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Abstract

This paper is devoted to Bresse systems, a robust model for circular beams, given by
a set of three coupled wave equations. The main objective is to establish the existence of
global attractors for dynamics of semilinear problems with localized damping. In order to
deal with localized damping a unique continuation property (UCP) is needed. Therefore
we also provide a suitable UCP for Bresse systems. Our strategy is to set the problem in
a Riemannian geometry framework and see the system as a single equation with different
Riemann metrics. Then we perform Carleman-type estimates to get our result.
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1 Introduction

The Bresse system is a model for circular beams given by three coupled wave equations,
namely,

P1Pt — k?(gD;p + T,[) + EZU);B — k‘of(’wx — E(p) =0 in (0, L) X (0, OO),
P2 — bbyy + k(or + ¢ +lw) =0 in (0,L) x (0,00),
prwy, — ko(wy — 0p)y + k(o + 1 + fw) =0 in (0, L) x (0,00).

The functions ¢ = ¢(x,t), ¥ = (x,t), w = w(z,t) correspond to the vertical displacement,
shear angle and longitudinal displacement at a point x € (0, L) and time ¢ > 0, respectively.
The coefficients are all positive constants defined by py = pA, ps = pl, k = KAG, b = FI
and kg = AF, where the quantities p, A, I, K, G and E denote respectively, material density,
cross-sectional area, second moment of the cross-section area, a shear factor, shear modulus
and modulus of elasticity. In addition, £ > 0 denotes the beam’s curvature. Its mathematical
modeling can be found in [3|, 4] and it is worth observing that when ¢ = 0 the arched beam
reduces to the Timoshenko beam [27].

The Bresse system and its viscoelastic and thermoelastic extensions were studied by many
authors. Roughly speaking, most of results are concerned with a certain asymptotic stability
dichotomy. Indeed, by analogy to the Timoshenko system, the Bresse system having damping
terms in one or two of its equations is exponentially stable if and only if satisfies the equal

wave speeds condition

PL P2 _
= =3 and k= ko. (1.1)

Such a condition was firstly observed for Timoshenko systems in [25]. Otherwise only poly-
nomial stability can be obtained. See e.g. [Il 10} 12 13| 17}, 241 26 29].

In a different direction, Charles et al [7] proved the exponential stability of Bresse systems
by adding a localized damping in each one of its three equations, without assuming the speed
condition (ILT]). This is quite interesting since the equal speed assumption can not be realized
physically, cf. [20].

The main objective of this paper is to establish existence of global attractors for dynamics
of a semilinear Bresse system with locally defined damping (see problem [.]), without assum-
ing condition (LI)). Our approach is very different from the above one in [7]. Indeed, one
of ingredients for obtaining exponential stability of wave equations with localized damping
is a unique continuation property (UCP). To our purpose, the UCP says whether a wave
equation that vanishes in a subdomain must be identically null. In [7] they have used a UCP
derived from Holmgren uniqueness theorem, which is only valid for equations with analytic
coefficients. Because of nonlinear terms, our problem (1) has no longer analytic coefficients.
To overcome this difficult we propose a new UCP for Bresse systems.



More precisely, we discuss the unique continuation property for coupled wave equations
of the form

at2u1 —A1U1 = fl(Ul,UQ,"' 7un) in <O7L) x (0,00),
at2u2 _AQUQ = f2(u17u27"' 7un) in <O7L) X (0,00),

: (1.2)
6t2un— Apuy, = fro(ur,ug, -+ up) i1.1 (0, L) x (0,00),
where for i = 1,--- ,n the following is assumed:
1. We consider on the system (I2]) the Dirichlet boundary conditions
u;(0,t) = u;(L,t) =0 VYte (0,00), (1.3)
and initial data
(w1, O, -+ s U, Optin)|,_ o= (W, ug, - ud ul) in (0,L). (1.4)

2. Given 7; > 0, the operator A; represents the one-dimensional Laplacian operator with
wave propagation velocity ,/7;, defined by

3. The symbols f; denote the coupling functions with energy level terms such that f; €
L*(0,T; L?(0, L)) and

n n
filur,ug, -+ un) = Z POz + Z qjuj, (1.6)
j=1 j=1

where p;'-,qé e L*0,T;L*(0,L)). Additionally, given T" > 0 there exists a constant
C7 > 0 such that

T L T
f f (g, g, up)Pdadt < Oy j Fu(t)dt, (1.7)
0 0 0

where F,(t) represents the energy of the system (L2)) defined by

and F, ;(t) is the energy of the i-th equation of the system given by
L
Fuilt) = | [l + ifosuf? + v (1.9)
0

The UCP has been extensively used in the analysis of exact controllability, exponential
stability, and in the theory of attractors for locally damped wave equations. The stabilization
problem for linear wave equations on a smooth compact Riemannian manifold was studied,
e.g., in [2, 211 22]. In these papers, to show the exponential decay rates for the energy the



authors assume localized damping and their proof uses a UCP for the wave equation based on
Holmgren Theorem. In [4, 5] the authors treated the nonlinear case exhibiting an exponential
decay of the energy with sharp damping region, roughly speaking, a damping region with
arbitrarily small measure. In this case, a new UCP is proven by means of energy estimates
and a escape vector field based on [16].

The study of the existence of global attractors for the wave equation with external forces
of critical exponent and locally distributed damping has been established in [6] 8, 1T} [19].
Despite dealing with wave equations, the significant difference between these models is the
damping regions imposed on the damping parameter. Therefore different types of UCP are
needed. Reference [II] uses the UCP given in [23]. In [8, 19], the authors apply the UCP
corresponding to Carleman-type estimates for wave equations with linear potential and in [6]
the authors introduced a new UCP using the techniques of [2§].

Here, the main idea for proving a new UCP for Bresse systems is to set Problem (I.2])
in a Riemannian geometry framework and see the system as a single equation with different
Riemann metrics. Then we show how Carleman-type estimates obtained in [28] can be used
to obtain a UCP for our system (L2]) under above assumptions on the functions f*(-) (i =
1,2,---,n).

Our paper is organized in the following way. Our UCP - Theorem - will follow after
a series of comparison results between reference [28]. (i) We begin in Section 2 with a Rie-
mannian geometry background material. (ii) After, in Section 3, we introduce a preliminary
material that will lead the corresponding Carleman-type estimates for the Problem (L.2). Fi-
nally, as a consequence of Carleman-type estimates, we then achieve our goal, the proof of
the Theorem For completeness, to the best of our knowledge, this is the first UCP result
for coupled wave equations.

In the second part of the paper, we establish the existence of global attractors for the
Bresse system with a nonlinear foundation and nonlinear localized dissipation - see Problem
(1). We note that in [I8] the authors studied a Bresse system with nonlinear foundation
and dissipation acting on the whole domain. There, UCP and observability inequalities were
not necessary. In this sense, our application improves the previous results on the existence
of long-time dynamics of the Bresse system allowing the dissipation to be localized in an
arbitrary subset of (0, L).

