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NUMERICAL APPROXIMATIONS FOR A NONLOCAL EVOLUTION
EQUATION*

MAYTE PEREZ-LLANOST AND JULIO D. ROSSI

Abstract. In this paper we study numerical approximations of continuous solutions to the
nonlocal p-Laplacian type diffusion equation, u;(t,z) = [ J(z — y)|u(t,y) — u(t,z)P~2(u(t,y) —
u(t,z)) dy. First, we find that a semidiscretization in space of this problem gives rise to an ODE
system whose solutions converge uniformly to the continuous one as the mesh size goes to zero.
Moreover, the semidiscrete approximation shares some properties of the continuous problem: it
preserves the total mass and the solution converges to the mean value of the initial condition as ¢
goes to infinity. Next, we also discretize the time variable and present a totally discrete method
which also enjoys the above mentioned properties. In addition, we investigate the limit as p goes to
infinity in these approximations and obtain a discrete model for the evolution of a sandpile. Finally,
we present some numerical experiments that illustrate our results.
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1. Introduction. Our main goal in this paper is to approximate numerically
a nonlocal nonlinear diffusion problem, involving the nonlocal p-Laplacian operator
(with homogeneous Neumann boundary conditions). More precisely, we deal with the
problem

(1.1)
u(t, ) = /Q J(x —y)|ut,y) — u(t,z)|P2(u(t,y) —u(t,z))dy, ze€Q, t>0,

u(x,0) = uo(x),

being J : R — R a nonnegative continuous radial function with compact support
satisfying J(0) > 0. We also assume that [, J(z)dz = 1 to simplify our arguments
(although this condition is not necessary to prove our results). We take 1 < p < 400
and Q C R? a bounded domain. Existence and uniqueness of a strong solution to
(1.1) (see section 2 for a precise definition) can be found in [3], [4].

Nonlocal evolution equations of the form

(1.2) u(z,t) = Jxu—u(x,t) = 9 J(x —y) (u(y,t) —u(x,t)) dy

have many applications in modelling diffusion processes; see the recent book [4] and
the references [1], [5], [6], [10], [11], [12], [14], [15], [16], [24], [25], [31], [32], [33]. They
are even used in the treatment of images; see [9, 26].
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2104 MAYTE PEREZ-LLANOS AND JULIO D. ROSSI

As stated in [24], if u(x,t) represents the density of a single population at the
point x at time ¢, and J(x —y) is considered as the probability distribution of jumping
from location y to location z, then the convolution (J*u)(z,t) fRd y,t)dy
is the rate at Wthh 1nd1v1duals are arriving to position x from any other place While
—u(z,t) = — fnd Ju(z,t) dy is the rate at which they are leaving location z to
travel to any other s1te Under these considerations and in the absence of external or
internal sources, the density u satisfies (1.2). Equation (1.2) is known as a nonlocal
diffusion equation since the diffusion of the density u at a point x and time ¢ depends
on all the values of u in a neighborhood of z, through the convolution term J * u.
In addition, nonlocal equations have been used recently in peridynamics, a model for
fractures in elastic materials; see, for example, [17], [28], [29], [30]. For references
that include the analysis of numerical approximations for linear diffusion models, we
refer to [13] and [18]. Let us mention that in [13] discontinuous solutions are also
considered. Here we analyze only continuous solutions but we deal with a nonlinear
diffusion problem.

The nonlocal diffusion equations share many properties with the corresponding
local problems. In [3] the authors found that problem (1.1) is the nonlocal analogous
problem to the well-known local p-Laplacian evolution equation u; = div(|Vu[P~2Vu),
for p > 1 (while the extreme case, p = 1, corresponds to the total variation flow),
with homogeneous Neumann boundary conditions. Indeed, if one rescales the kernel
J properly, solutions to (1.1) converge to solutions of the local problem.

Note that, since we are integrating in (), we are imposing that diffusion takes
place only in €. There is no flux of individuals across the boundary. Hence, we are
dealing here with the analogue of the Neumann boundary condition.

Finally, concerning the large time behavior, solutions to (1.1) converge to the
mean value of the initial condition, as it happens for the local problem. Moreover,
n [2] the limit as p — oo is considered. It is given by a nonlocal model for the forma-
tion and growth of a sandpile, analogous to the local model described in [20, 21, 22].

Now, let us describe our results in the one-dimensional case; that is, Q = [0, L],
since the extension to several space dimensions is straightforward. Assume that the
support of J is the interval [—S, S]. Let us consider a partition z1,...,2x41 of the
interval [0, L] of size h = max(xz; — x;—1). This partition is not necessarily uniform
but we assume that Nh = O(1).

Then, the numerical approximation to problem (1.1) solves the following system
of ODEs, for each node z;;

(@i = x)hilui(t) — ui (O 72 (ui(t) —u (), >0,
(1.3) zeZA

u;(0) = uo(z;)

forevery j =1,...,N+1, being A; = {i such that |z;—z;] < S}and h; =z, —x;_1.
In order to obtain a nontrivial scheme we assume that h < S.
Next, we discretize the time variable using the explicit Euler method and we
obtain
ufﬂ ~ “? k. kip-2/,k .k
(1.4) BT zi;:j J(xi — xj)hilwi —ui [P~ (wi —uj), k>0,

u? = uo(x;).

