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This paper provides an in-depth analysis of how computer algebra systems and CSP solvers can be used to deal with the
problem of enumerating and distributing the set of r x s partial Latin rectangles based on n symbols according to their
weight, shape, type or structure. The computation of Hilbert functions and triangular systems of radical ideals enables us
to solve this problem for all r, s, n < 6. As a by-product, explicit formulas are determined for the number of partial Latin
rectangles of weight up to six. Further, in order to illustrate the effectiveness of the computational method, we focus
on the enumeration of three subsets: (a) non-compressible and regular, (b) totally symmetric, and (c) totally conjugate
orthogonal partial Latin squares. In particular, the former enables us to enumerate the set of seminets of point rank up
to eight and to prove the existence of two new configurations of point rank eight. Finally, as an illustrative application, it
is also exposed a method to construct totally symmetric partial Latin squares that gives rise, under certain conditions, to
new families of Lie partial quasigroup rings. Copyright (©) 2017 John Wiley & Sons, Ltd.
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1. Introduction

An r x s partial Latin rectangle based on the set [n] := {1, ..., n}is an r x s array in which each cell is either empty or contains
one symbol chosen from the set [n], such that each symbol occurs at most once in each row and in each column. Its weight
is the number of non-empty cells. This is a Latin rectangle if there are not empty cells. If r = s = n, then it is a partial Latin
square of order n (a Latin square if there are not empty cells). Hereafter, R, s, and R, s »m denote, respectively, the set of r x s
partial Latin rectangles based on [n] and its subset of elements of weight m.

Counting, enumerating and classifying Latin rectangles are classical problems in combinatorial design theory. Currently, it is
known [1-4] the number of Latin squares of order up to 11 and their distribution into isotopism, isomorphism and main classes,
together with the number of r x s Latin rectangles based on [n], for r < s=n < 11 and some results for r < 6 and s =n > 11
(see [5,6] and the references therein). Nevertheless, the equivalent problems for partial Latin rectangles have not been dealt with
in depth yet. Particularly, by means of computational algebraic geometry, it is known [7-9] the number of partial Latin squares
for order up to six and their distribution into isotopism and isomorphism classes, together with the cardinality of R, nm for
r,s,n <4 (see [10, 11] for previous studies about how to use this computational method in order to deal with Latin squares).
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This paper provides an in-depth analysis of how computational algebraic geometry can be used to enumerate and classify
partial Latin rectangles according not only to their weight, but also to their shape, type and structure. In order to illustrate
the effectiveness of this computational method, we focus on the enumeration of (a) non-compressible and regular, (b) totally
symmetric, and (c) totally conjugate orthogonal partial Latin squares. The former enables us to deal with the enumeration of
seminets (a type of incident structure introduced by U%an [12] as a natural generalization of nets), whereas the study of the
other two types of partial Latin squares are related to algebraic properties of partial quasigroups (a brief sketch of this study
has recently been exposed by the authors in [13]). Recall in this last regard that a quasigroup of order n [14] is a pair (S, )
formed by a finite set S of n elements that is endowed with a product - so that, if any two of the three symbols in the equation
a-b = c are given as elements of S, then the third one is uniquely determined. This concept is straightforwardly generalized to
that of partial quasigroup of order n, for which (a) the law - is a partial binary operation, and (b) if both equations a-x = b
and y-a= b, with a, b € S, have solutions for x, y € S, then both solutions are unique. The multiplication table of a (partial)
quasigroup of order n constitutes indeed a (partial) Latin square of the same order.

Bruck [15] introduced the concept of totally symmetric quasigroup as a quasigroup (S, -) for which the equation a-b=—c¢
remains valid under every permutation of the three symbols a, b,c € S. There exist six such permutations and each one of
them gives rise to a new quasigroup, which is said to be conjugate to (S, -). Hence, a quasigroup is totally symmetric if its six
conjugates coincide. If besides, the quasigroup is idempotent, that is, if a- a = a, for all a € S, then this notion is equivalent to
that of a Steiner triple system. The distribution of totally symmetric quasigroups and Steiner triple systems into isomorphism
classes is known [16, 17] for orders up to 10 and 19, respectively.

Two quasigroups of order n are said to be orthogonal if the juxtaposition of their corresponding multiplication tables gives
rise to an n X n array containing n® distinct ordered pairs. Stein [18] posed the problem of constructing a quasigroup or Latin
square that is orthogonal to one of its conjugates. In this regard, it is known [19—22] the existence of quasigroups that are
orthogonal to the conjugate under consideration, which is in turn distinct from the former, for any order n & {2,3,6}. Much
more recently, Bennett and Zhang [23] dealt with Latin squares for which each one of their conjugates is orthogonal to its
transpose. They proved the existence of such Latin squares for all prime powers n € {2, 3,5}. Further, Lindner et al. [24] focused
on idempotent Latin squares for which their six conjugates are distinct and pairwise orthogonal. They proved in particular the
existence of such Latin squares for every order being a prime power n > 8 and also for all sufficiently large orders n. Bennett [25]
established n > 5594 as an upper bound for this last condition except possibly n = 6810, and enumerated a series of smaller
orders for which these Latin squares also exist. Four years later, he improved [26] the previous upper bound to n > 5074. Much
more recently, Belyavskaya and Popovich [27] introduced the equivalent notion of totally conjugate orthogonal quasigroup as a
quasigroup for which its six conjugates are distinct and pairwise orthogonal. They proved the existence of such quasigroups for
any order n > 11 that is relatively prime to 2, 3, 5, and 7. Their motivation to study this kind of quasigroups was mainly based
on their application in error detecting codes [28].

Since Evans [29] introduced the problem of embedding a partial quasigroup of order n into a quasigroup of order 2n, a wide
amount of authors have dealt with the embedding of distinct types of partial quasigroups; particularly, that of a partial totally
symmetric quasigroup into a totally symmetric quasigroup [30—33]. Further, the orthogonality among conjugates of a partial
Latin square was indirectly contemplated [34—36] by focusing on the existence of incomplete Latin squares that are orthogonal
to one of their conjugates and have an empty subsquare that can be filled by means of a Latin square that is orthogonal in
turn to its corresponding conjugate. A more general case was proposed by the first author [8], who makes use of computational
algebraic geometry to enumerate the set of self-orthogonal partial Latin squares of order n < 4. This paper delves into this
topic by dealing with the sets of partial Latin squares of a given order for which their six conjugates either coincide or are all of
them distinct and pairwise orthogonal, respectively. In order to improve the computational efficiency, it is proposed to focus on
techniques to solve Boolean satisfiability problems instead of those on algebraic geometry.

As an illustrative application of the exposed study, we also delve into a recent work developed by the authors [37] about the
enumeration of partial quasigroup rings over finite fields derived from partial Latin squares. Bruck [15] introduced the concept
of quasigroup ring related to a quasigroup (S,-) as an algebra of basis {e, | a € S} over a base field K such that e.e, = €15,
for all a, b € S. This concept is straightforwardly generalized to that of partial quasigroup ring in case of being the pair (S,-) a
partial quasigroup. In this paper, we describe a totally symmetric partial Latin square of order 3n, derived from a given partial
Latin square of order n, that enables us to introduce in turn a Lie partial quasigroup ring over a finite field of characteristic two.
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The paper is organized as follows. Section 2 deals with some preliminary concepts and results on partial Latin squares,
seminets and computational algebraic geometry that are used throughout our study. These results are implemented in Section
3 to determine the cardinality of R, s.nm, for all r,s, n < 6. In Section 4, the distribution of non-empty cells per row and column
and the number of occurrences of each symbol enable us to use computational algebraic geometry in order to identify the set
of partial Latin rectangles of a given shape, type or structure. The distribution of R, s, into isotopism and main classes is then
determined for all r,s,n < 6. As a by-product, we establish explicit formulas for the number of partial Latin rectangles of any
order and weight up to six. Section 5 deals with the distribution into main classes of seminets of point rank up to eight. We
also prove the existence of two new configurations of seminets with point rank eight that complete the classification given by
Lyakh [38]. In Section 6, we introduce a pair of series of binary constraints that characterize, respectively, the sets of totally
symmetric and totally conjugate orthogonal partial Latin squares of given order and weight. Finally, Section 7 deals with an
illustrative method to construct a family of Lie partial quasigroup rings from certain totally symmetric partial Latin squares.

2. Preliminaries

This section deals with some basic results on partial Latin rectangles, seminets and computational algebraic geometry that are
used throughout the paper. For more details about these topics, we refer the reader to [12,39,40].

2.1. Partial Latin rectangles

An entry of a partial Latin rectangle P € R,s, is any triple (i,/, k) € [r] x [s] x [n] that is uniquely related to a non-empty

® vow and j'" column and contains the symbol k. The partial Latin rectangle P is uniquely

cell of P which is situated in the i
determined by the set of all its entries, which is denoted as E(P). Thus, for instance, the partial Latin square P in Figure 1

belongs to the set R333.4 and has {(1,1,2),(1,2,1),(2,1,1),(3,3,3)} as set of entries.
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Figure 1. Isotopic partial Latin squares in R333:4.

Let S, denote the symmetric group on m elements. An isotopism of R, s, is any triple © = (a, B8,7) € Sr X Ss X S, where
a, B and =y constitute, respectively, a permutation of the rows, columns and symbols of any partial Latin rectangle P € R;,s.n.
This gives rise to the isotopic partial Latin rectangle P® € R, whose set of entriesis £(P®) = {(a(i), B(), v(k)): (i.j. k) €
E(P)}. Thus, for instance, both partial Latin squares in Figure 1 are isotopic by means of the isotopism ((123), (12), (13)).

