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Abstract: Motivated by the high variability of markets occurred in the last years, which in turns determined 

significant uncertainty in lead times and supply chain dynamics, this paper introduces a data-driven 

framework based on machine learning and metaheuristic optimization to dynamically select the most 

suitable replenishment strategy for a complex two-echelon (supplier-inventory-factory) supply chain (SC) 

problem with perishable product and stochastic lead times. Since the supplier dispatches the product (i.e., 

the raw material) with a fixed expiration date, the product shelf-life strictly depends on the related delivery 

lead time, which is subject to uncertainty. In addition, a minimum order quantity has to be fulfilled and the 

time between two consecutive orders cannot be less than one month. The aim of the work is to select the 

most suitable replenishment strategy able to minimize the average stock level, which is a surrogate cost 

metric, while respecting a target fill rate. Considering a smoothing order-up-to policy, the data-driven 

prediction-optimization framework makes use of Artificial Neural Network (ANN) and Particle Swarm 

Optimization (PSO) to select the best replenishment parameters (i.e., forecasting factor, proportional 

controller and safety stock factor) able to dynamically enhance the SC economic performance under the fill 

rate constraint. The ability of the framework under the predictive and the optimization perspective is 

assessed and a sensitivity analysis on the influence of replenishment parameters is presented as well. 
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1. INTRODUCTION 

Supply chains are large and complex systems that have been 

gathering a great attention from both academics and industrial 

practitioners during the last years. Their complexity is due to 

multiple sources of uncertainty and non-linear effects, which 

may involve unpredictable disruptions that in turns may 

drastically affect the performance of the whole system. 

Uncertainty in SC environments has been recently amplified 

by the COVID-19 pandemic, which caused high variability on 

manufacturing capability as well as on the delivery lead-times. 

In some contexts (such as semiconductor, food or 

pharmaceutical), product perishability may represent an 

additional source of complexity as the units of product cannot 

be stored infinitely without deterioration and, at the end of the 

related shelf life, they have to be wasted (Billaut, 2011; 

Acevedo-Ojeda et al., 2020). In order to face the risk of 

disruptions, the main objective of SC managers is to build 

resilient supply chains capable of reacting to the different 

sources of uncertainty (Razavian et al., 2021). In general, a 

way to achieve resilience in SC consists in selecting an optimal 

replenishment strategy to react to the continuous changes in 

market demands or delivery lead times caused by disruptive 

events. The aim of this paper is to introduce a data-driven 

framework, which exploits a prediction-optimization approach 

based on artificial intelligence to identify the most suitable 

replenishment strategy for a one-product two-echelon SC 

characterized by stochastic lead times and a perishable 

product. 

1.1 Literature background 

In the SC management field, the supply chain dynamics is a 

literature stream focused on studying counter-intuitive 

behavior of the SC network and effectively managing the 

operations of each node, such as the production and 

distribution operations (Framinan, 2021). The main decision 

problem in supply chain dynamics consists of establishing the 

replenishment order strategy to be adopted by the nodes of the 

SC. Several different replenishment strategies exist in 

literature; however, the Order-Up-To (OUT) policy is widely 

adopted in literature and in real-life supply chains. It consists 

of ordering a quantity of product to the downstream node so as 

to achieve a target inventory level and delivery work-in 

progress (Disney and Lambrecht, 2008). This policy allows 

increasing the operational performance while limiting the 

stock level, but the reduction of the bullwhip effect in terms of 

order variance is limited (Gaalman, 2006). As a consequence, 
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a Smoothing OUT (S-OUT) policy is preferable in which a 

proportional controller parameter is used to properly adjust the 

order quantity (e.g., Framinan, 2021; Corsini et al., 2022a, b). 

The replenishment strategies and their implications on the 

supply chain dynamics have been mainly studied through the 

control theory (Lin et al., 2018) or by means of simulation 

techniques (Costa et al., 2020). Interestingly, Priore et al. 

(2019) used a machine learning algorithm (specifically an 

inductive learning algorithm) to dynamically select the best 

replenishment policies in a single-product supply chain 

dynamics problem with deterministic delivery lead times. 

Precisely, they used such algorithm to select the most suitable 

proportional controller to reduce the bullwhip effect. The other 

parameters involved in the S-OUT replenishment rule, i.e., 

safety stock factor and forecasting factor, were fixed and not 

considered in the resolution problem. As a major finding, they 

demonstrated that this dynamics approach overperform the 

static alternatives. 

