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1. IntrodutionAn r � s partial Latin retangle based on the set [n℄ := f1; : : : ; ng is an r � s array in whih eah ell is either empty or ontainsone symbol hosen from the set [n℄, suh that eah symbol ours at most one in eah row and in eah olumn. Its weightis the number of non-empty ells. This is a Latin retangle if there are not empty ells. If r = s = n, then it is a partial Latinsquare of order n (a Latin square if there are not empty ells). Hereafter, Rr;s;n and Rr;s;n;m denote, respetively, the set of r � spartial Latin retangles based on [n℄ and its subset of elements of weight m.Counting, enumerating and lassifying Latin retangles are lassial problems in ombinatorial design theory. Currently, it isknown [1{4℄ the number of Latin squares of order up to 11 and their distribution into isotopism, isomorphism and main lasses,together with the number of r � s Latin retangles based on [n℄, for r � s = n � 11 and some results for r � 6 and s = n > 11(see [5,6℄ and the referenes therein). Nevertheless, the equivalent problems for partial Latin retangles have not been dealt within depth yet. Partiularly, by means of omputational algebrai geometry, it is known [7{9℄ the number of partial Latin squaresfor order up to six and their distribution into isotopism and isomorphism lasses, together with the ardinality of Rr;s;n;m forr; s; n � 4 (see [10,11℄ for previous studies about how to use this omputational method in order to deal with Latin squares).bFaulty of Mathematis, Department of Geometry and Topology, University of Seville, / Tar�a s/n. 41012-Sevilla.aUniversity of Seville, Department of Applied Mathematis I.�Correspondene to: Shool of Building Engineering, University of Seville. Avda. Reina Meredes 4 A, 41012, Seville, Spain. E-mail: rafalgan�us.es
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MathematialMethods in theApplied Sienes R. M. Fal�on, O. J. Fal�on, J. N�u~nezThis paper provides an in-depth analysis of how omputational algebrai geometry an be used to enumerate and lassifypartial Latin retangles aording not only to their weight, but also to their shape, type and struture. In order to illustratethe e�etiveness of this omputational method, we fous on the enumeration of (a) non-ompressible and regular, (b) totallysymmetri, and () totally onjugate orthogonal partial Latin squares. The former enables us to deal with the enumeration ofseminets (a type of inident struture introdued by U�san [12℄ as a natural generalization of nets), whereas the study of theother two types of partial Latin squares are related to algebrai properties of partial quasigroups (a brief sketh of this studyhas reently been exposed by the authors in [13℄). Reall in this last regard that a quasigroup of order n [14℄ is a pair (S; �)formed by a �nite set S of n elements that is endowed with a produt � so that, if any two of the three symbols in the equationa � b =  are given as elements of S, then the third one is uniquely determined. This onept is straightforwardly generalized tothat of partial quasigroup of order n, for whih (a) the law � is a partial binary operation, and (b) if both equations a � x = band y � a = b, with a; b 2 S, have solutions for x; y 2 S, then both solutions are unique. The multipliation table of a (partial)quasigroup of order n onstitutes indeed a (partial) Latin square of the same order.Bruk [15℄ introdued the onept of totally symmetri quasigroup as a quasigroup (S; �) for whih the equation a � b = remains valid under every permutation of the three symbols a; b;  2 S. There exist six suh permutations and eah one ofthem gives rise to a new quasigroup, whih is said to be onjugate to (S; �). Hene, a quasigroup is totally symmetri if its sixonjugates oinide. If besides, the quasigroup is idempotent, that is, if a � a = a, for all a 2 S, then this notion is equivalent tothat of a Steiner triple system. The distribution of totally symmetri quasigroups and Steiner triple systems into isomorphismlasses is known [16,17℄ for orders up to 10 and 19, respetively.Two quasigroups of order n are said to be orthogonal if the juxtaposition of their orresponding multipliation tables givesrise to an n � n array ontaining n2 distint ordered pairs. Stein [18℄ posed the problem of onstruting a quasigroup or Latinsquare that is orthogonal to one of its onjugates. In this regard, it is known [19{22℄ the existene of quasigroups that areorthogonal to the onjugate under onsideration, whih is in turn distint from the former, for any order n 62 f2; 3; 6g. Muhmore reently, Bennett and Zhang [23℄ dealt with Latin squares for whih eah one of their onjugates is orthogonal to itstranspose. They proved the existene of suh Latin squares for all prime powers n 62 f2; 3; 5g. Further, Lindner et al. [24℄ fousedon idempotent Latin squares for whih their six onjugates are distint and pairwise orthogonal. They proved in partiular theexistene of suh Latin squares for every order being a prime power n � 8 and also for all suÆiently large orders n. Bennett [25℄established n > 5594 as an upper bound for this last ondition exept possibly n = 6810, and enumerated a series of smallerorders for whih these Latin squares also exist. Four years later, he improved [26℄ the previous upper bound to n > 5074. Muhmore reently, Belyavskaya and Popovih [27℄ introdued the equivalent notion of totally onjugate orthogonal quasigroup as aquasigroup for whih its six onjugates are distint and pairwise orthogonal. They proved the existene of suh quasigroups forany order n � 11 that is relatively prime to 2, 3, 5, and 7. Their motivation to study this kind of quasigroups was mainly basedon their appliation in error deteting odes [28℄.Sine Evans [29℄ introdued the problem of embedding a partial quasigroup of order n into a quasigroup of order 2n, a wideamount of authors have dealt with the embedding of distint types of partial quasigroups; partiularly, that of a partial totallysymmetri quasigroup into a totally symmetri quasigroup [30{33℄. Further, the orthogonality among onjugates of a partialLatin square was indiretly ontemplated [34{36℄ by fousing on the existene of inomplete Latin squares that are orthogonalto one of their onjugates and have an empty subsquare that an be �lled by means of a Latin square that is orthogonal inturn to its orresponding onjugate. A more general ase was proposed by the �rst author [8℄, who makes use of omputationalalgebrai geometry to enumerate the set of self-orthogonal partial Latin squares of order n � 4. This paper delves into thistopi by dealing with the sets of partial Latin squares of a given order for whih their six onjugates either oinide or are all ofthem distint and pairwise orthogonal, respetively. In order to improve the omputational eÆieny, it is proposed to fous ontehniques to solve Boolean satis�ability problems instead of those on algebrai geometry.As an illustrative appliation of the exposed study, we also delve into a reent work developed by the authors [37℄ about theenumeration of partial quasigroup rings over �nite �elds derived from partial Latin squares. Bruk [15℄ introdued the oneptof quasigroup ring related to a quasigroup (S; �) as an algebra of basis fea j a 2 Sg over a base �eld K suh that eaeb = ea�b,for all a; b 2 S. This onept is straightforwardly generalized to that of partial quasigroup ring in ase of being the pair (S; �) apartial quasigroup. In this paper, we desribe a totally symmetri partial Latin square of order 3n, derived from a given partialLatin square of order n, that enables us to introdue in turn a Lie partial quasigroup ring over a �nite �eld of harateristi two.2 Copyright  2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Si. 2017, 00 1{25Prepared using mmaauth.ls



R. M. Fal�on, O. J. Fal�on, J. N�u~nez MathematialMethods in theApplied SienesThe paper is organized as follows. Setion 2 deals with some preliminary onepts and results on partial Latin squares,seminets and omputational algebrai geometry that are used throughout our study. These results are implemented in Setion3 to determine the ardinality of Rr;s;n;m , for all r; s; n � 6. In Setion 4, the distribution of non-empty ells per row and olumnand the number of ourrenes of eah symbol enable us to use omputational algebrai geometry in order to identify the setof partial Latin retangles of a given shape, type or struture. The distribution of Rr;s;n into isotopism and main lasses is thendetermined for all r; s; n � 6. As a by-produt, we establish expliit formulas for the number of partial Latin retangles of anyorder and weight up to six. Setion 5 deals with the distribution into main lasses of seminets of point rank up to eight. Wealso prove the existene of two new on�gurations of seminets with point rank eight that omplete the lassi�ation given byLyakh [38℄. In Setion 6, we introdue a pair of series of binary onstraints that haraterize, respetively, the sets of totallysymmetri and totally onjugate orthogonal partial Latin squares of given order and weight. Finally, Setion 7 deals with anillustrative method to onstrut a family of Lie partial quasigroup rings from ertain totally symmetri partial Latin squares.2. PreliminariesThis setion deals with some basi results on partial Latin retangles, seminets and omputational algebrai geometry that areused throughout the paper. For more details about these topis, we refer the reader to [12,39,40℄.2.1. Partial Latin retanglesAn entry of a partial Latin retangle P 2 Rr;s;n is any triple (i ; j; k) 2 [r ℄� [s℄� [n℄ that is uniquely related to a non-emptyell of P whih is situated in the i th row and j th olumn and ontains the symbol k . The partial Latin retangle P is uniquelydetermined by the set of all its entries, whih is denoted as E(P ). Thus, for instane, the partial Latin square P in Figure 1belongs to the set R3;3;3;4 and has f(1; 1; 2); (1; 2; 1); (2; 1; 1); (3; 3; 3)g as set of entries.P � 2 11 3 Q � 13 23Figure 1. Isotopi partial Latin squares in R3;3;3;4.Let Sm denote the symmetri group on m elements. An isotopism of Rr;s;n is any triple � = (�; �; ) 2 Sr � Ss � Sn, where�, � and  onstitute, respetively, a permutation of the rows, olumns and symbols of any partial Latin retangle P 2 Rr;s;n .This gives rise to the isotopi partial Latin retangle P� 2 Rr;s;n , whose set of entries is E(P�) = f(�(i); �(j); (k)) : (i ; j; k) 2E(P )g. Thus, for instane, both partial Latin squares in Figure 1 are isotopi by means of the isotopism ((123); (12); (13)).Permutations among the three omponents of all the entries of a partial Latin retangle also give rise to new partial Latinretangles. In this regard, let � be a permutation in S3. The �-onjugate of P 2 Rr;s;n is de�ned as the partial Latin retangleP � having as set of entries the set E(P �) = f(p�(1); p�(2); p�(3)) : (p1; p2; p3) 2 E(P )g. If the permutation � preserves the setRr;s;n , then � is said to be a parastrophism. Hene, the set of parastrophisms of Rr;s;n is� fIdg if r , s and n are pairwise distint.� fId; (12)g if r = s 6= n.� fId; (13)g if r = n 6= s.� fId; (23)g if s = n 6= r .� S3 if r = s = n.There are, therefore, six onjugates: P Id = P , P (12) = P t , P (13), P (23), P (123) = (P (23))t and P (132) = (P (13))t ; where t denotesthe transpose of the orresponding partial Latin retangle. Figure 2 shows, for instane, a partial Latin square P whose sixonjugates are pairwise distint. The partial Latin square P that is shown in Figure 1 is, however, an example for whih all itssix onjugates oinide. Suh a partial Latin square is said to be totally symmetri. Hereafter, we denote respetively as TSnand TSn;m the set of totally symmetri partial Latin squares of order n and its subset of partial Latin squares of weight m.Math. Meth. Appl. Si. 2017, 00 1{25 Copyright  2017 John Wiley & Sons, Ltd. 3Prepared using mmaauth.ls