Note that for these nonlocal models the explicit Euler scheme is well suited, since it
does not need a restrictive stability constraint for the time step, as it happens for
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NUMERICAL APPROXIMATIONS FOR A NONLOCAL EQUATION 2105

local problems. This is related to the lack of regularizing effect in nonlocal problems.
See Remark 2.10.

Our results concerning the semidiscrete and totally discrete approximations read
as follows (see sections 2.1 and 2.2 for precise statements).

Solutions to the numerical scheme presented here converge uniformly to the con-
tinuous solution as the mesh size h (and the time step T) goes to zero. Moreover, the
numerical approrimations share some properties of the continuous problem: there is
a comparison principle, they preserve the symmetry and the total mass of the initial
data and they converge to the mean value of the initial condition as t goes to infinity.

We remark that our results also hold when we deal with approximations in a
multidimensional domain. The proofs are similar to the one-dimensional case and are
left to the reader. See the short paragraph at the end of section 2.

We also study the limit as p — oo and we prove that solutions to the semidiscrete
scheme (1.3) converge to a nonlocal evolution problem, that can be regarded as a
semidiscrete approximation of a model for the evolution of a sandpile; see [2]. In
the local sandpile models it is assumed that the maximum slope of a sandpile is one
(otherwise the sand configuration becomes unstable); see [20, 21, 22]. In the nonlocal
sandpile model described in [2] the same restriction on the slope is assumed but with
some freedom at short distances (distances shorter than the size of the support of .J),
that can measure irregularities of the sand grains.

The rest of the paper is organized as follows: in section 2 we study the semidiscrete
and the totally discrete approximations in one space dimension, in section 3 we take
the limit as p — oo, and finally in section 4 we show some numerical experiments that
illustrate our results.

2. Semidiscrete and totally discrete numerical methods. In this section
we develop a fully discrete numerical method to approximate problem (1.1), restricting
ourselves to one space dimension; that is, Q@ = [0, L], and supp(J) = [—S, S]. We begin
by describing our space discretization.

2.1. Semidiscrete scheme. We perform a discretization of the space variable
and show the convergence of the semidiscrete scheme and some asymptotic properties
of the approximations.

To this end we introduce some preliminary notation. Let us consider a partition
(not necessarily uniform) 0 = z; < 29 < --- < &nx41 = L of the interval [0, L] of
size h (h = max(x; — x;—1)) and the corresponding standard piecewise linear finite
element space V3. Let us denote by {#;}1<j<n+1 the usual Lagrange basis of V},. We
assume that Nh = O(1) (this will be used to show convergence of the scheme) and
that h < S (this is needed in order to obtain a nontrivial scheme).

We define the semidiscrete approximation,

(2.1) un(z,t) = p  u;(t)g;(e),

where u;(t) is the solution to the following system of ODEs:

uji(t) = J(ws = xj)halui(t) — wi(8)P72 (us(t) — u; (1), ¢ >0,
(2.2) EZA
u;(0) = uo(z;)
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2106 MAYTE PEREZ-LLANOS AND JULIO D. ROSSI

forevery j =1,...,N+1, being A; = {i such that |z;—z;] < S}and h; =z, —z;_1.
Note that local existence and uniqueness of solutions to this system is straightforward
from the fact that the right-hand side of the equation is locally Lipschitz. Also note
that we can consider a discontinuous, piecewise constant approximation in space, but,
since solutions to (1.1) with continuous initial datum are continuous, we prefer to use
continuous approximations.

We first show that the semidiscrete solutions converge to the continuous solution.
To this end we prove that our solutions satisfy a comparison principle.

DEFINITION 2.1. We say that U is a supersolution of problem (2.2) if each of its
components satisfies

W) > Y (i — ap)hafws(t) = (0P @ (1) —w;(1), >0,
i€A;
;(0) = uo(x;).

Analogously, U is a subsolution of problem (2.2) if it satisfies the previous problem
with the reverse inequalities.
LEMMA 2.2. Let U and U be a supersolution and a subsolution of problem (2.2),

respectively. Then, calling U the solution to (2.2),

T = Ult) > U(@).
Here, by U(t) > U(t) > U(t) we mean that w;(t) > u;(t) > w;(t) forallj=1,...,N+
1 and for all t > 0.

Proof. By an approximation procedure we restrict ourselves to consider strict
inequalities for the supersolution. Indeed, we can take w;(t) + 0t + 4 (6 > 0) for every
i =1,...,N + 1 as a strict supersolution, and take limit as 6 — 0 at the end. We
show that U(t) > U(t) by contradiction. Let us assume that there exists a first time
to and a node jo such that @j, (to) = uj,(to) = a; then we have

0> ﬂ;—o (to) — u}o (to)

>3 hid (@ — a5, ([W(to) — al?~* (Wito) — a) — us(to) — alP > (uq(to) — a))

i€A;

Z 07
a contradiction. The last inequality follows from w;(tg) > w;(to) for every i =
1,...,N +1 and the fact that |a[P=2a — [b[P~2b > 0 if and only if a > b.

The inequality U(t) > U(t) can be handled in a similar way. O

Note that constants, that is, u; = ¢ for every i are solutions to the equation. Hence
we have that max; u;(0) > U(t) > min; u;(0) and then we conclude that solutions are
uniformly bounded and globally defined.