Permutations among the three components of all the entries of a partial Latin rectangle also give rise to new partial Latin
rectangles. In this regard, let @ be a permutation in S3. The w-conjugate of P € R.s.n is defined as the partial Latin rectangle
P™ having as set of entries the set E(P™) = {(Pr(1). Pr(2). Px(z)): (P1. P2, p3) € E(P)}. If the permutation 7 preserves the set
Rrsn, then mis said to be a parastrophism. Hence, the set of parastrophisms of R, s, is

e {Id} if r, s and n are pairwise distinct.
e {Id, (12)} if r=5#n.
e {Id, (13)}ifr=n#s.
e {Id,(23)}ifs=n#r.

e S3ifr=s5=n.

There are, therefore, six conjugates: P4 = p, P12 = pt p(3) p3) p(23) — (pI))t 5pq pI32) = (PUNYE: \yhere ¢ denotes
the transpose of the corresponding partial Latin rectangle. Figure 2 shows, for instance, a partial Latin square P whose six
conjugates are pairwise distinct. The partial Latin square P that is shown in Figure 1 is, however, an example for which all its
six conjugates coincide. Such a partial Latin square is said to be totally symmetric. Hereafter, we denote respectively as TS,
and TS, the set of totally symmetric partial Latin squares of order n and its subset of partial Latin squares of weight m.
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Figure 2. Partial Latin square in R33,3;:4 and its conjugates.

Two partial Latin rectangles are said to be paratopic if one of them is isotopic to a conjugate of the other. To be isotopic,
parastrophic or paratopic are equivalence relations among partial Latin rectangles. They make possible the respective distribution
of partial Latin rectangles into isotopism, parastrophism and main classes.

A partial Latin square P of order n is said to be non-compressible if this does not contain empty rows or empty columns, or if
all the n symbols appear as entries in E(P). This is said to be regular if: (a) there does not exist a cell that is, simultaneously,
the only non-empty cell in its row and its column, and (b) any row or column with exactly one non-empty cell contains a symbol
that appears at least twice in E(P). Thus, for instance, the partial Latin square P in Figure 2 is non-compressible. Nevertheless,
it is not regular, because: (a) both its third row and its third column have exactly one non-empty cell, which is common to both
of them, and (b) its second row contains exactly one non-empty cell, but the symbol therein only appears once in P.

Two partial Latin squares of order n, P = (pij) and Q = (qj;), are said to be orthogonal if all the ordered pairs on non-
empty entries that are obtained when both arrays are superimposed are distinct. Equivalently, given i,/’,/,/’ € [n] such that
pij = prjy € [n], then gj; and @iy are not the same symbol of [n]. Thus, for instance, the partial Latin squares P and P13 i
Figure 2 are orthogonal, but the partial Latin squares P and P12 in the same figure are not. Now, let us consider a non-trivial
permutation m € Sz \ {Id}. A partial Latin square P € Rnnn is said to be w-orthogonal if it is orthogonal to its mw-conjugate.
This is self-orthogonal if m = (12). Thus, for instance, the partial Latin square P in Figure 2 is self-orthogonal. Further, we
say that a partial Latin square is totally conjugate orthogonal if its six conjugates are distinct and pairwise orthogonal. This is
the case, for instance, of the partial Latin square in Figure 3. From here on, the set of totally conjugate orthogonal partial Latin
squares of order n and its subset of partial Latin squares of weight m are respectively denoted as TCO, and TCO.p.

P = 2| PR = 3 pU23) = 3 p32) = 3

-
Il
)
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Figure 3. Totally conjugate orthogonal partial Latin square in R33,3:4.

2.2. Seminets

Bates [41] defined a halfnet as an incidence structure of points and lines such that: (a) there exist three distinct parallel classes
of lines, (b) every point is on at most one line of each class, and (c) any two lines belonging to distinct classes meet in at most
one point. The number of points constitutes the point rank of a halfnet. Two halfnets are in the same isomorphism class if
there exists a permutation among the points that preserves collinearity in each parallel class. If this happens after relabeling their
parallel classes, then they are in the same main class. Currently, the distribution of halfnets into isomorphism and main classes
is only partially known for nets and, to a much lesser extent, seminets.

Bruck [42] defined a net of order n as a halfnet of n? points and 3n lines in which every point is on exactly one line of each
parallel class, any two lines from distinct parallel classes meet in exactly one point and there exists at least one line with exactly
n distinct points. Hence, every line contains n points and every parallel class is formed by n lines. More recently and motivated by
its application in coding theory, U%an [12] introduced the concept of seminet as a halfnet in which every point is on exactly one
line of each parallel class and any two lines meet in at most one point. Unlike nets, the lines of a seminet can contain different
numbers of points and its parallel classes can have different numbers of lines. The L-order of a seminet is the maximum number
of lines in a parallel class. If all the lines have the same number n of points, then all the parallel classes have the same number
m of lines. In this case, the seminet is said to be n-regular. If, furthermore, m = n, then it is a net of order n.

Copyright © 2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 00 1-25
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Figure 4. Net identified with a Latin square of order 4.

Every net of order n can be identified with a Latin square of the same order. The points and parallel classes of the net are
respectively identified with the cells of the Latin square and its sets of cells sharing the same row, column or symbol (see Figure
4). In addition, Stojakovi¢ and Uan [43] proved that every seminet of L-order n can be identified with a non-compressible regular
partial Latin square of order nin a similar way that nets do with Latin squares. In this case, the points of the seminet are identified
with the non-empty cells of the partial Latin square (see Figure 5). As a consequence, the distribution of nets and seminets
into isomorphism and main classes results, respectively, from the equivalent distribution of Latin squares and non-compressible
regular partial Latin squares into isotopism and main classes.
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Figure 5. Seminet identified with a partial Latin square of order 4 and weight 5.

Havel [44] defined a configuration as a seminet containing at least four points such that every line contains at least two
points and any two points P and Q of the seminet are connected, that is to say, there exists a sequence of points and lines,
Py, lo, Pi,lh, ..., Pn, such that Ph = P, P = Q and each pair of points P_; and P are on the line [i_1, for all i < m. Havel
determined the main classes of those configurations with point rank up to seven and, shortly after, Lyakh [38] gave a classification
of those configurations with point rank eight.

2.3. Computational algebraic geometry

Let X and K[X] respectively be the ordered set of n variables {xi1,...,x,} and the related multivariate polynomial ring
K[x1, ..., Xxs] over a base field K. The class of a polynomial p € K[X] is the minimum / < n such that p € K[xi,...,x]. A
triangular system in K[X] is a finite ordered set of polynomials {p1, ..., pm} C K[X] such that the class of p; is less than the

class of piy1, for all i < m. An ideal of polynomials in K[X] is any subset /| C K[X] such that 0 € /; p+qg€ [, forall p, g€ I;
and pg € | for all p € I and q € K[X]. A subideal of | is any subset J C [ that is also an ideal in K[X]. The ideal generated by
a finite set of polynomials {p1, ..., pm} C K[X] is defined as the set {qip1 + ...+ Gapn: q1, ..., qn € K[X]}. The affine variety
V(I) is the set of points in K" that are zeros of all the polynomials in /. If this is finite, then the ideal [ is zero-dimensional. It is

™ e | for some natural m.

radical if it contains all the polynomials p € K[X] so that p

A term order on the set of monomials of K[X] is a multiplicative well-ordering whose smallest element is the constant
monomial 1. Thus, for instance, the lexicographic term order < is defined so that, given two monomials X7 = x;* ... x3" and
XP = xP' . xPr one has that X? < X if there exists a natural m < n such that a; = b; for all i < m and am < bnm. The
largest monomial of a polynomial with respect to a term order is its leading monomial. The initial ideal of an ideal | C K[X]
is the ideal generated by the leading monomials of the non-zero polynomials of /. Any subset G C /| whose leading monomials
generate this initial ideal is called a Grobner basis of | with respect to the underlying term order. Any monomial of / that is

not contained in its initial ideal is called standard. Regardless of the monomial term ordering, if the ideal / is zero-dimensional

Math. Meth. Appl. Sci. 2017, 00 1-25 Copyright © 2017 John Wiley & Sons, Ltd.
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and radical, then the number of standard monomials in / coincides with the Krull dimension of the quotient ring K[X]// and
with the cardinality of V(/). This is obtained by means of the Hilbert function, which maps each non-negative integer m onto
HFkix)i(m) = dimx (K[X]m/(K[X]» N 1)). Here, K[X]n denotes the set of homogeneous polynomials in K[X] of degree m and
HFg(x/1(m) coincides with the number of standard monomials in / of degree m. The problem of computing Hilbert functions is
NP-complete [45]. Its computation is based on that of a Grébner basis of the ideal, whose complexity in case of dealing with a
zero-dimensional ideal is d°”) [46], where d is the maximal degree of the polynomials and n is the number of variables.

The next result indicates how computational algebraic geometry can be used to enumerate and count the partial Latin
rectangles in the set R,s,. Hereafter, the set of variables and the base field of the polynomial ring to be considered are,

respectively, X = {x111, ..., Xrsn} and the finite field Fo.

Theorem 2.1 ( [8]) The set Rrsn is identified with the set of zeros of the zero-dimensional radical ideal in Fo[X]
lrsn = { XijeXijio Xigk X XigkXiger = 1,0 < rijoj < sik, k' < n).

Besides, |Rr.s.mm| = HFpx)/1,.., (M), for allm >0, and |Rysn| = dimg,(F2[X]/lr.sn).