The outline of the remainder of the paper is the following: (iii) In Section 4, we introduce
the semilinear Bresse system with localized dissipation along with the well-posedness result
and energy estimates. The main result is the Theorem and whose proof is based on the
following strategy: (a) we first show the existence of a strictly Lyapunov function for the
associated dynamical system by using the new UCP stated in Theorem and (b) introduc-
ing observability inequalities, we prove the asymptotic smoothness of the problem using the
abstracts results on the recent theory of quasi-stable systems [9]. Here, we also mention the
importance of the UCP for the proof of a strictly Lyapunov function - see Definition (iv)
The Appendix is devoted to the well-posedness result for wave equations with over-determined
conditions.



2 A Riemannian geometry framework

2.1 Basic notation

Let (M,g) be an n-dimensional, compact Riemannian manifold, with smooth boundary
and smooth metric. The tangent space on M at p is denoted by T),M and fix a coordinate
system (z1,--- ,p) then (0y,, - , 0z, ) represents the associated coordinate vector fields. In
this case

g(X,Y) =(X,Y) = ) gijaiy, |X[P=(X,X),

Q=1
where . .
X = Z 0y, Y = Z Bi0, in T,M for some p € M, (2.10)
i=1 i=1
and

Gij = <am” axj> .
Note that | - | represents the norm with respect to the metric g(-,-). In particular, we denote
the inner product g(-,-) by the matrix (gi;)nxn and its inverse by (¢ )nxn.
The tangent and cotangent bundle of M are respectively detonate by T'M and T*M. The
symbol D denotes the Levi-Civita connection of M such that for two vector fields X and Y
on M given by (ZI0) the following equality hods true

DxY = Z 00, B0y, + Z Bjrfjawk )

ik=1 j=1

where I’ f] represent the Christoffel symbols.
Let f: M — R and H € T,M for all pe M.

1. If f € CY(M) then the differential Df : TM — R represents the gradient of the
connection D on f and

Df(H) = Duf=H(f) =<V[,H),

where V is the usual gradient defined in a coordinate system by

i,j=1

Thanks to the musical isomorphism we will identify D f with V f. Here, we often denote
Df by Vf. In particular, if {E,--- , E,} represents an orthonormal basis of T, M and
H = Z?:l thz then

Df(H) = H(f) = Y hiEi(f).
i=1

2. If f e C?>(M) then D?f represents the Hessian of f such that for all Y € TM

D2f('7Y) = D(Df)(-,Y) = Dy(Vf(:)) : TM — R,



with
Dy(Vf(X)) = (Dx(Vf),Y), ¥X eTM.

In particular
D2f(X, X) = (Dx(Vf), X), VX eTM.

3. Let f € C3(M). The function f is strictly convex in the metric g if and only if
D?f(X,X) >0 for all X € TM.

4. If {E,---, E,} represents an orthonormal basis of T),M, then the divergent of H is
defined as

div(H Z (Dg,H, E;).
5. If f € CY(M) then
div(fH) = fdiv(H) + H(f).

6. For a function f e C?(M) we define the Laplace-Beltrami operator A by
Af =div(Vf) = Z (Dg,(V ), By = 2 D*f(E;, E)).

7. The covariant derivate DH is the bilinear form given by
DH(X,Y)=(DxH,Y), VX, YeTM.
In particular if f e C?(M)

D(Vf)(X,Y)=D?f(X,Y), VX,Y e TM.
8. If f e CY(M) then
(VE.VH() = DH(VE V) + 5dw(VFPH) = 5[V fPdivE,

Remark 2.1. Let Q an open bounded, connected, compact subset of M with smooth boundary
0Q and f € C3(M) a strictly convex function in the metric g. Then by translating and
rescaling [28, Remark 1.2], the function f satisfies the following conditions

D*f(X,X) = |X*, VpeQ, VX e T, M,

min f(z) = m > 0. (2.12)
Q



2.2 Geometry on the wave system

Let us consider R with usual topology and z the natural coordinate system. In particular,
for each = € R the tangent space is T,R = R, = R.
For a fixed i € {1,--- ,n}, we begin defining the metrics g; associated with A; by

gi(X,Y) =(X,Y), =~ lap, (2.13)

Wi[ h Corresponding norm
|;(|52]' <‘(7;(>g-7
7 7

where X = a0, Y = 0, € R,, for each x € R.

Recalling assumption 7; > 0, one can see that the pairs (R, ¢g;) are Riemannian manifolds.
In this case, the Levi-Civita connection of (R, g;) will be denoted by Dg,. Here, the symbol
(R, go) denotes the R space with Euclidean metric and we use the following notations for the
metric and norm

90(X,Y)=X Y and |X|, = |X|, VX,Y €R,, VzeR, (2.14)

Important properties of the above metrics are stated in the following lemma. Although
most of these results are followed straightforwardly from the known results, they are crucial
for what follows. So for the convenience of the reader, we give their proofs here.

Lemma 2.1. Let (0,L) < R for some L > 0. If x be the natural coordinate system in R,
f,he CY[0,L]) and X = ad,,Y = B0, vector fields. Then

L (X, 7Y, = X-Y;

2. Vg, f =70 fO:

8. X(f) = (Vo [, X0, = aduf;

4. (Vg V), = 7i0ufoch;

5. if v represents the unit outward normal vector for ([0, L], g;) then

(Vg (0,000, = —vAi0ef (0), (Vg [(L), (D)), = VAidaf (D).

Proof. In light of (2I3) and (2.I4), one can easily see that Item 1 holds true. In fact, by
definition
I S
(X,%Y), = viaf =X Y. (2.15)

To prove Item 2, we recall the definition (Z.I1]) to find

Reasoning analogously to (ZI5) and assuming h € C'([0, L]), we have the validity of Items
2-4. To conclude, let us show Item 5. Firstly, note that if p € {0, L} and {0, } represents the
associated coordinate vector field for T},[0, L], then

(EAile £/Fi0aY,, = L.



In particular £ = +,/7;0, represents an orthonormal basis for p € T, M. Let v = E, therefore

Voif =70 f0x = £3/7i02fV

and
<Vg¢f7 V>gi = iﬁamf
Note that v(0) = —/7:0, and v(L) = /7;0,. We complete the proof of Lemma. O

Remark 2.2. The Hessian of f € C*(R) with respect to the metric g; is given by
D2 f(X,X) = Dy, x(Vy f). X), = oy ' 7id2f = a®d2f,

where X = ad,. We observe that the Hessian of f is positive if and only if 02f is positive.