For completeness, following [4], let us state what we understand by a solution to
the continuous problem. Existence, uniqueness, a general contraction principle, and
a comparison principle for solutions can be found in Chapter 6 of [4].

DEFINITION 2.3. A solution of (1.1) in [0,T] is a function

we C([0,T] x Q) NWHL((0,T); C(Q)),
which satisfies u(x,0) = uo(x) for x € Q and
ug(x,t) = / J(@ = y)luly,t) — ulz, )" (uly,t) — u(z,t)) dy
Q

in Q0 x (0,7).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



NUMERICAL APPROXIMATIONS FOR A NONLOCAL EQUATION 2107

Now we are ready to prove the convergence result.

THEOREM 2.4. Let u € C([0,T] x Q) NnWLL((0,T); C(Q)), be a positive solution
to (1.1) and let up, be the numerical approximation defined by (2.1). Then there exists
a constant K, such that for every h small enough it holds that

max { max |u(x,t) — up(z, t)|} < Kh.
0<t<T | z€[0,L]

Proof. Let us denote by ¢;(t) = u;(t) — v;(t) the error vector, where v;(t) =
u(x;,t). It is easy to check that this vector satisfies

&= 20 Tws = ) (s — w2 (s = ) = os = v, P72 (0 = vy)
i€EA;
+ 3 I = il — vy (0 - )

i€A;

- / Iy — 23)luly) — ulay) P~ (u(y) — u(z;)) dy
< S T - a5)hilp — D) 2(es — e5) + O(h),

i€EA;

being n; ; an intermediate value between u; — u; and v; — vj, resulting from applying
the mean value theorem to the first term. The second term is O(h), since each of the
approximations to the integrals are O(h?) and we add them taking into account the
nodes laying on the supp(J).

Therefore, the error vector solves the following problem:

J —CCJ -1 i,j p—2 i & th, 0,
2.3) 1EZA hi(p = 1)(ni3)P " (e — &) + t>
Ej(O) =0.

Thus, if we consider w;(t) = w(t) = Cht, with C = maxy ;¢ Cj, for every j =
1,...,N + 1, w is a supersolution of problem (2.3), then indeed

=Ch > J(xi—xj)hi(p — 1) (i ;)P 2(wi — w;) + Cjh.
i€EA;

It can be shown in a similar way to Lemma 2.2, that this problem satisfies a comparison
principle. Consequently, ¢;(t) < w(t) < Kh, for every t < T and every j =1,..., N+
1. Here K = CT.

Repeating this argument for the vector —¢;(t) we conclude that

le;(t)| < Kh forevery j=1,...,N+1,

which finishes the proof. d

Now, let us show that some properties of the continuous problem are preserved
by the numerical approximations.

First, let us prove that, as it happens for the continuous problem, if the initial
datum is symmetric, the numerical scheme preserves this property.

LEMMA 2.5. Let ug(z) be a symmetric initial datum in [—L, L]; that is, uo(x) =
up(—x), and consider a symmetric partition x; —N —1 < i < N + 1, of this interval,
e, v; = —x_;. Then, the solution to problem (2.2) is symmetric, that is, it satisfies

ul(t) = u,i(t).
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2108 MAYTE PEREZ-LLANOS AND JULIO D. ROSSI
Proof. Let us define w;(t) = u_;(t). Then, w; satisfies

= 3" T~z halui(t) — w872 (wilt) = wi(1), ¢ >0,
zGA
w;j(0) = uo(z—j) = uo(x;)

for every j = =1 — N,...,N + 1, being A; = {i such that |z; —z_;| < S}. But
note that A; = —A;, where A; = {i such that |z; — ;| < S} since the partition
is symmetric. Taking into account that J is symmetric, we have that the previous
equation can be written as follows:

Wi(t) = D T(woi =z hilus(t) — w; (6)[P2 (ua(t) — wj(2)
i€EA;
= > T = x)halua(t) — wy (012 (wi(t) — w; (2)).
i€EA;

We conclude the proof by uniqueness of the solutions to the ODE system. a
Now we show that the solutions of the discrete nonlocal problem converge as

t — oo to the mean value of the initial condition, as happens for the continuous

problem. To carry out this task, we prove the following Poincaré-type inequality.
LEMMA 2.6. Let p > 1. Then,

N
3 2 g1 hihy J (@i — xj)[o; — vy]?

(24) I,=1I(J,d,p) = inf

(veRN LN o) Sy fos P
is strictly positive. Moreover,
N+1 1 NVl 1 Nl
(2.5) I, > hjlv; - Zhvl g—Zth — ;) [v; — v,
Jj=1 4,j=1

for every v € RN+L,
Proof. To show (2.4) it suffices to see that for each v € RV*! there exists a
constant ¢ > 0 such that

N+1 N+1 N+1
(2.6) Zh|vj|p<c Zh hj J(z; — xj)|v; — v, [P + z:hvZ
1,5=1

Arguing by contradiction, if (2.6) does not hold, then for every n € N there exists
v, € RN with SV by (0,)5]P = 1, satisfying

N+1 N+1
U>n |7 hohy I —23) ()i = (a) [+ Y ha(vn)s
i,j=1 i=1
Hence
N+1
and
N+1
; . . - P —
lim_ }}Zl hihy J(w; = 25)|(vn)i = (va);]P = 0.
1,]=
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This implies that

. o P
nlingo [(vn)i = (vn);] 0.