The proof of Theorem 2.1 is based on the fact that every standard monomial x{H! ... x%:" of the ideal /, 5, can be identified
with a partial Latin rectangle in R,s, with set of entries {(/,/, k) € [r] X [s] X [n]: aijjx = 1}. Particularly, the presence of the
monomial xjxXyjx as generator of the ideal /;s, involves the non-existence of the symbol k twice in the Jt column; that of

" row; and that of XijkXijk involves the non-existence of

XijkXijk involves the non-existence of the symbol k twice in the it
two distinct symbols in the cell (i,/). Based on this result, the specialized algorithm described by Dickenstein and Tobis [47]
was implemented in [8] for computing the cardinality of Rrsnm, for all r,s,n < 4. For higher orders, however, the required
computational cost turned out to be excessive due to large memory storage requirements. T his cost is only due to the computation
of the corresponding Hilbert function, because the set of generators of /., constitutes itself a lexicographic Grobner basis of the
ideal. To reduce it, an alternative procedure is introduced in the next section. This is based on the similarity that exists among
those generators in /, s, that correspond to distinct rows in a partial Latin rectangle. A preliminary version of this procedure was
exposed in [9], where the cardinality of R, s, was computed for all r,s,n < 6. For a better understanding of this procedure, the

corresponding computation of |R333:2]| is illustrated in Example 1.

3. An alternative procedure to compute |R, ,|

For each positive integer i < r we define the zero-dimensional subideal

19, = (i, X J.J < ik k' < n) Clrsn.

There exist distinct algorithms [48-50] that enable us to decompose the zero-dimensional ideal /,(_15)_,7 into a finite set
{J1,..., Ji+} of subideals generated by triangular systems and whose affine varieties constitute a partition of V(/%,). The
complexity of this computation in the mentioned algorithms is polynomial once a lexicographic Grébner basis of the ideal is
known. This is our case, because the set of generators of /,(_ls?n constitutes itself one such a basis. Now, foreach /> 1 and / < t,
let J;j; be the subideal of /,(_’5)_n whose generators coincide with those of J;; after replacing each variable xijx by Xjx. For each

tuple (t1,. .., t-) € [t]” we define the ideal
Keyotr = Jue + o4 Jrg + (iexigp: 1,7 <rj < sk <n). (1)

The triangularity of the underlying systems involves each subideal Ji, to have at least one generator of the form xy or

Xjjk — 1. The number of generators of the second form in the ideal K, .. constitutes the minimum number of entries in a

partial Latin rectangle that is identified with a point in V(Ky4,...+.). We denote this number by my,, ¢, .

Copyright © 2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 00 1-25
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Proposition 3.1 Let m be a non-negative integer. Then

HFr1x1/1,.5,(M) = Z HFropx/kcey, e (M= Mg ).

(t1,....tr)E[t]"
mey,.tp <m

Proof. Let X7 = x' ... x%:" be a standard monomial of degree m in /s, Since the ideals described in (1) constitute a

partition of the affine variety V(/rs.n), there exists exactly one ideal Ky, ¢ that contains the point (aii1,. .., arsn) € V(lrsn).

The result follows then from the fact that the monomial X? is uniquely related to the standard monomial xfﬂl .. .xf'é’;” of degree

t and aj, = ajjk, otherwise. o

The smaller number of variables that are required to compute each addend in Proposition 3.1, together with the triangularity
of the involved system and the possible parallel computation to determine distinct addends at the same time, reduce the running
time and cost of computation of HFg,xj//,..,(m) in comparison with Theorem 2.1. Moreover, we do not need to compute all

these addends, because HFgxy/k,, ., (M) = HFg xy/k, 0 (m), forall (t1,. .., t:) €[t], m>0and w € S,.

(1) t,

Example 3.2 The ideal lé_13)_3 related to the first row of a partial Latin square of order 3 can be decomposed into the next six
disjoint subideals

) 1= /;13)_3 + (X111, X121, X131 ).

i) J2= /3(,}3)_3 + (X111, Xi21, X131 — 1, X132, X133 ).

i) 3= /5_13?_3 + (X111, xi21 — 1, X122, X123, X131 ).

iv) Jra= /§_133_3 + (x111 — 1, X112, X113, X121, X122, X131, X132 ).

v) Jis = /3(,}3)_3 + (x111 — 1, X112, X113, X121, X122, X131, X132 — 1, X133 ).

vi) Jie = /3(,}3)_3 + (x111 — 1, X112, X113, X121, X122 — 1, X103, X131, X132 ).
Partial Latin squares of order 3 are then distributed as points of
1. V(J11) if they do not contain the symbol 1 in their first row.
2. V(i) if they contain the symbol 1 in the cell (1, 3).
3. V(4i3) if they contain the symbol 1 in the cell (1,2).
4. V(Ji4) if they contain the symbol 1 in the cell (1,1) but do not contain the symbol 2 in their first row.
5. V(Ji5) if they contain the symbol 1 in the cell (1,1) and the symbol 2 in the cell (1,3).
6. V(Ji6) if they contain the symbol 1 in the cell (1,1) and the symbol 2 in the cell (1,?2).

For each triple (t1, t2, t3) € [6]°, we consider the ideal
Kt tots = Jit, + Joty + Jaes + {XiuxXaje: 10,4,k < 3).

The values of HF g x)/ks, are exposed in Table 1.

2.t3

Let My 1,5z be the number of generators of the form xijx — 1 in the ideal Ky, w,.t;. Thus, for instance, every point of the affine
variety V(Ke.32) is uniquely related to a partial Latin square of order 3 and weight at least mg 3> = 4. This last value holds from
the fact that the set of entries of any such a partial Latin square always contains the subset {(1,1,1),(1,2,2),(2,2,1),(3,3,1)}.
From Proposition 3.1, we have, for example, that

IRa33:2] = HFroxy/k11 (2) + 3 HFpoix/k 15 (1) + 3 HFpopxsi 15 (1) + 3 HFpopxi 0 (1) + 3 HFmopx i, 5 (0)+
3 HF]F2[X]/K1,1,6 (0) +6 HF]F2[X]/K1,2,3 (0) +6 HF]F2[X]/K1,2,4 (0) +6 HF]F2[X]/K1,3,4 (0) = 270.

<
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Table 1. Hilbert functions related to the set R333.

HFroix1/Key e, (M)
t1.tr.13
m 111 112 113 114 1.15 116 123 124 125 126 134 135 136 234 235 236

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 18 16 16 14 11 11 14 12 10 9 12 9 10 10 8 8
2 108 84 84 62 36 36 64 45 29 24 45 24 29 32 19 19
3 2064 176 176 104 42 42 116 63 29 23 63 23 29 38 16 16
4 270 150 150 66 18 18 84 32 11 8 32 8 11 16 5 5
5 108 48 48 12 2 2 24 5 1 5 1 2 1 1
6 12 4 4 0 0 0 2 0 0 0 0 0 0 0

This computational algebraic method has been implemented in the procedure PLR of the library pls.lib, available online
on http://personales.us.es/ raufalgan/LS/pls.1lib, for the open computer algebra system for polynomial computations
Singular [51]. The correctness and termination of this procedure are based on those of the algorithms described in [47, 48, 50]
for computing Hilbert functions. In order to test its efficiency, we have firstly checked the known cardinality of R,sn.m, for all
r,s,n < 4 (see Table 2), which was already computed in [8]. In the same computer system, an Intel Core i7-2600 CPU (8
cores), with a 3.4 GHz processor and 16 GB of RAM, the maximum running time decreases from 50 seconds in [8] to less than
1 second. This corresponds to the computation of the series |Ra4,4.m|. The procedure has then been applied for computing in
Tables 3-5 the rest of cases so that r < s < n < 6. The running time ranges here from less than 1 second to 32 hours. This
maximum running time corresponds to the computation of the series |R¢6.6:m|, for which 2,3 GB of RAM is required. For higher
orders, the first series whose computation turned out to be excessive for our computer system due to large memory storage
requirements was |Re 77:m|. In order to improve the efficiency of this computational algebraic method, we propose in the next
section to impose some extra algebraic conditions to our base ideal. They are referred to the distribution of non-empty cells per
row and column in a partial Latin rectangle and to the number of occurrences of each symbol.

Table 2. Distribution of R,s ., according to the weight, for r <s < n <4.

|Rer.s.mm]
r.s.n

m 111 112 113 114 122 123 124 133 134 144 222 223 224 233 234 244 333 3.3.4 3.4.4 4.4.4
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 2 3 4 4 6 8 9 12 16 8 12 16 18 24 32 27 36 48 64
2 2 6 12 18 36 72 16 42 80 108 204 384 270 504 936 1728
3 6 24 96 8 48 144 264 768 2208 1278 3552 9696 25920
4 24 2 18 84 270 1332 6504 3078 13716 58752 239760
5 108 1008 9792 3834 29808 216864 1437696
6 12 264 7104 2412 36216 494064 5728896
7 2112 756 23760 691200 15326208
8 216 108 7776 581688 27534816
9 12 1056 283584 32971008
10 75744 25941504
11 10368 13153536
12 576 4215744
13 847872
14 110592
15 9216
16 576
Total 2 3 4 5 7 13 21 34 73 209 35 121 325 781 3601 28353 11776 116425 2423521 127545137

4. Shape, type and structure of partial Latin rectangles

The shape of a partial Latin rectangle P = (pij) € Rrsn is defined as the r x s binary array Bp = (bj;) such that b; =1 if
(i,j, pi) € E(P) and 0, otherwise. Let r;, ¢; and s respectively be the number of filled cells in the i*” row and j* column of P
and the number of occurrences of the symbol k in P. According to the terminology exposed by Keedwell [52] and generalized by
Bean et al. [53], the tuples R = (r1, ..., rr), C=(c,..., cs)and S=(s1,..., sp) determine, respectively, the row, column and
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Table 3. Distribution of R,ss according to the weight, for r < s <5.