MathematialMethods in theApplied Sienes R. M. Fal�on, O. J. Fal�on, J. N�u~nezP � 1 23 1 P t � 12 3 1 P (13) � 1 312 P (23) � 1 2 23 P (123) � 1 32 2 P (132) � 1 1 23Figure 2. Partial Latin square in R3;3;3;4 and its onjugates.Two partial Latin retangles are said to be paratopi if one of them is isotopi to a onjugate of the other. To be isotopi,parastrophi or paratopi are equivalene relations among partial Latin retangles. They make possible the respetive distributionof partial Latin retangles into isotopism, parastrophism and main lasses.A partial Latin square P of order n is said to be non-ompressible if this does not ontain empty rows or empty olumns, or ifall the n symbols appear as entries in E(P ). This is said to be regular if: (a) there does not exist a ell that is, simultaneously,the only non-empty ell in its row and its olumn, and (b) any row or olumn with exatly one non-empty ell ontains a symbolthat appears at least twie in E(P ). Thus, for instane, the partial Latin square P in Figure 2 is non-ompressible. Nevertheless,it is not regular, beause: (a) both its third row and its third olumn have exatly one non-empty ell, whih is ommon to bothof them, and (b) its seond row ontains exatly one non-empty ell, but the symbol therein only appears one in P .Two partial Latin squares of order n, P = (pi j ) and Q = (qi j ), are said to be orthogonal if all the ordered pairs on non-empty entries that are obtained when both arrays are superimposed are distint. Equivalently, given i ; i 0; j; j 0 2 [n℄ suh thatpi j = pi 0 j 0 2 [n℄, then qi j and qi 0 j 0 are not the same symbol of [n℄. Thus, for instane, the partial Latin squares P and P (13) inFigure 2 are orthogonal, but the partial Latin squares P and P (12) in the same �gure are not. Now, let us onsider a non-trivialpermutation � 2 S3 n fIdg. A partial Latin square P 2 Rn;n;n is said to be �-orthogonal if it is orthogonal to its �-onjugate.This is self-orthogonal if � = (12). Thus, for instane, the partial Latin square P (23) in Figure 2 is self-orthogonal. Further, wesay that a partial Latin square is totally onjugate orthogonal if its six onjugates are distint and pairwise orthogonal. This isthe ase, for instane, of the partial Latin square in Figure 3. From here on, the set of totally onjugate orthogonal partial Latinsquares of order n and its subset of partial Latin squares of weight m are respetively denoted as TCOn and TCOn;m.P � 321 3 P t � 133 2 P (13) � 3 23 1 P (23) � 331 2 P (123) � 133 2 P (132) � 3 32 1Figure 3. Totally onjugate orthogonal partial Latin square in R3;3;3;4.2.2. SeminetsBates [41℄ de�ned a halfnet as an inidene struture of points and lines suh that: (a) there exist three distint parallel lassesof lines, (b) every point is on at most one line of eah lass, and () any two lines belonging to distint lasses meet in at mostone point. The number of points onstitutes the point rank of a halfnet. Two halfnets are in the same isomorphism lass ifthere exists a permutation among the points that preserves ollinearity in eah parallel lass. If this happens after relabeling theirparallel lasses, then they are in the same main lass. Currently, the distribution of halfnets into isomorphism and main lassesis only partially known for nets and, to a muh lesser extent, seminets.Bruk [42℄ de�ned a net of order n as a halfnet of n2 points and 3n lines in whih every point is on exatly one line of eahparallel lass, any two lines from distint parallel lasses meet in exatly one point and there exists at least one line with exatlyn distint points. Hene, every line ontains n points and every parallel lass is formed by n lines. More reently and motivated byits appliation in oding theory, U�san [12℄ introdued the onept of seminet as a halfnet in whih every point is on exatly oneline of eah parallel lass and any two lines meet in at most one point. Unlike nets, the lines of a seminet an ontain di�erentnumbers of points and its parallel lasses an have di�erent numbers of lines. The L-order of a seminet is the maximum numberof lines in a parallel lass. If all the lines have the same number n of points, then all the parallel lasses have the same numberm of lines. In this ase, the seminet is said to be n-regular. If, furthermore, m = n, then it is a net of order n.4 Copyright  2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Si. 2017, 00 1{25Prepared using mmaauth.ls
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� 1 2 3 42 1 4 33 4 1 24 3 2 1Figure 4. Net identi�ed with a Latin square of order 4.Every net of order n an be identi�ed with a Latin square of the same order. The points and parallel lasses of the net arerespetively identi�ed with the ells of the Latin square and its sets of ells sharing the same row, olumn or symbol (see Figure4). In addition, Stojakovi� and U�san [43℄ proved that every seminet of L-order n an be identi�ed with a non-ompressible regularpartial Latin square of order n in a similar way that nets do with Latin squares. In this ase, the points of the seminet are identi�edwith the non-empty ells of the partial Latin square (see Figure 5). As a onsequene, the distribution of nets and seminetsinto isomorphism and main lasses results, respetively, from the equivalent distribution of Latin squares and non-ompressibleregular partial Latin squares into isotopism and main lasses. � 1 21 22

Figure 5. Seminet identi�ed with a partial Latin square of order 4 and weight 5.Havel [44℄ de�ned a on�guration as a seminet ontaining at least four points suh that every line ontains at least twopoints and any two points P and Q of the seminet are onneted, that is to say, there exists a sequene of points and lines,P0; l0; P1; l1; : : : ; Pm, suh that P0 = P , Pm = Q and eah pair of points Pi�1 and Pi are on the line li�1, for all i � m. Haveldetermined the main lasses of those on�gurations with point rank up to seven and, shortly after, Lyakh [38℄ gave a lassi�ationof those on�gurations with point rank eight.2.3. Computational algebrai geometryLet X and K[X℄ respetively be the ordered set of n variables fx1; : : : ; xng and the related multivariate polynomial ringK[x1; : : : ; xn℄ over a base �eld K. The lass of a polynomial p 2 K[X℄ is the minimum i � n suh that p 2 K[x1; : : : ; xi ℄. Atriangular system in K[X℄ is a �nite ordered set of polynomials fp1; : : : ; pmg � K[X℄ suh that the lass of pi is less than thelass of pi+1, for all i < m. An ideal of polynomials in K[X℄ is any subset I � K[X℄ suh that 0 2 I; p + q 2 I, for all p; q 2 I;and pq 2 I for all p 2 I and q 2 K[X℄. A subideal of I is any subset J � I that is also an ideal in K[X℄. The ideal generated bya �nite set of polynomials fp1; : : : ; pmg � K[X℄ is de�ned as the set fq1p1 + : : :+ qnpn : q1; : : : ; qn 2 K[X℄g. The aÆne varietyV(I) is the set of points in Kn that are zeros of all the polynomials in I. If this is �nite, then the ideal I is zero-dimensional. It isradial if it ontains all the polynomials p 2 K[X℄ so that pm 2 I for some natural m.A term order on the set of monomials of K[X℄ is a multipliative well-ordering whose smallest element is the onstantmonomial 1. Thus, for instane, the lexiographi term order <lex is de�ned so that, given two monomials Xa = xa11 : : : xann andXb = xb11 : : : xbnn , one has that Xa <lex Xb if there exists a natural m � n suh that ai = bi for all i � m and am < bm. Thelargest monomial of a polynomial with respet to a term order is its leading monomial. The initial ideal of an ideal I � K[X℄is the ideal generated by the leading monomials of the non-zero polynomials of I. Any subset G � I whose leading monomialsgenerate this initial ideal is alled a Gr�obner basis of I with respet to the underlying term order. Any monomial of I that isnot ontained in its initial ideal is alled standard. Regardless of the monomial term ordering, if the ideal I is zero-dimensionalMath. Meth. Appl. Si. 2017, 00 1{25 Copyright  2017 John Wiley & Sons, Ltd. 5Prepared using mmaauth.ls