3 Unique continuation property (UCP)

As already observed Carleman estimates are an important tool for proving unique contin-
uation property for solutions to partial differential equations [0} 15, 28]. In this section, we
prove the Carleman estimates for the Problem (L2)).

In what follows we shall use the following notations.

1. Let Lo a real number in [0, L]. We define £ and Q9 the subsets of [0, L] as follows
Ql = (O,Lo) and Qg = (L(],L) (316)

Note that Q1 U Qo = [0, L].

For € > 0, we will also consider the following subsets of 21 and €

5 5 5 5
Vi= (0.Lo=5)n[0.L], Vo= (Lo+ L) n[0.Z], w = (Lo— 5, Lo+ 5 ) [0, L]
2. There exist strictly convex functions d; : [0, L] — R and ds : [0, L] — R such that

di(z) = %(:17 + L), and do(z) %(m _om), (3.17)

In particular, if z denotes the natural coordinate system, Lemma 2] implies that
Vg di = vi(x + L)0y, Vg, do =~vi(x —2L)0, (i=1,---,n),
and
D;idj(X,X) =a?, forall z€[0,L] and X = ad, € T,[0,L] (j = 1,2).
The functions d;(-) (j = 1,2) have the following properties:
Lemma 3.1. Under the above definitions, the functions d;(-) (j = 1,2) satisfy
1. dj e C*([0, L]);
2. D3dj(X,X) = |X|g, forallzeQy and X € T,[0, L];

8



3. inf ‘vgidj|gi > O;
Q;

Moreover, if v represents the unit outward normal vector then

5. (Vg,dj(z),v(x)), <0 on{0,L}n V.

The next section is devoted to proof the Carleman estimate compatible with the system
(L2). To this aim, we allocated the above notations in the same context as Section 1 in [2§].
First, without loss of generality (by rescaling), we can assume that

V.d;|2.
kij = infw>4, Vi=1,---,n, Vj=12. (3.18)

Z‘EQj ]
In what follows, for fixed i € {1,--- ,n} and j = 1,2, we define

Ty ; = 4max d;(z). (3.19)

LEEQj
Let T' > max{Ty 1,702} and by ([BI9) there exist § > 0 and ¢ = ¢;5 € (0, 1) satisfying

¢T? > 4max dj(z) + 46. (3.20)

(EGQj

In above context, we define functions ¢; : ; x R — R € C3(Q;) by

2
pj(x,t) =dj(x) —c (t— g) , (x,t) e Q; x [0,T].

The following properties are valid for ¢;(-):

(¢.1) For the constant 6 > 0

T2 T2
6;(w,0) = ¢(2,T) = dj(x) — c— < max [maxd;(z) | —c— < -3,
]2{172} LEEQj

uniformly in ﬁj.

(¢.2) There are tg and ¢; with 0 <ty <T/2 < t; < T, such that

min ( min (bj(m,t)) > o, (3.21)
(z,t) ]

Jj=12 Gﬁjx[to,tl

1.2
for o € (0, ming_ dj), where mind; = - (Lemma B1]).

J



As a consequence of Corollary 4.2 in [28§]

4(1 4+ 7c)o*
max ( max (meH%%;0<ia:%2 (3.22)

2217777/ ]:172 (w,t)eﬁjx[O,T]
for any € € (0, min{2 — 2¢, 1}) with ¢* € (0,0) and c€ (0,1).
We end this section defining

Qo) = { 2.0 0,21 < [0.7] | 1 05(2.1) > o . (3.23)
]= b

This set will play an important role in Carleman estimates by being able to separate the set
[0, L] x [0, T] from the level surface generated by the pseudo-convex function ¢; at height of
.

Additionally, note that

Qj x [t07t1] < Q(U) < [OvL] X [OvT]7 Vj=12.

3.1 Analysis of the coupled system - Problem (L2

In this section, we will study the Problem (L.2)) under the new decomposition 7 and Q5
(BI8). This decomposition will allow us to define the boundary terms for the solutions of this
system. We begin with the following definition:

Definition 3.1. Let T' > 0. The vector function (ui,--- ,uy) is a weak solution to the Prob-
lem (L2)-@A4) if the function u; solves the variational form of equation (L2), and possesses
reqularity

ui € C(0,T; (Ho (M;))  CH(0, T (L* (M),

where M; denotes the Riemannian manifold ([0,L],g;) (i =1,--- ,n).
If u; € C%(M; x RY) the vector function (ui,--- ,uy,) is a reqular solution to the Problem

(C2)-@4).
Now, let (uq,--- ,u,) be a regular solution to Problem ([2)-(L4]) and we define
ui,j(ajat) = X](‘Tat)U’Z(x?t)? i=1,---,nand J=12 (324)

where x; is a smooth cutoff function such that

1 in V; x [0,T],
T { 0 in (fO,L]\Qj) x [T +1,0), (3.25)

where T is a positive constant satisfying (B.20).
By definition, we can observe that u;; € C%(M;; x RY), where M;; = (Q;,9;) represents
a 1-dimensional compact connex smooth riemannian manifold with boundary 0€2; and with
metric g;.

Recall that the objective of the present section is to show a unique continuation property
for the Problem (L2). For this purpose we shall assume

ui(z,t) =0, V(x,t)ew x[0,00), i=1,---,n. (3.26)

10



Under the above notations, the function u; ; € C?(M;; x R") solves the problem

0Fuij — Agui g = fi(urj,ug g, uny) in M  x (0,7,

uij($ t) =0 on 0Mlj X (0 T]
; 3.27
uij(x,0) = x;(x, 0)ul(x) in M; ;, (3.27)
Orui j(z,0) = x;(z, )Uz( ) in M, ;

In particular, the following decomposition is valid

wi = U1+ w2, (x,t)e[0,L] x[0,T] (i=1,---,n). (3.28)
On the other hand, note that the system

agvm- — A j = filvij,v25, - ,vn;) in M;; x (0,77,

Ui,j($ t) =0 on 0Mlj X (0 T] (3 29)

) =
vij(z,0) = xj(=, )Uz( ) in M, j,
i j(2,0) = x;(x,0)u; () in M

is well posed, for all i =1,--- ;n and j = 1,2.

Due to the uniqueness of solutions in the previous system (by density and continuity) we will
focus on studying the problem (3.29)), in such a way that when assuming (B3.26]) we have that
vl?] = uivj'

3.2 Carleman estimates

In the context of the previous section, in regard to the study the boundary terms for the
system (B.29), the following will be considered:

1. For v; j € C(0,T; (HY(M;;))) nCH0,T; (L*(M;;))) the weak solution of Problem (B.29)
we have
(Vg0ij, Vgidj), = Vgij,v), (Vgdjv),

where v denotes the outward unit normal field along the boundary dM; ;.

