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Abstract
This paper is concerned with longtime dynamics of semilinear Lamé systems

∂2t u − μ�u − (λ + μ)∇divu + α∂t u + f (u) = b,

defined in bounded domains ofR3 withDirichlet boundary condition. Firstly, we establish the
existence of finite dimensional global attractors subjected to a critical forcing f (u). Writing
λ + μ as a positive parameter ε, we discuss some physical aspects of the limit case ε → 0.
Then, we show the upper-semicontinuity of attractors with respect to the parameter when
ε → 0. To our best knowledge, the analysis of attractors for dynamics of Lamé systems has
not been studied before.
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1 Introduction

The Lamé system is a classical model for isotropic elasticity. In three dimensions, it is given
by

⎧
⎨

⎩

∂2t u − μ�u − (λ + μ)∇divu = 0 in � × R
+,

u = 0 on ∂� × R
+,

u(0) = u0, ∂t u(0) = u1 in �,

(1.1)

where� is a bounded domain ofR3 with smooth boundary ∂�, representing the elastic body
in its rest configuration. Here, the vector u = (u1, u2, u3) denotes displacements and λ,μ

are Lamé’s constants with μ > 0. In this model, the stress tensor is given by

σ(u)i j = λdivu δi j + μ

(
∂ui

∂x j
+ ∂u j

∂xi

)

. (1.2)

We refer the reader to [1,12,25,32] for modeling aspects and [9,20,30] for some applications
of vector waves. Later, we discuss the physical justification of taking limit λ + μ → 0.

We note that the energy functional corresponding to the linear system (1.1) is given by

E
(t) = 1

2

∫

�

(|∂t u|2 + μ|∇u|2 + (λ + μ)|divu|2) dx,

which is conservative since we have formally d
dt E
(t) = 0. This motivated several papers

on such systems where the main feature is finding suitable damping and controllers in order
to get stabilization and controllability, respectively. Let us recall some related results. The
exponential stabilization of Lamé systems, defined in exterior domains of R3 with Dirichlet
boundary, was studied by Yamamoto [34]. Uniform stabilization by nonlinear boundary
feedback was studied by Horn [17]. Polynomial stabilization with interior localized damping
was studied by Astaburuaga and Charão [4]. By adding viscoelastic dissipation of memory
type, Bchatnia and Guesmia [5] established the so-called general stability. More recently,
Benaissa and Gaouar [6] studied strong stability of Lamé systems with fractional order
boundary damping. With respect to controllability, we refer the reader to, for instance, [2,7,
21,23,24].

Our objective in the present article is different and goes further than considering stabi-
lization. We are concerned with longtime dynamics of Lamé systems under nonlinear forces
and frictional damping terms. Here, the above linear system (1.1) becomes

⎧
⎨

⎩

∂2t u − μ�u − (λ + μ)∇divu + α∂t u + f (u) = b in � × R
+,

u = 0 on ∂� × R
+,

u(0) = u0, ∂t u(0) = u1 in �,

(1.3)

where α∂t u (α > 0) represents a frictional dissipation, f (u) stands for a nonlinear structural
forcing, and b = b(x) represents some external force. As far as we know, the long-time
dynamics of semilinear Lamé systems (1.3) has not been studied before.We present twomain
results. Firstly, we establish the existence of global attractors with finite fractal-dimensional.
Secondly, by taking λ + μ = ε > 0, we study the upper semicontinuity of attractors with
respect to ε → 0.

In what follows we summarize the main contributions of the paper.

(i) Our first result establishes existence of global attractors for dynamics of problem (1.3)
under nonlinear forces with critical growth | fi (u)| ≈ |u|p + |ui |3, p < 3, i = 1, 2, 3.
Under careful energy estimates, we show that the system is gradient and quasi-stable
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in the sense of [10,11]. Then we conclude that the attractors are smooth and have finite
fractal dimension. See Theorem 3.1.

(ii) In Section 2.1, we discuss the physical meaning of the limit case λ+μ → 0 in real world
applications. This arises mainly in Seismology.

(iii) Finally, setting ε = λ + μ → 0, we consider the ε-problem

∂2t u − μ�u − ε∇divu + α∂t u + f (u) = b,

depending on a parameter ε ≥ 0. In Theorem 4.4 we show that the weak solutions of
ε-problem converges to the vectorial wave equation with ε = 0. Then we provide all
necessary analysis to prove that corresponding family of attractorsAε is upper semicon-
tinuous with respect to ε → 0. This is given in a suitable phase space. See Theorem 4.5.

2 Preliminaries

2.1 Physical Aspects of � + � → 0

From theHooke law and from the constitutive law (1.2) referring to elastic bodies, one derives
the equation

ρ∂2t u − μ�u − (λ + μ)∇divu = ρF, (2.1)

which may represent the displacement of vector particles for an elastic, isotropic and homo-
geneous body subject to external forces F .

In Poisson [29], Timoshenko [33], Hudson [18], among others, it has been shown that
Eq. (2.1) provides information about different body waves. In a scalar sense (P-waves),
where the notation divu stands for fractions of volume changes from the strain tensor, it
explains the behavior of compression and rarefaction in the interior of the body. From the
mathematical point of view, it can be given by the identity

∂2t (divu) − α2�(divu) = divF,

where α =
√

λ+2μ
ρ

represents speeds of wave propagation.
On the other hand, by considering the case∇×u, one obtains the behavior of vector waves

(S-waves) that model small rotations of lineal elements from shear forces acting within the
body. In this way, the following equation arises

∂2t (∇ × u) − β2�(∇ × u) = ∇ × F,

where β =
√

μ
ρ
means the speeds of S-wave propagation.

The analysis of the dynamics for (2.1) has shown great applications in the effect of seismic
waves on various materials (e.g. harzburgite, garnet, pyroxenite, amphibolites, granite, gas
sands, quartz, etc), where the propagation of the P-waves represents the change of volume in
the interior of the body under compression and dilatation in the wave direction, see Fig. 1b,
whereas the S-waves are cross displacements that produce vibrations in a perpendicular
direction (normal to the traveling wave), see Fig. 1c.