1.2 Research contribution 

Inspired by a real-life issue in the semiconductor context, the 

present paper deals with a two-echelon SC dynamics problem, 

wherein the first echelon covers the material/information flow 

between the supplier and the firm’s inventory and the second 

echelon pertains the relationship between the firm’s inventory 

and the manufacturing plant. The leading features of the 

problem at hand are in the following: 

• The units of product are subject to perishability; 

• The supplier dispatches the product units with a fixed 

expiration date; 

• The delivery lead time from the supplier to the firm 

is subject to uncertainty (stochastic lead time); as a 

result, the shelf-life of the product units is variable as 

it depends on the delivery lead time; 

• The orders have to be issued monthly at least, while 

the demand coming from the manufacturing plant 

should be daily fulfilled; 

• Any order has to respect a minimum order quantity 

(MOQ) according to the trade agreement between the 

firm and the supplier. 

The present paper would represent a seminal research based on 

some leading I4.0 paradigms, such as cyber-physical system 

(CPS) and data-driven optimization (DDO), with the aim of 

building a dynamic replenishment framework to strengthen the 

performance of complex supply chains. In CPSs, simulation, 

networking, and physical processes are simultaneously 

connected with each other. In brief, CPS make full use of 

different cyber computational systems to control a physical 

environment and, through a feedback control, adapt itself to 

new conditions, in real time (Babiceanu and Seker, 2016). On 

the other hand, a data-driven approach consists of making 

strategic decisions based on the analysis of the real-data arising 

from the physical environment. Consequently, DDO uses the 

analysis of these data to optimize the performance of the 

system. Metzker et al. (2021) outlined the steps of DDO, which 

mainly include the data analytics to process the available data 

and define the parameters distribution for representing the 

uncertainties of the problem and the mathematical 

formalization and modelling of the system within the 

perspective of a chosen optimization method.  

Based on the aforementioned paradigms, the scope of the 

research is to introduce a data-driven framework that uses the 

real-life data arising from the physical supply chain system as 

inputs of the cyber system wherein stochastic simulation, 

machine learning and optimization techniques support SC 

managers and decision-makers in the selection of the most 

suitable replenishment strategy, thus favoring the resilience of 

the entire SC. Figure 1 depicts how the physical and cyber 

systems have to be interconnected and shows the steps of the 

DDO approach used for the supply chain dynamics problem at 

hand. In brief, each day a vast amount of real-life supply chain 

data (e.g., product demand, stock level, deliveries, etc.) is 

collected. After a review period, the data are analyzed to 

update the related statistical distributions, thus capturing new 

changes in terms of magnitude and variability. Then, a SC 

dynamics simulation model is used to replicate the behavior of 

the system at varying replenishment strategy and used to 

generate the training data for the Machine Learning (ML) tool, 

which in turns allows building a prediction model to be 

embedded within a metaheuristic algorithm. This latter makes 

use of the ML prediction model to select the optimal 

parameters to be adopted for the smoothing replenishment 

strategy. In fact, differently from the simulation model, the 

regression model allows the metaheuristic to efficiently 

evaluate the performance of each candidate solution in a 

reasonable computational time. Precisely, the optimization 

approach will return the most suitable values of three SC 

control parameters which characterize the S-OUT 

replenishment policy, i.e, the forecasting factor, the 

proportional controller and the safety stock factor. The main 

contribution of the paper consists in introducing a cyber 

system framework that integrates simulation modelling, 

machine learning (specifically artificial neural networks) and 

metaheuristic algorithms (specifically particle swarm 

optimization). However, product perishability and stochastic 

lead times further feed the novelty of the contribution. The 

Figure 1. Diagram flow of the optimization approach for 

the data-driven supply chain 
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suitable replenishment strategy, thus favoring the resilience of 