MathematialMethods in theApplied Sienes R. M. Fal�on, O. J. Fal�on, J. N�u~nezand radial, then the number of standard monomials in I oinides with the Krull dimension of the quotient ring K[X℄=I andwith the ardinality of V(I). This is obtained by means of the Hilbert funtion, whih maps eah non-negative integer m ontoHFK[X℄=I(m) = dimK(K[X℄m=(K[X℄m \ I)). Here, K[X℄m denotes the set of homogeneous polynomials in K[X℄ of degree m andHFK[X℄=I(m) oinides with the number of standard monomials in I of degree m. The problem of omputing Hilbert funtions isNP-omplete [45℄. Its omputation is based on that of a Gr�obner basis of the ideal, whose omplexity in ase of dealing with azero-dimensional ideal is dO(n) [46℄, where d is the maximal degree of the polynomials and n is the number of variables.The next result indiates how omputational algebrai geometry an be used to enumerate and ount the partial Latinretangles in the set Rr;s;n . Hereafter, the set of variables and the base �eld of the polynomial ring to be onsidered are,respetively, X = fx111; : : : ; xr sng and the �nite �eld F2.Theorem 2.1 ( [8℄) The set Rr;s;n is identi�ed with the set of zeros of the zero-dimensional radial ideal in F2[X℄Ir;s;n := h xi jkxi 0 jk ; xi jkxi j 0k ; xi jkxi jk 0 : i ; i 0 � r ; j; j 0 � s; k; k 0 � n i:Besides, jRr;s;n;m j = HFF2[X℄=Ir;s;n(m); for all m � 0; and jRr;s;n j = dimF2(F2[X℄=Ir;s;n):The proof of Theorem 2.1 is based on the fat that every standard monomial xa111111 : : : xar snr sn of the ideal Ir;s;n an be identi�edwith a partial Latin retangle in Rr;s;n with set of entries f(i ; j; k) 2 [r ℄� [s℄� [n℄ : ai jk = 1g. Partiularly, the presene of themonomial xi jkxi 0 jk as generator of the ideal Ir;s;n involves the non-existene of the symbol k twie in the j th olumn; that ofxi jkxi j 0k involves the non-existene of the symbol k twie in the i th row; and that of xi jkxi jk 0 involves the non-existene oftwo distint symbols in the ell (i ; j). Based on this result, the speialized algorithm desribed by Dikenstein and Tobis [47℄was implemented in [8℄ for omputing the ardinality of Rr;s;n;m , for all r; s; n � 4. For higher orders, however, the requiredomputational ost turned out to be exessive due to large memory storage requirements. This ost is only due to the omputationof the orresponding Hilbert funtion, beause the set of generators of Ir;s;n onstitutes itself a lexiographi Gr�obner basis of theideal. To redue it, an alternative proedure is introdued in the next setion. This is based on the similarity that exists amongthose generators in Ir;s;n that orrespond to distint rows in a partial Latin retangle. A preliminary version of this proedure wasexposed in [9℄, where the ardinality of Rr;s;n was omputed for all r; s; n � 6. For a better understanding of this proedure, theorresponding omputation of jR3;3;3;2j is illustrated in Example 1.3. An alternative proedure to ompute jRr;s;njFor eah positive integer i � r we de�ne the zero-dimensional subidealI(i)r;s;n := h xi jkxi j 0k ; xi jkxi jk 0 : j; j 0 � s; k; k 0 � n i � Ir;s;n :There exist distint algorithms [48{50℄ that enable us to deompose the zero-dimensional ideal I(1)r;s;n into a �nite setfJ1;1; : : : ; J1;tg of subideals generated by triangular systems and whose aÆne varieties onstitute a partition of V(I(1)r;s;n). Theomplexity of this omputation in the mentioned algorithms is polynomial one a lexiographi Gr�obner basis of the ideal isknown. This is our ase, beause the set of generators of I(1)r;s;n onstitutes itself one suh a basis. Now, for eah i > 1 and l � t,let Ji ;l be the subideal of I(i)r;s;n whose generators oinide with those of J1;l after replaing eah variable x1jk by xi jk . For eahtuple (t1; : : : ; tr ) 2 [t℄r we de�ne the idealKt1;:::;tr := J1;t1 + : : :+ Jr;tr + h xi jkxi 0 jk : i ; i 0 � r ; j � s; k � n i: (1)The triangularity of the underlying systems involves eah subideal Ji ;tj to have at least one generator of the form xi j 0k orxi j 0k � 1. The number of generators of the seond form in the ideal Kt1;:::;tr onstitutes the minimum number of entries in apartial Latin retangle that is identi�ed with a point in V(Kt1;:::;tr ). We denote this number by mt1 ;:::;tr .6 Copyright  2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Si. 2017, 00 1{25Prepared using mmaauth.ls



R. M. Fal�on, O. J. Fal�on, J. N�u~nez MathematialMethods in theApplied SienesProposition 3.1 Let m be a non-negative integer. ThenHFF2[X℄=Ir;s;n(m) = ∑(t1;:::;tr )2[t℄rmt1;:::;tr �m HFF2[X℄=Kt1 ;:::;tr (m �mt1;:::;tr ):Proof. Let Xa = xa111111 : : : xar snr sn be a standard monomial of degree m in Ir;s;n. Sine the ideals desribed in (1) onstitute apartition of the aÆne variety V(Ir;s;n), there exists exatly one ideal Kt1;:::;tr that ontains the point (a111; : : : ; ar sn) 2 V(Ir;s;n).The result follows then from the fat that the monomial Xa is uniquely related to the standard monomial xa0111111 : : : xa0r snr sn of degreem �mt1;:::;tr in Kt1;:::;tr , where a0i jk = 0 if xi jk � 1 is a generator of Kt1;:::;tr and a0i jk = ai jk , otherwise. 2The smaller number of variables that are required to ompute eah addend in Proposition 3.1, together with the triangularityof the involved system and the possible parallel omputation to determine distint addends at the same time, redue the runningtime and ost of omputation of HFF2[X℄=Ir;s;n (m) in omparison with Theorem 2.1. Moreover, we do not need to ompute allthese addends, beause HFF2[X℄=Kt1 ;:::;tr (m) = HFF2[X℄=Kt�(1) ;:::;t�(r) (m), for all (t1; : : : ; tr ) 2 [t℄r , m � 0 and � 2 Sr .Example 3.2 The ideal I(1)3;3;3 related to the �rst row of a partial Latin square of order 3 an be deomposed into the next sixdisjoint subidealsi) J1;1 = I(1)3;3;3 + h x111; x121; x131 i.ii) J1;2 = I(1)3;3;3 + h x111; x121; x131 � 1; x132; x133 i.iii) J1;3 = I(1)3;3;3 + h x111; x121 � 1; x122; x123; x131 i.iv) J1;4 = I(1)3;3;3 + h x111 � 1; x112; x113; x121; x122; x131; x132 i.v) J1;5 = I(1)3;3;3 + h x111 � 1; x112; x113; x121; x122; x131; x132 � 1; x133 i.vi) J1;6 = I(1)3;3;3 + h x111 � 1; x112; x113; x121; x122 � 1; x123; x131; x132 i.Partial Latin squares of order 3 are then distributed as points of1. V(J1;1) if they do not ontain the symbol 1 in their �rst row.2. V(J1;2) if they ontain the symbol 1 in the ell (1; 3).3. V(J1;3) if they ontain the symbol 1 in the ell (1; 2).4. V(J1;4) if they ontain the symbol 1 in the ell (1; 1) but do not ontain the symbol 2 in their �rst row.5. V(J1;5) if they ontain the symbol 1 in the ell (1; 1) and the symbol 2 in the ell (1; 3).6. V(J1;6) if they ontain the symbol 1 in the ell (1; 1) and the symbol 2 in the ell (1; 2).For eah triple (t1; t2; t3) 2 [6℄3, we onsider the idealKt1;t2 ;t3 = J1;t1 + J2;t2 + J3;t3 + h xi jkxi 0 jk : i ; i 0; j; k � 3 i:The values of HFF2[X℄=Kt1 ;t2 ;t3 are exposed in Table 1.Let mt1;t2 ;t3 be the number of generators of the form xi jk � 1 in the ideal Kt1;t2;t3 . Thus, for instane, every point of the aÆnevariety V(K6;3;2) is uniquely related to a partial Latin square of order 3 and weight at least m6;3;2 = 4. This last value holds fromthe fat that the set of entries of any suh a partial Latin square always ontains the subset f(1; 1; 1); (1; 2; 2); (2; 2; 1); (3; 3; 1)g.From Proposition 3.1, we have, for example, thatjR3;3;3:2j = HFF2[X℄=K1;1;1(2) + 3 HFF2[X℄=K1;1;2(1) + 3 HFF2[X℄=K1;1;3(1) + 3 HFF2[X℄=K1;1;4(1) + 3 HFF2[X℄=K1;1;5(0)+3 HFF2[X℄=K1;1;6(0) + 6 HFF2[X℄=K1;2;3(0) + 6 HFF2[X℄=K1;2;4(0) + 6 HFF2[X℄=K1;3;4(0) = 270:
�Math. Meth. Appl. Si. 2017, 00 1{25 Copyright  2017 John Wiley & Sons, Ltd. 7Prepared using mmaauth.ls



MathematialMethods in theApplied Sienes R. M. Fal�on, O. J. Fal�on, J. N�u~nezTable 1. Hilbert funtions related to the set R3;3;3.HFF2[X℄=Kt1 ;t2 ;t3 (m)t1:t2:t3m 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.2.3 1.2.4 1.2.5 1.2.6 1.3.4 1.3.5 1.3.6 2.3.4 2.3.5 2.3.60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 18 16 16 14 11 11 14 12 10 9 12 9 10 10 8 82 108 84 84 62 36 36 64 45 29 24 45 24 29 32 19 193 264 176 176 104 42 42 116 63 29 23 63 23 29 38 16 164 270 150 150 66 18 18 84 32 11 8 32 8 11 16 5 55 108 48 48 12 2 2 24 5 1 1 5 1 1 2 1 16 12 4 4 0 0 0 2 0 0 0 0 0 0 0 0 0This omputational algebrai method has been implemented in the proedure PLR of the library pls.lib, available onlineon http://personales.us.es/ raufalgan/LS/pls.lib, for the open omputer algebra system for polynomial omputationsSingular [51℄. The orretness and termination of this proedure are based on those of the algorithms desribed in [47, 48, 50℄for omputing Hilbert funtions. In order to test its eÆieny, we have �rstly heked the known ardinality of Rr;s;n;m , for allr; s; n � 4 (see Table 2), whih was already omputed in [8℄. In the same omputer system, an Intel Core i7-2600 CPU (8ores), with a 3.4 GHz proessor and 16 GB of RAM, the maximum running time dereases from 50 seonds in [8℄ to less than1 seond. This orresponds to the omputation of the series jR4;4;4;mj. The proedure has then been applied for omputing inTables 3{5 the rest of ases so that r � s � n � 6. The running time ranges here from less than 1 seond to 32 hours. Thismaximum running time orresponds to the omputation of the series jR6;6;6;mj, for whih 2,3 GB of RAM is required. For higherorders, the �rst series whose omputation turned out to be exessive for our omputer system due to large memory storagerequirements was jR6;7;7;mj. In order to improve the eÆieny of this omputational algebrai method, we propose in the nextsetion to impose some extra algebrai onditions to our base ideal. They are referred to the distribution of non-empty ells perrow and olumn in a partial Latin retangle and to the number of ourrenes of eah symbol.Table 2.Distribution of Rr;s;n aording to the weight, for r � s � n � 4.jRr;s;n;m jr:s:nm 1.1.1 1.1.2 1.1.3 1.1.4 1.2.2 1.2.3 1.2.4 1.3.3 1.3.4 1.4.4 2.2.2 2.2.3 2.2.4 2.3.3 2.3.4 2.4.4 3.3.3 3.3.4 3.4.4 4.4.40 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 1 2 3 4 4 6 8 9 12 16 8 12 16 18 24 32 27 36 48 642 2 6 12 18 36 72 16 42 80 108 204 384 270 504 936 17283 6 24 96 8 48 144 264 768 2208 1278 3552 9696 259204 24 2 18 84 270 1332 6504 3078 13716 58752 2397605 108 1008 9792 3834 29808 216864 14376966 12 264 7104 2412 36216 494064 57288967 2112 756 23760 691200 153262088 216 108 7776 581688 275348169 12 1056 283584 3297100810 75744 2594150411 10368 1315353612 576 421574413 84787214 11059215 921616 576Total 2 3 4 5 7 13 21 34 73 209 35 121 325 781 3601 28353 11776 116425 2423521 1275451374. Shape, type and struture of partial Latin retanglesThe shape of a partial Latin retangle P = (pi j ) 2 Rr;s;n is de�ned as the r � s binary array BP = (bi j ) suh that bi j = 1 if(i ; j; pi j ) 2 E(P ) and 0, otherwise. Let ri , j and sk respetively be the number of �lled ells in the i th row and j th olumn of Pand the number of ourrenes of the symbol k in P . Aording to the terminology exposed by Keedwell [52℄ and generalized byBean et al. [53℄, the tuples R = (r1; : : : ; rr ), C = (1; : : : ; s) and S = (s1; : : : ; sn) determine, respetively, the row, olumn and8 Copyright  2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Si. 2017, 00 1{25Prepared using mmaauth.ls