‘Rr.s,Szml
r.s.5
m 1.15 125 135 145 155 225 235 245 255 335 345 355 445 455 555
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 5 10 15 20 25 20 30 40 50 45 60 75 80 100 125
2 20 60 120 200 130 330 620 1000 810 1500 2400 2760 4400 7000
3 60 240 600 320 1680 4800 10400 7590 20520 43200 54240 112800 233000
4 120 600 260 4140 20040 61400 40500 169920 486000 676200 1881600 5159000
5 120 4680 45600 211440 126900 891360 3594960 5641920 21612480 80602200
6 1920 54480 421200 232680 3018000 17930400 32423520 176546400 920160000
7 30720 465600 240840 6605280 60912000 130248960 1045147200 7845192000
8 6360 262200 128520 9224280 140826600 367731360 4530640800 50648616000
9 63600 27480 7983840 219307800 728440320 14444083200 249687408000
10 5280 4063680 225419040 1004380800 33852910080 944069668800
11 1100160 148010400 950238720 58065734400 2741210616000
12 120960 59047200 603722880 72278294400 6104066712000
13 13284000 249580800 64484985600 10385299320000
14 1512000 63884160 40544726400 13420351008000
15 66240 9216000 17571260160 13065814483200
16 590400 5099169600 9486099648000
17 953107200 5073056640000
18 108288000 1970474400000
19 6681600 547608096000
20 161280 107330054400
21 14667552000
22 1388160000
23 91008000
24 4032000
25 161280
Total 6 31 136 501 1546 731 12781 162661 1502171 805366 33109561 890442316 4146833121 313185347701 64170718937006
Table 4. Distribution of R.s6 according to the weight, for r < s <6 ().
|Rr,5,6:m|
r.s.6

m 1.1.6 126 136 146 156 166 226 236 246 256 26.6 336 3456 356 366
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 6 12 18 24 30 36 24 36 48 60 72 54 72 90 108
2 30 90 180 300 450 192 486 912 1470 2160 1188 2196 3510 5130
3 120 480 1200 2400 600 3120 8880 19200 35400 13896 37344 78360 141840
4 360 1800 5400 630 9990 48060 146700 349650 94770 392580 1115100 2547450
5 720 4320 15120 146880 678240 2168640 389340 2676240 10667160 31419360
6 720 8520 245760 1899600 8546880 961380 12082680 70540800 274470480
7 204480 3139200 21211200 1375920 36270720 326808000 1727352000
8 65160 2881800 32189400 1038960 71633160 1064140200 7893282600
9 1303200 28267200 317760 90585600 2422568400 26212965600
10 222480 13063680 69603840 3803369040 62938898640
11 2669760 29255040 4021099200 108045861120
12 190800 5112000 2756361600 130246779600
13 1152144000 107367120000
14 262828800 58252478400
15 24791040 19683613440
16 3828798720
17 384652800
18 15321600
Total 7 43 229 1045 4051 13327 1447 37273 720181 10291051 108694843 4193269 317651473 15916515301 526905708889

symbol types of P. The type of P is then defined as the triple (R, C, S). Thus, for instance, the type of the partial Latin square
of Figure 5 is ((2,2,1,0),(2,1,1,1),(2,3,0,0)). Hereafter, the set of partial Latin rectangles of type (R, C, S) is denoted by

Rrecs-

Let 7nm be the set of n-tuples T = (t1,...,t,) of weight >, ti = m whose components are non-negative integers. The
conjugate of T is the tuple T* = (ti,...,t;,), where each t} isﬁ the number of positive integers j < n such that t; > /. If
T = (t1,....tn) € Tam is obtained after a decreasing rearrangement of the components of T, then T is said to be majorized by
a second tuple 7" = (t}, ..., t,) € Tom if di<i T < >i<i t!, for all j < n. This gives rise to the so-called dominance order < on
Tom [54]

Theorem 4.1 Let (R,C,S) € Trm X Ts.m X Tom. The set Rr.cs is non-empty only if C X R*, S <X C" and R X S".
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Table 5. Distribution of R, according to the weight, for r < s < 6 (Il).

‘RI,S,&ml
r.s.6
m 4.4.6 4.5.6 4.6.6 5.5.6 5.6.6 6.6.6
0 1 1 1 1 1 1
1 96 120 144 150 180 216
2 4032 6420 9360 10200 14850 21600
3 98016 203040 364560 417600 746400 1330200
4 1538424 4245120 9527220 11532600 25631100 56614950
5 16476480 62189280 177310080 228154320 639260640 1771796160
6 124148160 660375600 2434907520 3352566000 12019602000 42357620160
7 669176640 5189068800 25231996800 37450656000 174585456000 793416600000
8 2599625880 30548079000 200165742000 322946451000 1991858418000 11852197317000
9 7281623040 135625603200 1226542944000 2171483394000 18056836776000 142993809528000
10 14618868480 455097055680 5834154055680 11456637616800 131095655863200 1406144941776000
11 20771527680 1152338169600 21579415960320 47586889008000 766225199808000 11344829123448000
12 20451767040 2190542918400 62007749812800 155763852264000 3616441279056000 75444662621250000
13 13491532800 3099028723200 137935650124800 401342211504000 13801803749280000 414809990051328000
14 5635215360 3221159616000 236112048230400 811559781792000 42582496312944000 1888965825155136000
15 1337610240 2415807221760 308313104578560 1281622863052800 106042151250892000 7129083890074291200
16 137116800 1274532969600 303524671011840 1569898647504000 212529994957440000 22290972757613899200
17 455792486400 221831824435200 1478352018528000 341378166715776000 57672207579205440000
18 104134464000 117967540608000 1058153580288000 437045603416704000 123205370805154944000
19 13604889600 44468899430400 567490862592000 442874461303296000 216689524093737792000
20 767854080 11483903278080 223899017011200 352217521389081000 312570613181156803200
21 1942917304320 63429754752000 217606324462848000 368084100503749939200
22 202499481600 12467229696000 103166400104064000 351915364298700288000
23 11670220800 1610606592000 36987139952640000 271409503369430016000
24 283046400 123628032000 9853601458752000 167607699757168896000
25 4356218880 1909729461012480 82187524303374458830
26 262267391462400 31703766748202926080
27 24634533888000 9523824649261056000
28 1496724480000 2204514949427712000
29 52752384000 389140940150784000
30 812851200 51905194846617600
31 5196712196505600
32 389383137792000
33 21862379520000
34 925655040000
35 29262643200
36 812851200
Total 87136329169 14554896138901 1474670894380885 7687297409633551 2322817844850427451 2027032853070203981647

Proof. The set of shapes of partial Latin rectangles of row type R and column type C is identified with the set of r x s binary
matrices whose row and column sum vectors coincide, respectively, with R and C. According to the Gale-Ryser theorem [55-57],
this set is non-empty if and only if C < R*. This constitutes, therefore, a necessary condition for the set Rr.c.s to be non-empty.

The result holds then from parastrophism. O

The previous result gives a necessary condition to deal with the problem of deciding whether a triple (R, C,S) € Tr.m X
Ts.m X Tnm is the type of a partial Latin rectangle in R.s.n.m. Nevertheless, this condition is not sufficient because, for instance,
R@ei.ciri)eiy =0, but (3,1,1)" = (3,1, 1). This problem is equivalent to that of deciding whether a tripartite graph with a
given degree sequence has an edge-partition into triangles [58]. Specifically, any partial Latin rectangle P € Rg.cs is identified
with an edge-partition into triangles of a labeled tripartite graph (Vi U V4 U V5, E1 U E> U E3) such that

a) M| =r, Vol =sand |[V3] =n.
b) The vertices of V4, V4 and V4 are uniquely and respectively related to the rows, columns and symbols of P.

c) The bi-adjacency matrices of the three bipartite graphs (Vi U Vs, E1), (Vi U Vs, E>) and (Vo U Vs, E3) are, respectively, the
binary matrices related to the shape of P and that of its two parastrophic partial Latin rectangles P and P32,

Copyright © 2017 John Wiley & Sons, Ltd.
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This graph satisfies the necessary condition of being uniform in order to have an edge-partition into triangles. That is, the
number of Vi-to-V4 edges is equal to that of Vi-to-V5 edges and also to that of Va-to-V5 edges. This number coincides with the
component of the tuple R (respectively, C and S) that is related to that vertex. The partial Latin rectangle P is then uniquely
identified with that edge-partition into triangles in which the symbol included in an entry of P is determined by the symbol vertex
of the triangle that contains the row and column vertices associated to that cell (see Figure 6).

11 1
Bp(mE(l 0 1) 1273
P= 1 3
100 /\
110
Bram = | o o
00 1

S1 S2

Figure 6. Shapes, tripartite graph and partial Latin rectangle in Ro43 related to the type ((3,2),(1,2,1,1),(2,1,2)).

Computational algebraic geometry can be used to determine explicitly the set Rg.c.s. In this regard, the next result indicates
those polynomials that have to be added to the set of generators of the ideal /;s, in Theorem 2.1 in order to determine the set
Rr.cs. Since the constant terms of these new polynomials coincide with the components of the tuples R, C and S, the order
of the base field F» in the mentioned theorem is conveniently replaced here by a prime p > 2. Theorem 2.1 is also valid for this
new base field FF,.

Theorem 4.2 [et R = (r1,..., r), C=(ci,..., cs)andS =(s1,..., sn) be three tuples in Tr.m, Ts.m and Tn.m, respectively, and
let p be the first prime greater than the maximum of all the components of R, C and S. The set Rr.c.s is identified with the
set of zeros of the zero-dimensional radical ideal

Ircs == lrsn+ (ri— Z X 1< r)y+(c— Z xijk: J < S)+(sk— Z xijk: k < n)y CFp[X].

