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Abstract

This paper is devoted to Bresse systems, a robust model for circular beams, given by
a set of three coupled wave equations. The main objective is to establish the existence of
global attractors for dynamics of semilinear problems with localized damping. In order to
deal with localized damping a unique continuation property (UCP) is needed. Therefore
we also provide a suitable UCP for Bresse systems. Our strategy is to set the problem in
a Riemannian geometry framework and see the system as a single equation with different
Riemann metrics. Then we perform Carleman-type estimates to get our result.
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1 Introduction

The Bresse system is a model for circular beams given by three coupled wave equations,
namely,

$

&

%

ρ1ϕtt ´ kpϕx ` ψ ` ℓwqx ´ k0ℓpwx ´ ℓϕq “ 0 in p0, Lq ˆ p0,8q,
ρ2ψtt ´ bψxx ` kpϕx ` ψ ` ℓwq “ 0 in p0, Lq ˆ p0,8q,

ρ1wtt ´ k0pwx ´ ℓϕqx ` kℓpϕx ` ψ ` ℓwq “ 0 in p0, Lq ˆ p0,8q.

The functions ϕ “ ϕpx, tq, ψ “ ψpx, tq, w “ wpx, tq correspond to the vertical displacement,
shear angle and longitudinal displacement at a point x P p0, Lq and time t ě 0, respectively.
The coefficients are all positive constants defined by ρ1 “ ρA, ρ2 “ ρI, k “ KAG, b “ EI

and k0 “ AE, where the quantities ρ, A, I, K, G and E denote respectively, material density,
cross-sectional area, second moment of the cross-section area, a shear factor, shear modulus
and modulus of elasticity. In addition, ℓ ą 0 denotes the beam’s curvature. Its mathematical
modeling can be found in [3, 14] and it is worth observing that when ℓ “ 0 the arched beam
reduces to the Timoshenko beam [27].

The Bresse system and its viscoelastic and thermoelastic extensions were studied by many
authors. Roughly speaking, most of results are concerned with a certain asymptotic stability
dichotomy. Indeed, by analogy to the Timoshenko system, the Bresse system having damping
terms in one or two of its equations is exponentially stable if and only if satisfies the equal
wave speeds condition

ρ1

k
“ ρ2

b
and k “ k0. (1.1)

Such a condition was firstly observed for Timoshenko systems in [25]. Otherwise only poly-
nomial stability can be obtained. See e.g. [1, 10, 12, 13, 17, 24, 26, 29].

In a different direction, Charles et al [7] proved the exponential stability of Bresse systems
by adding a localized damping in each one of its three equations, without assuming the speed
condition (1.1). This is quite interesting since the equal speed assumption can not be realized
physically, cf. [20].

The main objective of this paper is to establish existence of global attractors for dynamics
of a semilinear Bresse system with locally defined damping (see problem 4.1), without assum-
ing condition (1.1). Our approach is very different from the above one in [7]. Indeed, one
of ingredients for obtaining exponential stability of wave equations with localized damping
is a unique continuation property (UCP). To our purpose, the UCP says whether a wave
equation that vanishes in a subdomain must be identically null. In [7] they have used a UCP
derived from Holmgren uniqueness theorem, which is only valid for equations with analytic
coefficients. Because of nonlinear terms, our problem (4.1) has no longer analytic coefficients.
To overcome this difficult we propose a new UCP for Bresse systems.
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More precisely, we discuss the unique continuation property for coupled wave equations
of the form

$

’

’

’

&

’

’

’

%

B2t u1 ´ ∆1u1 “ f1pu1, u2, ¨ ¨ ¨ , unq in p0, Lq ˆ p0,8q,
B2t u2 ´ ∆2u2 “ f2pu1, u2, ¨ ¨ ¨ , unq in p0, Lq ˆ p0,8q,

...

B2t un´ ∆nun “ fnpu1, u2, ¨ ¨ ¨ , unq in p0, Lq ˆ p0,8q,

(1.2)

where for i “ 1, ¨ ¨ ¨ , n the following is assumed:

1. We consider on the system (1.2) the Dirichlet boundary conditions

uip0, tq “ uipL, tq “ 0 @t P p0,8q, (1.3)

and initial data

pu1, Btu1, ¨ ¨ ¨ , un, Btunq
ˇ

ˇ

t“0
“ pu01, u11, ¨ ¨ ¨ , u0n, u1nq in p0, Lq. (1.4)

2. Given γi ą 0, the operator ∆i represents the one-dimensional Laplacian operator with
wave propagation velocity

?
γi, defined by

∆i “ γiB2x. (1.5)

3. The symbols fi denote the coupling functions with energy level terms such that fi P
L2p0, T ;L2p0, Lqq and

fipu1, u2, ¨ ¨ ¨ , unq “
n
ÿ

j“1

pijBxuj `
n
ÿ

j“1

qijuj , (1.6)

where pij, q
i
j P L2p0, T ;L2p0, Lqq. Additionally, given T ą 0 there exists a constant

CT ą 0 such that

ż T

0

ż L

0

|fipu1, u2, ¨ ¨ ¨ , unq|2dxdt ď CT

ż T

0

Fuptqdt, (1.7)

where Fuptq represents the energy of the system (1.2) defined by

Fuptq “
n
ÿ

i“1

Fu,iptq (1.8)

and Fu,iptq is the energy of the i-th equation of the system given by

Fu,iptq “
ż L

0

”

|ui|2 ` γi|Bxui|2 ` |Btui|2
ı

dx. (1.9)

The UCP has been extensively used in the analysis of exact controllability, exponential
stability, and in the theory of attractors for locally damped wave equations. The stabilization
problem for linear wave equations on a smooth compact Riemannian manifold was studied,
e.g., in [2, 21, 22]. In these papers, to show the exponential decay rates for the energy the
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authors assume localized damping and their proof uses a UCP for the wave equation based on
Holmgren Theorem. In [4, 5] the authors treated the nonlinear case exhibiting an exponential
decay of the energy with sharp damping region, roughly speaking, a damping region with
arbitrarily small measure. In this case, a new UCP is proven by means of energy estimates
and a escape vector field based on [16].

The study of the existence of global attractors for the wave equation with external forces
of critical exponent and locally distributed damping has been established in [6, 8, 11, 19].
Despite dealing with wave equations, the significant difference between these models is the
damping regions imposed on the damping parameter. Therefore different types of UCP are
needed. Reference [11] uses the UCP given in [23]. In [8, 19], the authors apply the UCP
corresponding to Carleman-type estimates for wave equations with linear potential and in [6]
the authors introduced a new UCP using the techniques of [28].

Here, the main idea for proving a new UCP for Bresse systems is to set Problem (1.2)
in a Riemannian geometry framework and see the system as a single equation with different
Riemann metrics. Then we show how Carleman-type estimates obtained in [28] can be used
to obtain a UCP for our system p1.2q under above assumptions on the functions f ip¨q pi “
1, 2, ¨ ¨ ¨ , nq.

Our paper is organized in the following way. Our UCP - Theorem 3.2 - will follow after
a series of comparison results between reference [28]. piq We begin in Section 2 with a Rie-
mannian geometry background material. piiq After, in Section 3, we introduce a preliminary
material that will lead the corresponding Carleman-type estimates for the Problem p1.2q. Fi-
nally, as a consequence of Carleman-type estimates, we then achieve our goal, the proof of
the Theorem 3.2. For completeness, to the best of our knowledge, this is the first UCP result
for coupled wave equations.

In the second part of the paper, we establish the existence of global attractors for the
Bresse system with a nonlinear foundation and nonlinear localized dissipation - see Problem
(4.1). We note that in [18] the authors studied a Bresse system with nonlinear foundation
and dissipation acting on the whole domain. There, UCP and observability inequalities were
not necessary. In this sense, our application improves the previous results on the existence
of long-time dynamics of the Bresse system allowing the dissipation to be localized in an
arbitrary subset of p0, Lq.

The outline of the remainder of the paper is the following: piiiq In Section 4, we introduce
the semilinear Bresse system with localized dissipation along with the well-posedness result
and energy estimates. The main result is the Theorem 4.3 and whose proof is based on the
following strategy: paq we first show the existence of a strictly Lyapunov function for the
associated dynamical system by using the new UCP stated in Theorem 3.2 and pbq introduc-
ing observability inequalities, we prove the asymptotic smoothness of the problem using the
abstracts results on the recent theory of quasi-stable systems [9]. Here, we also mention the
importance of the UCP for the proof of a strictly Lyapunov function - see Definition 4.3. pivq
The Appendix is devoted to the well-posedness result for wave equations with over-determined
conditions.
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2 A Riemannian geometry framework

2.1 Basic notation

Let pM,gq be an n-dimensional, compact Riemannian manifold, with smooth boundary
and smooth metric. The tangent space on M at p is denoted by TpM and fix a coordinate
system px1, ¨ ¨ ¨ , xnq then pBx1

, ¨ ¨ ¨ , Bxnq represents the associated coordinate vector fields. In
this case

gpX,Y q “ xX,Y y “
n
ÿ

i,j“1

gijαiβj , |X|2 “ xX,Xy ,

where

X “
n
ÿ

i“1

αiBxi
, Y “

n
ÿ

i“1

βiBxi
in TpM for some p P M, (2.10)

and
gij “

@

Bxi
, Bxj

D

.