2. Let 7 be a positive parameter then we define
T 2
BT, v, =2r j j 2 (T 015,03y, ) (Vudjs vy, dadt, (3.30)
0 Joo, ! !

with 7" > 0 satisfying (3.20).
Next, we shall investigate the properties on the forces f;(-) (i = 1,--- ,n) in the context

of the new decomposition. We promptly have from (L6)-(L9) that there exists a positive
constant C'r such that

T n T L
j J Fiowss e ,vn,j)@d:ndtéCTZj j Vi(a, t)dadt, (3.31)
0 Jo, =Jo Jo

where
Vi(z,t) = Jvin + vi2l® + 70 (vig + vi2)” + 10 (vig + vi2)]?, (3.32)

11



with
Vi1 in [OvLO] X [OvT]7

vz in [Lo, L] x [0,7] (3.33)

Vi1t V2 = {

Note that
2 L
Vi‘ij[O,T] = ‘Ui,j|2 + ’yi‘axULjP + \6tvi,j|2 and E L Vi|ij[O,T]dx = f Vidx.
J

Now, for any regular solution v; j, we find from (B.31]) that

T n T oL
j j 2701102 j — Aivm@id:ndt <Cr Z j J 7%V (x, t)dadt.
0o Jo; i-Jo Jo
In particular, by [B.2I)) and ([3:23]), we obtain

T
j J 205 0%v; j — A v”|g dzdt < Cre®™ Z j Vi(x,t)dzdt.
0 J[Q(o)]°

Remark 3.1. Note that the Problem ([B.29) satisfies the following compatibility condition
v;.;(Lo,t) = 0 in (0,T] and v (Lo) = v} (Lg) = 0.

In particular, there exist positive constants ki, ke such that

klZJ Vi(z,t)d ZJ Vil O v21+v12)| +[0¢(vi1 + vi2) | dz < k:ng Vi(z,t)d

Collecting all the above ingredients and proceeding analogously to Theorem 6.1 in [28] we
arrive at:

Theorem 3.1 (Carleman Estimates). Let v, ; (i = 1,--- ,n and j = 1,2) be a reqular solution
of the Problem B29) with initial data (x;(z,0)ud(z), x;(x,0)ul(x)). Then, for all T > 0
sufficiently large and € > 0 small, the following estimate holds true

iZBTTW,p{W( (1 —c) = 2nCr)e CTT]ZJ i(2,0) + Vi(x, T)]d

j=li=1

Crrkae™™ 1 cpr 276
—{ o + Cprie” ZJ i(z,0) +V(xT)]d

> ky ZIUO Vi(z,0) + Vi(x, T)]dx,

where
1. ki, ko the positive constants from Remark B.1];
2. o defined in (¢.2);

3. ce(0,1) given in (320);

12



4. Cp,Ch 1 positive constants depending only on T,o and Q(o);
5. kr a positive constant depending only on o, ¢1, p2,n and Cy 1.

Moreover, the above inequality may be extended to all weak solution of the system ([B.29) with
initial data (x;(z,0)u(x), x;(z,0)ul (z)) € HY(M; ;) x L*(M; ;).

Remark 3.2. (a) Note that the definition of o and Q(o) allow the right-hand term of previous
inequality to be independent of j. (b) The inequality holds for weak solution of the system
B29) because [28, Theorems 7.1 and 8.1].

3.3 A new UCP
Thanks to the Theorem [B.] it is possible to state the main result of this part of paper.

Theorem 3.2. Let I be an open interval such that
w=I1n|0,L] # .
Then, for T > 0 large enough, any weak solution
u; € C(0,T; HY(0,L)) n CY0,T; L*(0, L))
of system ([[L2)-(L4) vanishing in w x [0, T] must vanish all over [0, L] x [0,T1].
Proof. Without loss of generality we can assume
€

w= (LO - %,Lo + 2) ~ [0, L]. (3.34)

where € > 0 and Lg € [0, L].

The proof of the unique continuation property will be divided into four steps:

Step 1. Equivalence of systems. Firstly, we observe that if (ui,--- ,u,) is a weak so-
lution of the Problem ([2)-(T4]) with overdetermined condition (B26) then u; ; = x;u; €
C(0,T; H}(M; ;) n CY(0,T;M; ;) is a solution of [B217), where M;; = ([0, Lo],g;) and
M; 5 = ([Lo,L],9i), foralli =1,--- ,nand j = 1,2.

From the Appendix A, for j = 1,2, the system (B:29]) with the following overdetermined
condition

(V1,7 0 ) = (0,-+-,0) nw; =0 Nnw (3.35)

is well-posed and generates a strongly continuous semigroup

T,

4,3

t Hyy (M) — Hejy (M 5)
in the Hilbert space

vij € HA (M), wij € L2(Mi),
Hy, (M j) = {(Ul,j"“ gy w1, )| 9 € HOWMig), wig € L7 (Mig) }

Ui,j = wi,j =0 1in Wj,’i = 1,"' , 1
In particular,
T, ; (x5 (0)ud, -+ xG (0)ugy, x5 (0)ur, -+, x5 (0)ug) = (wrg, -+ Un g, O g, -+ Ostin )
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is the weak solution of ([3.29) satisfying (3.35]) with initial data
(6 O)u x5 (0t x5 (), -+ X (O)up) € Hosy (M),

Step 2. Carleman estimate. From Step 1 and via Theorem [B.] there exists a positive
constant kp such that

n

2 n
Z Z Tru;j = Z {J Vi(x,0) + Vi(z, T)d:z:]
Next, from (LJ]), 328), 3:30), 3:32) and [B.33)) we find that
2 Z ZJ j 7% ((Tyuig.0), ) (Vgudj, ), dadt > ky (Fy(0) + Fu(T)) . (3.36)

Jj=1l:=1

Step 3. Boundary estimates. The fact that Ly € w and w is an open subset of [0, L] we

have
(Vg,uij(Lo),v(Lo))y,, =0, Vi=1,--- ,nand j=12.

Now, recalling Item 5 from Lemma [3I] we obtain
<Vgidj=V>gi <0 in{0,L}, Vi=1,--- ,nand j=1,2,
Combining the above information with assumption that 7 > 0, we infer that

2TZZJ f 2“% <Vglu”,1/> ) (Vgdj,v),, dzdt <0. (3.37)

Jj=1l:=1

Step 4. Conclusion. From inequalities (836 and (B31) we find
0= kr (F,(0) + F,(T)) = 0.
This last implies that F},(0) = 0. Since (L2)-(T4) is well-posed, the result is followed.

