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Abstract
Let X1,X2,… be independent and identically distributed
random elements taking values in a separable Hilbert
space H. With applications for functional data in mind,
H may be regarded as a space of square-integrable func-
tions, defined on a compact interval. We propose and
study a novel test of the hypothesis H0 that X1 has some
unspecified nondegenerate Gaussian distribution. The
test statistic Tn =Tn(X1,… ,Xn) is based on a measure
of deviation between the empirical characteristic func-
tional of X1,… ,Xn and the characteristic functional of
a suitable Gaussian random element of H. We derive
the asymptotic distribution of Tn as n→∞ under H0 and
provide a consistent bootstrap approximation thereof.
Moreover, we obtain an almost sure limit of Tn and
the limit distributions of Tn under fixed and contiguous
alternatives to Gaussianity. Simulations show that the
new test is competitive with respect to the hitherto few
competitors available.
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1 INTRODUCTION

The normal distribution continues to play a prominent role, since many statistical procedures
for finite-dimensional data assume an underlying normal distribution. It is thus not surpris-
ing that a myriad of tests for multivariate normality have been proposed. For some more recent
approaches, see for example, Arcones (2007), Doornik and Hansen (2008), Ebner (2012), Henze
and Jiménez-Gamero (2019), Henze, Jiménez-Gamero, and Meintanis (2019), Henze and Vis-
agie (2019), Kankainen, Taskinen, and Oja (2007), Pudelko (2005), Székely and Rizzo (2005),
Thulin (2014), Villaseñor-Alva and Estrada (2009), and Voinov, Pya, Makarov, and Voinov (2016).
A survey of affine invariant tests for multivariate normality is given in Henze (2002).

While some of these (and other) tests make use of certain properties that uniquely determine
the normal law, others are based on a comparison of a nonparametric estimator of a function
that characterizes a probability law with a parametric estimator of that function, obtained under
the null hypothesis. A member of the latter class is the test of Epps and Pulley (1983). Although
originally designed for the univariate case, the approach of Epps and Pulley was extended to test
for multivariate normality by Baringhaus and Henze (1988) and Henze and Zirkler (1990). The
resulting procedure, which is usually referred to as the Baringhaus-Henze-Epps-Pulley (BHEP)
test, is based on a comparison of the empirical characteristic function (ECF) associated with suit-
ably standardized data, with the characteristic function (CF) of the standard normal law in Rd.
Because of its nice properties (see Section 2), the BHEP test has been extended in several direc-
tions, such as testing for normality of the errors in linear models Jiménez-Gamero, Muñoz-García,
and Pino-Mejías (2005), in nonparametric regression models, Hušková and Meintanis (2010), and
in GARCH models Jiménez-Gamero (2014), just to cite a few.

The assumption of normality is important not only in the so-called classical context, in which
the data take values in Rd for some fixed d ∈ N, but also in other settings, such as functional data
analysis. In fact, there are some inferential procedures, designed for functional data, that assume
Gaussianity (which is a synonym for normality in that context). Examples are the test for the
equality of covariance operators in chapter 5 of Horváth and Kokoszka (2012), or the test in Zhang,
Liang, and Xiao (2010) for the equality of means. On the other hand, some methods are valid
under quite general assumptions, but they greatly simplify when the assumption of normality
is added, see, for example, Boente, Rodríguez, and Sued (2018). Thus, the problem of testing for
Gaussianity is also of interest when dealing with functional data.