Note that | ¨ | represents the norm with respect to the metric gp¨, ¨q. In particular, we denote
the inner product gp¨, ¨q by the matrix pgijqnˆn and its inverse by pgijqnˆn.
The tangent and cotangent bundle of M are respectively detonate by TM and T ˚M . The
symbol D denotes the Levi-Civita connection of M such that for two vector fields X and Y
on M given by (2.10) the following equality hods true

DXY “
n
ÿ

i,k“1

«

αiBxi
βkBxk

`
n
ÿ

j“1

βjΓ
k
ijBxk

ff

,

where Γk
ij represent the Christoffel symbols.

Let f :M Ñ R and H P TpM for all p P M .

1. If f P C1pMq then the differential Df : TM Ñ R represents the gradient of the
connection D on f and

DfpHq “ DHf “ Hpfq “ x∇f,Hy ,

where ∇ is the usual gradient defined in a coordinate system by

∇f “
n
ÿ

i,j“1

gijBxi
fBxj

. (2.11)

Thanks to the musical isomorphism we will identify Df with ∇f . Here, we often denote
Df by ∇f . In particular, if tE1, ¨ ¨ ¨ , Enu represents an orthonormal basis of TpM and
H “ řn

i“1
hiEi then

DfpHq “ Hpfq “
n
ÿ

i“1

hiEipfq.

2. If f P C2pMq then D2f represents the Hessian of f such that for all Y P TM

D2fp¨, Y q “ DpDfqp¨, Y q “ DY p∇fp¨qq : TM Ñ R,
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with
DY p∇fpXqq “ xDXp∇fq, Y y , @X P TM.

In particular
D2fpX,Xq “ xDXp∇fq,Xy , @X P TM.

3. Let f P C3pMq. The function f is strictly convex in the metric g if and only if
D2fpX,Xq ą 0 for all X P TM .

4. If tE1, ¨ ¨ ¨ , Enu represents an orthonormal basis of TpM , then the divergent of H is
defined as

divpHq “
n
ÿ

i“1

xDEi
H,Eiy .

5. If f P C1pMq then
divpfHq “ fdivpHq `Hpfq.

6. For a function f P C2pMq we define the Laplace-Beltrami operator ∆ by

∆f “ divp∇fq “
n
ÿ

i“1

xDEi
p∇fq, Eiy “

n
ÿ

i“1

D2fpEi, Eiq.

7. The covariant derivate DH is the bilinear form given by

DHpX,Y q “ xDXH,Y y , @X,Y P TM.

In particular if f P C2pMq

Dp∇fqpX,Y q “ D2fpX,Y q, @X,Y P TM.

8. If f P C1pMq then

x∇f,∇pHpfqqy “ DHp∇f,∇fq ` 1

2
divp|∇f |2Hq ´ 1

2
|∇f |2divH.

Remark 2.1. Let Ω an open bounded, connected, compact subset of M with smooth boundary

BΩ and f P C3pMq a strictly convex function in the metric g. Then by translating and

rescaling [28, Remark 1.2], the function f satisfies the following conditions

D2fpX,Xq ě |X|2, @p P Ω, @X P TpM,

min
Ω

fpxq ” m ą 0. (2.12)
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2.2 Geometry on the wave system

Let us consider R with usual topology and x the natural coordinate system. In particular,
for each x P R the tangent space is TxR “ Rx “ R.
For a fixed i P t1, ¨ ¨ ¨ , nu, we begin defining the metrics gi associated with ∆i by

gipX,Y q “ xX,Y ygi “ γ´1

i αβ, (2.13)

with corresponding norm
|X|2gi “ xX,Xygi ,

where X “ αBx, Y “ βBx P Rx, for each x P R.
Recalling assumption γi ą 0, one can see that the pairs pR, giq are Riemannian manifolds.
In this case, the Levi-Civita connection of pR, giq will be denoted by Dgi . Here, the symbol
pR, g0q denotes the R space with Euclidean metric and we use the following notations for the
metric and norm

g0pX,Y q “ X ¨ Y and |X|g0 “ |X|, @X,Y P Rx, @x P R. (2.14)

Important properties of the above metrics are stated in the following lemma. Although
most of these results are followed straightforwardly from the known results, they are crucial
for what follows. So for the convenience of the reader, we give their proofs here.

Lemma 2.1. Let p0, Lq Ă R for some L ą 0. If x be the natural coordinate system in R,

f, h P C1pr0, Lsq and X “ αBx, Y “ βBx vector fields. Then

1. xX, γiY ygi “ X ¨ Y ;

2. ∇gif “ γiBxfBx;

3. Xpfq “ x∇gif,Xygi “ αBxf ;

4. x∇gif,∇gihy
gi

“ γiBxfBxh;

5. if ν represents the unit outward normal vector for pr0, Ls, giq then

x∇gifp0q, νp0qy
gi

“ ´?
γiBxfp0q, x∇gifpLq, νpLqy

gi
“ ?

γiBxfpLq.

Proof. In light of (2.13) and (2.14), one can easily see that Item 1 holds true. In fact, by
definition

xX, γiY ygi “ γ´1

i γiαβ “ X ¨ Y. (2.15)

To prove Item 2, we recall the definition (2.11) to find

∇gif “ γiBxfBx.

Reasoning analogously to (2.15) and assuming h P C1pr0, Lsq, we have the validity of Items
2-4. To conclude, let us show Item 5. Firstly, note that if p P t0, Lu and tBxu represents the
associated coordinate vector field for Tpr0, Ls, then

x˘?
γiBx,˘

?
γiBxy

gi
“ 1.

7



In particular E “ ˘?
γiBx represents an orthonormal basis for p P TpM . Let ν “ E, therefore

∇gif “ γiBxfBx “ ˘?
γiBxfν

and
x∇gif, νy

gi
“ ˘?

γiBxf.
Note that νp0q “ ´?

γiBx and νpLq “ ?
γiBx. We complete the proof of Lemma.

Remark 2.2. The Hessian of f P C2pRq with respect to the metric gi is given by

D2
gi
fpX,Xq “ xDgi,Xp∇gifq,Xy

gi
“ α2γ´1

i γiB2xf “ α2B2xf,

where X “ αBx. We observe that the Hessian of f is positive if and only if B2xf is positive.

3 Unique continuation property (UCP)

As already observed Carleman estimates are an important tool for proving unique contin-
uation property for solutions to partial differential equations [6, 15, 28]. In this section, we
prove the Carleman estimates for the Problem p1.2q.

In what follows we shall use the following notations.

1. Let L0 a real number in r0, Ls. We define Ω1 and Ω2 the subsets of r0, Ls as follows

Ω1 “ p0, L0q and Ω2 “ pL0, Lq. (3.16)

Note that Ω1 Y Ω2 “ r0, Ls.
For ε ą 0, we will also consider the following subsets of Ω1 and Ω2

V1 “
´

0, L0 ´ ε

4

¯

Xr0, Ls, V2 “
´

L0 ` ε

4
, L

¯

Xr0, Ls, ω “
´

L0 ´ ε

2
, L0 ` ε

2

¯

Xr0, Ls.

2. There exist strictly convex functions d1 : r0, Ls Ñ R and d2 : r0, Ls Ñ R such that

d1pxq “ 1

2
px ` Lq2, and d2pxq “ 1

2
px ´ 2Lq2. (3.17)

In particular, if x denotes the natural coordinate system, Lemma 2.1 implies that

∇gid1 “ γipx` LqBx, ∇gid2 “ γipx ´ 2LqBx pi “ 1, ¨ ¨ ¨ , nq,

and

D2
gi
djpX,Xq “ α2, for all x P r0, Ls and X “ αBx P Txr0, Ls pj “ 1, 2q.

The functions djp¨q pj “ 1, 2q have the following properties:

Lemma 3.1. Under the above definitions, the functions djp¨q pj “ 1, 2q satisfy

1. dj P C8pr0, Lsq;

2. D2
gi
djpX,Xq “ |X|gi , for all x P Ωj and X P Txr0, Ls;

8



3. inf
Ωj

|∇gidj |gi ą 0;

4. min
Ωj

dj “ L2

2
ą 0.

Moreover, if ν represents the unit outward normal vector then

5. x∇gidjpxq, νpxqygi ă 0 on t0, Lu X Vj.