4 Dynamics of locally damped Bresse systems

Let us consider the semilinear Bresse system

p1o1e — k(pr + b+ lw)y — kol(we — lo) + ar(x)gr(w:) + fi(e, ¥, w) =0
P27/)tt - b¢xw + k((pm + ¢ + lw) + az(ﬂj‘)g2(¢t) + f2((107 ¢7 ’LU) = 07 (41)
prwy — ko(wy — 19)e + kl(pe + ¥ + lw) + a3(x)g3(w) + f3(p, ¥, w) =0,

with Dirichlet boundary conditions
2(0.8) = @(Lot) = (0,1) = $(Lyt) = w(0,8) = w(L,t) =0, teR*,  (42)
and with initial condition

?(0) = w0, #1(0) =1, ¥(0) = o, $(0) = 1, w(0) = wo, w(0) =wr.  (4.3)
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4.1 Well-posedness

In this section, we summarize all the assumptions that will be used to prove the main
result. We also introduce the well-posedness result along with some energy inequalities.

Notations. Henceforth the symbols LP(0,L) (p = 1) and H™(0,L) (m € N) denote the
Lebesgue and Sobolev spaces, respectively. The norms in LP(0, L) are indicated by | - ||, and
|- Iz20,0y = I - [I. We will also frequently use the inequality

L
Jull < —lusl, Yue H;(0,L).

Assumptions. The following hypotheses will be used throughout the paper.
(f.1.) The sources functions f; € C*(R) (i = 1,2,3) are locally Lipschitz and there exists a
function Fe C1(R3) such that VF = (f1, fa, f3)-

2

(f.2.) There exists constants 0 < o < 35zz and cp > 0 such that
F(u,v,w) = —oz[|u|2 + v + |w|2] —cp, Yu,v,w e R,
VFE(u,v,w) (u,v,w) = F(u,v,w) — a[\u|2 + |vf* + \w\2] —cp, Yu,v,w e R,
where 8 > 0 is the constant
Jall + el + | < B[blutel? + klis + 3 + lwl® + kollw, — g .
(f.3.) There exists ¢y > 0 such that
|V fi(u,v,w)| < cf[l + |uP™t 4 ot 4 |w|p_1], i=1,2,3,p=1,Vu,v,weR

(9.1.) The damping functions g; € C(R) (i =1,2,3) are monotone increasing with g;(0) = 0.
Moreover, we assume that there exist constants positive constants m and M > 0 such that

m<gi(s) <M, ¥seR.

(a.1.) The localizing functions a; € L*(0,L) (¢ = 1,2,3) are non-negative and there exists
positive constant ag such that

ai(z) = ap, xel;, i=1,2,3,

where I; < [0, L] are open intervals with (L, La) =, I; # .

Dynamical system generation. Before introducing the well-posedness result, we start with

the necessary functional framework. First, the finite energy space H of the well-posedness is
defined as

H = H}(0,L) x H}(0,L) x H}(0,L) x L?(0,L) x L*(0,L) x L*(0, L).
For Z = (o(t), (), w(t), §(t),1,w(t))€ H, we define the H norm as

1ZI3 = p1l @1 + p2l &I + prll @] + bl + Kl ps + ¢ + lw|? + Kollwe —lof®. (4.4)
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Next, let A: D(A) € H — H be the differential operator

SSIRSER N

AZ

kp1~Hpr + 9 + lw)y + kolpr L (wy, — lp) |’
bp2717/}xx - kp271(()0x + w + lw)
| kopr N (ws — 19)s — Klpy (pu + 0 + lw) |

with domain
D(A) = [H?(0, L) ~ H (0, L)]* x H} (0, L),

Next, let be B : D(B) = H — H the damping operator

) . )
0
0
—ay(2)p; g
—aa()py " ga(
| —ag(z)p; ' gs(

BZ

)
)
)

Finally, by % : H — H, we represent the source terms operator

STIRSShY

0
0
P 0
rh= —p1 " fie, 1, w)
—p3 " falp, 1, w)
| =1 fa(e,h,w) ]

Now, using the definitions of operators A, B,.%#, we can abstract represent the problem as
follows

S21)~(A+ BYZ() = F(21), 20) = Zo = (0.t w001, Yrwr), (45)

where
Z(t) = (p(t), ¥ (1), w(t), §(1), P, @(t)) with ¢ = @p, & = by, @ = w.

We observe that the well-posedness of (£35]) induces the well-posedness for the Problem
(@1 -(@3). In the following, we present the well-posedness for (£.3]).

Theorem 4.1 (Well-posedness). Assume the validness of Assumptions (f.1)-(g.1). Then for
any nitial data Zo € H and T > 0, the Cauchy problem ([L5]) admits a unique weak solution
Z e C([0,T]; H) that depends continuously on the initial data and is given by the variation of
parameters formula

t
Z(t) = 4Bz o+ f eATBIE=9) Z(Z(s))ds, te[0,T]. (4.6)
0

Moreover, if Zg € D(A) then the solution is strong.
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The well-posedness result stated above is known and can be found in [I8]. Theorem [A.T]
in particular, implies that the map H 3 Zg — Z(t) = (¢, ¥, w, vt, Y, wy), where Z(t) solves
([43), defines a strongly continuous semigroup {S(t)};=0 on H.

Energy. Let Z(t) = (¢(t),9¥(t), w(t), pi(t), Y (t), w(t)) be a solution of (EI)-E3). The
energy is defined by the following functional

L L

Flo, o w)dz = |2 + jo Flp, . w)dr. (4.7)

5a(t) = Ea(t) + f

0
The weak solution Z(t) = (@(t),1¥(t), w(t), pt (t), ¥ (t), wy(t)) satisfies the energy identity

t ~L
&z7(t) + f fo [041(95)91(%)% + () ga (Ve )9r + 03($)93(wt)’wt]dxd7 = &z(s), (4.8)

forall 0 <s <t
As in [18], the energy &%(-) (A1) and the norm | - |z (£4]) satisfy

CrlZ(t)|3 — Ler < &2(t) < |Z(0)|F + e+ |Z@)|5 ), Vi =0, (4.9)

for some positive constants C'r and cg.

4.2 Global attractors
4.2.1 Abstract existence theorems

Some essential definitions and results from the theory of attractors for gradient systems
is collected

Definition 4.1. A global attractor for a dynamical system (H,S(t)), with evolution operator
{S(t)}s=0 on a complete metric space H is defined as a a compact set &/ < H that is fully
invariant, that is S(t)«/ = o for all t = 0, and uniformly attracts all bounded subsets of H

thrélo sup {distH(S(t)Z,d) |Z e %’} = 0, for any bounded set Zc H.

Definition 4.2. The fractal dimension of a compact set &/ < H in a metric space H is
defined as
. . In N (<)
dim#(.e7) = lim sup ———~,
f( ) 54>()p ln(l/&‘)
where N¢(7) is the minimal number of closed balls of radius € which cover the set A.