The literature of goodness-of-fit tests in the context of functional data, or more general,
of data taking values in infinite-dimensional separable Hilbert spaces, is still rather sparse.
Cuesta-Albertos, del Barrio, Fraiman, and Matrán (2007) consider a test based on random projec-
tions, while Bugni, Hall, Horowitz, and Neumann (2009) study an extension of the Cramér–von
Mises test. The test in Bugni et al. (2009) assumes that the distribution in the null hypothesis
depends on a finite-dimensional parameter. Górecki, Hörmann, Horváth, and Kokoszka (2018)
propose Jarque–Bera type tests for Gaussianity. For a simple null hypothesis, Ditzhaus and
Gaigall (2018) employ a test statistic that integrates, along all possible projections, univariate
Cramér-von Mises test statistics, obtained by projecting the data. Since the probability distribu-
tion of a random element taking values in a separable Hilbert space is uniquely determined by its
characteristic functional, see Laha and Rohatgi (1979), the objective of this paper is to extend the
BHEP test to the functional data context.

The paper is organized as follows: Section 2 reviews the BHEP test. Section 3 highlights
some key differences between the finite-dimensional case and the functional data context, and it
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408 HENZE and JIMENEZ-GAMERO

introduces the test statistic, whose almost sure limit is derived in Section 4. The asymptotic null
distribution of the test statistic is obtained in Section 5. Since this limit distribution depends on
unknown quantities, we prove the consistency of a suitable bootstrap approximation. In Section 6,
we derive the asymptotic distribution of the test statistic under alternatives. Section 7 presents
the results of a simulation study, designed to assess the finite-sample performance of the test, and
to compare it with some competitors. It also shows a real dataset application. The test statistic
depends on a measure. Section 8 comments on such measure. The paper concludes with several
remarks that point out some future research lines.

Throughout the manuscript, we will make use of the following standard notation: The
Euclidean norm in Rd, d ∈ N, will be denoted by ||⋅||. The superscript ⊤ means transposition of
column vectors and matrices. We write Nd(𝜇,Σ) for the d-variate normal distribution with mean
vector 𝜇 and nondegenerate covariance matrixΣ, andd stands for the class of all nondegenerate
d-dimensional normal distributions. The symbol Id denotes the unit matrix of order d, i =

√
−1

is the imaginary unit, and C denotes the set of complex numbers. All random vectors and ran-
dom elements will be defined on a sufficiently rich probability space (Ω,,P). The symbols E

and V denote expectation and variance, respectively, and

= and


→ mean equality in distribution

and convergence in distribution of random vectors and random elements, respectively. All limits
are taken when n→∞, where n denotes the sample size.

2 THE BHEP TEST IN R
d REVISITED

In this section, we revisit the BHEP test for finite-dimensional data. To this end, let X1,… ,Xn,…
be independent and identically distributed (iid) copies of a d-variate random column vector X .
We assume that the distribution PX of X is absolutely continuous with respect to Lebesgue mea-
sure. For testing the hypothesis H0,d ∶ PX ∈ d, the rationale of the BHEP test is as follows:
Write Xn = n−1∑n

j=1 Xj and Sn = n−1∑n
j=1(Xj − Xn)(Xj − Xn)⊤ for the sample mean and the sam-

ple covariance matrix of X1,… ,Xn, respectively, and let Yn,j = S−1∕2
n (Xj − Xn), j= 1,… ,n, be the

so-called scaled residuals of X1,… ,Xn, which provide an empirical standardization of X1,… ,Xn.
Here, S−1∕2

n denotes the unique symmetric square root of S−1
n . If n≥ d+ 1, the matrix Sn is invert-

ible with probability one, see Eaton and Perlman (1973). Since, under H0,d and for large n, the
distribution of the scaled residuals should be close to the standard d-variate normal distribution
Nd(0,Id), it is tempting to compare the ECF

𝜓n(t) =
1
n

n∑
j=1

exp(it⊤Yn,j), t ∈ R
d,

of Y n,1,… ,Y n,n with exp(−||t||2∕2), which is the CF of the law Nd(0,Id). The BHEP test rejects H0,d
for large values of the weighted L2-statistic