R. M. Fal�on, O. J. Fal�on, J. N�u~nez MathematialMethods in theApplied SienesTable 3. Distribution of Rr;s;5 aording to the weight, for r � s � 5.jRr;s;5;m jr:s:5m 1.1.5 1.2.5 1.3.5 1.4.5 1.5.5 2.2.5 2.3.5 2.4.5 2.5.5 3.3.5 3.4.5 3.5.5 4.4.5 4.5.5 5.5.50 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 5 10 15 20 25 20 30 40 50 45 60 75 80 100 1252 20 60 120 200 130 330 620 1000 810 1500 2400 2760 4400 70003 60 240 600 320 1680 4800 10400 7590 20520 43200 54240 112800 2330004 120 600 260 4140 20040 61400 40500 169920 486000 676200 1881600 51590005 120 4680 45600 211440 126900 891360 3594960 5641920 21612480 806022006 1920 54480 421200 232680 3018000 17930400 32423520 176546400 9201600007 30720 465600 240840 6605280 60912000 130248960 1045147200 78451920008 6360 262200 128520 9224280 140826600 367731360 4530640800 506486160009 63600 27480 7983840 219307800 728440320 14444083200 24968740800010 5280 4063680 225419040 1004380800 33852910080 94406966880011 1100160 148010400 950238720 58065734400 274121061600012 120960 59047200 603722880 72278294400 610406671200013 13284000 249580800 64484985600 1038529932000014 1512000 63884160 40544726400 1342035100800015 66240 9216000 17571260160 1306581448320016 590400 5099169600 948609964800017 953107200 507305664000018 108288000 197047440000019 6681600 54760809600020 161280 10733005440021 1466755200022 138816000023 9100800024 403200025 161280Total 6 31 136 501 1546 731 12781 162661 1502171 805366 33199561 890442316 4146833121 313185347701 64170718937006Table 4. Distribution of Rr;s;6 aording to the weight, for r � s � 6 (I).jRr;s;6;m jr:s:6m 1.1.6 1.2.6 1.3.6 1.4.6 1.5.6 1.6.6 2.2.6 2.3.6 2.4.6 2.5.6 2.6.6 3.3.6 3.4.6 3.5.6 3.6.60 1 1 1 1 1 1 1 1 1 1 1 1 1 1 11 6 12 18 24 30 36 24 36 48 60 72 54 72 90 1082 30 90 180 300 450 192 486 912 1470 2160 1188 2196 3510 51303 120 480 1200 2400 600 3120 8880 19200 35400 13896 37344 78360 1418404 360 1800 5400 630 9990 48060 146700 349650 94770 392580 1115100 25474505 720 4320 15120 146880 678240 2168640 389340 2676240 10667160 314193606 720 8520 245760 1899600 8546880 961380 12082680 70540800 2744704807 204480 3139200 21211200 1375920 36270720 326808000 17273520008 65160 2881800 32189400 1038960 71633160 1064140200 78932826009 1303200 28267200 317760 90585600 2422568400 2621296560010 222480 13063680 69603840 3803369040 6293889864011 2669760 29255040 4021099200 10804586112012 190800 5112000 2756361600 13024677960013 1152144000 10736712000014 262828800 5825247840015 24791040 1968361344016 382879872017 38465280018 15321600Total 7 43 229 1045 4051 13327 1447 37273 720181 10291951 108694843 4193269 317651473 15916515301 526905708889symbol types of P . The type of P is then de�ned as the triple (R;C; S). Thus, for instane, the type of the partial Latin squareof Figure 5 is ((2; 2; 1; 0); (2; 1; 1; 1); (2; 3; 0; 0)). Hereafter, the set of partial Latin retangles of type (R;C; S) is denoted byRR;C;S.Let Tn;m be the set of n-tuples T = (t1; : : : ; tn) of weight ∑i�n ti = m whose omponents are non-negative integers. Theonjugate of T is the tuple T � = (t�1; : : : ; t�m), where eah t�i is the number of positive integers j � n suh that tj � i . IfT = (t1; : : : ; tn) 2 Tn;m is obtained after a dereasing rearrangement of the omponents of T , then T is said to be majorized bya seond tuple T 0 = (t01; : : : ; t0n) 2 Tn;m if ∑i�j ti �∑i�j t0i , for all j � n. This gives rise to the so-alled dominane order � onTn;m [54℄.Theorem 4.1 Let (R;C; S) 2 Tr;m � Ts;m � Tn;m. The set RR;C;S is non-empty only if C � R�, S � C� and R � S�.Math. Meth. Appl. Si. 2017, 00 1{25 Copyright  2017 John Wiley & Sons, Ltd. 9Prepared using mmaauth.ls



MathematialMethods in theApplied Sienes R. M. Fal�on, O. J. Fal�on, J. N�u~nezTable 5. Distribution of Rr;s;6 aording to the weight, for r � s � 6 (II).jRr;s;6;mjr:s:6motal 87136329169 14554896138901 1474670894380885 7687297409633551 2322817844850427451 2027032853070203981647Proof. The set of shapes of partial Latin retangles of row type R and olumn type C is identi�ed with the set of r � s binarymatries whose row and olumn sum vetors oinide, respetively, with R and C. Aording to the Gale-Ryser theorem [55{57℄,this set is non-empty if and only if C � R�. This onstitutes, therefore, a neessary ondition for the set RR;C;S to be non-empty.The result holds then from parastrophism. 2The previous result gives a neessary ondition to deal with the problem of deiding whether a triple (R;C; S) 2 Tr;m �Ts;m � Tn;m is the type of a partial Latin retangle in Rr;s;n;m . Nevertheless, this ondition is not suÆient beause, for instane,R(3;1;1);(3;1;1);(3;1;1) = ;, but (3; 1; 1)� = (3; 1; 1). This problem is equivalent to that of deiding whether a tripartite graph with agiven degree sequene has an edge-partition into triangles [58℄. Spei�ally, any partial Latin retangle P 2 RR;C;S is identi�edwith an edge-partition into triangles of a labeled tripartite graph (V1 [ V2 [ V3; E1 [ E2 [ E3) suh thata) jV1j = r , jV2j = s and jV3j = n.b) The verties of V1, V2 and V3 are uniquely and respetively related to the rows, olumns and symbols of P .) The bi-adjaeny matries of the three bipartite graphs (V1 [ V2; E1), (V1 [ V3; E2) and (V2 [ V3; E3) are, respetively, thebinary matries related to the shape of P and that of its two parastrophi partial Latin retangles P (23) and P (132).10 Copyright  2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Si. 2017, 00 1{25Prepared using mmaauth.ls



R. M. Fal�on, O. J. Fal�on, J. N�u~nez MathematialMethods in theApplied SienesThis graph satis�es the neessary ondition of being uniform in order to have an edge-partition into triangles. That is, thenumber of V1-to-V2 edges is equal to that of V1-to-V3 edges and also to that of V2-to-V3 edges. This number oinides with theomponent of the tuple R (respetively, C and S) that is related to that vertex. The partial Latin retangle P is then uniquelyidenti�ed with that edge-partition into triangles in whih the symbol inluded in an entry of P is determined by the symbol vertexof the triangle that ontains the row and olumn verties assoiated to that ell (see Figure 6).BP � ( 1 1 1 00 1 0 1 )BP (23) � ( 1 1 11 0 1 )BP (132) � 