To ascertain the existence of a global attractor, we use the concept of gradient and quasi-
stable dynamical systems. The global attractor for this systems admits additional structure
and properties: (i) the attractor for gradient systems has a regular structure, that is, the
attractor is described by the unstable manifold emanating from the set of stationary points and
(ii) quasi-stable systems provide several properties of attractors, such as finite dimensionality.

Definition 4.3. Let % < H be a forward invariant set of a dynamical system (H,S(t)). (i)
A continuous functional ® : % — R is said to be a Lyapunov function on % for (H,S(t)) if
the map t — ®(S(t)Z) is non-increasing for any Z € % . (ii) The Lyapunov function is said
to be strict on % if the equation if ®(S(t)Z) = ®(Z) for all t > 0 for some Z € % implies
that y is a stationary point of (H,S(t)). (iii) The dynamical system (H,S(t)) is said to be
gradient if there exists a strict Lyapunov function on the whole phase space H.
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Definition 4.4. Let X,Y be reflexive Banach spaces, X compactly embedded in Y. We
consider a dynamical system (H,S(t)) with H = X xY and evolution operator defined by

SM)Z = (u(t),w(t),  Z=(u(0),u(0)) € H, (4.10)
where the function u possess the property
ue C([0,00); X) n C([0,0);Y). (4.11)

A dynamical system of the the form ([@I0Q) with regularity (AI1) is said to be quasi-stable on a
set 8 < H, if there exist a compact semi-norm [-]|x on X and non-negative scalar functions
a(t),b(t),c(t), such that, (i) a(t),b(t) are locally bounded on [0,0), (i) b(t) € L'(0,00) with
limy o b(t) = 0 and (iii) for any Z',Z? € A the following estimates hold true

|1SM)Z' — S()Z% |7 < a(t)|Z' — 22|, (4.12)
and
IS(®)2" - SOZ3 <012~ 22 +e(t) sup [0'(s) )k (@13

where S(1)Z' = (u!(t),ui(t)), i = 1,2.

Unifying the abstracts results from [9] we arrive at the following criteria for existence and
properties of global attractors.

Theorem 4.2. Let (H,S(t)) be a gradient quasi-stable dynamical system. Assume its Lya-
punov function ®(-) is bounded from above on any bounded subset of H and the set ®(R) =
{Z EH|P(Z) < R} is bounded for every R. If the set A of stationary points of (H,S(t)) is
bounded, then (H,S(t)) possesses a finite dimensional global attractor </ defined by the un-
stable manifold emanating from set of stationary solution. Moreover, any trajectory stabilizes
to the set A of stationary points, that is,

lim disty(S(t)Z,.4) =0, YZe H.
t—+00

We now state the main result of the present chapter.

Theorem 4.3. Under the Assumptions (f.1)-(a.1) the dynamical system (H,S(t)) generated
by the problem (LI)-E3) has a global attractor A characterized by

A = M+(N)7

where M (N) is the unstable manifold emanating from N, the set of stationary points of
{S(t)}e=0.-

4.2.2 Gradient structure and quasi-stability

Our strategy centers on establishing the conditions from the Theorem Starting ex-
hibiting the gradient structure for (H, S(¢)) and focusing our attention on the strictness of
the Lyapunov function where the new observability result stated in Theorem plays an
essential role in the proof.
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Proposition 4.1. Let the assumptions of Theorem be satisfied. Then, (H,S(t)) is a
gradient dynamical system.

Proof. The dynamical system (H, S(t)) is gradient with full energy &z(-) - defined in (&7 -
being the strict Lyapunov function ®(-). In fact, from identity (£S8]), we find that t — ®(S(t)Z)
is a non-increasing function for any Z € H.

Next, we suppose that ®(S(t)Z) = ®(Z), for all ¢ > 0. Then, from identity (L8], we
obtain

t rL
||| fon@anteen + aatelamtinin + antopgatunu azdr o

This shows that ¢y =1y = wy = 0 a.e. in (Ly,Ly) x [0,T], where (L1, Lz) = ();1;. Thus,
(i, 1, w) satisfies the problem

P1Ptt — k(gox + w + lw)x - k‘ol(wx - l(,D) + fl(@,w,'w) =0 in (07L) X [07T]7
p2¢tt - bwmm + k:((ipzv + 7;[) + lw) + fQ(SD,T,ZJ,U)) =0 in (07L) X [07T]7 (414)
prwge — ko(we — 19)a + kl(@z + ¥ + lw) + f3(p, ¢, w) =0 in (0,L) x [0,T].

Using the notation u' = ¢;, u? =1y, u® = w; and taking the derivative in the distributional
sense of ([I4), we find that (u',u?,u3) solves the problem

upy — mut, = FY(u',u?,w®) in (0,L) x [0,7T],
uZ, — youZ, = F2(u',u?,w®) in (0,L) x [0,7T],
uy —youd, = F3(u',u?,w®) in (0,L) x [0,7T],

with 1 = pﬁl, Yo = p%, 3 = % and with forcing F(-) defined by

FHu' o, u®) = yud + il + kopy '(u — lu) = prt L fi(p, ¢, )],
F2(u1,u2,u3) = _kpgl(u}v - U2 + lug) - pglat f2((1077p7w)]7
F3(u1,u2,u3) = _/73lu:12 - kpfll(ui + U2 + lug) - pflat[f3(907¢vw)]

Now, we apply the UCP - Theorem - to conclude that (¢, ¥y, wy) = (ul,u?,u?)=(0,0,0).
Therefore, the solution Ze H must be stationary. This implies that the energy &%(+) is strict
on H. ]

Our next aim is to show the quasi-stability of (H,S(t)). According to the Definition
4 the difference of two trajectories should obeys estimates (LI2]) and (I3]). Taking the
advantage of the locally Lipschitz property of f;(-) and the variation of parameter formula
(44)), one can easily show the validity of (AI2]). Next, by means of multiplier technique, we
prove the stabilization inequality (ZI3]).

Proposition 4.2. Let the assumptions of Theorem be satisfied. Then, (H,S(t)) is a
quasi-stable dynamical system.

Proof. The proof is carried out through several energy estimates. In the text that follows, we
use the notations

v =v' =% G) = gi(v') — gi(v?) and F;(v) = fi(v') — fi(v?), i =1,2,3.
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First, we shall consider the difference of two trajectories with initial data Zé,Z% € A,
where % is a bounded subset of H. The corresponding solution .S (t)W(Zs —Z3)=Z' - 7° =
(@, 1, W, Py, Yy, Wy ) verifies the following problem

(2 P+ L), — kol(Wy — 1p) = —a1(2)G1(r) — Fl(@ﬂéﬂj)),
ot — bbra + k(@o + ) + 1) = —az(2)Ga () — Fa(@, 9, ), (4.15)
p1ig — ko(Wy — 1@)e + kl(Py + O + 1) = —a3(2)Gs (i) — F3(p, 9, w),

with zero Dirichlet boundary conditions and initial conditions Z — Z.
Second, we let €y be a positive real number, such that, ¢g < (L2 — L), where (L1, Ly) =
(); Li- We consider the following real-function £(-) defined as follows

{ (A= 1Dz, if x € [0, L1 + ),

f($) = )\(l‘ — L — 60) + (L1 — Ly + 260)/(L1 + 60), ifze (Ll + €9, Lo — 60],

()\ — 1)($ — L), ifre [L2 — EQ,L].