the entire SC. Figure 1 depicts how the physical and cyber 

systems have to be interconnected and shows the steps of the 

DDO approach used for the supply chain dynamics problem at 

hand. In brief, each day a vast amount of real-life supply chain 

data (e.g., product demand, stock level, deliveries, etc.) is 

collected. After a review period, the data are analyzed to 

update the related statistical distributions, thus capturing new 

changes in terms of magnitude and variability. Then, a SC 

dynamics simulation model is used to replicate the behavior of 

the system at varying replenishment strategy and used to 

generate the training data for the Machine Learning (ML) tool, 

which in turns allows building a prediction model to be 

embedded within a metaheuristic algorithm. This latter makes 

use of the ML prediction model to select the optimal 

parameters to be adopted for the smoothing replenishment 

strategy. In fact, differently from the simulation model, the 

regression model allows the metaheuristic to efficiently 

evaluate the performance of each candidate solution in a 

reasonable computational time. Precisely, the optimization 

approach will return the most suitable values of three SC 

control parameters which characterize the S-OUT 

replenishment policy, i.e, the forecasting factor, the 

proportional controller and the safety stock factor. The main 

contribution of the paper consists in introducing a cyber 

system framework that integrates simulation modelling, 

machine learning (specifically artificial neural networks) and 

metaheuristic algorithms (specifically particle swarm 

optimization). However, product perishability and stochastic 

lead times further feed the novelty of the contribution. The 

Figure 1. Diagram flow of the optimization approach for 

the data-driven supply chain 

structure of the paper is as follows. Section 2 describes the 

problem statement. Section 3 introduces the optimization 

approach combining Artificial Neural Networks (ANNs) and 

the Particle Swarm Optimization (PSO). Section 4 analyzes the 

results of the optimization approach and presents a sensitivity 

analysis involving a series of influencing factors. Finally, 

Section 5 includes the conclusions of the paper and the future 

research directions. 

2. PROBLEM STATEMENT 

The problem at hand consists of a one-product two-echelon 

supply chain model, as described in the previous section (see 

Figure 2). The first echelon stands for the supplier (i=1) and 

the second for the firm’s inventory (i=2). Product perishability 

and lead time variability in the first echelon increase the 

complexity of the SC at hand. Since the product is released by 

the supplier with a fixed expiration date, the shelf-life at the 

inventory stage strictly depends on the delivery time, which is 

notably uncertain. At the second echelon, the inventory has to 

satisfy the demand of product arising from the manufacturing 

plant. As for the inventory stage, orders to the supplier are 

placed by adopting the S-OUT policy and the time-interval 

between two consecutive orders cannot be smaller than 30 

days (i.e., 1 month). In addition, a minimum order quantity 

(MOQ) has to be fulfilled. The supplier has infinite capacity, 

so no restriction affects the order coming from the firm’s 

inventory. The units of material are delivered to the inventory 

with stochastic delivery lead times, which can vary in the 

interval [LTMIN, LTMAX] (Gutierrez-Alcoba et al, 2017). 

Conversely, the delivery lead times from the inventory to the 

factory is negligible.  

The mathematical formalization of the problem and the 

simulation model are based on discrete-time difference 

equations, which are typically adopted in the supply chain 

dynamics literature (Costa et al., 2020; Corsini et al, 2021, 

2022a). In our model, a time unit (t) stands for one day, while 

the index m represents one month. For the sake of brevity, the 

dynamics equations are not reported in this work as most of 

them can be easily retrieved in the SC dynamics literature (see 

e.g. Disney and Lambrecht, 2008). However, in this section we 

focus only on two new equations, the former being related to 

the inventory level (which has to include the quantity of 

expired product), the latter regarding the order to supplier (that 

must be subject to the provided MOQ). The inventory level 

I2(t) at time t is formalized by Eq. 1, where I2(t-1) is the 

previous inventory level at time t-1, C1(t-LT(t)) is the amount 

of product finally delivered by the supplier after the stochastic 

lead time LT(t)), d(t) is the demand from the factory and P2(t) 

is the waste at time t (i.e., the quantity of expired product). 

 I2(t) = I2(t-1) + C1(t-LT(t)) - d(t) - P2(t) (1) 

The inventory is characterized by batches of product with 

different shelf life, as in the paper of Polotski et al. (2021). 

Differently from their work, in this research the shelf life is 

variable and depends on the stochastic delivery lead time 

according to the following equation: 

 N(t)=N
MAX

 - LT(t) (2) 

where N(t) is the shelf life at time t and NMAX is the maximum 

shelf life. On the other hand, the order to the supplier at time t 

(i.e., O2(t)), is configured as in Eq.3, where S-OUT means the 

smoothing order-up-to replenishment policy depending on the 

following three control parameters: forecasting factor (α), 

proportional controller (β), safety stock factor (ε).  