A general existing scenario is when earthquakes generate shear waves, say S-waves, that
are more effective than compression waves, say P-waves, and therefore the most damage
on the body displacements is due to the “stronger” vibrations caused by S-waves. On the
other hand, P-waves commonly propagate at a higher speed in relation to S-waves, reaching
their highest speed, namely, the highest value for β, near the basis of the body. Thus, from
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(a)

(b)

(c)

P waves

Rarefaction Compression

S waves

Fig. 1 In a we have the elastic body in a rest position. In b we have the effect of P-waves propagation on the
material, where small contraction and dilation are produced in the same direction of the wave propagation. In
c we exemplify the effect of transversal S-waves on the material, which are generated from the shear forces
and are effective in normal directions with respect to the direction of the wave propagation

this viewpoint, it is worth mentioning that the approximation λ → −μ symbolizes the
approaching of the velocities with respect to S-waves in relation to P-waves.

For instance, when one considers the approach of λ to −μ on sedimentary rocks, one
has atypical cases concerning bulk modulus or Poisson’s ratio. This is the case when one
considers e.g. λ < − 2μ

3 which is the case where we have negative bulk modulus or when
λ ∼ −μ which is the case where the Poisson’s ratio is not defined, being ±∞ in the left or
right approximation, respectively. These results seem to contradict the physical notion that
we have regarding the study of thermodynamics on this type of materials, but several studies
show that the compressibility of the material is closely related to the constant λ instead of
approximations coming from the bulk modulus or the Poisson’s ratio, see e.g. Goodway [14].

Other examples of such approximations are considered as follows. Indeed, in Moore et al.
[27] the authors reveal the possibility of considering negative incremental bulk modulus on
open cell foams on porous media. Also, Lakes and Wojciechowski [22] show the possibility
of taking negative Poisson’s ratio and bulk modulus for the same type of materials, which
proves its structural stability. These are examples that show us the existence of materials
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(e.g., gas sands [14] and open cell foams [22,27]) that, under certain circumstances, allow
us to consider the limit situation of λ to negative values. Thus, it makes sense to consider for
example λ → −μ.

Moreover, in Ji et al. [19] the authors show that for quartz materials under a confining
pressure of 600 MPa and a temperature around 650 ◦C, the transmission between High–
Low Quartz demonstrates a significant decreasing in the speed of P-wave propagation(
α =

√
λ+2μ

ρ

)
in relation to the perturbation of the speed of S-wave propagation

(
β =

√
μ
ρ

)
.

Therefore, to consider the approximation

α

β
→ 1 wich means λ → −μ

in the dynamic of seismic waves, it is equivalent to study the state of transition betweenHigh–
Low Quartz in materials (say rocks) containing quartz (as for example granite, diorite, and
felsic gneiss) and its behavior with respect to the wave speeds of propagation for transverse
and compressible waves in thematerial, under proper conditions of temperature and pressure.

2.2 Assumptions

The following assumptions shall be considered throughout this paper for the functions defined
on a bounded domain � ⊂ R

3 with smooth boundary ∂�.

(A1) The damping coefficient α and the Lamé coefficients λ,μ fulfill

α,μ > 0 and λ ∈ R with μ + λ ≥ 0. (2.2)

(A2) The external vector force b satisfies

b ∈ (L2(�))3. (2.3)

(A3) The nonlinear vector field f = ( f1, f2, f3) is assumed to satisfy: there exist a vector
field g = (g1, g2, g3) ∈ (C1(R3))3, and functions G ∈ C2(R3) and hi ∈ C2(R),
i = 1, 2, 3, such that

fi (u1, u2, u3) = gi (u1, u2, u3) + hi (ui ), i = 1, 2, 3,

fi (0) = gi (0) = hi (0) = 0, i = 1, 2, 3,

g = (g1, g2, g3) = ∇G.

In addition, there exist constants M, m f ≥ 0 such that

f (u) · u − G(u) −
3∑

i=1

∫ ui

0
hi (s)ds ≥ −M |u|2 − m f , ∀u ∈ R

3, (2.4)

G(u) +
3∑

i=1

∫ ui

0
hi (s)ds ≥ −M |u|2 − m f , ∀u ∈ R

3, (2.5)

with

0 ≤ M <
μλ1

2
, (2.6)

where λ1 > 0 denotes the first eigenvalue of the Laplacian operator −�. Moreover,
with respect to functions gi and hi , i = 1, 2, 3, we additionally assume:
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• g fulfills the subcritical growth restriction: there exist 1 ≤ p < 3 and Mg > 0 such
that, for i = 1, 2, 3,

|∇gi (u)| ≤ Mg(1+|u1|p−1+|u2|p−1+|u3|p−1), ∀ u = (u1, u2, u3) ∈ R
3. (2.7)

• For each i = 1, 2, 3, hi fulfills the critical growth restriction: there exists a constant
ch > 0 such that

|h′
i (x)| ≤ ch(1 + |x |2), ∀ x ∈ R, i = 1, 2, 3. (2.8)

2.3 Functional Setting

We denote the inner product in L2(�) by 〈u, v〉 = ∫

�
uvdx for u, v ∈ L2(�). For the

sake of simplicity, we use the same notation to the inner product in (L2(�))3, that is, given
u = (u1, u2, u3), v = (v1, v2, v3) ∈ (L2(�))3,

〈u, v〉 :=
3∑

i=1

〈ui , vi 〉 .

Similarly, 〈∇·,∇·〉 stands for the inner product in H1
0 (�) as well as the inner product in

(H1
0 (�))3. Thus, given u = (u1, u2, u3), v = (v1, v2, v3) ∈ (L2(�))3,

〈∇u,∇v〉 :=
3∑

i=1

〈∇ui ,∇vi 〉 .

In addition, for p > 0, we denote the norms in the spaces L p(�) and (L p(�))3 by | · |p and
‖ · ‖p , respectively, that is,

|u|p :=
(∫

�

|u|pdx

) 1
p

, u ∈ L p(�),

‖u‖p
p :=

3∑

i=1

|ui |p
p, u = (u1, u2, u3) ∈ (L p(�))3.

In particular, for p = 2, one reads

‖u‖22 = 〈u, u〉 for u ∈ (L2(�))3 and |u|22 = 〈u, u〉 for u ∈ L2(�).

The elasticity operator E , with domain D(E) := (H2(�) ∩ H1
0 (�))3, is given by

Eu = −μ�u − (λ + μ)∇(∇ · u). (2.9)

We consider the Hilbert space
(
(H1

0 (�))3, 〈·, ·〉e
)
, where the inner product 〈·, ·〉e is given by

〈v,w〉e = μ 〈∇v,∇w〉 + (λ + μ) 〈divu, divw〉 .