Tn,d,𝛽 = ∫
Rd

||||𝜓n(t) − exp
(
−1

2
||t||2)||||

2
wd,𝛽(t) dt, (1)

where wd,𝛽(t) = (𝛽22𝜋)−d∕2 exp(−||t||2∕(2𝛽2)) is the probability density function of the d-variate
normal distribution Nd(0, 𝛽2Id), and 𝛽 > 0 is a parameter. In the univariate case, this statistic has
been proposed by Epps and Pulley (1983), and the extension to the case d≥ 2 has been studied
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HENZE and JIMENEZ-GAMERO 409

by Baringhaus and Henze (1988) for the special case 𝛽 = 1 and, for general 𝛽, by Henze and
Zirkler (1990) and Henze and Wagner (1997). The acronym BHEP, after early developers of the
idea, was coined by Csörgő (1989), who proved that the BHEP test is consistent against each non-
normal alternative distribution (without any restriction on PX ). The test statistic Tn,d,𝛽 may be
written as

Tn,d,𝛽 =
1

n2

n∑
j,k=1

exp
(
−𝛽

2

2
||Yn,j − Yn,k||2)

− 2
n(1 + 𝛽2)d∕2

n∑
j=1

exp
(
− 𝛽2

2(1 + 𝛽2)
||Yn,j||2) + 1

(1 + 2𝛽2)d∕2
.

This representation shows that Tn,d,𝛽 is a function of the scalar products Y⊤
n,jYn,k =

(Xj − Xn)⊤S−1
n (Xk − Xn), 1≤ j,k≤n, and is thus invariant with respect to full rank affine trans-

formations of X1,… ,Xn. Moreover, not even the computation of the square root S−1∕2
n is needed.

Affine invariance is a “soft necessary condition” for any genuine test for normality, since the class
d is closed with respect to such transformations, see Henze (2002).

3 THE SETTING AND THE TEST STATISTIC

Assume that X is a random element of the separable Hilbert space H = L2([0, 1],R) of (equiva-
lence classes of) square-integrable real-valued functions, defined on the compact interval [0,1],
with the inner product ⟨f , g⟩ = ∫ 1

0 f (t)g(t) dt, norm ||f ||H = ⟨f , f ⟩1∕2, f , g ∈ H, and equipped with
the Borel 𝜎-algebra. Throughout the paper we assume that X is square integrable, that is, we have
E||X||2

H
< ∞. As a consequence, we have E||X||H < ∞, and thus there is a unique mean func-

tion 𝜇 = E(X) ∈ H, which satisfies E⟨X , x⟩ = ⟨𝜇, x⟩ for each x ∈ H. It follows that 𝜇(t) = EX(t)
for almost all t ∈ [0,1]. Let c(s, t) = E[{X(s) − 𝜇(s)}{X(t) − 𝜇(t)}], s,t ∈ [0,1], stand for the covari-
ance function of X , and write  ∶ H → H for the covariance operator of X , defined as f =
E (⟨X − 𝜇, f ⟩X), or equivalently, as f (s) = ∫ c(s, t)f (t) dt for each f ∈ H. The operator  ∶ H → H

is linear, compact, symmetric and positive, and it is of trace class. In what follows, we denote this
class of operators by +

tr(H).
Let X1,… ,Xn be iid copies of X . The mean function and the covariance function of X can be

consistently estimated by means of

Xn(t) =
1
n

n∑
j=1

Xj(t), cn(s, t) =
1
n

n∑
j=1

{Xj(s) − Xn(s)}{Xj(t) − Xn(t)},

s,t ∈ [0,1], respectively. The sample covariance operator n, say, is given by nf (s) =
∫ 1

0 cn(s, t)f (t) dt, f ∈ H.
The characteristic functional of X , which uniquely determines the distribution PX of X , is

defined as the function 𝜑 ∶ H → C , with 𝜑(f ) = E[exp (i⟨X , f ⟩)]. By definition, PX is Gaussian if,
and only if, there is a 𝜇 ∈ H (the expectation of X) and  ∈ +

tr(H) (the covariance operator of X),
such that

𝜑(f ) = 𝜑(f ;𝜇,) = exp
(

i⟨𝜇, f ⟩ − 1
2
⟨f , f ⟩) , f ∈ H. (2)
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410 HENZE and JIMENEZ-GAMERO

In this case, we write X

= N(𝜇,).