 O2(t) = {S-OUT if O2(t)>MOQ and ∑ O2(τ)=0t-1
τ=t-m-1

0 otherwise
 

  (3) 

Precisely, α is used to estimate the future demand d̂2(t), as 

follows: 

 d̂2(t) = α ∙ ∑ d(τ)t-1
τ=t-m-1 + (1 - α) ∙ d̂2(t - m)  (4) 

ε is used to calculate the target inventory TI2(t): 

 TI2(t) = ε ∙ d̂2(t)  (5) 

while β is directly used in the S-OUT equation: 

 O2(t) = max{d̂2(t) + β ∙ (TI2(t) - I2(t) + TW2(t) - W2(t)} (6) 

in which W2(t) is the delivery work in progress and  TW2(t) is 

the target delivery work in progress. As mentioned before, 

O2(t) must be greater than MOQ and m=30 days have to elapse 

from the previous order, at least. 

The performance metrics considered in this paper are the fill 

rate (FR) and the average inventory level (I2̅). 

 FR = ( 1

T-TWARM
∙ ∑ C2(t)

d(t)

T
t=T-TWARM+1 ) %  (7) 

 I2̅=
1

T-TWARM
∙ ∑ I2(t) T

t=T-TWARM+1   (8) 

where C2(t) is the quantity of product dispatched from the 

inventory to the factory to satisfy the demand d(t). To avoid 

the randomness effect in the performance evaluation, both 

indicators are calculated without considering the warm-up 

period TWARM in the simulation time horizon T. Actually, in 

order to select the optimal replenishment parameters, I2 has to 

be minimized while keeping FR higher than a target fill rate 

denoted as FRt. Hence, the objective function (Y) to be 

minimized has been configured as follows: 

Figure 2. Supply chain model 
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 Y = |I2|∙  [1 + (FRt - min(FRt, FR))]
q
  (9) 

where q is the exponent of the penalty function. 

3. ARTIFICAL INTELLIGENCE BASED APPROACH 

This section presents the proposed artificial intelligence-based 

approach, which rises from a combination between Artificial 

Neural Network (ANN) and Particle Swarm Optimization 

(PSO) algorithm. 

3.1 Artificial Neural Network 

In this work, to estimate how the replenishment parameters 

affect the performance of the SC, an ANN for regression was 

developed. An ANN is a machine learning algorithm inspired 

by the behavior of the human brain when it is stimulated by 

external inputs. Generally, an ANN is a network composed by 

an input layer, at least one hidden layer and an output layer. 

The input layer gathers the experimental data of the problem. 

In the problem at hand, the input variables are the three control 

parameters, i.e., forecasting factor (α), proportional controller 

(β) and safety stock factor (ε). The first hidden layer makes use 

of the input data to feed another hidden layer or the final output 

layer. In any hidden layer, data are elaborated by several 

processing components, called neurons. In our AI structure, 

the ANN implies 2 hidden layers, each one consisting of 5 

neurons. Neurons are interconnected by links and each link is 

characterized by a weight. Indeed, such links are used by the 

neurons to feed forward the processed data. The weights of the 

links are automatically adjusted by the ANN algorithm to 

enhance the behavior of the system (Lu et al., 2021). 

Particularly, a log-sigmoidal activation function is used to 

convert the weighted sum of the input signals into output 

signals (Nayran, 1997). In addition, the Levenberg-Marquardt 

Backpropagation algorithm is used for training the neural 

network, i.e., to adjusts the weight values with the aim of 

minimizing the cost function of the neural network. Finally, 

the output layer consists of the output variable. Since two 

performance indicators are considered (i.e., FR and I2̅), two 

different ANNs were developed. For both ANN models, 80%, 

10% and 10% of the entire datasets were used for training, 

validation and testing purposes, respectively. 