Remark 2.1 Under the above notations, it is easy to verify that the norms ‖ · ‖2e := √〈·, ·〉e
and ‖∇ · ‖22 := √〈∇·,∇·〉 are equivalent in (H1

0 (�))3. More precisely, one has

μ‖∇u‖22 ≤ ‖u‖2e ≤ a0‖∇u‖22, ∀ u = (u1, u2, u3) ∈ (H1
0 (�))3, (2.10)

where a0 = max{μ, 3(λ + μ)}.
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Additionally, if u ∈ D(E) and v ∈ (H1
0 (�))3, then it is easy to verify that

〈Eu, v〉 = 〈u, v〉e . (2.11)

From (2.11), Remark 2.1 and the compact embedding of H1
0 (�) ↪→ L2(�), one sees that E

is a positive self-adjoint operator. We denote the fractional power associated to E by Er with
domain Xr := D(Er ), which is endowed with the natural inner product 〈·, ·〉r := 〈Er ·, Er ·〉.
In particular,

X0 = ((L2(�))3; 〈·, ·〉),
X1/2 = (

(H1
0 (�))3; 〈E1/2·, E1/2·〉) ,

X1 = (D(E); 〈E ·, E ·〉).

Remark 2.2 From Riesz’s Theorem along with density arguments and continuity, we have

〈u, v〉1/2 = 〈u, v〉e , ∀ u, v ∈ (H1
0 (�))3.

Finally, we define the (Hilbert) weak phase space H := X1/2 × X0 with the usual inner
product and induced norm ‖ · ‖H; and the (Hilbert) strong phase space H1 := X1 × X1/2.

2.4 Well-Posedness and Energy Estimates

Under the above assumptions and notations,we are able to state theHadamardwell-posedness
of (1.3). We start by denoting

U =
[

u
∂t u

]

, E =
[
0 −I
E α

]

, F(U ) =
[

0
f (u)

]

, B(x) =
[

0
b(x)

]

. (2.12)

Then, problem (1.3) is equivalent to the Cauchy problem

∂tU + EU + F(U ) = B, U (0) =
[

u0

u1

]

, (2.13)

where E : D(E) ⊂ H → H with domain

D(E) = {(u, v) ∈ H | Eu + αv ∈ X0, v ∈ X1/2} = H1.

Theorem 2.1 (Well-posedness) Let us assume that (2.2)–(2.8) hold.

(i) For (u0, u1) ∈ H, system (2.13) possesses a unique mild solution

U ∈ C(R+;H). (2.14)

(ii) For (u0, u1) ∈ H1, the solution is regular solution, lying in the class

U ∈ C(R+;H1). (2.15)

(iii) For any T > 0 and any bounded set B ⊂ H, there exists a constant CBT > 0 such
that for any two solutions zi = (ui , ∂t ui ) of (2.13) with initial data zi

0 ∈ B, i = 1, 2,
we have

‖z1(t) − z2(t)‖2H ≤ CBT ‖z10 − z20‖2H, ∀ t ∈ [0, T ].
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Proof It is easy to check that operator E set in (2.12) is maximal monotone and, under the
assumption (A3), F is a locally Lipschitz on H. Therefore, applying the classical theory of
semigroups, see e.g. [15,28], one can conclude (2.14)–(2.15) on amaximal interval [0, Tmax).
In addition, the conclusion Tmax = +∞ is a directly consequence of Proposition 1 below,
which exploits the dissipativeness assumptions (2.4)–(2.6) for f (u). Hence, the items (i)-(i i)
holds. The continuous dependence (i i i) is also obtained by using standard computations on
the difference of solutions and assumptions on f (u). ��

In what follows we give some useful inequalities involving the energy functional. The
total energy functional associated with problem (1.3) is given by

E(t) = 1

2
‖(u, ∂t u)‖2H +

∫

�

G(u)dx +
3∑

i=1

∫

�

∫ ui

0
hi (s)dsdx − 〈b(x), u〉 . (2.16)

Proposition 1 Under the hypotheses (2.2)–(2.8), we have:

(i) the energy E(t) is non-increasing with E(t) ≤ E(0) for all t ≥ 0;
(ii) there exist positive constants K1, K2 and K3 such that

K2‖(u, ∂t u)‖2H − K3 ≤ E(t) ≤ K1‖(u, ∂t u)‖4H + K3, ∀ t ≥ 0. (2.17)

Proof (i) Taking the multiplier ut in problem (1.3), then a straightforward computation leads
us to

E ′(t) = −α‖∂t u‖22 ≤ 0, ∀ t > 0, (2.18)

from where it readily follows the stated in item (i).
(i i) From conditions (2.2)–(2.8) and Young’s inequality with ε > 0, the expression

I =
∫

�

G(u)dx +
3∑

i=1

∫

�

∫ ui

0
hi (s)dsdx − 〈b(x), u〉

can be estimated from below and above as follows

I ≥ − m f |�| − ε

4
‖b‖22 −

(
M

λ1μ
+ 1

λ1με

)

‖(u, ∂t u)‖2H,

I ≤ C f |�| + 1

2
‖b‖22 + Cg

μ
p+1
2

‖(u, ∂t u)‖p+1
H

+ Ch

μ2 ‖(u, ∂t u)‖4H + 1

2
√

λ1μ
‖(u, ∂t u)‖2H,

where the positive generic constants depend on their index and some embedding with
H1
0 (�), for example Ch depends on the constant ch in (2.8) and the compact embedding

H1
0 (�)↪→L4(�). From this and the definition of E(t) in (2.16), we infer

E(t) ≤ C f |�| + 1

2
‖b‖22 + 1

2
√

λ1μ
+ Cg

μ
p+1
2

+
(
1

2
+ Cg

μ
p+1
2

+ Ch

μ2

)

‖(u, ∂t u)‖4H,

E(t) ≥ −m f |�| − ε

4
‖b‖22 +

(
1

2
− M

λ1μ
− 1

λ1με

)

‖(u, ∂t u)‖2H.
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Therefore, from a proper choice of ε > 0 and using condition (2.6), one can conclude the
existence of positive constants K1, K2 and K3 satisfying (2.17). ��
Remark 2.3 We emphasizes that above constants K1, K2 and K3 in (2.17) do not depend on
the parameter λ.

3 Long-time Dynamics

From Theorem 2.1, one can define a dynamical system (H, S(t)) associated with problem
(1.3), where the evolution operator S(t) corresponds to a non-linear C0-semigroup (locally
Lipschitz) on H.