Based on the data X1,… ,Xn, we are interested in testing the hypothesis H0 that PX is
nondegenerate Gaussian, that is, in a test of

H0 ∶ 𝜑(⋅) = 𝜑(⋅;𝜇,), for some 𝜇 ∈ H and some  ∈ +
tr(H).

Two main problems arise when one tries to extend the BHEP test for functional data.
First, a main difference between the finite-dimensional case and the functional data one is

that in the latter case we have strict inclusion

spn ⊊ H, (3)

where spn = sp(X1 − Xn,… ,Xn − Xn) denotes the set of finite linear combinations of X1 −
Xn,… ,Xn − Xn, while in the d-dimensional case spn = Rd almost surely for each n≥ d+ 1. This
point has an important implication related to invariance.

Section 2 made the case for affine invariance of any genuine test for normality in Rd. In the
infinite-dimensional case we have the following: If X ∈ H is Gaussian with mean 𝜇 and covari-
ance operator , and A ∶ H → H is a bounded linear operator, then AX is also Gaussian (with
mean A𝜇 and covariance operator AA∗, A∗ being the adjoint of A). Therefore, arguing as in the
previous section, any genuine test for Gaussianity should be invariant under bounded linear oper-
ators. However, since (3) holds for each fixed n, it is not reasonable to impose that the test statistic
be invariant under any bounded linear operator.

This lack of invariance entails that the null distribution of any test statistic of H0 depends
on the population parameters 𝜇 and . Therefore, the critical points must be approximated by
(for example) some resampling method. Since our test statistic (to be defined in a moment) is
translation invariant, its distribution does not depend on 𝜇.

Second, recall that the BHEP statistic in Rd compares the ECF of the scaled residuals
Y n,1,… ,Y n,n with the CF of the standard normal law in Rd. There is, however, no standard normal
law in H. Nevertheless, the BHEP test statistic (1) can be rewritten in the form

Tn,d,𝛽 = ∫
Rd

|||𝜙n(t) − 𝜙(t;Xn, Sn)
|||2F𝛽(dt).

Here, 𝜙n(⋅) stands for the ECF of the data X1,… ,Xn, 𝜙(⋅;𝜇,Σ) is the CF of the distribution
Nd(𝜇,Σ), and F𝛽 is a certain distribution function on Rd, see Lemma 2 in Jiménez-Gamero,
Alba-Fernández, Muñoz-García, and Chalco-Cano (2009) for details. In view of the above expres-
sion, we consider the test statistic

Tn = Tn(X1,… ,Xn) = ∫
H

|||𝜑n(f ) − 𝜑(f ;Xn,n)
|||2Q(df ), (4)

for testing H0. Here, Q is some suitable probability measure on (the 𝜎-field of Borel subsets of) H,
and 𝜑n is the empirical characteristic functional

𝜑n(f ) =
1
n

n∑
j=1

exp(i⟨f ,Xj⟩), f ∈ H, (5)
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HENZE and JIMENEZ-GAMERO 411

of X1,… ,Xn. Straightforward algebra gives

Tn(X1,… ,Xn) =
1
n
+ 2

n2

∑
1≤j<k≤n

∫
H

cos
(⟨f ,Xj − Xk⟩)Q(df )

− 2
n

n∑
j=1

∫
H

cos
(⟨f ,Xj − Xn⟩) exp

(
−
⟨nf , f ⟩

2

)
Q(df )

+ ∫
H

exp (−⟨nf , f ⟩)Q(df ). (6)

Notice that Tn depends solely on the differences Xj −Xk and Xj − Xn. Consequently, the
distribution of Tn does not depend on the unknown expectation 𝜇 = E(X) of X .