N+1

This, together with lim, o Y ;2" hi (v,); = 0, contradicts the fact that

N+1

> hil(va)il? =1
=1

Note that (2.5) follows immediately from (2.4), for v; = w; — ¢ ZNH h; w;, for any
w € RN O
We are now ready to study the asymptotic behavior of the discrete solutions.
THEOREM 2.7. Letp > 1 anduy, € V), be the solution to problem (2.2) correspond-
ing to an initial datum, ug. Then, there exists a positive constant C, independent of
t, such that

N+1 N b Jus(0))?
(2.7) > h |uj(t)—ﬂo|p§02j:1 1' ;O —0, ast— oo,

where Wy = + >, hi u;(0) < 0.
):

Proof. We define w;(t j(t) — TWo. From (2.2) it is easy to see that w satisfies

d N
T > hylwsl?
j=1

N+1
=p Y hylwiP s Y hi (i = p)lws — wilPR wi - wj)
j=1 i€EA;
N+1
=—p Y > hihi J(wi — x) (JwilP"2wi — Jw[P2w;) |wi — w; P72 (w; — w;)
J=1 i€A;
N+1
+p Y Y hihs J (i — @) e PP wslwr — wjP 7 (wi - w;)
j=1 icA;
p N
2 DD hhid (s — ) (il Pwi = w7 %ws) fws — wilP 2 (@i — wj).
J=1 i€A;

Therefore, Z;V:ng hjlw;[P is nonincreasing.
On the other hand, note that adding the equation in (2.2) top in all of the nodes,

we obtain

N+1 N+1
S bty =Y by (@i — ) hilus () — ui (8P (wi(t) — uy(t))
j=1 j=1i€A;

N+1

=3 Z S7 by J @ — @) hilui(t) — g (8P (ui(t) — us(2)
j=11i€A;
N+1
+5 Z > by J (i — x)halui(t) — ug ()P 72 (wa(t) — ui(t) = 0.

i=1 jEA;
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N+1

That is, the followmg quantity is preserved, 4 7 Z hju;(t) = T, for every t > 0

and, consequently, + ZNH hjw,;(t) =0, for every t 2 0. Thus we can apply to this
function the Poincare’s 1nequahty (2.5) and we obtain

N+1 N+1
thw <—Zth ;) [wi — w; [,
1,7=1

from which, using the monotonicity of 3, hjlw;|?, it easily follows that,
N1 ¢ N+1
3 et < [ 3 e
j=1
t N+1

(2.8) <C / 3 iy T(as = ) feils) g s)” ds
N

:C/ Z hi by J(x; — 25) |ui(s) — uj(s)|” ds.

4,j=1

Now, we multiply (2.2) top by u; and we add in all the nodes, it is easy to check
that

N+1 N+1

S | M08 ) = 32 =) 01720~ 60

1,j= 1N+1

== > J(wi — z)hihjlui(t) — u;(t)?
N

+ 30 Dhiljlwg(t) — wj(8) P72 (ug(t) — wj(t))ui(t)

leil

- - Z J(x; — zj)hihg|ui () — ui (B[P
3,j=1

Integrating in time, we deduce that

N+1 N4+1 ¢ N+1
> ol OF = 3 bl OF = = [ 3 by Ja =) (o) = wy ()P s
Jj=1 Jj=1 i,5=1
Thus,
t N+1 N+1
|3 et aw =) ) =y ) ds < 3 mylus )
i=1 j=1

which plugged into (2.8) gives the desired conclusion, (2.7). O

2.2. A fully discrete scheme. Now we perform the discretization in time,
using the explicit Euler method; that is,

u]?"'l — uk

R A— J(xi — xi)h|ul — uF P2 (uF —uk), k>0,
(29) Th leZA] ( J) | 7 J| ( [ j)
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being A; = {i : |z; — ;| < S}, for every j = 1,...,N + 1. We denote by Uk =
(uf,...,uk ;) the vector whose components solve the previous system (2.9).

The symmetry property given in Lemma 2.5 follows similarly from reflection and
uniqueness for the totally discrete method. However, the comparison principle for
problem (2.9) requires a condition on the time step 74, which is not restrictive. In
order to show this comparison principle we give the following definitions.

DEFINITION 2.8. We say that Uk is a supersolution of problem (2.9) if each of
its components satisfies

ahtl — gk

J J k& —kip—2/—k —k
(2.10) 2 ;‘: I (@i — ap)hifag — a5 P~ (@ —@5), k>0,
i€A;
a) > uo(a;).
U" is a subsolution of problem (2.9) if it satisfies (2.10) with the reverse

Analogously,
inequalities.

PROPOSITION 2.9. Let Uk and U* be a super- and a subsolution of problem (2.9),
respectively. Note that this implies UO < U°. If h is small and the time step satisfies

1

2(p — 1) max; [@}[72

(2.11) Tk <

then Uk < U* for every k > 0.