Our main goal in this section is to prove that (H, S(t)) possesses a finite dimensional
global attractor A as well as to reach its qualitative properties such as characterization and
regularity. To this end, we first recall some concepts in the theory of dynamical systems, by
following e.g. the references [10,11].

3.1 Some Elements of Dynamical Systems

For the sake of completeness, we recall some basic facts on dynamical systems.

• A global attractor for a dynamical system (H, S(t)) is a compact set A ⊂ H which is
fully invariant and uniformly attracting, it means, for any bounded subset B ⊂ H

S(t)A = A and lim
t→∞ dH(S(t)B,A) = 0.

• The fractal dimension of a compact set B ⊂ H is defined as

dim f B = lim sup
ε→0

lnNε(B)

ln(1/ε)
,

where Nε(B) is the minimal number of closed balls of radius 2ε necessary to cover B.
• The set of stationary points N of a dynamical system (H, S(t)) is defined as

N = {V ∈ H | S(t)V = V , ∀ t > 0} .

• A dynamical system (H, S(t)) is called gradient if there exists a strict Lyapunov func-
tional �, that is, for any z ∈ H, �(S(t)z) is decreasing with respect t ≥ 0 and � is
constant on the set of stationary points N .

• Given a set B ⊂ H, its unstable manifold W u(B) is the set of points z ∈ H that belongs
to some complete trajectory {y(t)}t∈R and satisfies

y(0) = z and lim sup
t→−∞

dist(y(t), B) = 0.

• Quasi-stability. Let X , Y be reflexive Banach spaces with compact embedding X
c

↪→ Y
and H = X × Y . Let us suppose (H, S(t)) is given by

S(t)z = (u(t), ∂t u(t)), z = (u0, u1) ∈ H,

where

u ∈ C(R+; X) ∩ C1(R+; Y ),
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Then, (H, S(t)) is called quasi-stable on a set B ⊂ H if there exists a compact semi-norm
ηX on X and non-negative scalar functions a1(t) and a3(t) locally bounded in R

+ and
a2(t) ∈ L1(R+) with limt→∞ a2(t) = 0 such that

‖S(t)z1 − S(t)z2‖2H ≤ a1(t)‖z1 − z2‖2H,

and

‖S(t)z1 − S(t)z2‖2H ≤ a2(t)‖z1 − z2‖2H + a3(t) sup
0≤s≤t

[
ηX (u1(s) − u2(s))

]2
,

for any z1, z2 ∈ B.

Proposition 2 [11, Corollary 7.5.7] Let (H, S(t)) be a gradient asymptotically smooth
dynamical system. Additionally, if its Lyapunov function �(x) is bounded from above on
any bounded subset of H, the set �R = {x ∈ H : �(x) ≤ R} is bounded for every R and
the set N of stationary points of (H, S(t)) is bounded, then (H, S(t)) possesses a compact
global attractor characterized by A = W u(N ).

Proposition 3 [11, Proposition 7.9.4] Let us assume that the dynamical system (H, S(t)) is
quasi-stable on every bounded forward invariant set B ⊂ H. Then, (H, S(t)) is asymptoti-
cally smooth.

Proposition 4 [11, Theorem 7.9.6] Let (H, S(t)) a quasi-stable dynamical system. If
(H, S(t)) possesses a compact global attractor A and is quasi-stable on A, hen the attractor
A has a finite fractal dimension dim f A < ∞.

3.2 Main Result and Proofs

We are now in condition to state and prove the main result concerning global attractors
associated with problem (1.3). It reads as follows.

Theorem 3.1 Under the assumptions (2.2)–(2.8), we have:

(i) The dynamical system (H, S(t)) corresponding to problem (1.3) has a unique global
attractorAwith finite fractal dimension dim f A < ∞, and is characterized by the unsta-
ble manifold A = W u(N ) emanating from the set of stationary points N of (H, S(t)).

(ii) Moreover, if hi = 0, i = 1, 2, 3, then A is bounded in the strong phase space H1. In
particular, any full trajectory {(u(t), ∂t u(t)), t ∈ R} that belongs to A has the following
regularity properties

∂t u ∈ L∞(R; (H1
0 (�))3) ∩ C(R; (L2(�))3), ∂2t u ∈ L∞(R; (L2(�))3), (3.1)

and there exists R > 0 such that

‖(∂t u(t), ∂2t u(t))‖2H ≤ R2, (3.2)

where R does not depend on λ.

The proof of Theorem 3.1 will be concluded at the end of this section as a consequence
of some technical results provided in the sequel.
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3.2.1 Gradient Property

Lemma 3.2 Under the assumptions of Theorem 3.1, let us define the functional

� : H → R

z �→ �(z) := �(u, v)

given by

�(u, v) = 1

2
‖(u, v)‖2H +

∫

�

G(u)dx +
3∑

i=1

∫

�

∫ ui

0
hi (s)dsdx − 〈b(x), u〉 . (3.3)

Then:

1. � is a strict Lyapunov functional;
2. �(z) → ∞ if and only if ‖z‖H → ∞;
3. N is bounded on H

As a consequence, the dynamical system (H, S(t)) associated with problem (1.3) is a
gradient system.

Proof Let fix z0 ∈ H and recall thatN is the set of stationary points of (H, S(t)). Also, from
(2.16) one sees that �(u(t), ∂t u(t)) = E(u(t), ∂t u(t)) := E(t). Then, we infer:

• From (2.18), it is clear that �(S(t)z0) is decreasing with respect to time and from (2.17),
�(z) = �(S(0)z) → ∞ if and only if ||z||H → ∞.

• Let us consider the stationary problem:
{ Eu + f (u) = b(x) in �,

u = 0 on ∂�.
(3.4)

Thus, a simple computation shows that N is given by

N = {(u, 0) ∈ H | u is the solution of (3.4)} .

In addition, from (2.18) it is easy to prove that � is constant on N . Finally, multiplying
(3.4) by u, integrating on � and using (2.4) and (2.5), we obtain that for any ε > 0

(

1 − 2M

λ1μ
− 1

4λ1με

)

‖u‖2e ≤ 2m f |�| + ε‖b‖22, (3.5)

from where (along with (2.6)) we conclude that N is bounded on H, for ε > 0 properly
chosen.