1 0 01 1 00 0 10 0 1  P = 1 2 31 3
Figure 6. Shapes, tripartite graph and partial Latin retangle in R2;4;3 related to the type ((3; 2); (1; 2; 1; 1); (2; 1; 2)).Computational algebrai geometry an be used to determine expliitly the set RR;C;S . In this regard, the next result indiatesthose polynomials that have to be added to the set of generators of the ideal Ir;s;n in Theorem 2.1 in order to determine the setRR;C;S. Sine the onstant terms of these new polynomials oinide with the omponents of the tuples R, C and S, the orderof the base �eld F2 in the mentioned theorem is onveniently replaed here by a prime p � 2. Theorem 2.1 is also valid for thisnew base �eld Fp.Theorem 4.2 Let R = (r1; : : : ; rr ), C = (1; : : : ; s) and S = (s1; : : : ; sn) be three tuples in Tr;m, Ts;m and Tn;m, respetively, andlet p be the �rst prime greater than the maximum of all the omponents of R, C and S. The set RR;C;S is identi�ed with theset of zeros of the zero-dimensional radial idealIR;C;S := Ir;s;n + h ri � ∑j�s;k�n xi jk : i � r i+ h j � ∑i�r; k�n xi jk : j � s i+ h sk � ∑i�r;j�s xi jk : k � n i � Fp[X℄:Besides, jRR;C;S j = dimFp(Fp[X℄=IR;C;S).Proof. Sine IR;C;S � Ir;s;n, eah zero of the ideal IR;C;S is uniquely related to a partial Latin retangle inRr;s;n . The three subidealsthat are added to Ir;s;n in the de�nition of IR;C;S involve these partial Latin retangles to be exatly those ones having R, C andS as their row, olumn and symbol types, respetively. Now, in order to prove the last assertion, observe that the �niteness ofRr;s;n involves IR;C;S to be zero-dimensional and that the intersetion between this ideal and the polynomial ring Fp[xi jk ℄ oinideswith the ideal generated by the polynomial xi jk (xi jk � 1), for all (i ; j; k) 2 [r ℄� [s℄� [n℄. This is ontained in IR;C;S, whih is,therefore, not only zero-dimensional, but also radial. Hene, its number of zeros oinides with dimFp(Fp[X℄=IR;C;S). 2The struture of an n-tuple T = (t1; : : : ; tn) 2 Tn;m is de�ned as the expression zT = mdm : : : 1d1 , where di is the number ofourrenes of a given non-negative integer i as a omponent of T . In pratie, only those terms idi for whih di > 0 are written.The length of the struture zT is∑i�m di and its weight is∑i�m idi = m. Hereafter, the set of strutures of length l and weightm is denoted by Zl ;m . Thus, for instane, the struture of the tuple (3; 1; 3; 3; 1; 0) is 3312 2 Z5;11. Isotopisms of partial Latinretangles preserve the strutures of the row, olumn and symbol types of a partial Latin retangle. This beomes essential fortheir enumeration and lassi�ation beause of the following result.Lemma 4.3 The number of partial Latin retangles of a given row, olumn or symbol type only depends on its struture.Proof. Let T = (t1; : : : ; tn) 2 Tn;m and T 0 = (t01; : : : ; t0n0) 2 Tn0 ;m be two tuples with the same struture zT = zT 0 . Suppose n � n0.Then, there exists a permutation � on [n℄ suh that ti = t0�(i) for all i � n. The rest of omponents of T 0 are zeros and do notMath. Meth. Appl. Si. 2017, 00 1{25 Copyright  2017 John Wiley & Sons, Ltd. 11Prepared using mmaauth.ls



MathematialMethods in theApplied Sienes R. M. Fal�on, O. J. Fal�on, J. N�u~nezhave any inuene on the number of partial Latin retangles having T 0 as row, olumn or symbol type. The same permutation� enable us to identify the rows, olumns or symbols of two partial Latin retangles having T and T 0 as row, olumn or symboltypes, respetively. 2Let P be a partial Latin retangle of type (R;C; S) 2 Tr;m � Ts;m � Tn;m. Its struture is de�ned as the triple (zR; zC; zS),where zR, zC and zS are alled, respetively, the row, olumn and symbol strutures of P . Thus, for instane, the partial Latinsquare of Figure 5 has struture (221; 213; 32) 2 Z3;5 �Z4;5 �Z2;5. Some strutures of partial Latin squares have been widelystudied in the literature:a) If the empty ells of a partial Latin square of order n are replaed by zeros, then the struture (kn; kn; nk) is related to theset of F (n; n� k; 1k)-squares [59℄.b) The struture (kn; kn; kn) is that of a k-plex [60℄ of order n. The ase k = 1 orresponds to a transversal [61℄ of a Latinsquare. Every k-plex of order n, with k = 2 < n or k > 2, determines a k-regular seminet with n lines in all its parallel lasses.) The problem of ompleting partial Latin squares, whih is NP-omplete [62℄, has dealt with several strutures: Ryser [63℄analyzed the ompletion of partial Latin squares with pair of row and olumn strutures (s r ; r s); Andersen and Hilton [64℄studied those partial Latin squares of struture ((n � k)n; (n � k)n; (n � k)n), for k 2 f1; 2g; more reently, Adams, Bryantand Buhanan [65℄ dealt with the ompletion of those partial Latin squares with pair of row and olumn struture(n22n�2; n22n�2).Let �(z1; z2; z3) be the number of partial Latin retangles in RR;C;S for any type (R;C; S) 2 Tr;m � Ts;m � Tn;m suh that(zR; zC; zS) = (z1; z2; z3) 2 Zr;m �Zs;m �Zn;m .Theorem 4.4 Let t and n be two positive integers. Then,n!tt!nttn � �(tn; tn; nt):Proof. Let T = (t; : : : ; t) 2 Tn;tn. Every partial Latin square P 2 Rn;n;n of row and olumn type T an be identi�ed with aproper n-edge-olouring of the t-regular bipartite graph having the shape of P as bi-adjaeny matrix. To this end, an edge i jof this graph is oloured aording to a symbol k if and only if (i ; j; k) 2 E(P ). The number of distint partial Latin squareshaving T as row and olumn types oinides, therefore, with that of distint n-edge-olourings over the set of bipartite graphswith bi-adjaeny matrix having T as row and olumn sum vetors. Aording to Wei [66℄, this set has at least n!t=t!n bipartitegraphs. Further, Corollary 1d in [67℄ involves every t-regular bipartite graph with 2n verties to have at least t!2n=ttn di�erentt-edge-olourings. The result follows from ombining both inequalities. 2Lemma 4.5 Let r 0, s 0 and n0 be three positive integers greater than or equal to r , s and n, respetively, and let (z1; z2; z3) 2Zr 0;m �Zs 0 ;m �Zn0 ;m. Let (R; C; S) 2 Tr;m � Ts;m � Tn;m be suh that (zR; zC ; zS) = (z1; z2; z3). Then, jRR;C;Sj = �(z1; z2; z3).Proof. This result follows straightforward from the fat that the zero omponents in a tuple do not have any inuene on thenumber of partial Latin retangles that have this tuple as row, olumn or symbol type. 2Proposition 4.6 The next equality holdsjRr;s;n;m j =∑r 0�rs 0�sn0�n ∑z12Zr 0 ;mz22Zs0 ;mz32Zn0 ;m r 0!s 0!n0!
∏i ;j;k�m dz1i !dz2j !dz3k !( rr 0)(ss 0)(nn0)�(z1; z2; z3);where dzji is the number of ourrenes of the non-negative integer i � m in any tuple of struture zj , for eah j � 3.Proof. The result holds from Lemmas 4.3 and 4.5 and the number of tuples with a given struture. 212 Copyright  2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Si. 2017, 00 1{25Prepared using mmaauth.ls



R. M. Fal�on, O. J. Fal�on, J. N�u~nez MathematialMethods in theApplied SienesTable 6 shows the values of �(zR; zC; zS) for all (R;C; S) 2 Tr;m � Ts;m � Tn;m suh that r � s � n � 6 and m � n.Parastrophisms involve these values to be preserved under permutations of the omponents of the triple (zR; zC; zS). Theorresponding distribution into isotopism (IC) and main (MC) lasses of Rr;s;n;m is also indiated. The omputation of thesevalues has been determined by implementing Theorem 4.2 in a proedure PLRCS in Singular, whih has been inluded in thepreviously mentioned library pls.lib. Proposition 4.6 has then be used to hek the data exposed in Tables 2{5.Table 6. Distribution into isotopism and main lasses of the set RR;C;S .m zR zC zS � IC MC1 1 1 1 1 1 12 2 12 12 2 1 112 12 12 4 1 13 3 13 13 6 1 121 21 21 1 1 113 6 1 113 13 18 1 113 13 13 36 1 14 4 14 14 24 1 131 212 212 4 1 114 24 1 114 14 96 1 122 22 22 2 1 1212 4 1 114 24 1 1212 212 12 2 214 48 1 114 14 144 1 1212 212 212 40 5 314 120 2 214 14 288 1 114 14 14 576 1 15 5 15 15 120 1 141 213 213 18 1 115 120 1 115 15 600 1 132 221 221 6 2 2213 24 2 215 120 1 1213 213 90 3 315 360 1 115 15 1,200 1 1312 312 221 4 1 1213 24 1 115 120 1 1

m zR zC zS � IC MC5 312 221 221 12 2 2213 60 3 315 240 1 1213 213 252 5 415 840 2 215 15 2,400 1 1221 221 221 58 8 4213 180 8 615 600 2 2213 213 504 8 615 1,440 2 215 15 3,600 1 1213 213 213 1,296 8 415 3,240 2 215 15 7,200 1 115 15 15 14,400 1 16 6 16 16 720 1 151 214 214 96 1 116 720 1 116 16 4,320 1 142 2212 2212 28 3 3214 144 2 216 720 1 1214 214 672 3 316 2,880 1 116 16 10,800 1 132 23 23 12 1 12212 36 2 2214 144 1 116 720 1 12212 2212 88 5 4214 336 3 316 1,440 1 1214 214 1,152 2 216 4,320 1 1

m zR zC zS � IC MC6 32 16 16 14,400 1 1412 313 2212 24 1 1214 144 1 116 720 1 12212 2212 56 3 3214 336 3 316 1,440 1 1214 214 1,728 5 416 6,480 2 216 16 21,600 1 1321 321 321 1 1 1313 6 1 123 12 2 22212 40 10 7214 168 7 516 720 1 1313 313 36 1 123 36 1 12212 144 6 6214 576 5 516 2,160 1 123 36 1 123 2212 156 7 7214 576 4 416 2,160 1 12212 2212 512 33 20214 1,728 20 2016 5,760 3 3214 214 5,280 15 1016 15,840 3 316 16 43,200 1 123 23 23 144 2 2313 72 1 12212 432 5 4214 1,296 2 2

m zR zC zS � IC MC6 23 23 16 4,320 1 1313 313 144 2 22212 360 3 3214 1,296 2 216 4,320 1 12212 2212 1,260 18 13214 3,600 8 816 10,800 2 2214 214 9,504 4 416 25,920 1 116 16 64,800 1 1313 313 313 216 1 12212 576 5 4214 2,160 5 416 7,200 2 22212 2212 1,344 16 11214 4,320 10 1016 12,960 2 2214 214 12,672 8 616 34,560 2 216 16 86,400 1 12212 2212 2212 3,320 62 19214 8,976 29 1916 24,480 5 4214 214 22,464 15 1116 56,160 3 316 16 129,600 1 1214 214 214 52,416 9 516 120,960 2 216 16 259,200 1 116 16 16 518,400 1 1
Table 6 is also used in the next theorem to determine the number of partial Latin retangles of weight up to six. This generalizesa reent result [8℄ in whih the ase m � 2 was already exposed. In order to avoid an exessive length of the polynomials thatappear in the theorem, the polynomial∑�2Sym(fa;b;g) r asbn is denoted as ab, for all a; b;  � 0, where Sym(fa; b; g) onstitutesthe set of permutations of the ordered set fa; b; g. Thus, for instane, 3 211 denotes the polynomial 3(r 2sn + r s2n + r sn2).Theorem 4.7 The next equalities holda) jRr;s;n;0j = 1.b) jRr;s;n;1j = 111.) 2!jRr;s;n;2j = 111 (111 � 100 + 2).Math. Meth. Appl. Si. 2017, 00 1{25 Copyright  2017 John Wiley & Sons, Ltd. 13Prepared using mmaauth.ls