The next section is devoted to proof the Carleman estimate compatible with the system
(1.2). To this aim, we allocated the above notations in the same context as Section 1 in [28].
First, without loss of generality (by rescaling), we can assume that

kij ” inf
xPΩj

|∇gidj |2gi
dj

ą 4, @i “ 1, ¨ ¨ ¨ , n, @j “ 1, 2. (3.18)

In what follows, for fixed i P t1, ¨ ¨ ¨ , nu and j “ 1, 2, we define

T 2
0,j ” 4max

xPΩj

djpxq. (3.19)

Let T ą maxtT0,1, T0,2u and by p3.19q there exist δ ą 0 and c “ cδ P p0, 1q satisfying

cT 2 ą 4max
xPΩj

djpxq ` 4δ. (3.20)

In above context, we define functions φj : Ωj ˆ R Ñ R P C3pΩjq by

φjpx, tq ” djpxq ´ c

ˆ

t´ T

2

˙2

, px, tq P Ωj ˆ r0, T s.

The following properties are valid for φjp¨q:

pφ.1q For the constant δ ą 0

φjpx, 0q “ φjpx, T q “ djpxq ´ c
T 2

4
ď max

j“t1,2u

˜

max
xPΩj

djpxq
¸

´ c
T 2

4
ď ´δ,

uniformly in Ωj .

pφ.2q There are t0 and t1 with 0 ă t0 ă T {2 ă t1 ă T , such that

min
j“1,2

˜

min
px,tqPΩjˆrt0,t1s

φjpx, tq
¸

ě σ, (3.21)

for σ P
´

0,min
Ωj
dj

¯

, where min
Ωj

dj “ L2

2
(Lemma 3.1).

9



As a consequence of Corollary 4.2 in [28]

max
i“1,¨¨¨ ,n j“1,2

˜

max
px,tqPΩjˆr0,T s

`

|Btφj |2 ` |∇giφj|2gi
˘

¸

ď 4p1 ` 7cqσ˚

εp1 ´ cq , (3.22)

for any ε P p0,mint2 ´ 2c, 1uq with σ˚ P p0, σq and c P p0, 1q.
We end this section defining

Qpσq “
"

px, tq P r0, Ls ˆ r0, T s | min
j“1,2

φjpx, tq ě σ

*

. (3.23)

This set will play an important role in Carleman estimates by being able to separate the set
r0, Ls ˆ r0, T s from the level surface generated by the pseudo-convex function φj at height of
σ.
Additionally, note that

Ωj ˆ rt0, t1s Ă Qpσq Ă r0, Ls ˆ r0, T s, @j “ 1, 2.

3.1 Analysis of the coupled system - Problem (1.2)

In this section, we will study the Problem (1.2) under the new decomposition Ω1 and Ω2

(3.16). This decomposition will allow us to define the boundary terms for the solutions of this
system. We begin with the following definition:

Definition 3.1. Let T ą 0. The vector function pu1, ¨ ¨ ¨ , unq is a weak solution to the Prob-

lem (1.2)-(1.4) if the function ui solves the variational form of equation (1.2)i and possesses

regularity

ui P Cp0, T ; pH1
0 pMiqqq X C1p0, T ; pL2pMiqqq,

where Mi denotes the Riemannian manifold pr0, Ls, giq pi “ 1, ¨ ¨ ¨ , nq.
If ui P C2pMi ˆ R

`q the vector function pu1, ¨ ¨ ¨ , unq is a regular solution to the Problem

(1.2)-(1.4).

Now, let pu1, ¨ ¨ ¨ , unq be a regular solution to Problem (1.2)-(1.4) and we define

ui,jpx, tq “ χjpx, tquipx, tq, i “ 1, ¨ ¨ ¨ , n and j “ 1, 2, (3.24)

where χj is a smooth cutoff function such that

χj “
"

1 in Vj ˆ r0, T s,
0 in pr0, LszΩjq ˆ rT ` 1,8q, (3.25)

where T is a positive constant satisfying (3.20).
By definition, we can observe that ui,j P C2pMi,j ˆ R

`q, where Mi,j ” pΩj, giq represents
a 1-dimensional compact connex smooth riemannian manifold with boundary BΩj and with
metric gi.

Recall that the objective of the present section is to show a unique continuation property
for the Problem (1.2). For this purpose we shall assume

uipx, tq “ 0, @px, tq P ω ˆ r0,8q, i “ 1, ¨ ¨ ¨ , n. (3.26)

10



Under the above notations, the function ui,j P C2pMi,j ˆ R
`q solves the problem

$

’

’

&

’

’

%

B2t ui,j ´ ∆iui,j “ fipu1,j , u2,j , ¨ ¨ ¨ , un,jq in Mi,j ˆ p0, T s,
ui,jpx, tq “ 0 on BMi,j ˆ p0, T s,
ui,jpx, 0q “ χjpx, 0qu0i pxq in Mi,j ,

Btui,jpx, 0q “ χjpx, 0qu1i pxq in Mi,j

(3.27)

In particular, the following decomposition is valid

ui “ ui,1 ` ui,2, px, tq P r0, Ls ˆ r0, T s pi “ 1, ¨ ¨ ¨ , nq. (3.28)

On the other hand, note that the system

$

’

’

&

’

’

%

B2t vi,j ´ ∆ivi,j “ fipv1,j , v2,j , ¨ ¨ ¨ , vn,jq in Mi,j ˆ p0, T s,
vi,jpx, tq “ 0 on BMi,j ˆ p0, T s,
vi,jpx, 0q “ χjpx, 0qu0i pxq in Mi,j ,

Btvi,jpx, 0q “ χjpx, 0qu1i pxq in Mi,j

(3.29)

is well posed, for all i “ 1, ¨ ¨ ¨ , n and j “ 1, 2.
Due to the uniqueness of solutions in the previous system (by density and continuity) we will
focus on studying the problem (3.29), in such a way that when assuming (3.26) we have that
vi,j “ ui,j.

3.2 Carleman estimates

In the context of the previous section, in regard to the study the boundary terms for the
system (3.29), the following will be considered:

1. For vi,j P Cp0, T ; pH1
0

pMi,jqqqXC1p0, T ; pL2pMi,jqqq the weak solution of Problem (3.29)
we have

x∇givi,j,∇gidjy
gi

“ x∇givi,j , νy
gi

x∇gidj , νy
gi
,

where ν denotes the outward unit normal field along the boundary BMi,j .

2. Let τ be a positive parameter then we define

BT τvi,j ” 2τ

ż T

0

ż

BΩj

e2τφj

´

x∇givi,j, νygi
¯2

x∇gidj , νygi dxdt, (3.30)

with T ą 0 satisfying (3.20).

Next, we shall investigate the properties on the forces fip¨q pi “ 1, ¨ ¨ ¨ , nq in the context
of the new decomposition. We promptly have from (1.6)-(1.9) that there exists a positive
constant CT such that

ż T

0

ż

Ωj

|fipv1,j , ¨ ¨ ¨ , vn,jq|2gidxdt ď CT

n
ÿ

i“1

ż T

0

ż L

0

Vipx, tqdxdt, (3.31)

where
Vipx, tq ” |vi,1 ` vi,2|2 ` γi|Bxpvi,1 ` vi,2q|2 ` |Btpvi,1 ` vi,2q|2, (3.32)
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with

vi,1 ` vi,2 “
"

vi,1 in r0, L0s ˆ r0, T s,
vi,2 in rL0, Ls ˆ r0, T s. (3.33)

Note that

Vi|Ωjˆr0,T s “ |vi,j|2 ` γi|Bxvi,j|2 ` |Btvi,j|2 and
2
ÿ

j“1

ż

Ωj

Vi|Ωjˆr0,T sdx “
ż L

0

Vidx.

Now, for any regular solution vi,j, we find from (3.31) that

ż T

0

ż

Ωj

e2τφj |B2t vi,j ´ ∆ivi,j|2gidxdt ď CT

n
ÿ

i“1

ż T

0

ż L

0

e2τφjVipx, tqdxdt.

In particular, by (3.21) and (3.23), we obtain

ż T

0

ż

rQpσqsc
e2τφj |B2t vi,j ´ ∆ivi,j|2gidxdt ď CT e

2τσ
n
ÿ

i“1

ż

rQpσqsc
Vipx, tqdxdt.

Remark 3.1. Note that the Problem (3.29) satisfies the following compatibility condition

vi,jpL0, tq “ 0 in p0, T s and v0i pL0q “ v1i pL0q “ 0.

In particular, there exist positive constants k1, k2 such that

k1

n
ÿ

i“1

ż L

0

Vipx, tqdx ď
n
ÿ

i“1

ż L

0

γi|Bxpvi,1 ` vi,2q|2`|Btpvi,1 ` vi,2q|2dx ď k2

n
ÿ

i“1

ż L

0

Vipx, tqdx.