Proof. We define ZF = Uk —U* and call zf be the components of Z*. Note that,
as before, by an approximation argument, we can assume in (2.10) strict inequalities.
Therefore, Z* satisfies for each j = 1,..., N +1 and every k > 0 the following system:

zk+1

k\ip—2(=k _ —k k kip—2/, k k
- > Z J(x (|u uy [P 2(ah — ;) — | —uj| *(u] —Hj))7
i€A;
zj>0.

Let us argue by contradiction and suppose that there exists a first time t**! and a
node x; such that zf“ < 0 while zf > 0. From the corresponding equation for that
node we obtain

k _
szrl >z]’-“+7'k Z J(x; —xj)h (|u —T; kP 2(uk—u ) — |uf — ?|p Q(Qf—ﬂf))
i€EA;

= p— 1)1 Z J(x; — xj)h; |6‘ |p*2(z£C - z]k),
i€EA;

—k

being Gﬁ - a value between T — % and uf — u . Let 77] = max{0 ;- Neglecting the

J
positive terms in the previous inequality and taking (2.11) 1nto account, we get

k k
zj+1>zj 1—(—1Tk|77]|p2z x; —xj)h
i€A;

=z (1 —(p = Dmelnf[P2(1 + O(h))) >0,

which is a contradiction. O
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Remark 2.10. Note that the condition (2.11) does not depend on h. This has to be
contrasted with the analogous condition for the local problem. Indeed, the condition
ensuring the comparison principle for an analogous numerical scheme (based on a
discretization in space using piecewise linear finite elements with mass lumping and
the Euler explicit method in the time variable) for the corresponding local problem is

T < hP/ (2( -1) max|uk|p 2)
J

for a uniform mesh of size h. In fact, from [23], we have that in the local case the
scheme reads as

k+1 k — k k|p— k k k
uf T = b (Jugy = uf PR — ) Juf [P ) - W)

From this explicit form the condition above follows easily; see the proof of Lemma 2.3
in [23] for details.

From now on, we assume that the comparison principle holds.

We prove now the convergence result for this numerical scheme.

THEOREM 2.11. Letu € C([0,T] x Q)NWLL((0,T); C()), be a positive solution
to (1.1) and let u¥ be the numerical approzimation solving problem (2.9). Then there
exists a constant K, such that for every h small enough it holds that

tr) — < K(h
ogs;%{;a%'“@ 2 “h'} (h+7),

being h = max; h; and T = maxy, 7.

Proof. We define the error vector at time t**! as a?*l = uf*l - v;-”l, being

U”?H = u(xj, tp+1). It satisfies the following problem:
Ek+1

= > T — )i (Juf = wf P2l k) - ok = A2l - o))

i€EA;

—I—Z x; — xj)hi|vf —v|p Q(f—vf)

i€EA;
trt1 )
[ s = ) ey P ) — o ) dy s
< Z 2 —aj)hi(p — ()" (ef — ) + Clh +7),
i€EA;

where, as before,  comes from the mean value theorem. Therefore,
k1l _ ok

R < J(wi = z)hi(p — D))" (F — )+ C(h+ 7).

i€A;

E

Analogously as before, if we consider w;? = wP = Ckr,(h + 7), for every j, k, then
w;? is a supersolution of the previous problem. Notice that there exists kg such that
ty, > T, thus take K = Cty,. The end of the proof follows again by comparison and
applying the same reasoning to —5?. d

We conclude the study of the totally discrete method by showing that these
solutions also preserve the total mass and tend to the mean value of the initial datum,
as it happened for the semidiscrete case. Nevertheless, we cannot prove now the rate
of such convergence in terms of ¢.
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THEOREM 2.12. Let uf be the solution to problem (2.9) and Ty = + Y, h;i u;(0),
the mean value of the initial condition. Then, the following quantity is preserved:

LZh C—wy V.

Moreover,

max|u§?—ﬂ0|—>0 as k — oo.
J

Proof. To show the conservation of the mass we sum (2.9) top in all of the nodes,

N+1 k+1 N+1
Zh ZZ x; — x;)hihj|ul —uk|p72(uf—u§)20,
j=11i€A;

which vanishes by the same reasoning as in the semidiscrete case. Therefore,

N+1 N+1
2 : k+1 _ § : k

hjuj = hjuj YV k 2 0.
Jj=1 Jj=1

To prove the second statement let

w? =u; — .

k k -
J J

Then, our task is to show that max; w} and min;w} go to zero as k — oo.
This w;? satisfies the same equations; that is,

k —
wjﬂ zwf + Tk Z J (i — o)) hy|wk —wﬂp 2(wh —wf) ,

i€A;
with
N+1
(2.12) > hjwk =0 Vk
j=1
Now let
c*(l) = maxwé- and Cu(l) = minwé-.
J J

We have that C*(l) is decreasing and nonnegative and that C.(l) is increasing and
nonpositive. In fact, as (2.12) holds we have that C*(I) > 0 > C,(l). The mono-
tonicity of C*(l) is a consequence of the comparison principle. Note that wé— < C*(1),
and that the constant C*(I) is a solution to the equation. Then, by the comparison
principle, w}“ < C*(l) for every k > [ and hence C*(k) < C*(1) for every k > [. The
proof of the monotonicity of C\(l) is analogous.
These properties imply that the following two limits exist:
ll_lglo C*(l)=K*">0 and lim C.(I) = K. <0,

l—o0

and also provide that w;-“ is uniformly bounded.
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Now, let G = (g1,...,9n+1) be an element in the w-limit set of the orbit {wf};
that is,

G e w(wf) = {(gl, ey gN+1) : Jkyn — oo with wf” — g, for everyj} .