Jj<s.k<n i<r, k<n i<rj<s
Besides, |Rr.c.s| = dimg, (Fp[X]/Irc.s).

Proof. Since Igrcs C I;sn, each zero of the ideal /g c s is uniquely related to a partial Latin rectangle in R, s . The three subideals
that are added to /,s, in the definition of /g c s involve these partial Latin rectangles to be exactly those ones having R, C and
S as their row, column and symbol types, respectively. Now, in order to prove the last assertion, observe that the finiteness of
Rr.s.ninvolves /g c s to be zero-dimensional and that the intersection between this ideal and the polynomial ring F,[xjjx] coincides
with the ideal generated by the polynomial xjjx (xjx — 1), for all (i,/, k) € [r] x [s] x [n]. This is contained in /rc s, which is,
therefore, not only zero-dimensional, but also radical. Hence, its number of zeros coincides with dimg,(Fp[X]/Irc.s). O

The structure of an n-tuple T = (t1, .. ., tn) € Tnm is defined as the expression zr = m .. 1% where d; is the number of
occurrences of a given non-negative integer i as a component of 7. In practice, only those terms i% for which d; > 0 are written.

The length of the structure zr is > ,.,, di and its weightis Y .., idi = m. Hereafter, the set of structures of length / and weight

i<m
m is denoted by Z;,,. Thus, for instance, the structure of the tuple (3,1,3,3,1,0) is 3%12 € Z511. Isotopisms of partial Latin
rectangles preserve the structures of the row, column and symbol types of a partial Latin rectangle. This becomes essential for

their enumeration and classification because of the following result.

Lemma 4.3 The number of partial Latin rectangles of a given row, column or symbol type only depends on its structure.

Proof. LetT = (t1,..., th) € Tomand T = (t}, ..., t')) € Ty.m be two tuples with the same structure zr = zp+. Suppose n < n'.
Then, there exists a permutation 7 on [n] such that t; = t;r(,) for all i < n. The rest of components of T are zeros and do not
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have any influence on the number of partial Latin rectangles having T’ as row, column or symbol type. The same permutation
7 enable us to identify the rows, columns or symbols of two partial Latin rectangles having T and 7' as row, column or symbol
types, respectively. O

Let P be a partial Latin rectangle of type (R,C,S) € Trm X To.m X Tnm. Its structure is defined as the triple (zg, zc, zs),
where zgr, zc and zs are called, respectively, the row, column and symbol structures of P. Thus, for instance, the partial Latin
square of Figure 5 has structure (221,212 32) € Z35 x Z45 x Zo5. Some structures of partial Latin squares have been widely

studied in the literature:

a) If the empty cells of a partial Latin square of order n are replaced by zeros, then the structure (k", k", n*) is related to the
set of F(n; n— k, 1%)-squares [59].

b) The structure (k", k", k™) is that of a k-plex [60] of order n. The case k = 1 corresponds to a transversal [61] of a Latin
square. Every k-plex of order n, with k =2 < nor k > 2, determines a k-regular seminet with n lines in all its parallel classes.

c) The problem of completing partial Latin squares, which is NP-complete [62], has dealt with several structures: Ryser [63]
analyzed the completion of partial Latin squares with pair of row and column structures (s’, r®); Andersen and Hilton [64]
studied those partial Latin squares of structure ((n — k)", (n — k)", (n — k)"), for k € {1, 2}, more recently, Adams, Bryant
and Buchanan [65] dealt with the completion of those partial Latin squares with pair of row and column structure
(n?2m2, n?2n=2).

Let p(z1, 20, z3) be the number of partial Latin rectangles in Rrcs for any type (R,C,S) € Trm X Ts.m X Tnm such that

(ZR, zc, ZS) = (Zl, z2, 23) € Zr,m X Zs,m X Znm.

Theorem 4.4 [et t and n be two positive integers. Then,

nltel”
ttn

S p(t”, tn, nt).

Proof. Let T =(t,..., t) € Tnen. Every partial Latin square P € Ry nn of row and column type T can be identified with a
proper n-edge-colouring of the t-regular bipartite graph having the shape of P as bi-adjacency matrix. To this end, an edge ij
of this graph is coloured according to a symbol k if and only if (i,/, k) € E(P). The number of distinct partial Latin squares
having T as row and column types coincides, therefore, with that of distinct n-edge-colourings over the set of bipartite graphs
with bi-adjacency matrix having T as row and column sum vectors. According to Wei [66], this set has at least n!*/t!” bipartite
graphs. Further, Corollary 1d in [67] involves every t-regular bipartite graph with 2n vertices to have at least t1°"/t™" different
t-edge-colourings. The result follows from combining both inequalities. O

Lemma 4.5 Let r', s' and n' be three positive integers greater than or equal to r, s and n, respectively, and let (z1, z2, z3) €
Zr’,m X Zs’.m X Zn’,m- Let (R, C, 5) € 7;,n7 X 7;.177 X 777.177 be such that (ZR, zc, ZS) = (ZI, z2, Z3)- Then, |RR.C.S| = p(le 22,23)-

Proof. This result follows straightforward from the fact that the zero components in a tuple do not have any influence on the
number of partial Latin rectangles that have this tuple as row, column or symbol type. O

Proposition 4.6 The next equality holds

sl r s n
|Rr,s,n:m| == Z Z H,'_J'_kgm dizl!dsz!dl?! <r,> <S’> <n,> 0(21, 22,23),

r'<r zleZ,;,
s'<s ez,
W<n ez

where d,z/ is the number of occurrences of the non-negative integer i < m in any tuple of structure z;, for each j < 3.

Proof. The result holds from Lemmas 4.3 and 4.5 and the number of tuples with a given structure. O
Copyright © 2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 00 1-25
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Table 6 shows the values of p(zg,zc,zs) for all (R,C,S) € Trm X Te.m X Tam such that r<s<n<6 and m<n.
Parastrophisms involve these values to be preserved under permutations of the components of the triple (zg, zc, zs). The
corresponding distribution into isotopism (/C) and main (MC) classes of R,snm is also indicated. The computation of these
values has been determined by implementing Theorem 4.2 in a procedure PLRCS in Singular, which has been included in the
previously mentioned library pls.lib. Proposition 4.6 has then be used to check the data exposed in Tables 2—-5.

Table 6. Distribution into isotopism and main classes of the set Rrcs.

m ZzZr Zc Zs P 1 wmMC m zZr Z¢c Zs P 1c MC m ZzZr Zc zZs p 1c Mmc M Zr Zc Zs P 1c wmMC
11 1 1 11 1 5312221 2%1 122 2 63 1° 1° 14400 1 162° 2% 1° 4320 1 1
22 1% 12 21 1 21° 60 3 3 41?2 313 2212 24 1 1 31% 31° 144 2 2
12 12 12 41 1 1° 240 1 1 214 144 1 1 2212 360 3 3
33 1% 13 61 1 21% 213 252 5 4 18 720 1 1 21 1,206 2 2
21 21 21 11 1 1° 840 2 2 22122212 56 3 3 18 4320 1 1
13 6 1 1 1 15 2400 1 1 214 336 3 3 22122212 1,26018 13
1% 18 18 1 1 221221 221 58 8 4 1 1440 1 1 21* 3,600 8 8
1® 1% 18 36 1 1 21° 180 8 6 21* 21* 1,728 5 4 1% 10,800 2 2
4 4 1* 1% 24 1 1 1° 600 2 2 1% 6,480 2 2 21* 21* 95504 4 4
31 212212 41 1 213 213 504 8 6 1 1® 21600 1 1 1° 25020 1 1
14 24 1 1 1° 1,440 2 2 321321 321 11 1 1% 15 645800 1 1
14 14 96 1 1 1° 1% 3600 1 1 318 6 1 1 31% 31° 31° 216 1 1
22 22 2 21 1 21%21% 21° 1296 8 4 23 12 2 2 2212 576 5 4
212 41 1 1° 3,240 2 2 2212 4010 7 21* 2,160 5 4
14 24 1 1 1° 1° 7200 1 1 214 168 7 5 1° 7,200 2 2
212212 12 2 2 1% 1% 1% 14400 1 1 16 720 1 1 22122212 1,34416 11
14 48 1 1 66 1° 1° 720 1 1 31% 31° 36 1 1 21*  4,32010 10
1% 1* 144 1 1 51 21* 21* 96 1 1 28 36 1 1 1% 12,960 2 2
212212212 40 5 3 18 720 1 1 2212 144 6 6 21* 21* 12,672 8 6
1 120 2 2 1° 1° 4320 1 1 214 576 5 5 1° 34,560 2 2
1* 1* 288 1 1 42 221292712 28 3 3 1 2,160 1 1 1% 15 86,400 1 1
1* 1% 1* 576 1 1 214 144 2 2 28 36 1 1 221222122212 332062 19
55 1° 15 120 1 1 18 720 1 1 2% 2212 156 7 7 21*  8,97629 19
41 21%21° 18 1 1 214 214 672 3 3 214 576 4 4 1 24480 5 4
1 120 1 1 1 2880 1 1 1 2,160 1 1 21% 21* 2246415 11
1° 1° 600 1 1 1% 1% 10,800 1 1 22122212 51233 20 1% 56,160 3 3
32 221221 6 2 2 32 23 3 12 1 1 21% 1,72820 20 1% 19 129600 1 1
21 24 2 2 2212 36 2 2 1 5760 3 3 21* 21* 21* 52416 9 5
1 120 1 1 21* 144 1 1 21* 21* 5,28015 10 1% 120,960 2 2
213213 90 3 3 18 720 1 1 1% 15,840 3 3 1% 1 259200 1 1
1 360 1 1 2212 2212 88 5 4 1 1% 43200 1 1 1° 1% 1° 518400 1 1
1% 15 1200 1 1 214 336 3 3 2% 22 23 144 2 2
312312221 41 1 1% 1440 1 1 313 721 1
21° 24 1 1 21% 21* 1,152 2 2 2212 432 5 4
1 120 1 1 1 4320 1 1 21* 1206 2 2

Table 6 is also used in the next theorem to determine the number of partial Latin rectangles of weight up to six. This generalizes
a recent result [8] in which the case m < 2 was already exposed. In order to avoid an excessive length of the polynomials that
appear in the theorem, the polynomial 3, s cap o3 r?s’n® is denoted as abc, for all a, b, ¢ > 0, where Sym({a, b, c}) constitutes
the set of permutations of the ordered set {a, b, c}. Thus, for instance, 3 211 denotes the polynomial 3(r?sn + rs?n + rsn?).

