Fatality risks in eccentric time localities: not that elevated

José María Martín-Olalla

Universidad de Sevilla, Facultad de Física, Departamento de Física de la Materia Condensada, ES41012 Sevilla, Spain^{*}

(Dated: February 3rd, 2022)

File: mainAps.tex Encoding: utf8 Words in text: 716 Words in headers: 10 Words outside text (captions, etc.): 181 Number of headers: 2 Number of floats/tables/figures: 3 Number of math inlines: 38 Number of math displayed: 0

Recently Gentry et al. (2022) analyzed the impact of the east-west gradient within a US time zone on the vehicle fatalities from 2006 to 2017. They distinguished control localities —those inside the physical time zone corresponding to their winter local time, referred as so*lar*, as an example Houston, Texas— and the tested localities —those outside, west of, their physical time zone, referred as *Eccentric Time Locality (ETL)*, as an example Amarillo, Texas—. Their results were summarized on their Table 3, where population sizes P, accumulated fatalities F, and the fatality rates R = F/P are listed for solar and ETL groups. Gentry et al. (2022) reported worse scores (larger fatalities) in the Easter, Central and Mountain ETL: 23.8%, 17.7%, 26.5%, respectively, comparing pairwise a solar location to their corresponding ETL.

All else equal, east-west gradient may impact societal issue like traffic accident rates. However the impact reported by Gentry *et al.* (2022) are staggering large. I offer an alternative explanation for their findings.

In their analysis, authors implicitly assume F scales with P through different geographical localities. However, when dealing with heterogeneous social magnitudes like F one should be consider $F \propto P^{\alpha_e}$ where α_e is an empirical exponent, which may or may not be equal to one. I provide an analogy based on mortality. I got weekly numbers of deaths in Spain since 2000 disaggregated by NUTS3 regions¹ (N = 52). I tested the logarithmic of the accumulated values against the logarithm of the average population in every region. I found $\alpha_e = 0.92$ with 95% confidence interval (CI) [0.86,0.98]. In this case $\alpha_e \neq 1$ is related to the myriad of societal issues that impact mortality of which differences in the age distribution along the Spanish NUTS2 regions are probably the most significant: with rural regions less populated and aged the distribution flattens and the effective exponent decreases.²

In the case of the vehicle fatalities analyzed by Gentry et al. (2022) the authors list a series of factor that also lead to road accidents in Section Limitations. In other words, in addition to the east-west gradient, F must depend on other environmental conditions such as, but not limited to: population density, population age, miles traveled, road conditions, emergency responses, weather conditions. All these factors jeopardize a simple $F \propto P$ coupling.

I show in Figure 1 a double logarithm plot of the fatalities versus population sizes. Visually speaking, ETL observations are not outliers in this chart.

I performed several $F = a \times P^{\alpha_e}$ tests, where a is an effective rate of fatalities. The tests involved: (1) the set of seven observations; (2) the set of four solar observations; (3) the set of three ETL observations. Results are summarized on table I. In figure 1 I show the fitting results for the seven observations (orange line) and the four solar observations (blue line). I find point estimates $\alpha_e \neq 1$, with the 95 %CI including $\alpha_e = 1$. In reverse this usually means that the null hypothesis "F/P does not depend on P" sustains at the standard level of confidence in every analysis. This is due to the scarcity of observations and their strong variability. Worse, the 95 %CI for the rates

^{*} olalla@us.es; https://orcid.org/0000-0002-3750-9113; https://ror.org/03yxnpp24;

¹ Nomenclature of Territorial Units for Statistics, https://ec. europa.eu/eurostat/web/nuts/background

 $^{^2}$ The impact of age/sex population structure is remove by using age-specific death rates or the life expectancy at birth.

FIG. 1 Double logarithmic plot of the fatalities to population relationship in Gentry *et al.* (2022). The solid symbols denote ETL observations; the open symbols solar observations. Circles: Eastern Time Zone; up triangles: Central Time Zone; down triangles: Mountain Time Zone: square: Pacific Time Zone. The solid orange line shows the fitting for the solar observations and the solid blueish line, the fitting for the total observations; see Table I. For the purpose of comparison I show $\alpha = 1$ as a broken line.

a are extremely wide.

Finally Table II mimics the results presented by Gentry *et al.* (2022) in their Table 3. I include two more data columns aiming to simulate the effect of the scaling relation: $F/P^{\alpha_e^{\text{solar}}}$ and F/P^{α_e} , where from Table I α_e^{solar} is the effective exponent for the solar analysis, and α_e is the effective exponent for the complete analysis.