3.2 Particle Swarm Optimization 

The PSO algorithm is a well-known metaheuristic 

computational method in which each particle is a candidate 

solution, while the swarm collects a population of particles 

(Kennedy and Eberhart, 1995). In this research, the population 

size was set to 20 particles and each particle consists of a 

combination of the control parameters of the supply chain (i.e., 

α, β, ε). Each candidate solution is evaluated by means of the 

objective function (see Eq. 9) in which the values of fill rate 

(FR) and average inventory level (I2̅) are derived by the non-

linear regression models generated by the related ANN meta-

models. The space of solutions is explored and exploited at 

each iteration by varying the position and the velocity of each 

particle, which in turns depends on the previous position, on 

the best local position achieved so far (pbest) and on the best 

global position achieved by the swarm (gbest). Hence, in order 

to achieve a new local optimum, each particle moves on the 

basis of two distinct mechanisms: i) a learning mechanism 

according to which the particle learns by its experience, i.e., 

by the pbest; ii) a communication mechanism according to 

which the particle communicates with the gbest. Learning and 

communication components are regulated by two acceleration 

coefficients, denoted by C1 and C2, respectively. Also, the 

weight assigned to the previous position is denoted as inertia 

coefficient w. The PSO configuration used in this paper has 

been set as follows. The inertia coefficient equal to 1 reduces 

iteration-by-iteration by 0.1% until a lower bound equal to 0.3 

is achieved, while both C1 and C2 were set to 2. The exit 

criterion of the algorithm is based on the maximum number of 

iterations, which was set to 200, after a set of preliminary tests. 

4. EXPERIMENTS AND RESULTS 

This section presents the experimental results obtained by 

using the proposed AI package for the complex supply chain 

dynamics problem under investigation. All computational 

components, i.e., simulation, ANN and PSO have been 

implemented in Matlab R2021b®. In order to generate the 

input data for ANN, 300 different scenarios in terms of triplets 

(α, β, ε) values were simulated and replicated 5 times. For each 

scenario, the time horizon and warm-up time are equal to 3000 

and 300, respectively. As for the data analytics step, the daily 

factory demand is derived from a normal distribution with μ
d
 

= 100 and σd = 10. The delivery lead time is stochastic with 

LTMIN = 60 and LTMAX = 120 time units, while the shelf-life is 

equal to NMAX = 180 time unit. The minimum order quantity 

MOQ is set to 7000 units of product. As for the control 

parameters to be optimized, α ranges in [0, 1], β varies in [0.3, 

1] (as preliminary simulations revealed that frequent backlogs 

occur when β is lower than 0.3), while ε ranges in [2, 12]. It is 

worth pointing out that ε values have been normalized in the 

range [0, 1] before being used for ML and optimization. Figure 

3 depicts the regression plots related to training (a) and testing 

(b) for each machine learning model. The machine learning 

regression models for both performance indicators (FR and 𝐼𝐼2) 

guarantee a coefficient of determination R2 for training, testing 

and validation in the range [0.99, 1]. To infer about the effect 

of the target fill rate on the optimization of the SC 

replenishment parameters, four different FRt values have been 

considered, namely 100%, 99%, 98% and 97%.  Figure 4 

shows the convergence graphs for Y (Figure 4a), FR (Figure 

4b) and I2̅ (Figure 4c) as FRt changes. Looking at the objective 

function Y, it seems that PSO assures a very fast convergence, 

with the exception of FRt=100% that needs a higher number 

of iterations to converge. Despite of the aforementioned 

findings, Figures 3b and 3c show that the target fill rate and 

the optimal inventory level are achieved relatively later than Y. 

The optimal values of each control parameter are reported in 

Table 1 where it is clear that the safety stock factor is quite 

sensitive to the target fill rate variation. Specifically, a greater 

 is needed as FRt grows. On the other hand, the forecasting 

factor and the proportional controller should be set to the 

highest value when FRt is lower than 100%. Instead, both of 

them should drastically decrease when a target FR equal to 

100% has to be guaranteed. 
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where q is the exponent of the penalty function. 

3. ARTIFICAL INTELLIGENCE BASED APPROACH 

This section presents the proposed artificial intelligence-based 

approach, which rises from a combination between Artificial 

Neural Network (ANN) and Particle Swarm Optimization 

(PSO) algorithm. 

3.1 Artificial Neural Network 

In this work, to estimate how the replenishment parameters 

affect the performance of the SC, an ANN for regression was 

developed. An ANN is a machine learning algorithm inspired 

by the behavior of the human brain when it is stimulated by 

external inputs. Generally, an ANN is a network composed by 

an input layer, at least one hidden layer and an output layer. 

The input layer gathers the experimental data of the problem. 