MathematialMethods in theApplied Sienes R. M. Fal�on, O. J. Fal�on, J. N�u~nezd) 3!jRr;s;n;3 j = 111 (222� 3 211 + 6 (111 + 110) + 2 200 � 12 100 + 14).e) 4!jRr;s;n;4 j = 111 (333� 6 322 + 12 222 + 11 311 + 30 221 � 60 211 � 6 300 � 36 210� 28 111 + 72 200 + 198 110 �228 100 + 198).f) 5!jRr;s;n;5 j = 111 (444� 10 433 + 20 333 + 35 422 + 90 332 � 180 322 � 50 411� 260 321� 460 222 + 520 311 +1; 350 221 + 24 400 + 240 310 + 480 220� 320 211 � 480 300 � 2; 520 210 � 5; 090 111 + 2; 880 200 + 7; 440 110 �6; 360 100 + 4512).g) 6!jRr;s;n;6 j = 111 (555� 15 544 + 30 444 + 85 533 + 210 443 � 420 433 � 225 522 � 1; 065 432 � 2; 150 333 +2; 130 422 + 5; 310 332 + 274 511 + 2; 310 421 + 4; 400 331 + 4; 800 322 � 4; 620 411� 22; 170 321 � 49; 500 222 �120 500� 1; 800 410� 6; 000 320 + 10; 460 311 + 34; 980 221 + 3; 600 400 + 30; 600 310 + 58; 440 220 + 88; 710 211 �34; 800 300� 165; 480 210� 364; 268 111 + 140; 040 200 + 344; 520 110 � 240; 720 100 + 146; 400).Proof. The �rst equality is immediate. This ounts the partial Latin retangle without any entry. The other equalities followfrom Proposition 4.6 and Table 6. We prove here in detail the �rst three expressions; the rest follows similarly. In the use ofTable 6, reall that the value �(zR; zC; zS) is preserved by parastrophism, that is, the plaement of the strutures zR, zC and zSan be interhanged.b) jRr;s;n;1 j = r sn �(1; 1; 1) = r sn.) jRr;s;n;2 j = r(s2)(n2)�(2; 12; 12) + s(r2)(n2)�(12; 2; 12) + n(r2)(s2)�(12; 12; 2) + (r2)(s2)(n2)�(12; 12; 12) = r sn2 (r sn � r � s � n +2).d) jRr;s;n;3 j = r(s3)(n3)�(3; 13; 13) + s(r3)(n3)�(13; 3; 13) + n(r3)(s3)�(13; 13; 3) + 8(r2)(s2)(n2)�(21; 21; 21) +4(r2)(s2)(n3)�(21; 21; 13) + 4(r2)(s3)(n2)�(21; 13; 21) + 4(r3)(s2)(n2)�(13; 21; 21) + 2(r2)(s3)(n3)�(21; 13; 13) +2(r3)(s2)(n3)�(13; 21; 13) + 2(r3)(s3)(n2)�(13; 13; 21) + (r3)(s3)(n3)�(13; 13; 13) = r sn6 (r 2s2n2 � 3r 2sn � 3r s2n� 3r sn2 +6r sn+ 6r s + 6rn+ 6sn + 2r 2 + 2s2 + 2n2 � 12r � 12s � 12n + 14). 2Corollary 4.8 Let n be a positive integer. Thena) jRn;n;n;0 j = 1.b) jRn;n;n;1 j = n3.) 2! jRn;n;n;2 j = n3(n � 1)2(n+ 2).d) 3! jRn;n;n;3 j = n3(n � 1)2(n4 + 2n3 � 6n2 � 8n + 14).e) 4! jRn;n;n;4 j = n3(n � 1)2(n7 + 2n6 � 15n5 � 20n4 + 98n3 + 36n2 � 288n + 198).f) 5! jRn;n;n;5 j = n3(n � 1)2(n� 2)2(n8 + 6n7 � 7n6 � 88n5 + 6n4 + 532n3 � 84n2 + 1386n + 1128).g) 6! jRn;n;n;6 j = n3(n � 1)2(n � 2)2(n11 + 6n10 � 22n9 � 168n8 + 231n7 + 2; 022n6 � 2; 014n5 � 12; 606n4 + 16; 168n3 +32; 250n2 � 70; 740n + 36; 600).Proof. This result follows straightforward from Theorem 4.7 one we impose r = s = n. 25. Classi�ation of seminets with low point rankEvery seminet is equivalent to a non-ompressible regular partial Latin square [43℄. The next lemma follows straightforward fromthe de�nition of ompressibility and regularity of partial Latin squares and indiates how both properties an be expressed interms of types of partial Latin squares.Lemma 5.1 Let R = (r1; : : : ; rn), C = (1; : : : ; n) and S = (s1; : : : ; sn) be three tuples in Tn;m and let P be a partial Latinsquare in RR;C;S. Then,14 Copyright  2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Si. 2017, 00 1{25Prepared using mmaauth.ls



R. M. Fal�on, O. J. Fal�on, J. N�u~nez MathematialMethods in theApplied Sienes1. P is non-ompressible if and only if at least one of its row, olumn or symbol types does not have zero omponents.2. P is regular if and only if the next three onditions hold.(a) The ell (i ; j) of P is empty for all i ; j � n suh that ri = j = 1.(b) sk > 1 for all i ; j � n suh that ri = 1 and (i ; j; k) 2 E(P ).() sk > 1 for all i ; j � n suh that j = 1 and (i ; j; k) 2 E(P ).Let RregR;C;S be the set of regular partial Latin squares whose row, olumn and symbol types oinide, respetively, with R,C and S. Sine regularity is preserved by paratopism of partial Latin squares, the ardinality of this set only depends on thestrutures of R, C and S. The next result shows how this ardinality is immediately determined for ertain strutures. Reallthat eah exponent dzi in the struture z = mdzm : : : 1dz1 is the number of ourrenes of a given non-negative integer i as aomponent of any tuple of struture z .Proposition 5.2 Let z1, z2 and z3 be three strutures of weight m. Then,a) If dz11 = dz21 = 0, then every partial Latin square having two of their row, olumn or symbol strutures equal to z1 and z2,respetively, is regular.b) If dz11 + dz21 + dz31 > m, then no partial Latin square of struture (z1; z2; z3) is regular.Proof. None partial Latin retangle in (a) ontains a row or a olumn with exatly one entry. All of them are, therefore, regular.Further, from the de�nition of regularity, assertion (b) holds beause every regular partial Latin retangle of type (z1; z2; z3)satis�es that dz11 + dz21 �∑mi=2 dz3i = m � dz31 and hene, dz11 + dz21 + dz31 � m. 2The next result indiates how omputational algebrai geometry an be used to determine the set RregR;C;S.Theorem 5.3 Let R = (r1; : : : ; rn), C = (1; : : : ; n) and S = (s1; : : : ; sn) be three tuples in Tn;m and let p be the �rst primegreater than the maximum of all the omponents of R, C and S. The set RregR;C;S is identi�ed with the set of zeros of thezero-dimensional radial idealIregR;C;S := IR;C;S + h xi jk : i ; j; k � n; ri = j = 1 i+ h xi jk : i ; j; k � n; ri = sk = 1 i+ h xi jk : i ; j; k � n; j = sk = 1 i � Fp[X℄:Besides, jRregR;C;S j = dimFp(Fp[X℄=IregR;C;S).Proof. Sine IregR;C;S � IR;C;S, eah zero of the ideal IregR;C;S is uniquely related to a partial Latin square whose row, olumn andsymbol types oinide, respetively, with R, C and S. The rest of the proof is similar to that of Theorem 2.1 one we observethat the three subideals that are added to IR;C;S in the de�nition of IregR;C;S involve these partial Latin squares to verify, respetively,onditions (2.a), (2.b) and (2.) of Lemma 5.1. 2Theorem 5.3 has been implemented in the proedure PLRCS in pls.lib in order to determine in Table 7 the distribution ofregular partial Latin squares of order up to 8 aording to their strutures and main lasses. This distribution is equivalent tothat of seminets with point rank up to eight. A ensus of the main lasses of seminets with point rank up to six is exposed inFigure 7, where we an observe in partiular the four on�gurations whose existene were already established by Havel [44℄: theFano on�gurations S4;1 and S6;2, the shattered Desargues on�guration S6;32 and the Thomsen on�guration S6;33. Havel alsodetermined the three on�gurations with point rank seven: the hexagonal on�guration H, the �rst hybrid on�guration C1 andthe seond hybrid on�guration C2. They orrespond to the three main lasses of partial Latin squares of type (322; 322; 322) inTable 7. 1 2 32 13 1 1 2 32 13 1 1 2 32 13 2H C1 C2Math. Meth. Appl. Si. 2017, 00 1{25 Copyright  2017 John Wiley & Sons, Ltd. 15Prepared using mmaauth.ls
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S3 S4,1 S4,2 S4,3 S4,4 S5,1 S5,2

S5,3 S5,4 S5,5 S5,6 S5,7 S6,1 S6,2

S6,3 S6,4 S6,5 S6,6 S6,7 S6,8 S6,9

S6,10 S6,11 S6,12 S6,13 S6,14 S6,15 S6,16

S6,17 S6,18 S6,19 S6,20 S6,21 S6,22 S6,23

S6,24 S6,25 S6,26 S6,27 S6,28 S6,29 S6,30

S6,31 S6,32 S6,33 S6,34 S6,35 S6,36 S6,37

S6,38 S6,39 S6,40 S6,41 S6,42 S6,43 S6,44

S6,45 S6,46 S6,47 S6,48 S6,49 S6,50 S6,51

S6,52 S6,53 S6,54 S6,55Figure 7. Classi�ation of seminets with point rank up to six.16 Copyright  2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Si. 2017, 00 1{25Prepared using mmaauth.ls