Note that the w-limit set of the orbit {wf} is not empty due to the fact that we have
a uniform bound for the orbit. Since G € w(wf% we have that K* > g; > K, and
Zj hjgj = 0.

Consider zjk the solution of the problem with initial condition z§ = g; and let
Wf = K* — zf This Wf is a nonnegative solution to the problem. Let us show
that Wf = 0. Arguing by contradiction, assume that it is not identically zero. Then
we claim that there exists ko such that min; Wfo > 0. In fact, if the claim does

not hold, we have that min; Wf = 0 for all k. Note that if for some j and some

k it holds that Wf > 0, then Wf > 0 for every k > k (this property follows from
the equation and the fact that Wf > 0). Hence there must be a node jy such that
W} =0 for every k. At this node we have min; WF = W} = 0. Consider the step
k+1. Note that, since jp is the node at which W}Z attains its minimum at time k, the
term containing the sum in the equation is nonnegative and strictly positive unless
Wk = Wj”g for every z; € [z, — S, xj, + S]. Iterating this argument a finite number
of times we obtain that WJH" = 0 for every j, and hence we conclude that Wf =0,
a contradiction. Therefore, we obtained that the claim holds, that is, there exists kg
such that min; Wf" > ¢ > 0. Let us show that it gives a contradiction. In fact, since
the whole orbit z¥ belongs to the w-limit set of w¥ and we have K* = W} 4 2F, we
get that there exists n large enough such that

K* = Wfﬂ + zjl?g > g + w;ﬂ'k" for every j,
and then we obtain
K* > g +C*(n + ko),

a contradiction with the monotonicity properties of C*(1).

This shows that W} = 0 and hence z§ = K*. We conclude that K* = 0 noticing
that we must have Zj hjK* = 0. A similar argument using zjk — K, shows that
K, =0 and we conclude that

lim maxo.)éC = lim m‘inw;’-C =0.
k—oo j k—oo j
This concludes the proof. O

To deal with the same problem in several space dimensions, let €2 be a bounded do-
main in R? and let 21, ..., 2x,1 be a set of points in € that are uniformly distributed
(by this we mean that in every ball of radius S in Q there are at least r ~ [Q|/S™
points). Then we can discretize as before imposing that the values of U at the nodes
x; satisfy the ODE system (2.1) (or the totally discrete system (2.9)). The extension
of our results to this setting is easy. Indeed, comparison arguments are shown in the
same way as for the one-dimensional (1-d) case and the convergence result follows by
the same arguments as before, once one notices that it holds that

[ @ =yt du ~ 1BO.S) Y I~ 2)uy).

I€EA;

as the number of points goes to infinity (N — 00).
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3. The limit as p — oo. In this section we show that solutions to the numerical
method converge as p — oo to the solution to a certain problem that can be regarded
as an approximation of the nonlocal model for the growing of a sandpile obtained in
[2]; see also [4].

To identify the limit as p — oo of the solutions u, ; of the semidiscrete prob-
lem (1.3), we will use the methods of convex analysis, and so we first recall some
terminology (see [19] and [7]). If H is a real Hilbert space with inner product ( , )
and ¥ : H — (—o0,400] is convex, then the subdifferential of ¥ is defined as the
multivalued operator 0¥ given by

veEIU(u) <— VY(w)—Y(u)> (v,w—u) YweH.

The epigraph of ¥ is defined by Epi(¥) = {(u,\) € H xR : A > U(u)}.
Given K a closed convex subset of H, the indicator function of K is defined by

T (u) = 0 if ue K,
K 400 if udgK.

Then it is easy to see that the subdifferential is characterized as follows:
(3.1) veIg(u) <= uwekK and (v,w—u)<0 VweK.

In case the convex functional ¥ : H — (—o0, +-00] is proper, lower-semicontinuous,
and min ¥ = 0, it is well known (see [7]) that the abstract Cauchy problem

u' () + 0¥ (u(t)) > f(t), aete (0,7,
u(0) = uyg,

has a unique strong solution for any f € L?(0,T; H) and ug € D(0¥). Here D(OV)

stands for the domain of the subdifferential of W.

The following convergence was studied by Mosco in [27]. Suppose X is a metric
space and A,, C X. We define

liminf A, = {zx € X : 3z, € A,, x, = x}

n—oo

and

limsup A, ={z € X : Jz,, € 4,,, Tpn, — }.
n—oo
In the case X is a normed space, we note by s — lim and w — lim the above limits
associated, respectively, to the strong and to the weak topology of X.
Given a sequence U,,, U : H — (—00, +00| of convex lower-semicontinuous func-
tionals, we say that ¥,, converges to ¥ in the sense of Mosco if

(3.2) w — limsup Epi(¥,,) C Epi(¥) C s — liminf Epi(¥,,).
n—00 n—00
As a consequence of the results in [8] we can write the following result.
THEOREM 3.1. Let ¥, ¥ : H — (—o00,+00] be conver lower-semicontinuous
functionals. Then the following statements are equivalent:

(i) ¥,, converges to U in the sense of Mosco.
(i) (I+X0V,) tu — (I +X0¥)tu, VA>0, ue H.
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Moreover, any of these two conditions (i) or (ii) imply that

(ili) for every up € D(OY) and upn € D(OV,) such that ug., — ug, and every
fn, f € L2(0,T; H) with f, — f, if un(t), u(t) are the strong solutions of the
abstract Cauchy problems

{u;(t)+a\1/n(un(t))9fn, ae te(0,7),

Un (O) = UQ,n,

and

{u’(t)+8\11(u(t))9f, a.e. te(0,7T),

respectively, then
Up = U in C([0,T]: H).