Therefore, the items 1–3 are proved. ��

3.2.2 Quasi-Stability Property

Proposition 5 (Stabilizability Estimate) Under the assumptions of Theorem 3.1, let us con-
sider a bounded subset B ⊂ H and two weak solutions z1 = (u1, ∂t u1) and z2 = (u2, ∂t u2)

of problem (1.3) with initial data z10 = (u1
0, u1

1), z20 = (u2
0, u2

1) ∈ B. Then,

‖z1(t) − z2(t)‖2H ≤ a2(t)‖z10 − z20‖2H + c(t) sup
0≤s≤t

‖u1(s) − u2(s)‖2p0 , (3.6)

where p0 = max{4, 6
4−p } < 6, a2 ∈ L1(R+) with lim

t→∞ a2(t) = 0 and c(t) is a locally

bounded function.
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Proof The estimate (3.6) is one of the main cores of the present article. Its proof is quite
technical and long, and for this reason we are going to proceed in several steps as follows.
Step 1. Setting the difference problem and functionals. Let us denote w = u1 − u2 with
ui = (ui

1, ui
2, ui

3), i = 1, 2. Then, a simple computation shows that w is a solution (in the
weak and strong sense) of the following problem

⎧
⎪⎪⎨

⎪⎪⎩

∂2t w + Ew + α∂tw + f (u1) − f (u2) = 0 in � × R
+,

w = 0 on ∂� × R
+,

w(x, 0) = u1
0(x) − u2

0(x), x ∈ �,

∂tw(x, 0) = u1
1(x) − u2

1(x), x ∈ �.

(3.7)

The energy associated with system (3.7) is given by

�(t) := 1

2
‖(w, ∂tw)‖2H = 1

2
‖z1(t) − z2(t)‖2H, t ≥ 0. (3.8)

We also set the functional

χ(t) = 〈w, ∂tw〉 ,

and the perturbed energy functional

ϒ(t) = ε1�(t) + ε2χ(t),

where the constants ε1, ε2 > 0 will be chosen later.
Step 2. Equivalence. There exist constants C1, C2 > 0 such that

C2�(t) ≤ ϒ(t) ≤ C1�(t). (3.9)

Indeed, the inequalities in (3.9) follow by taking K ′ = max{ c2p
μ

, 1}, with cp > 0 coming from
the Poincaré inequality and μ from (2.10), ε1 > ε2K ′, C2 = ε1 − ε2K ′ and C1 = ε1 + ε2K ′.
Step 3. Estimate for �′. Given ξ > 0, there exists a constant C(ξ, B) > 0, which depends
on ξ and B, such that

�′(t) ≤ −α‖∂tw‖22 + C(ξ, B)‖w‖2 6
4−p

+ ξ‖∂tw‖22 + I , (3.10)

where we set

I :=
3∑

i=1

〈
hi (u

2
i ) − hi (u

1
i ), ∂twi

〉
. (3.11)

In fact, we first observe that deriving �(t) and using (3.7), we get

�′(t) = − α‖∂tw‖22 − 〈
g(u1) − g(u2), ∂tw

〉 + I .

Since

| 〈g(u1) − g(u2), ∂tw
〉 | ≤

3∑

i=1

∫

�

Mg

{

1 +
3∑

i=1

|u1
i |p−1 +

3∑

i=1

|u2
i |p−1

}

|w||∂twi |dx,

then applying Hölder’s inequality, we obtain

| 〈g(u1) − g(u2), ∂tw
〉 | ≤

3∑

i=1

C̃ f ‖w‖ 6
4−p

‖∂twi‖2, (3.12)
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where

C̃ f = M f

{

|�| p−1
6 +

3∑

i=1

‖u1
i ‖p−1

6 +
3∑

i=1

‖u2
i ‖p−1

6

}

≤ C(B) < ∞,

is a constant depending on B. Therefore, the estimate (3.10) follows fromYoung’s inequality
with ξ > 0.
Step 4. Estimate for χ ′. There exists a constant C(B) > 0 depending on B such that

χ ′(t) ≤ −�(t) − 1

2
‖w‖2e + α

2
‖w‖22 + C(B)‖w‖24 + 3 + α

2
‖∂tw‖22. (3.13)

Indeed, multiplying (3.7)1 by w and integrating on �, we obtain

χ ′(t) = − �(t) − 1

2
‖w‖2e + α

2
‖w‖22 + α + 3

2
‖∂tw‖22

− 〈
g(u1) − g(u2), w

〉 −
3∑

i=1

〈
hi (u

1
i ) − hi (u

2
i ), wi

〉
.

Now, noting that

∣
∣
〈
g(u1) − g(u2), w

〉∣
∣ ≤ 3

{

|�|p−1 +
3∑

i=1

‖u1
i ‖p−1

p+1 +
3∑

i=1

‖u2
i ‖p−1

p+1

}

‖w‖2p+1 ≤ C̃B‖w‖2p+1,

and
∣
∣
∣
∣
∣

3∑

i=1

〈
hi (u

1
i ) − hi (u

2
i ), wi

〉
∣
∣
∣
∣
∣
≤

3∑

i=1

(|�|2 + ‖u1
i ‖24 + ‖u2

i ‖24)‖wi‖24 ≤ CB‖w‖24,

where the constants C̃B , CB > 0 depend only on B, then the estimate (3.13) follows.
Step 5. Estimate for ϒ . There exists a constant C3 > 0 depending on B such that

ϒ(t) ≤ e
− ε2 t

C1 ϒ(0) + C3

∫ t

0
e
− ε2

C1
(t−s)‖w(s)‖2p0ds + ε1e

− ε2 t
C1 J , (3.14)

where C1 > 0 comes from (3.9) and we set

J :=
∫ t

0
e

ε2s
C1 I ds =

3∑

i=1

∫ t

0
e

ε2s
C1

〈
hi (u

2
i (x, s)) − hi (u

1
i (x, s)), ∂twi (x, s)

〉
ds. (3.15)

First, we note that from (3.10) and (3.13), one has

ϒ ′(t) ≤ − ε2�(t) + αε2

2
‖w‖22 + ε2C(B)‖w‖24 + ε1C(ξ, B)‖w‖2 6

4−p

+ ε1 I +
(
3ε2 + αε2

2
+ ε1ξ − αε1

)

‖∂tw‖22.

We now choose ε1, ε2, ξ > 0 small enough such that

ε2K ′ < ε1 and
3ε2 + αε2

2
+ ε1ξ < αε1.

It is worth mentioning that ε1, ε2, ξ > 0 do not depend on λ. Thus, from this choice, setting
p0 = max{ 6

4−p , 4} and using (3.9), there exists a constant C3 = C(B) > 0 such that

ϒ ′(t) ≤ − ε2

C1
ϒ(t) + C3‖w‖2p0 + ε1 I ,
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from where it follows the estimate (3.14) with J given in (3.15).