In the problem at hand, the input variables are the three control 

parameters, i.e., forecasting factor (α), proportional controller 

(β) and safety stock factor (ε). The first hidden layer makes use 

of the input data to feed another hidden layer or the final output 

layer. In any hidden layer, data are elaborated by several 

processing components, called neurons. In our AI structure, 

the ANN implies 2 hidden layers, each one consisting of 5 

neurons. Neurons are interconnected by links and each link is 

characterized by a weight. Indeed, such links are used by the 

neurons to feed forward the processed data. The weights of the 

links are automatically adjusted by the ANN algorithm to 

enhance the behavior of the system (Lu et al., 2021). 

Particularly, a log-sigmoidal activation function is used to 

convert the weighted sum of the input signals into output 

signals (Nayran, 1997). In addition, the Levenberg-Marquardt 

Backpropagation algorithm is used for training the neural 

network, i.e., to adjusts the weight values with the aim of 

minimizing the cost function of the neural network. Finally, 

the output layer consists of the output variable. Since two 

performance indicators are considered (i.e., FR and I2̅), two 

different ANNs were developed. For both ANN models, 80%, 

10% and 10% of the entire datasets were used for training, 

validation and testing purposes, respectively. 

3.2 Particle Swarm Optimization 

The PSO algorithm is a well-known metaheuristic 

computational method in which each particle is a candidate 

solution, while the swarm collects a population of particles 

(Kennedy and Eberhart, 1995). In this research, the population 

size was set to 20 particles and each particle consists of a 

combination of the control parameters of the supply chain (i.e., 

α, β, ε). Each candidate solution is evaluated by means of the 

objective function (see Eq. 9) in which the values of fill rate 

(FR) and average inventory level (I2̅) are derived by the non-

linear regression models generated by the related ANN meta-

models. The space of solutions is explored and exploited at 

each iteration by varying the position and the velocity of each 

particle, which in turns depends on the previous position, on 

the best local position achieved so far (pbest) and on the best 

global position achieved by the swarm (gbest). Hence, in order 

to achieve a new local optimum, each particle moves on the 

basis of two distinct mechanisms: i) a learning mechanism 

according to which the particle learns by its experience, i.e., 

by the pbest; ii) a communication mechanism according to 

which the particle communicates with the gbest. Learning and 

communication components are regulated by two acceleration 

coefficients, denoted by C1 and C2, respectively. Also, the 

weight assigned to the previous position is denoted as inertia 

coefficient w. The PSO configuration used in this paper has 

been set as follows. The inertia coefficient equal to 1 reduces 

iteration-by-iteration by 0.1% until a lower bound equal to 0.3 

is achieved, while both C1 and C2 were set to 2. The exit 

criterion of the algorithm is based on the maximum number of 

iterations, which was set to 200, after a set of preliminary tests. 

4. EXPERIMENTS AND RESULTS 

This section presents the experimental results obtained by 

using the proposed AI package for the complex supply chain 

dynamics problem under investigation. All computational 

components, i.e., simulation, ANN and PSO have been 

implemented in Matlab R2021b®. In order to generate the 

input data for ANN, 300 different scenarios in terms of triplets 

(α, β, ε) values were simulated and replicated 5 times. For each 

scenario, the time horizon and warm-up time are equal to 3000 

and 300, respectively. As for the data analytics step, the daily 

factory demand is derived from a normal distribution with μ
d
 

= 100 and σd = 10. The delivery lead time is stochastic with 

LTMIN = 60 and LTMAX = 120 time units, while the shelf-life is 

equal to NMAX = 180 time unit. The minimum order quantity 

MOQ is set to 7000 units of product. As for the control 

parameters to be optimized, α ranges in [0, 1], β varies in [0.3, 

1] (as preliminary simulations revealed that frequent backlogs 

occur when β is lower than 0.3), while ε ranges in [2, 12]. It is 

worth pointing out that ε values have been normalized in the 

range [0, 1] before being used for ML and optimization. Figure 

3 depicts the regression plots related to training (a) and testing 

(b) for each machine learning model. The machine learning 

regression models for both performance indicators (FR and 𝐼𝐼2) 

guarantee a coefficient of determination R2 for training, testing 

and validation in the range [0.99, 1]. To infer about the effect 

of the target fill rate on the optimization of the SC 

replenishment parameters, four different FRt values have been 

considered, namely 100%, 99%, 98% and 97%.  Figure 4 

shows the convergence graphs for Y (Figure 4a), FR (Figure 

4b) and I2̅ (Figure 4c) as FRt changes. Looking at the objective 

function Y, it seems that PSO assures a very fast convergence, 

with the exception of FRt=100% that needs a higher number 

of iterations to converge. Despite of the aforementioned 

findings, Figures 3b and 3c show that the target fill rate and 

the optimal inventory level are achieved relatively later than Y. 