Now, we take p&, 1,&, we& as multipliers for (@I5). Thus, we find

E fT "0 D) E() deat

0 JO
_ LL [ P + T,Z)t%c + W Wy fdx j jLLli: ) dodi
_ LT LL (e — 0§+ 10) (§ + 1) + ol — 1) € dadlt (4.16)

T oL, o
— J J 7&1G1 ((,Et)@m + (IQGQ(T,Z)t)T,Z)m + agGg(ZDt)ZDm]fd:Edt

T fL ~ ~
- f f 7F1(<,5,¢, )9590 + F2(9077;Z)7 )T;Z)m + F3( ,Qﬁ,ﬁ))ﬁ)x]fd$dt,
where
E(t) = p1|@ul* + poltn]? + puln|* + blibe|* + k|G, + 9 + 10]* + ko, — 1G],

Let us estimate the left-hand side of (A.I€]). Note that, from the definition of energy, we find
So t)dt=||Z|%,. Then, we can show that there exists ¢ > 0 satisfying

L
J [@t%c + Pyt + wth] §dz| < c sup {£(z)}Ez(t).

0 z€[0,L]
This last implies that
L
J, o+ s ] gl | < c s (B + B2). (@17
Z‘E

Also using the definition of Ez(t), one obtains

By — O + 1B (¢ + 10) + kol (i, — z¢)¢]g’ dxdt‘

. (4.18)
€ f Ez(t)dt + cl.ot(@, 9, ),

0

20



with lower order terms defined by

Lo.t(3,0,@) = sup [1¢(0)[3, + 10013, + ()3, ]
o€[0,T]
To estimate the damping terms, we use Assumption (g.1) to obtain

L
alammsdxdt\ s (6(2) f f ar Mg} — 2| 3o dadt
0 x€|0,L

< ff Ez(t)dtJrcef f ar@? dadt.
3 0 0 JoO

This allows us to conclude the following estimate

[alGl ((,Et)@x + (IQGQ (&t)&x + agGg(’LZ)t)’LZ)x]f d:l?dt‘

T P ] (4.19)
ef Ez(t)dt + c. f f [algﬁf + agi,bf + agw?]dzndt.
0 0 Jo
Let us estimate the kinetic energy in ([@I9). Assumption (g.1.) implies that
T oL -
j j [alcﬁg + agp? + ag’lf)?]d([’dt
0o Jo (4.20)

T oL o
CJ j [alGl (@t)@t + (IQGQ(T,Z)t)T,Z)t + agGg(ZDt)ZDt] dzdt.
0 JO

Next, we estimate the source terms. Invoking Assumption (f.3), we find a positive constant
¢ such that

~ T (L
w>¢xsdxdt\ <e fo fo (V1) (ol + 1]+ )] ] dadt

Fi(¢

T
ej B (t)dt + coglot(3, 6, ),
0

where
(V) =1+ P+ [P+ " P + 2P+ [w! P+ w? P

The above implies that

T (L .
J [F1(¢,¢, 9590+F2(9077;Z)7 )T;Z)m+F3(907¢y ) x]fdl‘dt‘
0 JO

. ) (4.21)
ej Ez(t)dt + cc gl.ot(P, 1, W).
0
Next, we combine (IT7)-@2I)) with (£I6]). For sufficiently small € > 0, we obtain
T Ly— E0 -
f Ez(t)dt < C[Ez(T) + EZ f f da;dt + cgl.o. t( VR u?)
0 L1+€0 (422)

T -~
-I-C,%f f CLlGl(QZ’t)SEt + asGo (wt)wt + a3G3 (@t)@t]dxdt.
0 JO
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The next step is to estimate the integral of E(-) over the interval [Ly + €, Ly + €]. To this end,
we consider the function [0,1] 3 7€ C*®(0, L) defined as follows

[ n(x)=0,ifxe(0,L1)u (L, L),
’I’}(l‘) N { 77($) =1, ifxe (L1 + €g, Lo — 60).

We start multiplying the equations (AI5]) by &n, 1/?77 and wn, respectively, and after integrate
over [0,7"] x [0, L], we add the kinetic energy Sg Sé [p15% + potf + pr1w} | dadt to obtain

T (L
j J E(t)ndadt
o Jo
L o T+ T (L .
:—J [P1¢t¢+02¢t¢+01@t@]77d$‘0+2j J [P1952+,02¢t2+0115t2]77d$dt
0 o Jo
T oL ) o
—f f BB + 0+ 10)@ + by + kol — 16) | dds (4.23)
o Jot

T oL, o
_ fo fo _alGl(@)@ + asGa (V)Y + a3G3(’lDt)”tD]ndxdt

T oL . ~ ] )
_ L L 7F1(<,57¢,u~))¢7 + Fo (@, 1, 0)) + F3(957¢7@)U~)]77dxdt.

We shall estimate the right-hand side of (£.23]). To this end, we repeat the pattern of estimates

(@17)-@21) to find

T L
L L E(t)yndzdt < c[Ez(T) + Ez(0)] + cal.o.t(3, ¢, )

. o (4.24)
+ C{@f f [alGl (@t)@t + agGg(wt)wt + agGg(th)th]da:dt.
0o Jo
Applying the estimate (£24]) above in ([£22]), we obtain
T
f Ez(t)dt < c[Ez(T) + Ez(0)] + calo.t(p,v,0)
0 (4.25)

T rL o
+ Cgf j [alGl (@t)@t + a9Go (th)¢t + a3G3 (ZDt)ZDt] dzxdt.
0 JoO

Next, we estimate damping terms on the right-hand side of (4.25]). Multiply the equations
[@I5) by @4, Yy, wy, respectively. Then we find that

T rL
L jo [a1G1 (@t)@t + (IQGQ (ta)ﬁt + a3G3(’LZ)t)’LZ)t]dl‘dt — Fy, (0) + Fy, (T)

P ) i ] ) (4.26)
—— | [ [Fe. 0061 + Fag. b 50 + Fa(, b o) ast
0 JO
Based on estimate (£21]), we obtain
T L 5 ~ _ 5
[ [ 7.0+ i + Fato. i aoa|
0 Jo
., ~ (4.27)
Ez(t)dt + c. gl.ot(p, 1, W).
0
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Using both ([4.26]) and ([£.27), we find