R. M. Fal�on, O. J. Fal�on, J. N�u~nez MathematialMethods in theApplied SienesTable 7. Distribution into main lasses of the set RregR;C;S.mzR zC zS �regMC3 21 21 21 1 14 22 22 22 2 1212 4 114 24 1212 212 4 15 32 221 221 4 1213 12 1312 312 221 4 1221 221 8 1221 221 221 32 2213 24 16 42 2212 2212 8 132 23 23 12 12212 36 2214 144 116 720 12212 2212 48 2214 48 1412 2212 2212 16 1321 321 321 1 1313 6 123 12 22212 20 4214 24 123 23 36 12212 120 5214 288 22212 2212 160 423 23 23 144 2313 72 12212 432 4214 1,296 216 4,320 1313 313 36 12212 144 22212 2212 624 7214 288 12212 2212 2212 160 37 43 231 231 54 22213 144 2215 360 12213 2213 144 1421 3212 3212 4 1231 36 32213 48 2314 231 144 1231 231 162 42213 360 5215 360 12213 2213 144 1321 322 322 4 13212 12 2314 48 1231 72 32213 192 4215 480 13212 3212 24 2314 48 1231 120 52213 144 3231 231 612 6

mzR zC zS �regMC7 321 231 2213 1,008 7215 720 12213 2213 288 1322 322 322 16 33212 48 5314 144 2231 192 72213 720 12215 2,640 517 10,080 13212 3212 112 9314 192 2231 456 192213 816 18215 480 1314 231 1,008 42213 288 1231 231 1,692 162213 3,744 26215 6,480 52213 2213 2,592 63212 3212 3212 144 5231 684 182213 264 5314 231 432 2231 231 2,556 212213 2,088 15314 231 231 3,456 3231 231 231 8,478 132213 10,152 162213 2213 2,160 38 53 2312 2312 144 12214 288 142 24 24 216 22312 528 32214 2,016 3216 8,640 118 40,320 12312 2312 792 42214 1,440 3216 1,440 12214 2214 576 1521 3213 2312 72 12312 2312 432 22214 576 1431 32213221 24 43213 72 6315 240 124 192 42312 396 172214 768 8216 720 13213 3213 108 224 720 52312 720 102214 288 1315 24 2,880 12312 720 124 24 864 22312 2,592 102214 7,488 7

mzR zC zS �regMC8 43124 216 17,280 22312 2312 3,744 152214 3,456 7422 3212 3212 8 13221 16 13213 48 124 192 22312 336 42214 576 332213221 72 83213 240 10315 720 224 384 42312 1,104 232214 2,880 15216 5,760 23213 3213 360 424 1,728 62312 2,448 172214 1,728 3315 24 5,760 12312 2,880 124 24 1,296 42312 5,184 112214 19,584 12216 69,120 318 241,920 12312 2312 10,368 242214 15,552 15216 8,640 12214 2214 3,456 2322 322 322 4 13212 8 13221 48 43213 144 4315 480 124 192 32312 720 112214 2,640 11216 10,080 318 40,320 13212 3212 16 13221 104 73213 240 5315 480 124 480 42312 1,032 142214 1,920 7216 1,440 132213221 396 293213 1,020 43315 2,640 624 1,440 152312 4,008 842214 9,792 51216 18,720 73213 3213 1,440 12315 720 124 4,032 142312 6,336 442214 5,184 9

mzR zC zS �regMC8 322 315 24 11,520 22312 7,200 324 24 4,896 82312 14,832 312214 46,080 25216 146,880 618 483,840 12312 2312 26,208 532214 6,912 2216 17,280 22214 2214 6,912 2513 3213 2312 216 12312 2312 864 14212 4212 3221 16 224 144 23213 24 12312 192 42214 96 13212 3212 16 13221 48 324 384 33213 96 22312 432 52214 192 132213221 240 1924 960 10414 96 13213 528 222312 1,968 41315 480 12214 2,112 1124 24 2,592 4414 576 13213 3,168 122312 8,208 16315 5,760 22214 15,552 9216 8,640 1414 2312 288 13213 3213 288 32312 2,160 172312 2312 9,648 212214 3,168 43212 3212 3212 32 13221 192 424 1,248 5414 96 13213 288 22312 1,248 72214 576 232213221 800 2824 3,648 19414 192 13213 1,3442402312 5,184 55315 960 12214 4,608 1224 24 13,248 8414 1,152 13213 8,064 142312 24,480 28

mzR zC zS �regMC8 3212 24 315 11,520 12214 38,016 14216 17,280 1414 2312 576 13213 3213 576 32312 4,176 152312 2312 19,296 232214 5,184 5322132213221 2,768 6924 9,504 59414 720 63213 5,3281172312 18,144206315 8,640 112214 26,016 77216 15,840 524 24 27,072 16414 2,304 23213 22,176 772312 62,784110315 48,960 92214 130,176 57216 207,360 7414 3213 432 22312 2,880 53213 3213 4,078 312312 19,5121372214 4,896 92312 2312 72,576133315 8,640 42214 47,232 4224 24 24 67,824 8414 5,184 23213 69,120 142312 177,120 25315 172,800 32214 475,200 20216 1,296,000 518 3,628,800 2414 414 576 13213 3,456 22312 12,096 32214 3,456 13213 3213 27,216 222312 90,720 54315 8,640 12214 58,752 102312 2312 263,952 53315 86,400 32214 302,400 30216 129,600 22214 2214 51,840 4414 2312 2312 4,320 23213 3213 2312 4,752 102312 2312 36,288 242312 2312 2312 167,184 272214 33,696 7
Math. Meth. Appl. Si. 2017, 00 1{25 Copyright  2017 John Wiley & Sons, Ltd. 17Prepared using mmaauth.ls



MathematialMethods in theApplied Sienes R. M. Fal�on, O. J. Fal�on, J. N�u~nezShortly after, Lyakh [38℄ determined 21 on�gurations with point rank 8, whih an be identi�ed with the partial Latin squares1 23 4 1 23 4 1 2 3 43 4 1 2 1 2 3 42 1 4 3 1 2 3 44 32 1 1 2 32 1 43 4 1 2 3 42 4 1 3 1 2 3 41 34 2F1 F2 F3 F4 F5 F6 F72 44 12 31 3 2 44 12 33 1 2 41 34 32 1 2 43 14 32 1 3 2 41 3 24 1 4 1 3 22 3 4 1 3 4 21 2 34 1F8 F9 F10 F11 F12 F13 F141 3 23 2 12 1 4 2 33 2 11 4 2 4 32 1 31 4 2 3 41 3 24 1 3 4 21 2 34 1 3 4 22 1 34 1 4 3 23 2 14 1F15 F16 F17 F18 F19 F20 F21They orrespond in Table 7 toi. The two main lasses of type (42; 24; 24): F3 and F13.ii. The four main lasses of type (422; 24; 24): F2, F4, F6 and F7.iii. The main lass of type (322; 322; 322): F15.iv. The three main lasses of type (322; 322; 24): F5, F12 and F14.v. The six main lasses of type (322; 24; 24): from F16 to F21.vi. Five of the eight main lasses of type (24; 24; 24): F1, F8, F9, F10 and F11.The next two main lasses of type (24; 24; 24) omplete the list of Lyakh.1 2 2 13 44 3 1 2 3 44 23 1F22 F23The eighth main lass of type (24; 24; 24) is not related to a on�guration beause there exist non-onneted points in theorresponding seminet (see Figure 8). � 1 22 1 3 44 3Figure 8. Seminet of point rank 8 that is not a on�guration.18 Copyright  2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Si. 2017, 00 1{25Prepared using mmaauth.ls



R. M. Fal�on, O. J. Fal�on, J. N�u~nez MathematialMethods in theApplied Sienes6. Binary onstraints related to the sets TSn and TCOnThis setion deals with a series of binary onstraints that haraterize the sets of totally symmetri and totally onjugateorthogonal partial Latin squares of given order and weight. Hereafter, in order to avoid degeneray, partial Latin squares areassumed to have at least one entry in eah row, at least one entry in eah olumn, and at least one opy of eah symbol. FromTheorem 2.1, the following system of onstraints must, therefore, hold.


































































xi jkxi 0 jk = 0; for all i ; i 0; j; k � n suh that i 6= i 0;xi jkxi j 0k = 0; for all i ; j; j 0; k � n suh that j 6= j 0;xi jkxi jk 0 = 0; for all i ; j; k; k 0 � n suh that k 6= k 0;
∑j;k2[n℄ xi jk � 1; for all i 2 [n℄;
∑i ;k2[n℄ xi jk � 1; for all j 2 [n℄;
∑i ;j2[n℄ xi jk � 1; for all k 2 [n℄;xi jk 2 f0; 1g; for all i ; j; k � n: (2)

Lemma 6.1 Let n and m be two positive integers suh that n � m � n2.a) If m > n, then every pair of orthogonal onjugates of a partial Latin square in the set TCOn;m are distint.b) If jTCOn;mj = 0, then jTCOn;m0 j = 0, for all m0 2 fm + 1; : : : ; n2g.Proof. Let us prove eah statement separately.a) Let P 2 Rn;n;n;m and �; �0 2 S3 be suh that � 6= �0 and P � = P �0 . Sine m > n, there exists one symbol k 2 [n℄ and adistint pair of elements (i1; j1) and, (i2; j2) in [n℄� [n℄ suh that f(i1; j1; k); (i2; j2; k)g � E(P �) \ E(P �0). As a onsequene,P � = P �0 is not orthogonal to itself.b) Otherwise, the partial Latin square that results after emptying any m0 �m �lled ells of the partial Latin square in TCOn;m0would be in TCOn;m, whih is a ontradition.Lemma 6.1.a does not hold in general in ase of being m = n. Thus, for instane, the partial Latin square P 2 R3;3;3;3 suhthat E(P ) = f(1; 1; 1); (2; 2; 2); (3; 3; 3)g is totally symmetri and orthogonal to itself.Based on (2), we establish in Setion 3 some equations to deal, respetively, with the sets TSn and TCOn. To this end, letus introdue the following notation x�i1 i2 i3 := xi�(1) i�(2) i�(3) ;for all � 2 S3 and xi1 i2 i3 2 fXg. Besides, we label the six permutations in S3 asS3 := f�1 = Id; �2 = (12); �3 = (13); �4 = (23); �5 = (123); �6 = (132)g:Proposition 6.2 Let n and m be two positive integers suh that n < m � n2. Then,a) The set TSn is identi�ed with the set of zeros of (2) andx�si jk = xi jk ; for all i ; j; k 2 [n℄ and s 2 f1; 2; 3g: (3)b) The set TSn;m is identi�ed with the set of zeros of (2){(3) and
∑i ;j;k2[n℄ xi jk = m: (4)Math. Meth. Appl. Si. 2017, 00 1{25 Copyright  2017 John Wiley & Sons, Ltd. 19Prepared using mmaauth.ls