Collecting all the above ingredients and proceeding analogously to Theorem 6.1 in [28] we
arrive at:

Theorem 3.1 (Carleman Estimates). Let vi,j pi “ 1, ¨ ¨ ¨ , n and j “ 1, 2q be a regular solution

of the Problem (3.29) with initial data pχjpx, 0qu0i pxq, χjpx, 0qu1i pxqq. Then, for all τ ą 0
sufficiently large and ε ą 0 small, the following estimate holds true

2
ÿ

j“1

n
ÿ

i“1

BT τvi,j ě
„

k1e
2τσpt1 ´ t0q

2
pετp1 ´ cq ´ 2nCT qe´CT T

 n
ÿ

i“1

ż L

0

”

Vipx, 0q ` Vipx, T q
ı

dx

´
„

C1,Tk2e
2τσ

2k1
TeCT T ` CT τ

3e´2τδ

 n
ÿ

i“1

ż L

0

”

Vipx, 0q ` Vipx, T q
ı

dx

ě kT

n
ÿ

i“1

”

ż L

0

Vipx, 0q ` Vipx, T q
ı

dx,

where

1. k1, k2 the positive constants from Remark 3.1;

2. σ defined in pφ.2q;

3. c P p0, 1q given in p3.20q;
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4. CT , C1,T positive constants depending only on T, σ and Qpσq;

5. kT a positive constant depending only on σ, φ1, φ2, n and C1,T .

Moreover, the above inequality may be extended to all weak solution of the system (3.29) with
initial data pχjpx, 0qu0i pxq, χjpx, 0qu1i pxqq P H1

0 pMi,jq ˆ L2pMi,jq.

Remark 3.2. paq Note that the definition of σ and Qpσq allow the right-hand term of previous

inequality to be independent of j. pbq The inequality holds for weak solution of the system

(3.29) because [28, Theorems 7.1 and 8.1].

3.3 A new UCP

Thanks to the Theorem 3.1 it is possible to state the main result of this part of paper.

Theorem 3.2. Let I be an open interval such that

ω ” I X r0, Ls ‰ H.

Then, for T ą 0 large enough, any weak solution

ui P Cp0, T ;H1
0 p0, Lqq X C1p0, T ;L2p0, Lqq

of system (1.2)-(1.4) vanishing in ω ˆ r0, T s must vanish all over r0, Ls ˆ r0, T s.

Proof. Without loss of generality we can assume

ω “
´

L0 ´ ε

2
, L0 ` ε

2

¯

X r0, Ls. (3.34)

where ε ą 0 and L0 P r0, Ls.
The proof of the unique continuation property will be divided into four steps:
Step 1. Equivalence of systems. Firstly, we observe that if pu1, ¨ ¨ ¨ , unq is a weak so-

lution of the Problem (1.2)-(1.4) with overdetermined condition p3.26q then ui,j “ χjui P
Cp0, T ;H1

0
pMi,jqq X C1p0, T ;Mi,jq is a solution of (3.27), where Mi,1 “ pr0, L0s, giq and

Mi,2 “ prL0, Ls, giq, for all i “ 1, ¨ ¨ ¨ , n and j “ 1, 2.
From the Appendix A, for j “ 1, 2, the system (3.29) with the following overdetermined

condition
pv1,j , ¨ ¨ ¨ , vn,jq “ p0, ¨ ¨ ¨ , 0q in ωj ” Ωj X ω (3.35)

is well-posed and generates a strongly continuous semigroup

TMi,j
: Hωj

pMi,jq Ñ Hωj
pMi,jq

in the Hilbert space

Hωj
pMi,jq ”

"

pv1,j, ¨ ¨ ¨ , vn,j , w1,j , ¨ ¨ ¨ , wn,jq
ˇ

ˇ

ˇ

ˇ

vi,j P H1
0 pMi,jq, wi,j P L2pMi,jq,

vi,j “ wi,j “ 0 in ωj, i “ 1, ¨ ¨ ¨ , n

*

.

In particular,

TMi,j
pχjp0qu01, ¨ ¨ ¨ , χjp0qu0n, χjp0qu11, ¨ ¨ ¨ , χjp0qu1nq “ pu1,j , ¨ ¨ ¨ , un,j, Btu1,j, ¨ ¨ ¨ , Btun,jq.
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is the weak solution of (3.29) satisfying (3.35) with initial data

pχjp0qu01, ¨ ¨ ¨ , χjp0qu0n, χjp0qu11, ¨ ¨ ¨ , χjp0qu1nq P Hωj
pMi,jq.

Step 2. Carleman estimate. From Step 1 and via Theorem 3.1 there exists a positive
constant kT such that

2
ÿ

j“1

n
ÿ

i“1

BT τui,j ě kT

n
ÿ

i“1

„
ż L

0

Vipx, 0q ` Vipx, T qdx


.

Next, from (1.8), (3.28), (3.30), (3.32) and (3.33) we find that

2τ
2
ÿ

j“1

n
ÿ

i“1

ż T

0

ż

BΩj

e2τφj

´

x∇giui,j , νy
gi

¯2

x∇gidj , νy
gi
dxdt ě kT pFup0q ` FupT qq . (3.36)

Step 3. Boundary estimates. The fact that L0 P ω and ω is an open subset of r0, Ls we
have

x∇giui,jpL0q, νpL0qy
gi

“ 0, @i “ 1, ¨ ¨ ¨ , n and j “ 1, 2.

Now, recalling Item 5 from Lemma 3.1 we obtain

x∇gidj , νy
gi

ă 0 in t0, Lu, @i “ 1, ¨ ¨ ¨ , n and j “ 1, 2,

Combining the above information with assumption that τ ą 0, we infer that

2τ
2
ÿ

j“1

n
ÿ

i“1

ż T

0

ż

BΩj

e2τφj

´

x∇giui,j, νy
gi

¯2

x∇gidj, νy
gi
dxdt ď 0. (3.37)

Step 4. Conclusion. From inequalities p3.36q and p3.37q we find

0 ě kT pFup0q ` FupT qq ě 0.

This last implies that Fup0q “ 0. Since (1.2)-(1.4) is well-posed, the result is followed.

4 Dynamics of locally damped Bresse systems

Let us consider the semilinear Bresse system
$

&

%

ρ1ϕtt ´ kpϕx ` ψ ` lwqx ´ k0lpwx ´ lϕq ` a1pxqg1pϕtq ` f1pϕ,ψ,wq “ 0,
ρ2ψtt ´ bψxx ` kpϕx ` ψ ` lwq ` a2pxqg2pψtq ` f2pϕ,ψ,wq “ 0,

ρ1wtt ´ k0pwx ´ lϕqx ` klpϕx ` ψ ` lwq ` a3pxqg3pwtq ` f3pϕ,ψ,wq “ 0,
(4.1)

with Dirichlet boundary conditions

ϕp0, tq “ ϕpL, tq “ ψp0, tq “ ψpL, tq “ wp0, tq “ wpL, tq “ 0, t P R
`, (4.2)

and with initial condition

ϕp0q “ ϕ0, ϕtp0q “ ϕ1, ψp0q “ ψ0, ψtp0q “ ψ1, wp0q “ w0, wtp0q “ w1. (4.3)
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4.1 Well-posedness

In this section, we summarize all the assumptions that will be used to prove the main
result. We also introduce the well-posedness result along with some energy inequalities.

Notations. Henceforth the symbols Lpp0, Lq pp ě 1q and Hmp0, Lq pm P Nq denote the
Lebesgue and Sobolev spaces, respectively. The norms in Lpp0, Lq are indicated by } ¨ }p and
} ¨ }L2p0,Lq ” } ¨ }. We will also frequently use the inequality

}u} ď L

π
}ux}, @u P H1

0 p0, Lq.

Assumptions. The following hypotheses will be used throughout the paper.
pf.1.q The sources functions fi P C1pRq pi “ 1, 2, 3q are locally Lipschitz and there exists a
function F PC1pR3q such that ∇F “ pf1, f2, f3q.
pf.2.q There exists constants 0 ď α ă π2

2βL2 and cF ą 0 such that

F pu, v, wq ě ´α
”

|u|2 ` |v|2 ` |w|2
ı

´ cF , @u, v, w P R,

∇F pu, v, wq¨pu, v, wq ě F pu, v, wq ´ α
”

|u|2 ` |v|2 ` |w|2
ı

´ cF , @u, v, w P R,

where β ą 0 is the constant

}ϕx}2 ` }ψx}2 ` }wx}2 ď β
”

b}ψx}2 ` k}ϕx ` ψ ` lw}2 ` k0}wx ´ lϕ}2
ı

.

pf.3.q There exists cf ą 0 such that

|∇fipu, v, wq| ď cf

”

1 ` |u|p´1 ` |v|p´1 ` |w|p´1

ı

, i “ 1, 2, 3, p ě 1, @u, v, w P R.

pg.1.q The damping functions gi PC1pRq pi“ 1, 2, 3q are monotone increasing with gip0q “ 0.
Moreover, we assume that there exist constants positive constants m and M ą 0 such that

m ď g1
ipsq ď M, @ s P R.

pa.1.q The localizing functions ai P L8p0, Lq pi “ 1, 2, 3q are non-negative and there exists
positive constant a0 such that

aipxq ě a0, x P Ii, i “ 1, 2, 3,

where Ii Ă r0, Ls are open intervals with pL1, L2q ” Ş

i Ii ‰ H.