Theorem 4.7 The next equalities hold

2) |Rr.s.n:0| =1.

b) |Rrsnmi| =111,

¢) 2Rssn2| =111 (TI1 — 100 + 2).
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d) 3YRysm3| =111 (222 — 3 211 + 6 (111 + 110) 4+ 2 200 — 12 100 + 14).

e) 4R spa|l =111 (333 —6 322 + 12 222+ 11 311 + 30 221 — 60 211 — 6 300 — 36 210 — 28 111 + 72 200 + 198 110 —
228 100 + 198).

f) 5YR,sns| =111 (444 — 10 433 + 20 333 +35 422 + 90 332 — 180 322 — 50 411 — 260 321 — 460 222 +520 311+

1,350 221 + 24 400 + 240 310 + 480 220 — 320 211 — 480 300 — 2,520 210 — 5,090 111 + 2,880 200 + 7,440 110 —
6,360 100 + 4512).

g) 6 Rrsne| =111 (555 —15 544430 444 +85 533+ 210 443 —420 433 —225 522 — 1,065 432 —2,150 333 +
2,130 422 + 5,310 332 + 274 511 + 2,310 421 + 4,400 331 + 4,800 322 — 4,620 411 — 22,170 321 — 49,500 222 —
120 500 — 1,800 410 — 6,000 320 + 10, 460 311 + 34,980 221 + 3,600 400 + 30, 600 310 + 58, 440 220 + 88,710 211 —
34,800 300 — 165, 480 210 — 364, 268 111 + 140, 040 200 + 344, 520 110 — 240, 720 100 + 146, 400).

Proof. The first equality is immediate. This counts the partial Latin rectangle without any entry. The other equalities follow
from Proposition 4.6 and Table 6. We prove here in detail the first three expressions; the rest follows similarly. In the use of
Table 6, recall that the value p(zg, zc, zs) is preserved by parastrophism, that is, the placement of the structures zg, zc and zs
can be interchanged.

b) |Rrsni|=rsnp(l,1,1)=rsn.

Q) [Rrsnzl =r(3)(5)p(2,1%,1%) +5(3) (5)p(1%,2.1%) + n(5) (5) (1%, 1%,2) + () (5) (5)p(1*, 1%, 1%) = B (rsn—r —s —n+
2).

9) [Resnsl = r(3) (3)0(3, 12, 1%) + () ()0(1%.3,1%) + () (5)0(1%.12.3) +8(5) (3) (3) (21, 21, 21) +
4(5) () (5)0(2L. 21, 1) +4(3) (5) ()o(21. 12, 21) +4(5) (3) ()(12. 21, 21) +2(5) () (5) (2L, 12, 1°) +
2() ) Be1®, 21, 1%) +2(5) (5) (M) (1%, 1%,21) + (5) () (5) (1%, 1%,1%) = Z2(r’s*n” — 3r’sn — 3rs”n— 3rsn” +
6rsn+6rs+6rn+6sn+2r’ 4+ 252 +2n% — 12r — 125 — 12n + 14). O
Corollary 4.8 Let n be a positive integer. Then
a) |Rn.n,n:0| =1
b) |Rn.n.n:1| = n3-
c) 2! [Ronme| = n*(n—1)*(n+2).
d) 3" |Ranna| = n*(n—1)*(n* 4+ 2n* — 6n° — 8n + 14).
e) 4 [Ronmal = n*(n—1)*(n" +2n°% — 15n° — 200" 4+ 98n° 4 36n° — 288n + 198).
£) 51 [Ronms| = n*(n—1)>(n—2)%(n® 4+ 6n" —7n° — 88n° + 6n* + 532n* — 84n 4 1386n + 1128).
9) 6! |Ronnms| = n*(n—1)2(n—2)2(n* 4+ 6n'° —22n° — 168n® + 231n" +2,022n° — 2,014n° — 12, 606n* + 16, 168n° +

32,250n% — 70, 740n + 36, 600).

Proof. This result follows straightforward from Theorem 4.7 once we impose r = s = n. O

5. Classification of seminets with low point rank

Every seminet is equivalent to a non-compressible regular partial Latin square [43]. The next lemma follows straightforward from
the definition of compressibility and regularity of partial Latin squares and indicates how both properties can be expressed in
terms of types of partial Latin squares.

Lemma 5.1 Let R=(r,..., r), C =(c1,..., cn) and S =(s1,..., sn) be three tuples in Tnm and let P be a partial Latin
square in Rr,c,s. Then,

Copyright © 2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 00 1-25
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1. P is non-compressible if and only if at least one of its row, column or symbol types does not have zero components.
2. P is regular if and only if the next three conditions hold.

(a) The cell (i,]) of P is empty for all i,j < n such that rj =c; = 1.
(b) sk > 1 foralli,j < nsuchthatri=1 and (i,j, k) € E(P).
(c) sk > 1 foralli,j <nsuchthatc;=1and (i,], k) € E(P).

Let RE?CYS be the set of regular partial Latin squares whose row, column and symbol types coincide, respectively, with R,
C and S. Since regularity is preserved by paratopism of partial Latin squares, the cardinality of this set only depends on the
structures of R, C and S. The next result shows how this cardinality is immediately determined for certain structures. Recall
dz dz
m.. 1%

that each exponent df in the structure z=m is the number of occurrences of a given non-negative integer i as a

component of any tuple of structure z.

Proposition 5.2 Let z1, z» and z3 be three structures of weight m. Then,

a) If di* = d* =0, then every partial Latin square having two of their row, column or symbol structures equal to z and z,
respectively, is regular.

b) If df* + df?> + d* > m, then no partial Latin square of structure (z, z>, z3) is regular.

Proof. None partial Latin rectangle in (a) contains a row or a column with exactly one entry. All of them are, therefore, regular.
Further, from the definition of regularity, assertion (b) holds because every regular partial Latin rectangle of type (zi, z2, z3)
satisfies that dj* + di? < >°7, d? = m— d* and hence, di* + di? + d? < m. o

The next result indicates how computational algebraic geometry can be used to determine the set Ri5% .

Theorem 5.3 Let R=(ry, ..., rn), C =(c1, ..., Cn) and S = (s1,..., sp) be three tuples in Tnm and let p be the first prime
greater than the maximum of all the components of R, C and S. The set Rg% s is identified with the set of zeros of the

zero-dimensional radical ideal
l.:?e.%.S = /R‘C‘5+<Xijki Ij,k<nri=c = 1)+(Xijki Lok<nri=s(= 1>+(X,'jki I,k <nci=sk= 1) C]FP[X].

Besides, |Rg% 5| = dimp (Fp[X]/ /g% ).

Proof. Since /fr;%.s C Ircs, each zero of the ideal /,r{f_%_s is uniquely related to a partial Latin square whose row, column and
symbol types coincide, respectively, with R, C and S. The rest of the proof is similar to that of Theorem 2.1 once we observe
that the three subideals that are added to /r c s in the definition of /5% ¢ involve these partial Latin squares to verify, respectively,
conditions (2.a), (2.b) and (2.c) of Lemma 5.1. O

Theorem 5.3 has been implemented in the procedure PLRCS in pls.lib in order to determine in Table 7 the distribution of
regular partial Latin squares of order up to 8 according to their structures and main classes. This distribution is equivalent to
that of seminets with point rank up to eight. A census of the main classes of seminets with point rank up to six is exposed in
Figure 7, where we can observe in particular the four configurations whose existence were already established by Havel [44]: the
Fano configurations S4.1 and Se 2, the shattered Desargues configuration Sg 32 and the Thomsen configuration Sg33. Havel also
determined the three configurations with point rank seven: the hexagonal configuration H, the first hybrid configuration C1 and
the second hybrid configuration Co. They correspond to the three main classes of partial Latin squares of type (322,322, 32%) in
Table 7.

1123 1|23 1)2]3
1
1 1 2
H Cy Co
Math. Meth. Appl. Sci. 2017, 00 1-25 Copyright © 2017 John Wiley & Sons, Ltd.

Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences R. M. Falcén, O. J. Falcén, J. Nianez

& &

Se,52 Se,54 Se,55

Figure 7. Classification of seminets with point rank up to six.
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mzrg zZc Zs O"9MC mzp  zc  zs "9MC mzgp zc  zs 0" 9MC mzgp  zc zs O9MC mzp  zc  zs " 9IMC
321 21 21 1 17 3%1 2°1 2°1% 1,008 78 4312" 21° 17280 28372 31° 2 11,520 28 3%172% 31° 11,520 1
422 22 9? 2 1 21° 720 1 23122%1% 3,744 15 2317 7200 3 221* 38,016 14
212 4 1 2213221° 288 1 221% 3456 7 AR 4,896 8 21° 17,280 1
14 24 1 322 322 322 16 3 42232123%2 8 1 2%12 14,832 31 41* 2312 576 1
212 212 4 1 3212 48 5 3221 16 1 2%1* 46,080 25 32133213 576 3
532 221 271 4 1 31* 144 2 3213 48 1 21° 146,880 6 2312 4,176 15
213 12 1 2%1 192 7 A 192 2 18 483,840 1 2%1%22%17 19,296 23
312 312 221 4 1 2213 720 12 2312 336 4 2312 2%12 26,208 53 2214 5,184 5
221 221 8 1 21° 2640 5 2214 576 3 221 6,912 2 322132213271 2,768 69
221 221 221 32 2 1" 10,080 1 32213221 72 8 21° 17,280 2 2% 9,504 59
213 24 1 321723217 112 9 3213 240 10 221*2%1* 6,912 2 41* 720 6
6 42 22122212 8 1 314 192 2 31° 720 2 51° 32132312 216 1 3213 5,328117
32 2% 3 12 1 2%1 456 19 24 384 4 23122312 864 1 2312 18,144206
2212 36 2 221® 816 18 2312 1,104 23 421242123271 16 2 31° 8,640 11
21* 144 1 21° 480 1 221* 2,880 15 24 144 2 221 26,016 77
16 720 1 31* 2°1 1,008 4 21° 5760 2 3213 24 1 21° 15,840 5
22122212 48 2 2213 288 1 321%321° 360 4 2312 192 4 ot ot 27,072 16
214 48 1 2%1 21 1,692 16 24 1,728 6 2214 96 1 414 2,304 2
412 22122212 16 1 221% 3,744 26 2312 2,448 17 32123212 16 1 321 22,176 77
321 321 321 11 21° 6,480 5 221* 1,728 3 3221 48 3 2%12  62,784110
313 6 1 221%3221% 2592 6 315 2¢ 5760 1 2* 384 3 31° 48,960 9
23 12 2 321232123212 144 5 2312 2880 1 3213 96 2 221* 130,176 57
2212 20 4 231 684 18 PA M 1,296 4 2312 432 5 21° 207,360 7
214 24 1 221° 264 5 2312 5184 11 2214 192 1 41* 3213 432 2
AR 36 1 31* 2%1 432 2 221* 19,584 12 322132%1 240 19 2312 2,880 5
2212 120 5 231 2%1 2,556 21 21° 69,120 3 2 960 10 321%321% 4,078 31
21 288 2 2213 2,088 15 1% 241,920 1 41* 96 1 2312 19,512137
22122212 160 4 31* 2°1 2%1 3456 3 23122%12 10,368 24 3213 528 22 2214 4,896 9
2% 2% o3 144 2 2%1 2%°1 2°1 8,478 13 221* 15,552 15 2317 1,968 41 2%122%1?2 72576133
313 72 1 221%10,152 16 21° 8640 1 31° 480 1 31° 8,640 4
2212 432 4 221%221% 2,160 3 2214221% 3,456 2 221% 2,112 11 221% 47,232 42
21 1,296 2853 2°122%12 144 1 322322 3% 4 1 2t 24 2,592 4 2% 2% 2of 67,824 8
1° 4320 1 221* 288 1 3212 8 1 41* 576 1 41* 5,184 2
31% 313 36 1 42 2% 2 216 2 3221 48 4 321% 3,168 12 321% 69,120 14
2217 144 2 2%12 528 3 3213 144 4 2317 8,208 16 2%1%2 177,120 25
22122212 624 7 221* 2,016 3 31° 480 1 31° 5760 2 31° 172,800 3
21 288 1 21° 8640 1 2 192 3 221* 15552 9 221* 475,200 20
221222122212 160 3 1% 40320 1 2%12 720 11 21° 8,640 1 21° 1,296,000 5
743 2%1 2%1 54 2 2%122%12 792 4 221* 2,640 11 41* 2312 288 1 1% 3,628,800 2
221 144 2 221* 1,440 3 21° 10,080 3 32133213 288 3 41* 41* 576 1
21° 360 1 21° 1,440 1 1% 40,320 1 2312 2,160 17 3213 3,456 2
2212221% 144 1 2214221* 576 1 32123212 16 1 23122312 9,648 21 212 12,096 3
421 32123217 4 1 521 321%2°%12 72 1 3221 104 7 221* 3,168 4 221* 3,456 1
2%1 36 3 2%122%12 432 2 3213 240 5 3%173%173%1° 32 1 321%3321% 27,216 22
221° 48 2 221* 576 1 31° 480 1 3271 192 4 2317 90,720 54
31* 2°1 144 1 431 322132°1 24 4 24 480 4 24 1,248 5 31° 8,640 1
2%1 2%1 162 4 3213 72 6 2312 1,032 14 41* 96 1 221* 58,752 10
221® 360 5 31° 240 1 221* 1,920 7 3213 288 2 2°1%22%17 263,952 53
21° 360 1 o4 192 4 21° 1,440 1 2317 1,248 7 31° 86,400 3
22132213 144 1 2312 396 17 3213221 396 29 2714 576 2 221* 302,400 30
321 322 322 4 1 221* 768 8 321% 1,020 43 32213221 800 28 21 129,600 2
3212 12 2 21° 720 1 31° 2,640 6 2 3,648 19 2214221* 51,840 4
31* 48 1 321%321° 108 2 24 1,440 15 41* 192 1 41* 2%122%1° 4,320 2
2%1 72 3 A 720 5 2312 4,008 84 321 1,344240 321%321°2%17 4,752 10
221° 192 4 2312 720 10 221* 9,792 51 21?2 5,184 55 23122312 36,288 24
215 480 1 221 288 1 216 18,720 7 31° 960 1 2°122%122%1%2 167,184 27
32123212 24 2 31° 2 2880 1 321%321° 1,440 12 221* 4,608 12 221 33,696 7

31* 48 1 2312 720 1 31° 720 1 2% 2% 13248 8

2’1 120 5 ot ot 864 2 o4 4,032 14 41* 1,152 1

221 144 3 2312 2,592 10 2%12 6,336 44 321 8,064 14

2%1 2°1 612 6 221% 7,488 7 221* 5184 9 2312 24,480 28
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Shortly after, Lyakh [38] determined 21 configurations with point rank 8, which can be identified with the partial Latin squares

1|2 11234 11234 1/2(3]4 112]3 12134 1(2]3(4
314 314 211(4]3 413 21114 214 1 3
1|2 112 2|1 314 113 4 2
314
F1 F2 F3 Fa Fs Fs F7
2 4 2 4 2 4 2 4 312 411132 31412
4 1 4 1 1 3 3 1 1(3]2 21341 1123
213 213 413 413 411 411
1|3 3|1 2|1 2|1
Fs Fo Fio Fu Fi2 Fi3 Fia
1(3(2 4123 2413 2 4 342 3142 4132
3121 3121 213 1(3(2 1({2(3 21 3121
2|1 1 4 1 4 4 1 4 1 4 1 4 1
Fis Fie Fi7 Fis Fio Fa0 Fa1

They correspond in Table 7 to

i. The two main classes of type (42,2% 2%): F3 and Fis.

ii. The four main classes of type (42%,2* 2%): F», Fu, Fs and F7.
iii. The main class of type (3°2,3%2,3%2): Fis.

iv. The three main classes of type (322, 3%2,2%): Fs, Fi» and Fia.
v. The six main classes of type (3%2,2% 2%): from Fis to Far.

vi. Five of the eight main classes of type (2%, 2%, 2%): Fi, Fg, Fo, Fio and Fi1.

The next two main classes of type (2*,2* 2%) complete the list of Lyakh.

F2 Fo3

The eighth main class of type (24,24,24) is not related to a configuration because there exist non-connected points in the

corresponding seminet (see Figure 8).

Figure 8. Seminet of point rank 8 that is not a configuration.
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6. Binary constraints related to the sets TS, and TCO,

This section deals with a series of binary constraints that characterize the sets of totally symmetric and totally conjugate
orthogonal partial Latin squares of given order and weight. Hereafter, in order to avoid degeneracy, partial Latin squares are
assumed to have at least one entry in each row, at least one entry in each column, and at least one copy of each symbol. From
Theorem 2.1, the following system of constraints must, therefore, hold.

xijkxpjx = 0, forall i, 1", j, k < nsuch that i # /',

XXk = 0, forall i, j,j', k < nsuch that j # /',

Xijkxije = 0, for all i, j, k, k" < nsuch that k # k',

> kepn Xiik = 1, for all i € [n], )
> i ke Xiw > 1, for all j € [n],

Ei,je[n] xijk > 1, for all k € [n],

xijk € {0,1}, forall i,j, k < n.

Lemma 6.1 Let n and m be two positive integers such that n < m < n?.
a) If m > n, then every pair of orthogonal conjugates of a partial Latin square in the set TCO.n, are distinct.

b) If|TCOnm| =0, then |TCO,w| =0, forallm € {m+1, ..., n’}.

Proof. Let us prove each statement separately.

a) Let P € Ronmm and m, 7' € S3 be such that m # ' and P™ = P™. Since m > n, there exists one symbol k € [n] and a
distinct pair of elements (i1, /1) and, (i2, j2) in [n] x [n] such that {(i1, 1, k), (i2, j2, k)} € E(P™) N E(P™). As a consequence,
P™ = P™ is not orthogonal to itself.

b) Otherwise, the partial Latin square that results after emptying any m' — m filled cells of the partial Latin square in TCO,,
would be in TCOp.m, which is a contradiction.