The optimal values of each control parameter are reported in 

Table 1 where it is clear that the safety stock factor is quite 

sensitive to the target fill rate variation. Specifically, a greater 

 is needed as FRt grows. On the other hand, the forecasting 

factor and the proportional controller should be set to the 

highest value when FRt is lower than 100%. Instead, both of 

them should drastically decrease when a target FR equal to 

100% has to be guaranteed. 

 

Table 1. The best parameter values for each target fill rate 

Repl. parameters/FRt 97% 98% 99% 100% 

Forecasting factor (α) 1.000 1.000 1.000 0.407 

Proportional controller (β) 1.000 1.000 1.000 0.726 

Normalized (actual) safety 
stock factor (ε) 

0.023 
(2.23) 

0.043 
(2.43) 

0.074 
(2.74) 

0.318 
(5.18) 

Finally, a sensitivity analysis was accomplished to evaluate 

how the control parameters influence the two performance 

indicators (i.e., FR and I2̅). A full-factorial design of 

experiments (DOE) was arranged in which the replenishment 

parameters vary by a discrete value equal to 0.1. Therefore, 

11 ∙ 8 ∙11 = 968 different configurations were considered. 

Besides, 5 replicates at varying random seeds have been 

executed for each configuration. The two ANN predictive 

models were used to evaluate the performance of each 

configuration in terms of FR and I2̅. Figures 5 and 6 depict the 

main effect plots for FR and I2̅, respectively. Both figures 

clearly reveal that any performance indicators are insensitive 

to α. On the other hand, high values of both β and ε allow to 

increase the fill rate and the average inventory level, as well. 

Interestingly, by matching Table 1 with Figures 5-6 it emerges 

that selecting the best replenishment parameters able to 

minimize I2̅ while keeping FR above a target value is a 

challenging objective, which cannot be solved by simple 

graphical analyses.  

 5. CONCLUSIONS 

This work would represent a first attempt of designing a cyber-

physical system in which the real-life supply chain interacts 

Figure 5. The main effect plot in terms of fill rate 

Figure 6. The main effect plot in terms of average 

inventory level 
Figure 4. The convergence graphs for the cost objective function 

(a), the fill rate (b) and the inventory level (c) 

a) 

b) 

c) 

Figure 3. Regression plots of the machine learning models for (a) 

fill rate and (b) average inventory level 
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with a data-driven prediction-optimization framework to find 

the most suitable S-OUT replenishment parameters. 

Specifically, a data-driven framework which combines 

simulation, machine learning and metaheuristic optimization, 

is introduced for dynamically selecting the optimal 

replenishment strategy in SC problem with a perishable 

product and stochastic delivery lead times. Since the supplier 

dispatches the product with a fixed expiration date, uncertain 

lead times make the product shelf-life variable. Besides, any 

order can be placed at least one month later the previous one 

and a minimum order quantity has to be fulfilled. The main 

computational steps of the proposed data-driven framework 

are: i) a simulation model based on discrete-time difference 

equations to generate the input data-set for the machine 

learning algorithm; ii) ANN for regression as machine learning 

tool to generate the surrogate model of the supply chain 

dynamics problem under investigation; iii) metaheuristic 

optimization to select the best replenishment parameters of the 

S-OUT strategy capable of minimizing the average inventory 

level while assuring a target fill rate. An experimental 

campaign has been arranged by generating a large dataset for 

training the ANN models pertaining to the fill rate and the 

average stock level. Particularly, four different values were 

considered for the target fill rate, namely 100%, 99%, 98% and 

97%. The experimental outcomes reveal that the forecasting 

factor and the proportional controller should be set to 1, when 

the target fill rate is lower than 100%. On the other hand, if the 

target fill rate must be 100%, the forecasting factor and the 

proportional controller should be equal to 0.41 and 0.73, 

respectively. Interestingly, a sensitivity analysis on the 

replenishment parameters shows that the forecasting factor 

does not significantly influence both the average inventory 

level and the fill rate as well. Future research will be oriented 

to extend the proposed framework to a dynamic and iterative 

configuration that allows tuning the replenishment parameters 

at fixed time intervals. In this context, ripple effects could be 

introduced thus emphasizing the adding-value of the data-

driven approach over more traditional methods. Finally, 

applying the proposed data-driven approach to optimize the 

replenishment in a real-world supply chain context would be 

desirable as a further experimental validation. 