Dynamical system generation. Before introducing the well-posedness result, we start with
the necessary functional framework. First, the finite energy space H of the well-posedness is
defined as

H “ H1
0 p0, Lq ˆH1

0 p0, Lq ˆH1
0 p0, Lq ˆ L2p0, Lq ˆ L2p0, Lq ˆ L2p0, Lq.

For Z “ pϕptq, ψptq, wptq, ϕ̃ptq, ψ̃, w̃ptqqPH, we define the H norm as

}Z}2H “ ρ1}ϕ̃}2 ` ρ2}ψ̃}2 ` ρ1}w̃}2 ` b}ψx}2 ` k}ϕx ` ψ ` lw}2 ` k0}wx ´ lϕ}2. (4.4)
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Next, let A : DpAq Ă H Ñ H be the differential operator

AZ ”

»

—

—

—

—

—

—

–

ϕ̃

ψ̃

w̃

kρ1
´1pϕx ` ψ ` lwqx ` k0lρ1

´1pwx ´ lϕq
bρ2

´1ψxx ´ kρ2
´1pϕx ` ψ ` lwq

k0ρ1
´1pwx ´ lϕqx ´ klρ´1

1
pϕx ` ψ ` lwq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

with domain
DpAq “

“

H2p0, Lq XH1
0 p0, Lq

‰3ˆH1
0 p0, Lq3.

Next, let be B : DpBq “ H Ñ H the damping operator

BZ ”

»

—

—

—

—

—

—

–

0
0
0

´α1pxqρ´1

1
g1pϕ̃q

´α2pxqρ´1

2
g2pψ̃q

´α3pxqρ´1

1
g3pw̃q

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Finally, by F : H Ñ H, we represent the source terms operator

FZ ”

»

—

—

—

—

—

—

–

0
0
0

´ρ´1

1
f1pϕ,ψ,wq

´ρ´1

2
f2pϕ,ψ,wq

´ρ´1

1
f3pϕ,ψ,wq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Now, using the definitions of operators A,B,F , we can abstract represent the problem as
follows

d

dt
Zptq´pA `BqZptq “ F pZptqq, Zp0q ” Z0 “ pϕ0, ψ0, w0, ϕ1, ψ1, w1q, (4.5)

where
Zptq “ pϕptq, ψptq, wptq, ϕ̃ptq, ψ̃, w̃ptqq with ϕ̃ “ ϕt, ψ̃ “ ψt, w̃ “ wt.

We observe that the well-posedness of (4.5) induces the well-posedness for the Problem
(4.1) -(4.3). In the following, we present the well-posedness for (4.5).

Theorem 4.1 (Well-posedness). Assume the validness of Assumptions pf.1q-pg.1q. Then for

any initial data Z0 P H and T ą 0, the Cauchy problem p4.5q admits a unique weak solution

Z P Cpr0, T s;Hq that depends continuously on the initial data and is given by the variation of

parameters formula

Zptq “ epA`BqtZ0 `
ż t

0

epA`Bqpt´sq
F pZpsqqds, t P r0, T s. (4.6)

Moreover, if Z0 P DpAq then the solution is strong.
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The well-posedness result stated above is known and can be found in [18]. Theorem 4.1,
in particular, implies that the map H Q Z0 ÞÑ Zptq “ pϕ,ψ,w, ϕt , ψt, wtq, where Zptq solves
(4.5), defines a strongly continuous semigroup tSptqutě0 on H.

Energy. Let Zptq “ pϕptq, ψptq, wptq, ϕtptq, ψtptq, wtptqq be a solution of p4.1q-p4.3q. The
energy is defined by the following functional

EZptq ” EZptq `
ż L

0

F pϕ,ψ,wqdx “ }Zptq}2H `
ż L

0

F pϕ,ψ,wqdx. (4.7)

The weak solution Zptq “ pϕptq, ψptq, wptq, ϕtptq, ψtptq, wtptqq satisfies the energy identity

EZptq `
ż t

s

ż L

0

”

α1pxqg1pϕtqϕt ` α2pxqg2pψtqψt ` α3pxqg3pwtqwt

ı

dxdτ “ EZpsq, (4.8)

for all 0 ď s ă t.
As in [18], the energy EZp¨q (4.7) and the norm } ¨ }H (4.4) satisfy

CE}Zptq}2H ´ LcF ď EZptq ď }Zptq}2H ` cEp1 ` }Zptq}p`1

H q, @ t ě 0, (4.9)

for some positive constants CE and cE .

4.2 Global attractors

4.2.1 Abstract existence theorems

Some essential definitions and results from the theory of attractors for gradient systems
is collected

Definition 4.1. A global attractor for a dynamical system pH,Sptqq, with evolution operator

tSptqutě0 on a complete metric space H is defined as a a compact set A Ă H that is fully

invariant, that is SptqA “ A for all t ě 0, and uniformly attracts all bounded subsets of H

lim
tÑ8

sup
!

distHpSptqZ,A q |Z P B

)

“ 0, for any bounded set B ĂH.

Definition 4.2. The fractal dimension of a compact set A Ă H in a metric space H is

defined as

dimH
f pA q “ lim sup

εÑ0

lnNεpA q
lnp1{εq ,

where NεpA q is the minimal number of closed balls of radius ε which cover the set A.

To ascertain the existence of a global attractor, we use the concept of gradient and quasi-
stable dynamical systems. The global attractor for this systems admits additional structure
and properties: (i) the attractor for gradient systems has a regular structure, that is, the
attractor is described by the unstable manifold emanating from the set of stationary points and
(ii) quasi-stable systems provide several properties of attractors, such as finite dimensionality.

Definition 4.3. Let Y Ă H be a forward invariant set of a dynamical system pH,Sptqq. piq
A continuous functional Φ : Y Ñ R is said to be a Lyapunov function on Y for pH,Sptqq if

the map t ÞÑ ΦpSptqZq is non-increasing for any Z P Y . piiq The Lyapunov function is said

to be strict on Y if the equation if ΦpSptqZq “ ΦpZq for all t ą 0 for some Z P Y implies

that y is a stationary point of pH,Sptqq. piiiq The dynamical system pH,Sptqq is said to be

gradient if there exists a strict Lyapunov function on the whole phase space H.
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Definition 4.4. Let X,Y be reflexive Banach spaces, X compactly embedded in Y . We

consider a dynamical system pH,Sptqq with H “ X ˆ Y and evolution operator defined by

SptqZ “ puptq, utptqq, Z “ pup0q, utp0qq P H, (4.10)

where the function u possess the property

u P Cpr0,8q;Xq X C1pr0,8q;Y q. (4.11)

A dynamical system of the the form p4.10q with regularity p4.11q is said to be quasi-stable on a

set B Ă H, if there exist a compact semi-norm r ¨ sX on X and non-negative scalar functions

aptq, bptq, cptq, such that, piq aptq, bptq are locally bounded on r0,8q, piiq bptq P L1p0,8q with

limtÑ8 bptq “ 0 and piiiq for any Z1,Z2 P B the following estimates hold true

}SptqZ1 ´ SptqZ2}2H ď aptq}Z1 ´ Z2}2H , (4.12)

and

}SptqZ1 ´ SptqZ2}2H ď bptq}Z1 ´ Z2}2H ` cptq sup
0ăsăt

ru1psq ´ u2psqs2X , (4.13)

where SptqZi “ puiptq, uitptqq, i “ 1, 2.

Unifying the abstracts results from [9] we arrive at the following criteria for existence and
properties of global attractors.

Theorem 4.2. Let pH,Sptqq be a gradient quasi-stable dynamical system. Assume its Lya-

punov function Φp¨q is bounded from above on any bounded subset of H and the set ΦpRq “
 

Z P H |ΦpZq ď R
(

is bounded for every R. If the set N of stationary points of pH,Sptqq is

bounded, then pH,Sptqq possesses a finite dimensional global attractor A defined by the un-

stable manifold emanating from set of stationary solution. Moreover, any trajectory stabilizes

to the set N of stationary points, that is,

lim
tÑ`8

distHpSptqZ,N q “ 0, @Z P H.