In what follows, we will restrict the probability measure Q to be symmetric with respect to
the zero element 0 of H, that is, Q is invariant with respect to the mapping x →− x, x ∈ H. With
this assumption, the addition rule cos(𝛼 − 𝛽) = cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽 and considerations of
symmetry yield

nTn = ∫
H

V 2
n (f ) Q(df ), (7)

where

Vn(f ) =
1√
n

n∑
j=1

{
cos⟨f ,Xj − Xn⟩ + sin⟨f ,Xj − Xn⟩ − exp

(
−1

2
⟨nf , f ⟩)} , f ∈ H. (8)

The statistic (4) is similar to that considered in Bugni et al. (2009), which is based on a com-
parison of the empirical distribution functional with a parametric estimator of that functional,
obtained under the null hypothesis. As argued in Bugni et al. (2009), Q must be chosen so that
the resulting test statistic is tractable computationally. To this end, notice that the test statistic Tn
is the expected value of the function V 2

n (f ) with respect to the measure Q. Hence, Monte Carlo
integration is an option for computation, provided that Q can be easily sampled (from a compu-
tational point of view). Thus, if f 1,… ,f M is a random sample from Q, for some large M, then Tn
can be approximated by

TM,n = 1
M

M∑
m=1

V 2
n (fm). (9)

4 AN ALMOST SURE LIMIT FOR Tn

This section deals with an almost sure limit of Tn under general distributional assumptions.

Theorem 1. Let X1,… ,Xn,… be iid copies of a random element X of H satisfying E||X||2
H
< ∞.

Writing 𝜑X for the characteristic functional of X, and letting 𝜇 and  denote the expectation and the
covariance operator of X, respectively, we have

Tn →a.s. 𝜏Q = ∫
H

|𝜑X (f ) − 𝜑(f ;𝜇,)|2Q(df ). (10)
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412 HENZE and JIMENEZ-GAMERO

Proof. Recall 𝜑n(f ) from (5) and 𝜑(f ;𝜇,) from (2). To stress the dependence on 𝜔∈Ω, we write

Tn(𝜔) = ∫
H

|||𝜑n(f , 𝜔) − 𝜑(f ;Xn(𝜔),n(𝜔))
|||2Q(df ), (11)

where

𝜑n(f , 𝜔) =
1
n

n∑
j=1

exp
(
i⟨f ,Xj(𝜔)⟩) ,

𝜑(f ,Xn(𝜔),n(𝜔)) = exp
(

i⟨Xn(𝜔), f ⟩ − 1
2
⟨n(𝜔)f , f ⟩) ,

and Xn(𝜔) = n−1∑n
j=1 Xj(𝜔). Moreover, n(𝜔) is the sample covariance operator based on

X1(𝜔),… ,Xn(𝜔).
Let D ⊂ H be a countable dense set. By the strong law of large numbers and the fact that

the intersection of a countable collection of sets of probability one has probability one, there is a
measurable subsetΩ0 ofΩ such that P(Ω0) = 1, and for each𝜔∈Ω0 we have, as n→∞, Xn(𝜔) → 𝜇,
n(𝜔) → , n−1∑n

j=1 ||Xj(𝜔)||H → E||X||H, and

lim
n→∞

𝜑n(g, 𝜔) = 𝜑X (g) for each g ∈ D. (12)

Now, fix 𝜔∈Ω0 and f , g ∈ H, and notice that

|𝜑n(f , 𝜔) − 𝜑X (f )| ≤ |𝜑n(f , 𝜔) − 𝜑n(g, 𝜔)| + |𝜑n(g, 𝜔) − 𝜑X (g)| + |𝜑X (g) − 𝜑X (f )|.
If g∈D, (12) and the inequality |eiu − eiv|≤ |u− v|, valid for real numbers u and v, yield

limsup
n→∞

|𝜑n(f , 𝜔) − 𝜑X (f )| ≤ limsup
n→∞

|𝜑n(f , 𝜔) − 𝜑n(g, 𝜔)| + |𝜑X (g) − 𝜑X (f )|
≤ 2 ||f − g||H E||X||H.