MathematialMethods in theApplied Sienes R. M. Fal�on, O. J. Fal�on, J. N�u~nez) The set TCOn is identi�ed with the set of zeros of (2) andx�si jpx�sklpx�ti jqx�tklq = 0; for all i ; j; k; l ; p; q � n; s; t � 3; suh that (i ; j) 6= (k; l); s � t: (5)d) The set TCOn;m is identi�ed with the set of zeros of (2), (4) and (5).Proof. The result follows straightforwardly from the de�nitions exposed in Setion 2 one eah partial Latin square P = (pi j ) 2Rr;s;n is identi�ed with a zero (x111; : : : ; xr sn) suh that xi jk = 1 if pi j = k and 0, otherwise. Thus, for instane, if we fouson the proof of statement (), then, given 1 � s < t � 3, the system of equations determined by (5) involves the ��1s - and��1t -onjugates of P to be orthogonal. Besides, from Lemma 6.1.a, both onjugates are distint.Proposition 6.2 has been implemented in the CSP solver Minion [68℄ to obtain the numerial data exposed in Table 8. Further,Table 9 indiates the run time that is required in our omputer system (Intel Core i7-2600, with a 3.4 GHz proessor and 16GB of RAM) to determine one spei� example in the sets TSn;m and TCOn;m.m jTS(n;m)j jTCO(n;m)jn n3 4 5 6 3 43 1 364 6 1 216 5765 6 12 1 12 451686 10 24 20 1 0 3150487 12 64 80 30 0 3918248 3 60 220 210 0 950289 3 100 380 680 0 261610 148 910 1980 011 72 1010 4380 012 90 1630 7660 013 72 2740 17820 014 36 2040 23370 015 16 2784 37476 016 16 3395 68850 017 2195 6819018 2080 9666019 2320 14556020 900 12204021 900 14604022 480 19620023 240 13248024 30 14871025 30 15732026 10143027 8154028 8631029 3582030 3339031 2034032 1134033 456034 396035 72036 480Total 41 711 24385 1755547 264 850260Table 8. Distribution of the sets TSn;m and TCOn;m.20 Copyright  2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Si. 2017, 00 1{25Prepared using mmaauth.ls



R. M. Fal�on, O. J. Fal�on, J. N�u~nez MathematialMethods in theApplied SienesRun time (seonds) Run time (seonds)n m TSn;m TCOn;m5 5 < 1 2210 < 1 36 6 < 1 856112 < 1 1015 < 1 7410 10 69 Out of memory50 < 1 "15 15 > 3 hours "60 2 "20 100 Out of memory "Table 9. Run times required to get exatly one totally symmetri or totally onjugate orthogonal partial Latin square of a givenorder and weight.7. Lie partial quasigroup rings derived from the onjugate-extension of a partial LatinsquareThe inlusion of new binary onstraints into (2){(5) enables us to determine families of partial Latin squares in the sets TSn andTCOn with possible appliations in distint �elds. As an illustrative example, we onlude this paper by desribing in this setiona new family of Lie partial quasigroup rings related to a totally symmetri partial Latin square of order 3n, whih is derived inturn from a given partial Latin square of order n. Reall that a Lie algebra is an anti-ommutative algebra A that holds theso-alled Jaobi identity J(a; b; ) := (ab) + (b)a+ (a)b = 0; for all a; b;  2 A: (6)Let P = (pi j ) 2 Rn;n;n;m . We de�ne the n� n arrays P 0 = (p0i j ) and P 00 = (p00i j ) suh thatp0i j := 


pi j + n; if pi j 2 [n℄;0; otherwise: and p00i j := 


pi j + 2n; if pi j 2 [n℄;0; otherwise: (7)Then, we de�ne the partial Latin square P = (pi j ) 2 R3n;3n;3n;6m by means of nine n � n bloks asP :� 0 P 00 P 0(23)P 00(12) 0 P (132)P 0(123) P (13) 0 (8)where 0 denotes the n � n array with all its entries being zero. We all this new partial Latin square the onjugate-extension ofP . Thus, for instane, Figure 9 shows the onjugate-extension of the partial Latin square exposed in Figure 2.7 8 4 59 57 67 18 9 1 27 34 6 1 35 15 2Figure 9. Conjugate-extension of the partial Latin square P 2 R3;3;3 of Figure 2.Math. Meth. Appl. Si. 2017, 00 1{25 Copyright  2017 John Wiley & Sons, Ltd. 21Prepared using mmaauth.ls



MathematialMethods in theApplied Sienes R. M. Fal�on, O. J. Fal�on, J. N�u~nezLemma 7.1 If P 2 Rn;n;n;m , then P 2 TS3n;6m.Proof. The result follows from the entry set E(P ) one we keep in mind (7) and (8).Let AK(P ) denote the partial quasigroup ring over a �nite �eld K of harateristi two that is related to P . Partiularly, wefous on the ase of being P 2 TSn. If this is the ase, then the de�nition (8) of the partial Latin square P resultsP � 0 P 00 P 0P 00 0 PP 0 P 0 (9)Theorem 7.2 Let K be a �nite �eld of harateristi two and let P 2 TSn be the multipliation table of a quasigroup ([n℄; �)satisfying the left invertive law (a � b) �  = ( � b) � a; for all a; b;  2 [n℄: (10)Then, the partial quasigroup ring AK(P ) is a Lie algebra.Proof. The symmetry of the partial Latin square P = (pi j ), with pi i = 0, for all i � 3n, together with the fat of being K a�nite �eld of harateristi two, involves AK(P ) to be anti-ommutative. Now, in order to prove that the Jaobi identity (6)holds, suppose fe1; : : : ; e3ng to be the basis of AK(P ), whih we partition into the three sets fe1; : : : ; eng, fen+1; : : : ; e2ngand fe2n+1; : : : ; e3ng. Let S(ei ) denote whih one of these three sets ontains eah basis vetor ei . From (9), we havethat, if S(ei ) = S(ej ), then eiej = 0. Besides, if S(ei ) 6= S(ej ) and eiej 6= 0, then S(ei ) 6= S(ei ej) 6= S(ej). As a onsequene,J(ei ; ej ; ek) = 0, for all i ; j; k � 3n suh that the three sets S(ei ), S(ej) and S(ek) either oinide or are pairwise distint.Then, from the symmetry of the Jaobi identity, it is enough to fous on the expression J(ei ; ej ; ek) in ase of beingS(ei ) = S(ej ) 6= S(ek). If this is the ase, eiej = 0 and hene, J(ei ; ej ; ek) = (ejek)ei + (ekei )ej = e(j �k)�i + e(k�i)�j . The resultfollows from the symmetry of the partial Latin square P and the left invertive law.Every totally symmetri partial Latin square satisfying (10) onstitutes the multipliation table of a partial totally symmetrigroup. In order to ompute this kind of partial Latin squares, we inlude the following equations to (2){(4)xi jkxklsxl j t(xtis � 1) = 0; for all i ; j; k; l ; s; t 2 [n℄ (11)
(

∑k�n xi jk � 1)(∑k�n xl jk) xl j t (∑k�n xtik) = 0; for all i ; j; l ; t 2 [n℄ (12)xi jk (∑s�n xkls � 1)(∑s�n xl j s) xl j t (∑s�n xtis) = 0; for all i ; j; k; l ; t 2 [n℄ (13)The implementation of these equations into our CSP solver determines, for instane, the pair of partial Latin squares exposedin Figure 10, whih give rise in turn, aording to Theorem 7.2, to a pair of Lie partial quasigroup rings as we have previouslydesribed. 3 121 3 2 11 2 4 33 4 6 55 6Figure 10. Totally symmetri partial Latin squares satisfying the left invertive law.22 Copyright  2017 John Wiley & Sons, Ltd. Math. Meth. Appl. Si. 2017, 00 1{25Prepared using mmaauth.ls



R. M. Fal�on, O. J. Fal�on, J. N�u~nez MathematialMethods in theApplied Sienes8. Conlusion and further studiesThis paper has dealt with the enumeration and lassi�ation of partial Latin retangles and seminets by means of omputationalalgebrai geometry. Both ombinatorial strutures have been identi�ed with the points of aÆne varieties de�ned by zero-dimensional radial ideals of polynomials. Their deompositions into �nitely many disjoint subsets, eah of them being the zerosof a triangular system of polynomial equations, have emerged as a useful tehnique to determine, by means of the omputeralgebra system Singular, the distribution of r � s partial Latin retangles based on [n℄ into isotopi and main lasses aordingto their weight and types, for all r; s; n � 6, and that of non-ompressible regular partial Latin squares of order n � 8. Thelatter is equivalent to that of seminets with point rank up to eight and has enabled us to omplete a lassi�ation previouslyestablished by Lyakh [38℄. General formulas for the number of partial Latin squares of weight up to six and a ensus of all theseminets with at most six points have also been established. A onvenient generalization of the omputational method exposedin this paper to the theory of k-seminets and that of non-ompressible, regular and mutually regularly orthogonal partial Latinsquares developed by U�san [12℄ is established as further work. We have also desribed a series of binary onstraints that enableus to determine the distribution of the sets TSn and TCOn of totally symmetri and totally onjugate partial Latin squares oforder n, respetively, aording to their weights. By means of the CSP solver Minion, we have omputed the former, for all2 � n � 6, and the latter, for all 2 � n � 4. A further study to improve the eÆieny of the proposed method is required todeal with higher orders. Besides, we have introdued the onjugate-extension of a given partial Latin square, whih gives rise toa totally symmetri partial Latin square. Partiularly, the desription of a family of Lie partial quasigroup rings derived from theonjugate-extension of a totally symmetri partial Latin square that holds the left invertive law has enabled us to delve into theopen problem of onstruting examples of this type of Lie algebras.
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