REFERENCES 

Acevedo-Ojeda, A., Contreras, I., and Chen, M. (2020). Two-

level lot-sizing with raw-material perishability and 

deterioration. Journal of the Operational Research 

Society, 71(3), 417-432. 

Babiceanu, R.F., and Seker, R. (2016). Big Data and 

virtualization for manufacturing cyber-physical systems: 

A survey of the current status and future outlook. 

Computers in Industry, 81, 128-137. 

Billaut, J.C. (2011, September). New scheduling problems 

with perishable raw materials constraints. In ETFA2011, 

1-7. IEEE. 

Corsini, R. R., Costa, A., Cannella, S., and Framinan, J. M. 

(2022a). Analysing the impact of production control 

policies on the dynamics of a two-product supply chain 

with capacity constraints. International Journal of 

Production Research, 1-25. 

Corsini, R.R., Costa, A., and Fichera, S. (2021, August). 

Comparing production control policies in two-product 

supply chain dynamics. In 2021 IEEE 17th International 

Conference on Automation Science and Engineering 

(CASE), 1002-1007. IEEE. 

Corsini, R.R., Fichera, S., and Costa, A. (2022b). Assessing 

the Effect of a Novel Production Control Policy on a 

Two-Product, Failure-Prone Manufacturing/Distribution 

Scenario. In Selected Topics in Manufacturing, 1-20. 

Springer, Cham. 

Costa, A., Cannella, S., Corsini, R. R., Framinan, J. M., and 

Fichera, S. (2022). Exploring a two-product unreliable 

manufacturing system as a capacity constraint for a two-

echelon supply chain dynamic problem. International 

Journal of Production Research, 60(3), 1105-1133. 

Disney, S.M., and Lambrecht, M.R. (2008). On replenishment 

rules, forecasting, and the bullwhip effect in supply 

chains (Vol. 4). Now Publishers Inc. 

Framinan, J.M. (2021). Modelling Supply Chain Dynamics. 

Springer, Cham. 

Gaalman, G. (2006). Bullwhip reduction for ARMA demand: 

The proportional order-up-to policy versus the full-state-

feedback policy. Automatica, 42(8), 1283-1290. 

Gutierrez-Alcoba, A., Rossi, R., Martin-Barragan, B., and 

Hendrix, E.M. (2017). A simple heuristic for perishable 

item inventory control under non-stationary stochastic 

demand. International Journal of Production Research, 

55(7), 1885-1897. 

Kennedy, J. and Eberhart, R. (1995). "Particle Swarm 

Optimization". Proceedings of IEEE International 

Conference on Neural Networks. IV. pp. 1942–1948. 

Lu, S., Liu, C., and Chen, Z. (2021). Predicting stock market 

crisis via market indicators and mixed frequency investor 

sentiments. Expert Systems with Applications, 186, 

115844. 

Metzker, P., Thevenin, S., Adulyasak, Y., and Dolgui, A. 

(2021, September). Optimization for Lot-Sizing 

Problems Under Uncertainty: A Data-Driven 

Perspective. In IFIP International Conference on 

Advances in Production Management Systems, 703-709. 

Springer, Cham. 

Polotski, V., Gharbi, A., and Kenne, J.P. (2021). Production 

control of unreliable manufacturing systems with 

perishable inventory. The International Journal of 

Advanced Manufacturing Technology, 116(7), 2473-

2496. 

Priore, P., Ponte, B., Rosillo, R., and de la Fuente, D. (2019). 

Applying machine learning to the dynamic selection of 

replenishment policies in fast-changing supply chain 

environments. International Journal of Production 

Research, 57(11), 3663-3677. 

Razavian, E., Tabriz, A. A., Zandieh, M., and Hamidizadeh, 

M. R. (2021). An integrated material-financial risk-

averse resilient supply chain model with a real-world 

application. Computers & Industrial Engineering, 161, 

107629. 

Towill, D.R. (1991). Supply chain dynamics. International 

Journal of computer integrated Manufacturing, 4(4), 

197-208. 