Remark 3.1 Since the choices for ε1, ε2 do not depend on λ, then C3 > 0 is a constant that
does not depend on λ as well.

Step 6. Estimate for J . There exist constants γ0 > 0 and C4 > 0 depending on B such that

J ≤ C4eγ0t sup
0<s<t

‖w‖24 + C4

∫ t

0
(‖∂t u

1(s)‖2 + ‖∂t u
2(s)‖2)eγ0sϒ(s)ds. (3.16)

Firstly, in view of the assumption (2.8), for any constant γ > 0 and each i = 1, 2, 3, there
exists a constant K ′

i > 0 such that
∫ t

0
eγ s 〈

hi (u
2
i (s)) − hi (u

1
i (s)), ∂twi (s)

〉
ds

≤ K ′
i e

γ t sup
0<s<t

‖wi (s)‖24 + K ′
i

∫ t

0

(‖∂t u
1
i (s)‖2 + ‖∂t u

2
i (s)‖2

)
eγ s‖∇wi (s)‖22ds.

(3.17)

Indeed, the justification of (3.17) follows by taking similar arguments as in [8, Lemma 4.9].
For the sake of completeness, we present a short proof of such an inequality. Note that

∫ t

0
eγ s 〈

hi (u
2
i (s)) − hi (u

1
i (s)), ∂twi (s)

〉
ds

= 1

2

∫ t

0
eγ s

∫

�

d

ds
|wi |2

∫ 1

0
h′

i (u
2
i + λ(u1

i − u2
i ))dλdxds

= eγ s

2

∫

�

∫ 1

0
h′

i (u
2
i (s) + λ(u1

i (s) − u2
i (s)))dλ|wi (s)|2dx

∣
∣
∣
∣

t

0

− 1

2

∫ t

0

∫

�

d

ds

(

eγ s
∫ 1

0
h′

i (u
2
i (s) + λ(u1

i (s) − u2
i (s)))dλ

)

|wi (s)|2dxds

≤ K ′
i e

γ t sup
0<s<t

‖wi (s)‖24

− 1

2

∫ t

0
eγ s

∫

�

∫ 1

0
h′′

i (u2
i + λ(u1

i − u2
i ))(∂t u

2
i + λ(∂t u

1
i − ∂t u

2
i ))dλ|wi (s)|2dxds.

For the last term we use the fact that hi ∈ C2(R), condition (2.8), Hölder’s inequality, and
the embedding H1(�) ↪→ L6(�).

Therefore, from (3.15) and (3.17) it prompt follows

J ≤
3∑

i=1

K ′
i sup
0<s<t

‖w(s)‖24 + max{K ′
i }

∫ t

0
eγ0s(‖∂t u

1(s)‖2 + ‖∂t u
2(s)‖2)‖∇w(s)‖22ds,

for γ0 = ε2
C1

> 0. Additionally, taking C4 = max{K ′
1 + K ′

2 + K ′
3,

2max{K ′
i }

μC2
} > 0 and noting

that

‖∇w(s)‖22 ≤ 1

μ
‖w‖2e ≤ 2

μ
�(s) ≤ 2

μC2
ϒ(s),

then estimate (3.16) follows as desired.

Remark 3.2 We emphasize that constants γ0 and C4 do not depend on λ.
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Step 7. Conclusion of the proof. We are finally in position to complete the proof of (3.6).
Indeed, from (3.14) and (3.16), there exists a constant C5 > 0 depending on B, but indepen-
dently of λ, such that

eγ0tϒ(t) ≤ C5ϒ(0) + C5eγ0t sup
0<s<t

‖w‖2p0

+ C5

∫ t

0
(‖∂t u

1(s)‖2 + ‖∂t u
2(s)‖2)eγ0sϒ(s)ds,

and applying Gronwall’s inequality, one gets

ϒ(t) ≤ C5

{

e−γ0tϒ(0) + sup
0<s<t

‖w(s)‖2p0
}

e

(
C5e−γ0 t

∫ t
0 (‖∂t u1(s)‖2+‖∂t u2(s)‖2)eγ0s ds

)

. (3.18)

Now, from (2.17) and (2.18), and also in view of Remark 2.3, we have
∫ t

0
‖∂t u(s)‖22ds = − 1

α

∫ t

0
E ′(s)ds ≤ 2|E(0)|

α
≤ Q, u := u1, u2,

where Q > 0 is a constant depending on B and f , but independent of λ. Thus, using Hölder
and Young’s inequalities, we obtain

e−γ0t
∫ t

0
(‖∂t u

1(s)‖2 + ‖∂t u
2(s)‖2)eγ0sds ≤ 2

√
Q

√
t ≤ εt + 2Q

ε
,

for any t > 0 and ε > 0. Replacing the latter estimate in (3.18), we arrive at

ϒ(t) ≤ C5e(εC5t+ 2C5Q
ε

)

{

e−γ0tϒ(0) + sup
0<s<t

‖w(s)‖2p0
}

.

Taking ε = γ0
2C4

and using (3.9), we have

�(t) ≤ C1C4e
Q
γ0

C2
e

−γ0
2 t�(0) + C4e

Q
γ0

C2
e

γ0
2 t sup

0<s<t
‖w(s)‖2p0 . (3.19)

Finally, regarding the definition of �(t), t ≥ 0, in (3.8) and setting

a2(t) := C1C4e
Q
γ0

C2
e

−γ0
2 t and a3(t) := 2C4e

Q
γ0

C2
e

γ0
2 t , (3.20)

then (3.19) leads to (3.6) as desired.
The proof of Proposition 5 is therefore concluded. ��

Corollary 1 (Quasi-stability) Under the assumptions of Theorem 3.1, the dynamical system
(H, S(t)) associated with problem (1.3) is quasi-stable on any bounded set B ⊂ H.

Proof It is a direct consequence of Theorem 2.1 - (i i i) and Proposition 5 by noting the
semi-norm given by nH1

0
(u1 − u2) = ‖u1 − u2‖p0 is compact. ��

3.2.3 Conclusion of the Proof of Theorem 3.1

(i) From Proposition 3 and Corollary 1, the dynamical system (H, S(t)) related to problem
(1.3) is asymptotically smooth. Therefore, using Lemma 3.2 and Propositions 2 and 4,
the conclusion of Theorem 3.1 - (i) is complete.