For the continuous problem, taking H = L*(Q), in [4, Theorem 8.1], it is proved
that

(3.3) lim  sup [up(-,t) — too (-, t)||L2(2) = 0,
P90 ¢¢[0,T]

being wu,, the solution to (1.1) and us the solution to the nonlocal limit problem that
is given by

(3.4) {f("t) — ua(. t) € 0y (u(.,t), ae te(0,T),

where
K7 :={ueL*(Q) : |u(z)—ul(y)| <1for z—yesupp(J)}.

3.1. Limit as p — oo. Let us consider the numerical semidiscrete approxi-
mations of the nonlocal p-Laplacian evolution problem with a source given by f =

(fla"'afN-i-l)a fl = f(xl)v

= > I = w)hilui(t) = ug (07 (wit) = ui () + f5(8), ¢ >0,
(35) i€EA;
u;(0) = uo(;)
for every j =1,...,N +1, being A = {i such that |z; — ;| < S}.
This problem is associated to the energy functional

ZZJ xj)hihj|v; —v;|P

in the Hilbert space H = RV *1. Note that G,, is differentiable, hence the subdiffer-
ential is the usual derivative.

With a formal calculation, taking limit as p — oo, we arrive to the functional
(recall that J is supported in B(0,5))

0 it |v; —v;| <1, for |z; —x;| < S,
Goo(v) = )
+00 in other case.
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Hence, if we define
Koo i={v e RNT! : |o; —v;| <1, when |z; —2;] < S},

we have that the functional G, is determined by the indicator function of the set
K. Then, a nonlocal semidiscrete limit problem can be written as

ft)=U'(t) € Ik _(U(t)), ae te(0,7T),
u;(0) = uo(z;)-
THEOREM 3.2. LetT > 0 and an initial condition ug such that |ug(z)—uo(y)| < 1,

for |z —y| < S, and let uy p, be the unique solution to (3.5). Then, if U is the unique
solution to (3.6), we have

(3.6)

lim sup |u,p(t U(t)| =0.
Jim s [un(6) =~ U6)

Proof of Theorem 3.2. Let T > 0. By Theorem 3.1, to prove the result it is
enough to show that the functionals

ZZJ i — xj)hihjlv; — v;|P

converge to

0 if |v; — v <1 for |z; — x| < S,
Goo(v) = .
400 in other case,

as p — 00, in the sense of Mosco. Note that in (3.2) weak and strong convergences
are the same since we have H = RN+,
First, let us check that

(3.7 Epi(Gs) C liminf Epi(G)).

p—r0oQ

To this end let us consider (U, \) € Epi(Gs). We can assume that U € K, and
A >0 (since G (U) = 0). Now take for each p

Vp=U and Ap =Gp(U) + A

Then, since A > 0 we have (V,,\,) € Epi(G)p). It is obvious that V, = U — U in
RN*1and moreover, since U € K, then |u; — uj| <1 for |z; — x;| < S and we get

ZZJ hh|u1—uj|p<—ZZJ i)hihj =0

as p — oo. Therefore, A, — A as p — oo and we get (3.7).
Finally, let us prove that

lim sup Epi(G,,) C Epi(G).

p—r00
To this end, let us consider a sequence (Up,, \p;) € Epi(Gy,); that is, G, (Up;) < Ap,,
with U,, — U, and X\,, — A. Therefore, we have that A > 0, since 0 < G, (Up;) <

Ap;, = /\ On the other hand,

A 1> Gy, (Uy,) = ZZJ wj)hihgl (up, )i — (up, ); P*
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Since any term in the above sum is nonnegative, we conclude that
1
A+l %hihjj(fi — )| (upy. )i = (upy, )57

for some ¢,j such that |z; — x;| < S. Hence, since (up, )i — u; and (up,); — u; we
obtain

lui —uj| <1 for |z; — ;| < S.

Thus, we conclude that U € K. This ends the proof. 0

Note that our numerical schemes can be used to approximate solutions to the
nonlocal sandpile model (3.4). In fact, given € > 0, from (3.3), we have that there
exists po large such that

sup ”upo('at) - uoo('at)||L2(Q) < 8/2.
t€[0,T)

Then, for h small enough,
SUD ([t (-1 1) = oo (- 8) | 20) < 1QUM? sUp g (1) =ty (- 1) | Lo ()
te[0,T] te[0,7]
+ sup lup, (5 t) = uoo (-, )| 22(0) < &
t€[0,T]

3.2. An explicit solution. In this subsection we present an explicit example
that illustrates the behavior of the solutions when p = +00. We want to find a solution
to

(3.8) ft)=U'(t) € 0G(U(1)) a.e. t € (0,7),
| U(0) = uo(z;) in Q,
where
Goo(v) = {0 ?f lv; —v;| <1, for |z; —x;| < S,
+00 in other case.