We now state the main result of the present chapter.

Theorem 4.3. Under the Assumptions pf.1q-pa.1q the dynamical system pH,Sptqq generated

by the problem p4.1q-p4.3q has a global attractor A characterized by

A “ M`pN q,

where M`pN q is the unstable manifold emanating from N , the set of stationary points of

tSptqutě0.

4.2.2 Gradient structure and quasi-stability

Our strategy centers on establishing the conditions from the Theorem 4.2. Starting ex-
hibiting the gradient structure for pH,Sptqq and focusing our attention on the strictness of
the Lyapunov function where the new observability result stated in Theorem 3.2 plays an
essential role in the proof.
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Proposition 4.1. Let the assumptions of Theorem 4.3 be satisfied. Then, pH,Sptqq is a

gradient dynamical system.

Proof. The dynamical system pH,Sptqq is gradient with full energy EZp¨q - defined in (4.7) -
being the strict Lyapunov function Φp¨q. In fact, from identity (4.8), we find that t Ñ ΦpSptqZq
is a non-increasing function for any Z P H.

Next, we suppose that ΦpSptqZq “ ΦpZq, for all t ą 0. Then, from identity (4.8), we
obtain

ż t

s

ż L

0

”

α1pxqg1pϕtqϕt ` α2pxqg2pψtqψt ` α3pxqg3pwtqwt

ı

dxdτ “ 0.

This shows that ϕt “ ψt “ wt “ 0 a.e. in pL1, L2q ˆ r0, T s, where pL1, L2q “ Ş

i Ii. Thus,
pϕ,ψ,wq satisfies the problem

$

&

%

ρ1ϕtt ´ kpϕx ` ψ ` lwqx ´ k0lpwx ´ lϕq ` f1pϕ,ψ,wq “ 0 in p0, Lq ˆ r0, T s,
ρ2ψtt ´ bψxx ` kpϕx ` ψ ` lwq ` f2pϕ,ψ,wq “ 0 in p0, Lq ˆ r0, T s,

ρ1wtt ´ k0pwx ´ lϕqx ` klpϕx ` ψ ` lwq ` f3pϕ,ψ,wq “ 0 in p0, Lq ˆ r0, T s.
(4.14)

Using the notation u1 “ ϕt, u
2 “ ψt, u

3 “wt and taking the derivative in the distributional
sense of p4.14q, we find that pu1, u2, u3q solves the problem

$

&

%

u1tt ´ γ1u
1
xx “ F 1pu1, u2, u3q in p0, Lq ˆ r0, T s,

u2tt ´ γ2u
2
xx “ F 2pu1, u2, u3q in p0, Lq ˆ r0, T s,

u3tt ´ γ2u
3
xx “ F 3pu1, u2, u3q in p0, Lq ˆ r0, T s,

with γ1 “ k
ρ1
, γ2 “ b

ρ2
, γ3 “ k0

ρ1
and with forcing F ip¨q defined by

F 1pu1, u2, u3q “ γ1u
2
x ` γ1u

3
x ` k0ρ

´1

1
lpu3x ´ lu1q ´ ρ´1

1
Btrf1pϕ,ψ,wqs,

F 2pu1, u2, u3q “ ´kρ´1

2
pu1x ´ u2 ` lu3q ´ ρ´1

2
Btrf2pϕ,ψ,wqs,

F 3pu1, u2, u3q “ ´γ3lu1x ´ kρ´1

1
lpu1x ` u2 ` lu3q ´ ρ´1

1
Btrf3pϕ,ψ,wqs.

Now, we apply the UCP - Theorem 3.2 - to conclude that pϕt, ψt, wtq“pu1, u2, u3q“p0, 0, 0q.
Therefore, the solution ZP H must be stationary. This implies that the energy EZp¨q is strict
on H.

Our next aim is to show the quasi-stability of pH,Sptqq. According to the Definition
4.4, the difference of two trajectories should obeys estimates p4.12q and p4.13q. Taking the
advantage of the locally Lipschitz property of fip¨q and the variation of parameter formula
(4.6), one can easily show the validity of p4.12q. Next, by means of multiplier technique, we
prove the stabilization inequality p4.13q.
Proposition 4.2. Let the assumptions of Theorem 4.3 be satisfied. Then, pH,Sptqq is a

quasi-stable dynamical system.

Proof. The proof is carried out through several energy estimates. In the text that follows, we
use the notations

ṽ “ v1 ´ v2, Gpvq “ gipv1q ´ gipv2q and Fipvq “ fipv1q ´ fipv2q, i “ 1, 2, 3.
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First, we shall consider the difference of two trajectories with initial data Z1
0,Z

2
0 P B,

where B is a bounded subset of H. The corresponding solution SptqpZ1
0 ´ Z2

0q ” Z1 ´ Z2 “
pϕ̃, ψ̃, w̃, ϕ̃t, ψ̃t, w̃tq verifies the following problem

$

&

%

ρ1ϕ̃tt ´ kpϕ̃x ` ψ̃ ` lw̃qx ´ k0lpw̃x ´ lϕ̃q “ ´a1pxqG1pϕ̃tq ´ F1pϕ̃, ψ̃, w̃q,
ρ2ψ̃tt ´ bψ̃xx ` kpϕ̃x ` ψ̃ ` lw̃q “ ´a2pxqG2pψ̃tq ´ F2pϕ̃, ψ̃, w̃q,

ρ1w̃tt ´ k0pw̃x ´ lϕ̃qx ` klpϕ̃x ` ψ̃ ` lw̃q “ ´a3pxqG3pw̃tq ´ F3pϕ̃, ψ̃, w̃q,
(4.15)

with zero Dirichlet boundary conditions and initial conditions Z1
0 ´ Z2

0.
Second, we let ǫ0 be a positive real number, such that, ǫ0 ď pL2 ´ L1q, where pL1, L2q “

Ş

i Ii. We consider the following real-function ξp¨q defined as follows

ξpxq “

$

&

%

pλ´ 1qx, if x P r0, L1 ` ǫ0q,
λpx´ L1 ´ ǫ0q ` pL1 ´ L2 ` 2ǫ0q{pL1 ` ǫ0q, if x P pL1 ` ǫ0, L2 ´ ǫ0s,
pλ´ 1qpx ´ Lq, if x P rL2 ´ ǫ0, Ls.

.

Now, we take ϕ̃xξ, ψ̃xξ, w̃xξ as multipliers for p4.15q. Thus, we find

1

2

ż T

0

ż L

0

pλ ´ 1qEptqdxdt

“ ´
ż L

0

”

ϕ̃tϕ̃x ` ψ̃tψ̃x ` w̃tw̃x

ı

ξ dx
ˇ

ˇ

ˇ

T

0

´1

2

ż T

0

ż L2´ǫ0

L1`ǫ0

Eptqdxdt

´
ż T

0

ż L

0

”

kpϕ̃x ´ ψ̃ ` lw̃qpψ̃ ` lw̃q ` k0lpw̃x ´ lϕ̃qϕ̃
ı

ξ1 dxdt

´
ż T

0

ż L

0

”

a1G1pϕ̃tqϕ̃x ` a2G2pψ̃tqψ̃x ` a3G3pw̃tqw̃x

ı

ξ dxdt

´
ż T

0

ż L

0

”

F1pϕ̃, ψ̃, w̃qϕ̃x ` F2pϕ̃, ψ̃, w̃qψ̃x ` F3pϕ̃, ψ̃, w̃qw̃x

ı

ξ dxdt,

(4.16)

where

Eptq “ ρ1|ϕ̃t|2 ` ρ2|ψ̃t|2 ` ρ1|w̃t|2 ` b|ψ̃x|2 ` k|ϕ̃x ` ψ̃ ` lw̃|2 ` k0|w̃x ´ lϕ̃|2.

Let us estimate the left-hand side of p4.16q. Note that, from the definition of energy, we find

EZptq“
şL

0
Eptqdt“}Z}2H . Then, we can show that there exists c ą 0 satisfying

ˇ

ˇ

ˇ

ˇ

ż L

0

”

ϕ̃tϕ̃x ` ψ̃tψ̃x ` w̃tw̃x

ı

ξdx

ˇ

ˇ

ˇ

ˇ

ď c sup
xPr0,Ls

tξpxquEZptq.