123



Journal of Dynamics and Differential Equations

(ii) In case hi = 0, i = 1, 2, 3, then going back to (3.11), one sees that I = 0 and,
consequently, from (3.15) one gets J = 0. Thus, (3.14) reduces to

ϒ(t) ≤ e
− ε2 t

C1 ϒ(0) + C3C1

ε2
sup

0≤s≤t
‖w(s)‖2p′

0

(
1 − e

− ε2
C1

t )
,

p′
0 = max{ 6

4−p , p + 1}. In this way, one reaches (3.19) (respec. (3.6)) with

a3(t) := C3C1

ε2

(
1 − e

− ε2
C1

t)
,

instead of a3(t) given in (3.20). Thus, c∞ = supt∈R+ a3(t) < ∞, and from [11, The-
orem 7.9.8], the regularity properties (3.1)–(3.2) are ensured, that is, the conclusion of
Theorem 3.1-(ii) is complete.
Therefore, the proof of Theorem 3.1 is ended.

4 Upper Semicontinuity

Along this section ε denotes a real number in [0, 1] and assume λ + μ = ε. Thus, problem
(1.3) can be rewritten as follows

⎧
⎨

⎩

∂2t u − μ�u − ε∇divu + α∂t u + f (u) = b in � × R
+,

u = 0 on ∂� × R
+,

u(0) = u0, ∂t u(0) = u1 in �,

(4.1)

In this way, instead of operator (2.9), we write the ε-operator

Eεu := −μ�u − ε∇div(u), for u = (u1, u2, u3).

Hereafter, we denote by Pε the ε-problem (4.1) and, in view of Theorem 3.1, we also denote
by Aε the compact finite dimensional global attractor of its associated dynamical system.
The energy corresponding to Pε is still given by (2.16) and denoted here as Eε(t).

Using the same notation as in Section 2, we define the inner-product

〈u, v〉ε = μ 〈∇u,∇v〉 + ε 〈divu, divv〉 .

Then, the norm ‖ · ‖ε = √〈u, v〉ε satisfies that
μ‖∇ · ‖22 ≤ ‖ · ‖2ε ≤ max{μ, 3}‖∇ · ‖22. (4.2)

Additionally, let us denote by

Hε = ((H1
0 (�))3, ‖ · ‖ε) × ((L2(�))3, ‖ · ‖2)

the space of weak solutions associated to Pε, and

H1
0 = (D(−�), ‖μ� · ‖2) × ((H1

0 (�))3, ‖μ∇ · ‖2)
the space of strong solutions associated to P0.

Analogously, we denote by (Hε, Sε(t)) the dynamical system associated with Pε, and by
Nε , its corresponding set of stationary solutions. The existence of a global attractor Aε as
well as its properties are ensured by Theorem 3.1.

In this section, our main goal is to study the upper semicontinuity of attractors Aε with
respect to the parameter ε → 0. More precisely, our main results are presented in Theo-
rems 4.4 and 4.5. To this end, we need to prove the following two properties: the existence
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of an absorbing set which does not depend on ε and the convergence in some sense of the
solutions of Pε when ε → 0.

For the existence of an absorbing set we need the following result which is a direct
consequence of [11, Remark 7.5.8].

Theorem 4.1 Under the conditions (2.2)–(2.8), the following inequality holds true for the
attractor A in Theorem 3.1 and � given in Lemma 3.2:

sup{�(u, ∂t u) : (u, ∂t u) ∈ A} ≤ sup{�(u, 0) : (u, 0) ∈ N }.

With respect to the convergence of solutions, it is important to note that the phase space
Hε changes when ε → 0. So, the convergence of the solutions of Pε is singular in the same
sense proposed in [26].

Lemma 4.2 Under the conditions (2.2)–(2.8), there exists a bounded absorbing set B for
(Hε, Sε(t)), that does not depend on ε.

Proof Denoting by �ε the Lyapunov functional defined on Hε , then from (2.17), Remarks
2.3 and Theorem 4.1,

sup
z∈Aε

‖z‖2Hε
≤ supz∈Aε

�ε(z) + K3

K2

≤ supz∈Nε
�ε(z) + K3

K2

≤ K1 supz∈Nε
‖z‖4Hε

+ 2K3

K2
.

Thus, from (3.5) there exists a constant R1 which does not depend on ε such that

sup
z∈Aε

‖z‖2Hε
≤ R2

1, ∀ε ∈ [0, 1].

Let us define B =
{

z ∈ H0 : ‖z‖2H0
≤ R1 + 1

}
, then from (4.2) Aε ⊂ B, for all ε. ��

Lemma 4.3 Let B be a bounded subset in H0 and {zε = (uε, vε)}ε ⊂ B a family of initial
data related to each Pε with solutions {Sε(t)zε}ε. Then there exists a constant Ĉ that does
not depend on t, ε such that

Eε(t) ≤ Ĉ and ‖Sε(t)zε‖Hε ≤ Ĉ, ∀ ε, t > 0.

Proof From (2.17), (4.2), Remark 2.3 and the fact that for each ε, Eε is decreasing, we have

K2‖Sε(t)zε‖Hε − K3 ≤ Eε(t) ≤ Eε(0)

≤ K1(‖uε‖2ε + ‖vε‖22)4 + K3

≤ K1 K̂ (B, μ) + K3

where K̂ (B, μ) is a constant which depends only on B and μ, and K1, K2 and K3 do not
depend on t and ε. ��

Now we are in position to state and prove the main results of this section.
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Theorem 4.4 (Singular limit)Under the assumptions of (2.2)–(2.8). Given a sequence {εn} of
positive numbers, let (un(t), ∂t un(t)) be the weak solution to Pεn with initial data (v0, v1) ∈
H0. Then if εn → 0 when n → ∞, there exist a weak solution (u(t), ∂t u(t)) of P0 with the
same initial data, such that for any T > 0:

un
∗
⇀u in L∞(0, T ; (H1

0 (�))3),

∂t un
∗
⇀∂t u in L∞(0, T ; (L2(�))3).

Proof Using Lemma 4.3 for B = {(v0, v1)} and Eq. (4.2), for some constant K ,

‖(un(t), ∂t un(t))‖H0 ≤ K . (4.3)

Then, we have for any T > 0,

un
∗
⇀u in L∞(0, T ; (H1

0 (�))3),

∂t un
∗
⇀∂t u in L∞(0, T ; (L2(�))3).