T L o
j J [alGl ((ﬁt)(ﬁt + CL2G2 (l/Jt)wt + agGg(ﬁ)t)ﬁ)t]dxdt
0 0 (4.28)

T
< Ez(0) — Ez(T) + EJ Ez(t)dt + 657931.0.'5((,5, ), ).
0

We return to (@25 and obtain by use of (28], with ¢ > 0 small enough, the following
estimate

T
L Ez(t)dt < (c — c)Ez(T) + (c + ) Ez(0) + cl.o.t(, 4, ). (4.29)

The next step is to estimate the energy Ez(-). To this end, we use the multipliers ¢y, 1, Wy
for ([AI5]). Then, after integration, we find

T T pT L
TEz(T) = J;] Ez(t)dt — jo j J;) [a1G1 (@t)@t + CLQGQ(TZ)t)TZ)t + a3G3(’LZ)t)’LZ)t]dl‘dtd8

oo ) i ) i (4.30)
[ | [ b e+ B b )i+ B b o) dsdeds.
0 Js JO
Now, the forcing assumptions give
L
L N SN 1 L
f [Fl(so,w,w)% + Fo (@, v, @)y + F3(<,07¢,w)wt]dx < 7 B2(t) + e zlot(g, 9, 0).
0
The above implies
T (T rL ~ ~ ~ ~
|| [ (R d.ava + Fateod i + Fatg. .y |dsaeds
0 Js JO
T ~
< f FEy (t)dt + CT’ggl.O.t(@, P, u~)).
0
We combine the above estimates with (£30])
T ~
TEz(T) < 2j Ez(t)dt + cr gl.o.t(p, ¥, ). (4.31)
0

Next, we using estimate ([A.29) in (£31]) we arrive at
TEz(T) < 2(c — cz)Ez(T) + 2(c + c5)Ez(0) + cr,zl.0.t(3, ¥, ).
Taking T' > 4c¢, we find

2(c+cp)
E (T) < —=" =%/
z(T) T —2(c—cyp)
Using standard stabilization arguments, we obtain the existence of positive constants ¢; = c»
and w = wg such that

1Z#)|% < e Z(O)Fe™" + 1 sup [II@(J)H%p + ()3, + Hw(ff)H%p]-

o€[0,¢]

Ez(0) + cr.zl.0.4(@, ¥, 0).

Therefore, the inequality ([@I3]) holds with X = [H}(0,L)]3, Y = [L?(0,L)]3, b(t) = cre ",
¢(t) = ¢1 and with compact semi-norm

[, 9, @)]% = 813, + 1913, + @13,
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4.2.3 Proof of the main result - Theorem

Proof of Theorem From Proposition ] and Proposition [1.2] we have that (H,S(t)) is
a gradient quasi-stable system. Moreover, by inequality ({3]) one can see that the Lyapunov
function defined as the energy &7z(-) satisfies the following: (i) ®(-) is bounded from above
on any bounded set and (ii) the ®(R) = {Z € H|®(Z) < R} is bounded for every R. To
conclude the proof, we note that if Z € 4", then Z = (p,1,w,0,0,0) solves the stationary
problem

_bwmm + k((pw +9Y+ lw) + f2((p7 ¥, w) =0, (432)
—ko(wy — @)z + El(pz + ¥ + lw) + f3(p, ¢, w) = 0.

Multiplying in L?(0, L) the equations in {Z32) by (p, %, w), we find
L
bl + k|pe + ¥ + lw|? + ko|ws + L] = —J VF(u,v,w) (u,v,w)dz.
0

Now, we use Assumption (f.1) to show

205>
1= 225 | leal? + [l + vl ?] < 2BerL.
™

Therefore, the set of stationary solutions .4 is bounded. This completes the proof.

Appendix: Well-possednes for overdetermined wave equations

In this appendix we will guarantee the well-posedness for the system presented in (2]
with overdetermined condition.

Theorem A.4. Let L > 0 and T > 0 large enough. If the Problem ([L2)-([T4) satisfies
([CLH)-([C9) with supplementary condition

(g, yup) = (0,---,0) in w x [0,T], (A.33)

with w < [0, Lo] as in 334). Then, the overdetermined problem is well-posed and generates
a strongly continuous semigroup over the Hilbert space

. 1 . . 2 .
ij<Mi) = {(ulj... JUp, U1, - - 7?]”) u; € HO(MZ)7 V; € L (MZ)7 }’
N

u=v;=0mw,t=1,---
where M; = ([0, L], ;).

Proof. First, for the state vector Z(t) = (uy,- -+ ,Un, Opui1, -+ , Otty) |, the Problem (L2))-(T4)
is equivalent to the following vectorial Cauchy problem

OZ(t) + AZ(t) = F(4(t)), Z(0) = (u(l),--- u? ui, ul) T, (A.34)

' '
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with operators defined by

—Aq 0 0
0 o) 0 Ay 0
A= 2 ) B = . . . ; I = 62 nxmn
|:B|V1(Ml) 0 . . . ( ) )
0 0 0 -—-A,
and _ _
0
0
o _
FE = fu, )
_fn(u17 7un)_

The domain of operator A is defined by D(A) = [V1(M;)]™ x [Va(M;)]™ where

Vl(MZ) = {(ul,--- ,’LLn)
VQ(MZ) = {(Ul,- . ,’Un)

€ D(B) | (u1,-- ,un) = (0,---,0) in w},
e D(B2) | (v1,-++ ,v5) = (0,--+,0) in w}
and
D(B) = D(=A1) x -+ x D(=A,) = H*(My) n Hy(My) x --- H*(M,) n Hy(M,).
The finite energy space for (A.34) is the Hilbert space defined by
H,(M;) = {(ul,--- JUp, V1, 0p) € H(MG) |uj =v; =0inw, Vi=1,--- ,n},

where
H(M;) = [D(B2)]" x L(M;) and L(M;) = L2(M;) x --- x L2(M,).

Using classical semigroup theory, one can establish existence and uniqueness of a solu-
tion to the Cauchy problem ([A.34]). Moreover, the solution operator generates a strongly
continuous semigroup

T, (t) « Hy(M;) — Hy(M;),

defined by

(u(l]a ,U?L,U%,"' ,U}L) i (Ul(t), 7un(t)7atu1(t)7”' 7atun<t))7 t = 07

where (u1, -+ ,up, Gput, -+, dpuy) is the weak solution corresponding to the initial data
0 0,1 1
<u17--- 7un7u17--- 7un)'

In addition, {7y, (t)}+=0 is also strongly continuous semigroup on H,,(M;) satisfying the com-
patibility condition (A-33)).
Remark A.1. It is not difficult to show that if (A33) is fulfilled, then we also have

(Gpur, -+ Opup) = (0, ,0) inw x [0,T].
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