I also computed the percent worsening deduced from the ratio of ETL rates to solar rates. I do not claim this is a good measure of the impact of west-east gradient on fatalities but it mimics Gentry *et al.* (2022) argument and it helps to visualize the strong dependence of this metric on α_e .

More observations would be needed to assess a precise value for α_e in the United States. Disaggregated numbers by county may provide some insight on this relation. Very likely the impact of the eccentric time zones is not an increase of 20% in vehicles fatalities as Gentry *et al.* (2022) claimed.

TIME LINE

On November 5th 2022, the social network **ResearchGate** recommended JMM-O a manuscript by Winnebeck (2022), from which JMM-O knew about the targeted manuscript by Gentry *et al.* (2022). On November 9th 2022, JMMO submitted this original

version to *Time and Society*. It was accepted for publication on December 14th, 2022 and released online on February 3rd, 2023.

REFERENCES

- Gentry, Jeffery, Jayson Evaniuck, Thanchira Suriyamongkol, and Ivana Mali (2022), "Living in the wrong time zone: Elevated risk of traffic fatalities in eccentric time localities," Time and Society **31**, 457–479.
- Winnebeck, Eva C (2022), "Chronobiology: Is daylight saving time a deer saving time?" Current Biology 32, PR1283– PR1286.

Set	N	α_e	$95\%\mathrm{CI}$	a	$95\%{ m CI}$	p-value
All observations	7	0.90	[0.78, 1.02]	8.43×10^{-3}	$[1.09 \times 10^{-3}, 6.49 \times 10^{-2}]$	< 0.001
Solar observations	4	0.94	[0.36, 1.51]	3.99×10^{-3}	$[1.51 \times 10^{-7}, 1.05 \times 10^{2}]$	0.02
ETL observations	3	0.93	[0.31, 1.56]	4.94×10^{-3}	$[2.14 \times 10^{-7}, 1.14 \times 10^{2}]$	0.03

TABLE I Results from the fit $F = a \times P^{\alpha_e}$ for set of data. Figure 1 shows the fittings for the solar and total observations. The effective exponent drives the slope in the double-logarithm plot; the effective rate a drives the intercept value at P = 1.

Time Zone	Class	$\begin{array}{c} \text{Fatalities} \\ F \end{array}$	$\begin{array}{c} \text{Population} \\ P \end{array}$	$F/P^1 \times 1000$	Pct worse	$F/P^{\alpha_e^{ m solar}} \times 1000$	Pct worse	$F/P^{\alpha_e} \times 1000$	Pct worse
Eastern	Solar ETL	$\frac{132722}{58478}$	$\frac{110133372}{39199427}$	$1.205 \\ 1.492$	23.8	$3.833 \\ 4.448$	16.1	$7.992 \\ 8.903$	11.4
Central	Solar ETL	$\begin{array}{c}124890\\23789\end{array}$	$\frac{78783002}{12746474}$	$1.585 \\ 1.866$	17.7	$4.938 \\ 5.188$	5.1	$10.159 \\ 9.930$	-2.3
Mountain	Solar ETL	$\begin{array}{c} 19180\\ 2959 \end{array}$	$\frac{12834599}{1564684}$	$1.494 \\ 1.891$	26.5	$\begin{array}{c} 4.156 \\ 4.611 \end{array}$	11.0	$7.957 \\ 8.121$	2.1
Pacific	Solar	55381	52317788	1.059		3.214		6.506	
Total	Solar ETL	$\frac{332173}{85226}$	$\begin{array}{c} 254068761 \\ 53510585 \end{array}$	$1.307 \\ 1.593$	21.8	$4.381 \\ 4.842$	10.5	$9.444 \\ 9.812$	3.9
Total	Total	417399	307579346	1.357		4.602		9.995	

TABLE II Main results from Table 3 in Gentry *et al.* (2022) augmented with the $F/P_{e}^{\alpha_{e}^{\text{solar}}}$ and $F/P_{e}^{\alpha_{e}}$ columns. From left to right the changes in the percentage worse of the ETL observations on α_{e} can be appreciated. Point estimate values of the effective exponents were $\alpha_{e}^{\text{solar}} = 0.937512$ and $\alpha_{e} = 0.897831$. See table I for their 95 %CI.