Fixing n and multiplying Pεn by a function φ ∈ (H1
0 (�))3, we get

d

dt
〈∂t un, φ〉 + μ 〈∇un,∇φ〉 + εn 〈divun, divφ〉 (4.4)

+ α 〈∂t un, φ〉 + 〈 f (un), φ〉 = 〈b, φ〉 .

It is clear that

〈∇un,∇φ〉 −→
n→∞ 〈∇u,∇φ〉 ,

〈∂t un, φ〉 −→
n→∞ 〈∂t u, φ〉 ,

εn 〈divun, divφ〉 −→
n→∞ 0 from (4.3).

Additionally, we have

〈 f (un) − f (u), φ〉 ≤
3∑

i=1

∫

�

| fi (un) − fi (u)||φi |

≤
3∑

i=1

∫

�

Mg(1 +
3∑

j=1

|u j
n |p−1 + |u j |p−1)|un − u||φi |.

Then proceeding analogously to (3.14)–(3.15) and using Simon’s compactness theorem [31]
we have that

‖un − u‖2, ‖un − u‖ 6
4−p

→ 0,

which implies

〈 f (un), φ〉 −→
n→∞ 〈 f (u), φ〉 .

Therefore (4.4) converges to

d

dt
〈∂t u, φ〉 + μ 〈∇u,∇φ〉 + α 〈∂t u, φ〉 + 〈 f (u), φ〉 = 〈b, φ〉 , (4.5)

which means that (u, ∂t u) is a weak solution of P0 and u(0) = u0.
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Finally we multiply Eqs. (4.4) and (4.5) by a test function ψ ∈ H1([0, T ]) such that
ψ(0) = 1, ψ(T ) = 0 and integrating on [0, T ], we obtain for all φ ∈ (H1

0 (�))3,

∫ T

0

d

dt
〈∂t un, φ〉ψdt + μ

∫ T

0
〈∇un,∇φ〉 ψdt + εnλ0

∫ T

0
〈divun, divφ〉ψdt

α

∫ T

0
〈∂t un, φ〉ψdt +

∫ T

0
〈 f (un), φ〉 ψdt =

∫ T

0
〈b, φ〉ψdt,

∫ T

0

d

dt

〈
∂t u,φ

〉
ψdt + μ

∫ T

0

〈∇u,∇φ
〉
ψdt + α

∫ T

0
〈∂t u, φ〉ψdt +

∫ T

0
〈 f (u), φ〉ψdt

=
∫ T

0
〈b, φ〉ψdt .

Solving the integrals and taking n → ∞,

− 〈v1, φ〉 −
∫ T

0
〈∂t u, φ〉 d

dt
ψdt + μ

∫ T

0
〈∇u,∇φ〉ψdt + α

∫ T

0
〈∂t u, φ〉ψdt

+
∫ T

0
〈 f (u), φ〉 ψdt =

∫ T

0
〈b, φ〉 ψdt,

− 〈∂t u(0), φ〉 −
∫ T

0
〈∂t u, φ〉 d

dt
ψdt + μ

∫ T

0

〈∇u,∇φ
〉
ψdt + α

∫ T

0
〈∂t u, φ〉ψdt

+
∫ T

0
〈 f (u), φ〉 ψdt =

∫ T

0
〈b, φ〉 ψdt .

Therefore, ∂t u(0) = v1, which ends the proof. ��
Remark 4.1 From Theorem 4.4 and its proof, it is worth making two comments as follows:

• the limit in the previous theorem is singular in the sense that Hε is not the same for ε

varying the range [0, 1];
• the spaceHε for weak solutions is defined by means of (H1

0 (�))3×(L2)3, where H1
0 (�)

is provided with the norm ‖ · ‖ε. Therefore, it makes sense to consider (v0, v1) as initial
data to any Pε.

Theorem 4.5 (Upper semicontinuity)Under the assumptions (2.2)–(2.8), the family of attrac-
tors {Aε} is upper semicontinuous with respect to ε → 0. More precisely,

lim
ε→0

dH0(ι̂ε(Aε),A0) = 0,

where dH0 denotes Hausdorff semi-distance and ι̂ε : Hε → H0 is the identity map.

Proof The proof is done by contradiction arguments and follows similar lines as presented
e.g. in [13,16,26].

Let us assume, for some ε > 0, that

sup
y∈Aε

inf
z∈A0

‖ι̂ε(y) − z‖H0 ≥ ε.

Since for any ε, Aε is compact, there exists a sequence {y0n }n such that y0n ∈ Aεn and

inf
z∈A0

‖ι̂εn (y0n ) − z‖H0 ≥ ε.
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Let yn(t) = (un(t), ∂t un(t)) be a full trajectory in Aεn such that yn(0) = y0n . From Lemma
4.2,

‖yn(t)‖H0 ≤ R1 + 1. (4.6)

Also, from Theorem 3.1, for each n ∈ N, there exists Rεn
2 > 0 such that

‖∂t yn(t)‖H0 ≤ ‖∂t yn(t)‖Hεn
≤ Rεn

2 .

Additionally, from (4.2), we obtain the existence of R2 > 0, that does not depend on εn for
all n, such that

‖∂t yn(t)‖H0 ≤ ‖∂t yn(t)‖Hεn
≤ R2, ∀ t, n.

In this way, one sees that

Eεn u = −α∂t u − f (u) − ∂t t u + h ∈ (L2(�))3.

Thus, multiplying this identity by Eεn u, integrating and using Hölder’s inequality, there exists
R3 > 0, not depending on εn , such that

‖Eεn u(t)‖2 ≤ R3, ∀ t, n,

from where it follows that

(yn) is bounded on L∞(R,H0),

(∂t yn) is bounded on L∞(R,H0).

Using Simon’s Theorem of compactness for the spaces H1
0

c
↪→ H0 ↪→ H0, we have that for

any T > 0, there exists a subsequence {ynl } and y ∈ C([−T , T ],H0) such that

lim
l→∞ sup

t∈[−T ,T ]
‖ynl (t) − y(t)‖H0 = 0.

In particular,

lim
l→∞ ‖ι̂εnl

(y0nl
) − y(0)‖H0 = 0.

In order to get the desired contradiction, it remains to prove y(0) ∈ A0. In fact, since {y0nl
}l is

bounded onH0, we can process as in the proof of Theorem 4.4, and prove that y is a solution
of P0 for time varying t ∈ [−T , T ] with initial data y(0). Since T > 0 is arbitrary and (4.6)
holds true, then y(t) is a bounded full trajectory of P0. This implies that y(0) ∈ A0. The
proof Theorem 4.5 is complete. ��
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