This last implies that
ˇ

ˇ

ˇ

ˇ

ż L

0

”

ϕ̃tϕ̃x ` ψ̃tψ̃x ` w̃tw̃x

ı

ξdx
ˇ

ˇ

ˇ

T

0

ˇ

ˇ

ˇ

ˇ

ď c sup
xPr0,Ls

tξpxqupEZpT q ` EZp0qq. (4.17)

Also using the definition of EZptq, one obtains
ˇ

ˇ

ˇ

ˇ

ż T

0

ż L

0

”

kpϕ̃x ´ ψ̃ ` lw̃qpψ̃ ` lw̃q ` k0lpw̃x ´ lϕ̃qϕ̃
ı

ξ1 dxdt

ˇ

ˇ

ˇ

ˇ

ď ǫ

ż T

0

EZptqdt` cǫl.o.tpϕ̃, ψ̃, w̃q,
(4.18)
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with lower order terms defined by

l.o.tpϕ̃, ψ̃, w̃q ” sup
σPr0,T s

”

}ϕ̃pσq}22p ` }ψ̃pσq}22p ` }w̃pσq}22p
ı

.

To estimate the damping terms, we use Assumption pg.1q to obtain

ˇ

ˇ

ˇ

ˇ

ż T

0

ż L

0

a1G1pϕ̃tqϕ̃xξ dxdt

ˇ

ˇ

ˇ

ˇ

ď sup
xPr0,Ls

tξpxqu
ż T

0

ż L

0

a1M |ϕ1
t ´ ϕ2

t || ϕ̃x|dxdt

ď ǫ

3

ż T

0

EZptqdt` cǫ

ż T

0

ż L

0

a1ϕ̃
2
t dxdt.

This allows us to conclude the following estimate
ˇ

ˇ

ˇ

ˇ

ż T

0

ż L

0

”

a1G1pϕ̃tqϕ̃x ` a2G2pψ̃tqψ̃x ` a3G3pw̃tqw̃x

ı

ξ dxdt

ˇ

ˇ

ˇ

ˇ

ď ǫ

ż T

0

EZptqdt` cǫ

ż T

0

ż L

0

”

a1ϕ̃
2
t ` a2ψ̃

2
t ` a3w̃

2
t

ı

dxdt.

(4.19)

Let us estimate the kinetic energy in (4.19). Assumption pg.1.q implies that

ż T

0

ż L

0

”

a1ϕ̃
2
t ` a2ψ̃

2
t ` a3w̃

2
t

ı

dxdt

ď c

ż T

0

ż L

0

”

a1G1pϕ̃tqϕ̃t ` a2G2pψ̃tqψ̃t ` a3G3pw̃tqw̃t

ı

dxdt.

(4.20)

Next, we estimate the source terms. Invoking Assumption pf.3q, we find a positive constant
c such that

ˇ

ˇ

ˇ

ˇ

ż T

0

ż L

0

F1pϕ̃, ψ̃, w̃qϕ̃xξ dxdt

ˇ

ˇ

ˇ

ˇ

ď c

ż T

0

ż L

0

cp∇f1qp|ϕ| ` |ψ| ` |w|q|ϕx|dxdt

ď ǫ

ż T

0

EZptqdt` cǫ,Bl.o.tpϕ̃, ψ̃, w̃q,

where
cp∇f1q “ 1 ` |ϕ1|p´1 ` |ϕ2|p´1 ` |ψ1|p´1 ` |ψ2|p´1 ` |w1|p´1 ` |w2|p´1.

The above implies that
ˇ

ˇ

ˇ

ˇ

ż T

0

ż L

0

”

F1pϕ̃, ψ̃, w̃qϕ̃x ` F2pϕ̃, ψ̃, w̃qψ̃x ` F3pϕ̃, ψ̃, w̃qw̃x

ı

ξ dxdt

ˇ

ˇ

ˇ

ˇ

ď ǫ

ż T

0

EZptqdt` cǫ,Bl.o.tpϕ̃, ψ̃, w̃q.
(4.21)

Next, we combine (4.17)-(4.21) with p4.16q. For sufficiently small ǫ ą 0, we obtain

ż T

0

EZptqdt ď c
“

EZpT q ` EZp0q
‰

` 1

2

ż T

0

ż L2´ǫ0

L1`ǫ0

Eptqdxdt` cB l.o.tpϕ̃, ψ̃, w̃q

`cB
ż T

0

ż L

0

”

a1G1pϕ̃tqϕ̃t ` a2G2pψ̃tqψ̃t ` a3G3pw̃tqw̃t

ı

dxdt.

(4.22)
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The next step is to estimate the integral of Ep¨q over the interval rL1 ` ǫ, L2 ` ǫs. To this end,
we consider the function r0, 1s Q η P C8p0, Lq defined as follows

ηpxq “
"

ηpxq “ 0, if x P p0, L1q Y pL2, Lq,
ηpxq “ 1, if x P pL1 ` ǫ0, L2 ´ ǫ0q. .

We start multiplying the equations p4.15q by ϕ̃η, ψ̃η and w̃η, respectively, and after integrate

over r0, T s ˆ r0, Ls, we add the kinetic energy
şT

0

şL

0

“

ρ1ϕ̃
2 ` ρ2ψ̃

2
t ` ρ1w̃

2
t

‰

η dxdt to obtain

ż T

0

ż L

0

Eptqη dxdt

“ ´
ż L

0

”

ρ1ϕ̃tϕ̃`ρ2ψ̃tψ̃`ρ1w̃tw̃
ı

η dx
ˇ

ˇ

ˇ

T

0

`2

ż T

0

ż L

0

”

ρ1ϕ̃
2`ρ2ψ̃2

t `ρ1w̃2
t

ı

η dxdt

´
ż T

0

ż L

0

”

kpϕ̃x ` ψ̃ ` lw̃qϕ̃ ` bψ̃xψ̃ ` k0lpw̃x ´ lϕ̃qw̃
ı

η1 dxdt

´
ż T

0

ż L

0

”

a1G1pϕ̃tqϕ̃ ` a2G2pψ̃tqψ̃ ` a3G3pw̃tqw̃
ı

η dxdt

´
ż T

0

ż L

0

”

F1pϕ̃, ψ̃, w̃qϕ̃ ` F2pϕ̃, ψ̃, w̃qψ̃ ` F3pϕ̃, ψ̃, w̃qw̃
ı

η dxdt.

(4.23)

We shall estimate the right-hand side of (4.23). To this end, we repeat the pattern of estimates
(4.17)-(4.21) to find

ż T

0

ż L

0

Eptqη dxdt ď c
“

EZpT q ` EZp0q
‰

` cB l.o.tpϕ̃, ψ̃, w̃q

` cB

ż T

0

ż L

0

”

a1G1pϕ̃tqϕ̃t ` a2G2pψ̃tqψ̃t ` a3G3pw̃tqw̃t

ı

dxdt.

(4.24)

Applying the estimate p4.24q above in p4.22q, we obtain
ż T

0

EZptqdt ď c
“

EZpT q ` EZp0q
‰

` cBl.o.tpϕ̃, ψ̃, w̃q

` cB

ż T

0

ż L

0

”

a1G1pϕ̃tqϕ̃t ` a2G2pψ̃tqψ̃t ` a3G3pw̃tqw̃t

ı

dxdt.

(4.25)

Next, we estimate damping terms on the right-hand side of p4.25q. Multiply the equations
(4.15) by ϕt, ψt, wt, respectively. Then we find that

ż T

0

ż L

0

”

a1G1pϕ̃tqϕ̃t ` a2G2pψ̃tqψ̃t ` a3G3pw̃tqw̃t

ı

dxdt´ EZp0q `EZpT q

“ ´
ż T

0

ż L

0

”

F1pϕ̃, ψ̃, w̃qϕ̃t ` F2pϕ̃, ψ̃, w̃qψ̃t ` F3pϕ̃, ψ̃, w̃qw̃t

ı

dxdt.

(4.26)

Based on estimate (4.21), we obtain
ˇ

ˇ

ˇ

ˇ

ż T

0

ż L

0

”

F1pϕ̃, ψ̃, w̃qϕ̃t ` F2pϕ̃, ψ̃, w̃qψ̃t ` F3pϕ̃, ψ̃, w̃qw̃t

ı

dxdt

ˇ

ˇ

ˇ

ˇ

ď ǫ

ż T

0

EZptqdt` cǫ,Bl.o.tpϕ̃, ψ̃, w̃q.
(4.27)
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Using both p4.26q and p4.27q, we find
ż T

0

ż L

0

”

a1G1pϕ̃tqϕ̃t ` a2G2pψ̃tqψ̃t ` a3G3pw̃tqw̃t

ı

dxdt

ď EZp0q ´ EZpT q ` ǫ

ż T

0

EZptqdt` cǫ,Bl.o.tpϕ̃, ψ̃, w̃q.
(4.28)

We return to (4.25) and obtain by use of (4.28), with ǫ ą 0 small enough, the following
estimate

ż T

0

EZptqdt ď pc ´ cBqEZpT q ` pc ` cBqEZp0q ` cB l.o.tpϕ̃, ψ̃, w̃q. (4.29)

The next step is to estimate the energy EZp¨q. To this end, we use the multipliers ϕt, ψt, w̃t

for p4.15q. Then, after integration, we find

TEZpT q “
ż T

0

EZptqdt´
ż T

0

ż T

s

ż L

0

”

a1G1pϕ̃tqϕ̃t ` a2G2pψ̃tqψ̃t ` a3G3pw̃tqw̃t

ı

dxdtds

´
ż T

0

ż T

s

ż L

0

”

F1pϕ̃, ψ̃, w̃qϕ̃t ` F2pϕ̃, ψ̃, w̃qψ̃t ` F3pϕ̃, ψ̃, w̃qw̃t

ı

dxdtds.