In order to satisfy that a function U : [0,T] +— R¥*! is a solution to (3.8) we
need to check that

(3.9) Goo(V) > Goo(U) + {f = U, v—U)  VveRNTL

To this end we can assume that v € Ko, (otherwise Goo(v) = +oo and then (3.9)
becomes trivial). By (3.1), we need to check that U(t) € K and

D (fi(t) = () (v; — u;(t) <0

J
for every v € K.

Now, to simplify, assume that the support of J is (—1,1); that is, S = 1. Let
us consider a recipient 2 = (0, L) with L an integer greater than 1, a uniform mesh,
zj=(j—1)L/N, j=1,...,N +1, as initial datum take uo = 0 and a source given
by f(x,t) = X[o,1j(x). Then the solution is given by

t, €y < 1,
u;(t) = {

0, Tj > 1,
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for times ¢t € [0,1]. Let us check that this is indeed the solution for ¢ € [0,1]. It is
clear that U(t) € Ko since |u;(t) —u;(t)| < 1 for every i, j. Moreover, since f and U,
coincide in [0, L], we have that (3.9) is immediate.

3]

For t € [1,3] we get
t—1
l+—— @ eo),
(ty=<¢1t—-1
u;(t) = 5 z; € [1,2),
0 $3¢[0,2)

Let us check that this is the solution. We have that U(t) € K. Hence we have to
verify (3.9). Since U, and f vanish outside [0,2) we have to see that

o =)y —uy (1) + > (—uf()) (v —us(t)) < 0.
IjE[OJ) 116[172)
Using the explicit form of u; we get
1 t—1 1 t—1
— (v — ) ) - (v ——=)<o0.
X il 7))- 250 =
wje[O,l) 116[172)
That is equivalent to (note that all the terms that involve ¢ cancel)
SRR S it
z;€[0,1) z;€[1,2) z;€[0,1)

which holds as a consequence of the fact that |v; —v;| < 1for z; € [0,1) and z; € [1,2)
(we are using here that v € K).

In general we have, until the recipient is full, that is, until u;(¢) > 0 for every ¢,
forany k=1,...,L and for t € [ty_1,tx)

t—ti_

k—l—l—# zj €1[0,1),
t—ti_

k—24—2L g e[1,2),

Uj (t) = e

t— 1t

% z; € [k—1,k),

0 z; ¢ 10, k).

Here t;, = ti_1 + k is the first time at which the solution reaches level k; that is,

Up, (tk, 0) = k.
For times even greater, t > t;, = L(L+1)/2 (the recipient is full of sand from that

time, that is, the solution is strictly positive for ¢ > t;, = L(L + 1)/2), the solution

turns out to be

t—1tr

L+ T $j€[0,1),
t—1tr
u;(t) = L—-1+ zj €[1,2),
t—1t
14 —= z; € [L—1,L).

L

Hence, when the recipient is full the solution grows with speed 1/L uniformly in (0, ).
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Fia. 1. Evolution in time, symmetric datum.
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Fia. 2. Convergence to the mean value of the initial datum as t increases.

4. Numerical experiments. In this section we perform, using MATLAB (odel5s
subroutine), some numerical experiments just to illustrate our general results.

First, we show the evolution in time of a numerical solution, taking p =5, N =
101, and as initial datum wuo = 6|sin(Zz)| + 0.15(3 — |z])? in the interval [—3,3].
We can appreciate that, since the initial datum is symmetric, the solution remains
symmetric for every positive time; see Figure 1.

Next, take ug = 9 — 2%, p = 5 in the interval [—3,3]. We show the value of the
first node (corresponding to z = —3) of the numerical approximation for different
values of N as t increases; see Figure 2. We can appreciate the convergence towards
the mean value of the numerical initial datum as t increases for different values of
N. Moreover, we can appreciate that the discrete mean value increases with N to
6, which is the continuous mean value of vy = 9 — 22. The same behavior can be
observed for any other node.

Now we include a picture comparing the approximation to the semidiscrete solu-
tion using odel5s with the totally discrete one. Here we take p = 4, ug(z) = (9 — 2?),
Q=(-3,3), N =50, 7. = 0.1, and k = 8000. See Figure 3.

In the next picture (Figure 4) we show the evolution in time of a numerical model
of sandpiles with p = 50, corresponding to the initial data ug = 0 in Q = (0,4) with
a source f = x[o,1]. Note that the slope of u;(t) decreases as time evolves, as we
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6.1
- - —totally discrete solution
6.05¢ - semidiscrete solution
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‘ \
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Fia. 3. Semidiscrete (approzimated with odelbs) and totally discrete solutions for t, = Tk.
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space 4 0

F1G. 4. Evolution in time of the numerical model for sandpiles.

0 2 4 6

F1G. 5. Different slopes of the value of the solution at some nodes of the numerical model for
sandpiles.

illustrate in Figure 5. This is a consequence of the fact that the sand that is added by
the source has to be distributed in a larger set. Finally, in Figure 6, we show solutions
for different values of p and compare them with the explicit formula of the previous
section. In this example we take ug = 0 in Q = (0,3) with a source f = x[,1]-
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Fia. 6. Convergence as p increases to the explicit solution.
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