a historical bridge with a reduced number 
of sensors. Eng Struct 2018;162:11–21. https://doi.org/10.1016/j. 
engstruct.2018.02.035. 

[18] National G, Pillars H. Parameter identification of materials and structures. Wien 
New York: Springer; 2005. 

[19] Hofmeister B, Bruns M, Rolfes R. Finite element model updating using 
deterministic optimisation: A global pattern search approach. Eng Struct 2019;195: 
373–81. https://doi.org/10.1016/j.engstruct.2019.05.047. 

[20] Marwala T. Finite-element-model updating using computional intelligence 
techniques: Applications to structural dynamics. 1st editio, Springer-Verlag 
London, London, England, 2010; . https://doi.org/10.1007/978-1-84996-323-7. 

[21] Ahmadian H, Gladwell GML, Ismail F. Parameter selection strategies in finite 
element model updating. J Vib Acoust Trans ASME 1997;119:37–45. https://doi. 
org/10.1115/1.2889685. 

[22] Hamby DM. A Review of Techniques for Parameter Sensitivity. Environ Monit 
Assess 1994;32:135–54. https://deepblue.lib.umich.edu/bitstream/handle/2027.4 
2/42691/10661_2004_Article_BF00547132.pdf?sequence=1. 

[23] Fox RL, Kapoor MP. Rates of change of eigenvalues and eigenvectors. AIAA J 1968; 
6:2426–9. https://doi.org/10.2514/3.5008. 

[24] Rachmawati L.,Srinivasan D. Preference incorporation in multi-objective 
evolutionary algorithms: A survey. 2006 IEEE Congr. Evol. Comput. CEC 2006 
2006; 962–968. https://doi.org/10.1109/cec.2006.1688414. 

[25] Ponsi F, Bassoli E, Vincenzi L. A multi-objective optimization approach for FE 
model updating based on a selection criterion of the preferred Pareto-optimal 
solution. Structures 2021;33:916–34. https://doi.org/10.1016/j. 
istruc.2021.04.084. 

[26] Branke J, Deb K, Dierolf H, Osswald M. Finding knees in multi-objective 
optimization. Lect Notes Comput Sci 2004:722–31. https://doi.org/10.1007/978- 
3-540-30217-9_73. 

[27] Wang Z, Rangaiah GP. Application and Analysis of Methods for Selecting an 
Optimal Solution from the Pareto-Optimal Front obtained by Multiobjective 
Optimization. Ind Eng Chem Res 2017;56:560–74. https://doi.org/10.1021/acs. 
iecr.6b03453. 

[28] Jin SS, Cho S, Jung HJ, Lee JJ, Yun CB. A new multi-objective approach to finite 
element model updating. J Sound Vib 2014;333:2323–38. https://doi.org/ 
10.1016/j.jsv.2014.01.015. 

[29] Das I. On characterizing the “knee” of the Pareto curve based on normal-boundary 
intersection. Struct Optim 1999;18:107–15. https://doi.org/10.1007/bf01195985. 

[30] Furukawa T, Yoshimura S, Mimura Y. A human-like optimization method for 
constrained parametric design. Inverse Probl Eng Mech IV 2003;2003:147–56. 
https://doi.org/10.1016/B978-008044268-6/50020-X. 

[31] Christodoulou K, Ntotsios E, Papadimitriou C, Panetsos P. Structural model 
updating and prediction variability using Pareto optimal models. Comput Methods 
Appl Mech Eng 2008;198:138–49. https://doi.org/10.1016/j.cma.2008.04.010. 

[32] Kim IY, De Weck OL. Adaptive weighted-sum method for bi-objective optimization: 
Pareto front generation. Struct Multidiscip Optim 2005;29:149–58. https://doi. 
org/10.1007/s00158-004-0465-1. 

[33] Kparib DY, Twum SB, Boah DK. A Min-Max Strategy to Aid Decision Making in a 
Bi-Objective Discrete Optimization Problem Using an Improved Ant Colony 
Algorithm. Am J Oper Res 2019;09:161–74. https://doi.org/10.4236/ 
ajor.2019.94010. 

[34] Stoilova S. An integrated multi-criteria and multi-objective optimization approach 
for establishing the transport plan of intercity trains. Sustain 2020;12(2):687. 

[35] Yang X.-S. Nature-Inspired Optimization Algorithms. 1st editio, Elsevier, London, 
England, 2014; . https://doi.org/10.1007/978-981-10-6689-4_8. 

[36] Zarepisheh M, Pardalos PM. An equivalent transformation of multi-objective 
optimization problems. Annals of Operations Research 2017;249:5–15. https://doi. 
org/10.1007/s10479-014-1782-4. 

[37] Marler RT, Arora JS. Function-transformation methods for multi-objective 
optimization. Eng Optim 2005;37:551–70. https://doi.org/10.1080/ 
03052150500114289. 

[38] Nature-Inspired Computation in Engineering. Springer International Publishing, 
London, England, 2016. 

[39] Chi J.,Liu Y. Multi-objective genetic algorithm based on game theory and its 
application. Proc. 2nd Int. Conf. Electron. Mech. Eng. Inf. Technol. EMEIT 2012 
2012; 2341–2344. https://doi.org/10.2991/emeit.2012.520. 

[40] Das S.,Abraham A.,Konar A. Particle swarm optimization and differential evolution 
algorithms: Technical analysis, applications and hybridization perspectives. 2008; . 
https://doi.org/10.1007/978-3-540-78297-1_1. 

[41] Geem ZW, Kim JH, Loganathan GV. A new heuristic optimization algorithm: 
Harmony search. A New Heuristic Optim. Algorithm Harmon. Search 2001;76(2): 
60–8. 

[42] Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing. 
Science 1983;220(4598):671–80. 

[43] Naranjo-Pérez J, Infantes M, Fernando J-A, Sáez A. A collaborative machine 
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