(4.30)

Now, the forcing assumptions give
ż L

0

”

F1pϕ̃, ψ̃, w̃qϕ̃t ` F2pϕ̃, ψ̃, w̃qψ̃t ` F3pϕ̃, ψ̃, w̃qw̃t

ı

dx ď 1

T
EZptq ` cT,Bl.o.tpϕ̃, ψ̃, w̃q.

The above implies
ż T

0

ż T

s

ż L

0

”

F1pϕ̃, ψ̃, w̃qϕ̃t ` F2pϕ̃, ψ̃, w̃qψ̃t ` F3pϕ̃, ψ̃, w̃qw̃t

ı

dxdtds

ď
ż T

0

EZptqdt` cT,Bl.o.tpϕ̃, ψ̃, w̃q.

We combine the above estimates with (4.30)

TEZpT q ď 2

ż T

0

EZptqdt` cT,Bl.o.tpϕ̃, ψ̃, w̃q. (4.31)

Next, we using estimate (4.29) in (4.31) we arrive at

TEZpT q ď 2pc ´ cBqEZpT q ` 2pc ` cBqEZp0q ` cT,Bl.o.tpϕ̃, ψ̃, w̃q.
Taking T ą 4c, we find

EZpT q ď 2pc ` cBq
T ´ 2pc ´ cBqEZp0q ` cT,Bl.o.tpϕ̃, ψ̃, w̃q.

Using standard stabilization arguments, we obtain the existence of positive constants c1 “ cB
and ω “ ωB such that

}Zptq}2H ď c1}Zp0q}2He´ωt ` c1 sup
σPr0,ts

”

}ϕpσq}22p ` }ψpσq}22p ` }wpσq}22p
ı

.

Therefore, the inequality p4.13q holds with X “ rH1
0 p0, Lqs3, Y “ rL2p0, Lqs3, bptq “ c1e

´ωt,
cptq “ c1 and with compact semi-norm

rpϕ̃, ψ̃, w̃qs2X “ }ϕ̃}22p ` }ψ̃}22p ` }w̃}22p.
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4.2.3 Proof of the main result - Theorem 4.3

Proof of Theorem 4.3: From Proposition 4.1 and Proposition 4.2, we have that pH,Sptqq is
a gradient quasi-stable system. Moreover, by inequality (4.9) one can see that the Lyapunov
function defined as the energy EZp¨q satisfies the following: (i) Φp¨q is bounded from above
on any bounded set and (ii) the ΦpRq “

 

Z P H |ΦpZq ď R
(

is bounded for every R. To
conclude the proof, we note that if Z P N , then Z “ pϕ,ψ,w, 0, 0, 0q solves the stationary
problem

$

&

%

´kpϕx ` ψ ` lwqx ´ k0lpwx ´ lϕq ` f1pϕ,ψ,wq “ 0,
´bψxx ` kpϕx ` ψ ` lwq ` f2pϕ,ψ,wq “ 0,

´k0pwx ´ lϕqx ` klpϕx ` ψ ` lwq ` f3pϕ,ψ,wq “ 0.
(4.32)

Multiplying in L2p0, Lq the equations in p4.32q by pϕ,ψ,wq, we find

b}ψx}2 ` k}ϕx ` ψ ` lw}2 ` k0}wx ` lϕ}2 “ ´
ż L

0

∇F pu, v, wq¨pu, v, wqdx.

Now, we use Assumption (f.1) to show

„

1 ´ 2αβL2

π2



”

}ϕx}2 ` }ψx}2 ` }wx}2
ı

ď 2βcFL.

Therefore, the set of stationary solutions N is bounded. This completes the proof.

Appendix: Well-possednes for overdetermined wave equations

In this appendix we will guarantee the well-posedness for the system presented in (1.2)
with overdetermined condition.

Theorem A.4. Let L ą 0 and T ą 0 large enough. If the Problem (1.2)-(1.4) satisfies

(1.5)-(1.9) with supplementary condition

pu1, ¨ ¨ ¨ , unq “ p0, ¨ ¨ ¨ , 0q in ω ˆ r0, T s, (A.33)

with ω Ă r0, L0s as in (3.34). Then, the overdetermined problem is well-posed and generates

a strongly continuous semigroup over the Hilbert space

Hωj
pMiq ”

"

pu1, ¨ ¨ ¨ , un, v1, ¨ ¨ ¨ , vnq
ˇ

ˇ

ˇ

ˇ

ui P H1
0 pMiq, vi P L2pMiq,

ui “ vi “ 0 in ω, i “ 1, ¨ ¨ ¨ , n

*

,

where Mi “ pr0, Ls, giq.

Proof. First, for the state vector Zptq ” pu1, ¨ ¨ ¨ , un, Btu1, ¨ ¨ ¨ , BtunqJ, the Problem (1.2)-(1.4)
is equivalent to the following vectorial Cauchy problem

BtZptq `AZptq “ F pZptqq, Zp0q “ pu01, ¨ ¨ ¨ , u0n, u11, ¨ ¨ ¨ , u1nqJ, (A.34)
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with operators defined by

A “
„

0 ´I|V2pMiq

B|V1pMiq 0



, B “

»

—

—

—

–

´∆1 0 ¨ ¨ ¨ 0
0 ´∆2 ¨ ¨ ¨ 0
...

... ¨ ¨ ¨ ...
0 0 0 ´∆n

fi

ffi

ffi

ffi

fl

, I “ pδijqnˆn

and

F pZq “

»

—

—

—

—

—

—

—

—

–

0
...
0

f1pu1, ¨ ¨ ¨ , unq
...

fnpu1, ¨ ¨ ¨ , unq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The domain of operator A is defined by DpAq “ rV1pMiqsn ˆ rV2pMiqsn where

V1pMiq ”
 

pu1, ¨ ¨ ¨ , unq P DpBq | pu1, ¨ ¨ ¨ , unq “ p0, ¨ ¨ ¨ , 0q in ω
(

,

V2pMiq ”
 

pv1, ¨ ¨ ¨ , vnq P DpB 1

2 q | pv1, ¨ ¨ ¨ , vnq “ p0, ¨ ¨ ¨ , 0q in ω
(

and

DpBq “ Dp´∆1q ˆ ¨ ¨ ¨ ˆDp´∆nq “ H2pM1q XH1
0 pM1q ˆ ¨ ¨ ¨H2pMnq XH1

0 pMnq.

The finite energy space for (A.34) is the Hilbert space defined by

HωpMiq ”
 

pu1, ¨ ¨ ¨ , un, v1, ¨ ¨ ¨ , vnq P HpMiq | ui “ vi “ 0 in ω, @i “ 1, ¨ ¨ ¨ , n
(

,

where
HpMiq ” rDpB 1

2 qsn ˆ LpMiq and LpMiq ” L2pM1q ˆ ¨ ¨ ¨ ˆ L2pMnq.
Using classical semigroup theory, one can establish existence and uniqueness of a solu-

tion to the Cauchy problem (A.34). Moreover, the solution operator generates a strongly
continuous semigroup

TMi
ptq : HwpMiq Ñ HwpMiq,

defined by

pu01, ¨ ¨ ¨ , u0n, u11, ¨ ¨ ¨ , u1nq ÞÑ pu1ptq, ¨ ¨ ¨ , unptq, Btu1ptq, ¨ ¨ ¨ , Btunptqq, t ě 0,

where pu1, ¨ ¨ ¨ , un, Btu1, ¨ ¨ ¨ , Btunq is the weak solution corresponding to the initial data

pu01, ¨ ¨ ¨ , u0n, u11, ¨ ¨ ¨ , u1nq.

In addition, tTMi
ptqutě0 is also strongly continuous semigroup on HωpMiq satisfying the com-

patibility condition (A.33).

Remark A.1. It is not difficult to show that if (A.33) is fulfilled, then we also have

pBtu1, ¨ ¨ ¨ , Btunq “ p0, ¨ ¨ ¨ , 0q in ω ˆ r0, T s.

25



Funding: The first author is partially supported by CNPq grant 312529/2018-0. The third
author is supported by INCTMat-CAPES grant 88887.507829/2020-00.

References
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