Lemma 6.1.a does not hold in general in case of being m = n. Thus, for instance, the partial Latin square P € R33.3.3 such
that E(P) = {(1,1,1),(2,2,2),(3,3,3)} is totally symmetric and orthogonal to itself.

Based on (2), we establish in Section 3 some equations to deal, respectively, with the sets TS, and TCO,. To this end, let
us introduce the following notation

™ R . R .

Xivipiz - Xix(1yin(2) in(3) *

for all m € Sz and X, i, € {X}. Besides, we label the six permutations in Sz as
53 = {7('1 =Id, mp = (12), T3 = (13), Ty = (23), s = (123), Te = (132)}.

Proposition 6.2 Let n and m be two positive integers such that n < m < n®. Then,

a) The set TS, is identified with the set of zeros of (2) and

Xie = xyk, foralli,j, k € [n] and s € {1,2,3}. (3)

1

b) The set TSy.m is identified with the set of zeros of (2)—(3) and

Z Xijk = m. (4)

ij.k€[n]
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c) The set TCO, is identified with the set of zeros of (2) and

Xio Xk XioXniy = 0. for all i,j, k. 1, p,q < n;s, t < 3; such that (i,j) # (k,1),s < t. (5)

d) The set TCOp.n is identified with the set of zeros of (2), (4) and (5).

Proof. The result follows straightforwardly from the definitions exposed in Section 2 once each partial Latin square P = (pjj) €
Rrsn is identified with a zero (xi11, .. ., Xrsn) Such that xjx = 1 if pijj = k and 0, otherwise. Thus, for instance, if we focus
on the proof of statement (c), then, given 1 < s < t < 3, the system of equations determined by (5) involves the 7;!- and
m, '-conjugates of P to be orthogonal. Besides, from Lemma 6.1.a, both conjugates are distinct.

Proposition 6.2 has been implemented in the CSP solver Minion [68] to obtain the numerical data exposed in Table 8. Further,
Table 9 indicates the run time that is required in our computer system (Intel Core i7-2600, with a 3.4 GHz processor and 16
GB of RAM) to determine one specific example in the sets TS, and TCOp.p.

m | |TS(nm m)| |TCO(n; m)|
n n
3 4 5 6 3 4
3 1 36
41 6 1 216 576
51 6 12 1 12 45168
610 24 20 1 0 315048
7|12 64 80 30 0 391824
8| 3 60 220 210 0 95028
9| 3 100 380 680 0 2616
10 148 910 1980 0
11 72 1010 4380 0
12 90 1630 7660 0
13 72 2740 17820 0
14 36 2040 23370 0
15 16 2784 37476 0
16 16 3395 68850 0
17 2195 68190
18 2080 96660
19 2320 145560
20 900 122040
21 900 146040
22 480 196200
23 240 132480
24 30 148710
25 30 157320
26 101430
27 81540
28 86310
29 35820
30 33390
31 20340
32 11340
33 4560
34 3960
35 720
36 480
Total | 41 711 24385 1755547 | 264 850260

Table 8. Distribution of the sets TS, and TCOp.p,.

Copyright © 2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2017, 00 1-25
Prepared using mmaauth.cls



Mathematical

Methods in the
R. M. Falcén, O. J. Falcén, J. Ninez Applied Sciences
|

Run time (seconds) | Run time (seconds)
n m TSn;m TCOn;m
5 5 <1 22
10 <1 3
6 6 <1 8561
12 <1 10
15 <1 74
10 10 69 Out of memory
50 <1 "
15 15 > 3 hours
60 2
20 100 Out of memory

Table 9. Run times required to get exactly one totally symmetric or totally conjugate orthogonal partial Latin square of a given
order and weight.

7. Lie partial quasigroup rings derived from the conjugate-extension of a partial Latin
square

The inclusion of new binary constraints into (2)—(5) enables us to determine families of partial Latin squares in the sets TS, and
TCO, with possible applications in distinct fields. As an illustrative example, we conclude this paper by describing in this section
a new family of Lie partial quasigroup rings related to a totally symmetric partial Latin square of order 3n, which is derived in
turn from a given partial Latin square of order n. Recall that a Lie algebra is an anti-commutative algebra A that holds the
so-called Jacobi identity

J(a, b, c) .= (ab)c + (bc)a+ (ca)b =0, for all a, b, c € A. (6)

Let P = (pij) € Rnnmm. We define the n x n arrays P' = (pj;) and P" = (p};) such that

o pij + n, if p; € [n], and o pij + 2n, if p; € [n], @
o o
0, otherwise. 0, otherwise.

Then, we define the partial Latin square P = (Pij) € Ranznsnem by means of nine n x n blocks as

0 p' Pl(23)
PH(IQ) 0 p(132) (8)
P/(123) p(13) 0

ol
Il

where 0 denotes the n x n array with all its entries being zero. We call this new partial Latin square the conjugate-extension of
P. Thus, for instance, Figure 9 shows the conjugate-extension of the partial Latin square exposed in Figure 2.

718 415
9 5
7
7 1
819 112
7 3
4 61 3
5 1
5

Figure 9. Conjugate-extension of the partial Latin square P € R3 33 of Figure 2.
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Lemma 7.1 IfP € Ronmm, then P € TSanem.

Proof. The result follows from the entry set £(P) once we keep in mind (7) and (8).

Let Ax(P) denote the partial quasigroup ring over a finite field K of characteristic two that is related to P. Particularly, we
focus on the case of being P € TS,. If this is the case, then the definition (8) of the partial Latin square P results

0P |F
P=|P" |0 |P 9)
Pl P]|O

Theorem 7.2 Let K be a finite field of characteristic two and let P € TS, be the multiplication table of a quasigroup ([n], -)
satisfying the left invertive law
(a-b)-c=(c-b)-a, foralla,b,c€][n]. (10)

Then, the partial quasigroup ring Ax(P) is a Lie algebra.

Proof. The symmetry of the partial Latin square P = (P;;). with p; =0, for all i < 3n, together with the fact of being K a
finite field of characteristic two, involves Ag(P) to be anti-commutative. Now, in order to prove that the Jacobi identity (6)
holds, suppose {ei, ..., esn} to be the basis of Ax(P), which we partition into the three sets {e, ..., en}, {eén1, ..., €n}
and {ew+1,. .., esn}. Let S(e) denote which one of these three sets contains each basis vector ¢. From (9), we have
that, if S(e;) = S(g), then eiej = 0. Besides, if S(e) # S(ej) and ejej # 0, then S(e) # S(eiej) # S(ej). As a consequence,
J(ei, e, ex) =0, for all i,j, k < 3n such that the three sets S(e;), S(ej) and S(ex) either coincide or are pairwise distinct.
Then, from the symmetry of the Jacobi identity, it is enough to focus on the expression J(ej, €j, &) in case of being
S(ei) = S(ej) # S(ex). If this is the case, eie; =0 and hence, J(e;, ¢, ex) = (gex)e + (exei)e = k)i + €kiyj- 1he result
follows from the symmetry of the partial Latin square P and the left invertive law.

Every totally symmetric partial Latin square satisfying (10) constitutes the multiplication table of a partial totally symmetric
group. In order to compute this kind of partial Latin squares, we include the following equations to (2)—(4)

XiijkIsXIjt(Xtis — 1) =0, forall/,j,k,I,s,t € [n] (11)
<ZX;jk — 1> <ZXUk> Xijt <ZX[‘[}(> =0, foralli,j I, te [n] (12)
k<n k<n k<n

Xijk <ZX/(/5 — 1> <Z X/j5> Xijt <thi5> =0, foralli,j,k, I, t€ [n] (13)

s<n s<n s<n

The implementation of these equations into our CSP solver determines, for instance, the pair of partial Latin squares exposed
in Figure 10, which give rise in turn, according to Theorem 7.2, to a pair of Lie partial quasigroup rings as we have previously

described.
211
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Figure 10. Totally symmetric partial Latin squares satisfying the left invertive law.
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8. Conclusion and further studies

This paper has dealt with the enumeration and classification of partial Latin rectangles and seminets by means of computational
algebraic geometry. Both combinatorial structures have been identified with the points of affine varieties defined by zero-
dimensional radical ideals of polynomials. Their decompositions into finitely many disjoint subsets, each of them being the zeros
of a triangular system of polynomial equations, have emerged as a useful technique to determine, by means of the computer
algebra system Singular, the distribution of r x s partial Latin rectangles based on [n] into isotopic and main classes according
to their weight and types, for all r,s,n <6, and that of non-compressible regular partial Latin squares of order n < 8. The
latter is equivalent to that of seminets with point rank up to eight and has enabled us to complete a classification previously
established by Lyakh [38]. General formulas for the number of partial Latin squares of weight up to six and a census of all the
seminets with at most six points have also been established. A convenient generalization of the computational method exposed
in this paper to the theory of k-seminets and that of non-compressible, regular and mutually regularly orthogonal partial Latin
squares developed by U%an [12] is established as further work. We have also described a series of binary constraints that enable
us to determine the distribution of the sets TS, and TCO, of totally symmetric and totally conjugate partial Latin squares of
order n, respectively, according to their weights. By means of the CSP solver Minion, we have computed the former, for all
2 < n <6, and the latter, for all 2 < n < 4. A further study to improve the efficiency of the proposed method is required to
deal with higher orders. Besides, we have introduced the conjugate-extension of a given partial Latin square, which gives rise to
a totally symmetric partial Latin square. Particularly, the description of a family of Lie partial quasigroup rings derived from the
conjugate-extension of a totally symmetric partial Latin square that holds the left invertive law has enabled us to delve into the

open problem of constructing examples of this type of Lie algebras.
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