Since 2 ||f − g||H E||X||H can be made arbitrarily small because D is dense, the continuity of
the exponential function entails

lim
n→∞
|𝜑n(f , 𝜔) − 𝜑(f ;Xn(𝜔),n(𝜔))|2 = |𝜑X (f ) − 𝜑(f ;𝜇,)|2, (13)

for each f ∈ H if𝜔∈Ω0. Since the integrand in (11) is bounded from above by 4, the result follows
from dominated convergence. ▪

Notice that 𝜏Q is nonnegative, and that 𝜏Q vanishes under H0. Since the function t(⋅) that maps
f into t(f ) = |𝜑X (f ) − 𝜑(f ;𝜇,)|2 is continuous, and since H0 does not hold if and only if t(f )> 0
for some f ∈ H, a sufficient condition for the validity of H0 if 𝜏Q = 0 is

Q(B(f , 𝜀)) > 0 for each f ∈ H and each 𝜀 > 0, (14)

where B(f , 𝜀) = {g ∈ H ∶ ||f − g||H ≤ 𝜀}, because then t(⋅) vanishes on H and hence 𝜑(f ) =
𝜑(f ;𝜇,), f ∈ H.
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HENZE and JIMENEZ-GAMERO 413

Observe that (14) holds if, for example, Q is the measure associated with the random element

Y =
∞∑

j=1
ajZjvj, (15)

where {vj}∞j=1 is an orthonormal basis of H, {aj}∞j=1 is a sequence of positive numbers satisfy-
ing
∑∞

j=1 aj < ∞, and Z1,Z2,… are iid univariate standard normal variates. A specific instance, is
the measure associated with a Wiener process, which in addition can be sampled easily. Clearly,
if aj = 0 for sufficiently large j, then (14) may fail, and thus it is possible to have 𝜏Q = 0 under
alternatives.

Obviously, a reasonable test for Gaussianity should reject H0 for large values of Tn. In this
respect, it is indispensable to have some information on the distribution of Tn under the null
hypothesis, or at least an approximation to this distribution. This will be the topic of the next
section.

5 THE LIMIT NULL DISTRIBUTION OF Tn

In this section we assume that H0 holds, that is, X

= N(𝜇,) for some𝜇 ∈ H and some  ∈ +

tr(H).
Since the distribution of Tn defined in (4) does not depend on 𝜇, we will make the tacit stand-
ing assumption 𝜇= 0 in what follows. Let L2

Q denote the Hilbert space of (equivalence classes
of) measurable functions Υ ∶ H → R satisfying ∫

H
Υ(f )2Q(df ) < ∞. The scalar product and the

resulting norm in L2
Q will be denoted by ⟨Υ,Φ⟩Q and ||Υ||Q =

√⟨Υ,Υ⟩Q, respectively. Notice that
L2

Q is separable since H is separable.
The main result of this section is as follows.

Theorem 2. Let X1,… ,Xn,… be iid copies of a Gaussian random element X of H with covariance
operator . Assume that ∫

H
||f ||4

H
Q(df ) < ∞. Then nTn


→ ||||2Q, where  is a centred Gaussian

random element of L2
Q having covariance kernel

E[(f )(g)] = exp
(
−1

2
(𝜎2

f + 𝜎2
g )
){

exp(𝜎f ,g) − 1 − 𝜎f ,g −
1
2
𝜎2

f ,g

}
, (16)

where 𝜎f ,g = ⟨f , g⟩ and 𝜎2
f = 𝜎f ,f , f , g ∈ H.

Proof. From (7), we have nTn = ||Vn||2Q, where V n is given in (8). The idea is to approximate the
random element V n of L2

Q by a random element V n,0 such that ||Vn − Vn,0||Q = oP(1), and V n,0
takes the form

Vn,0(f ) =
1√
n

n∑
j=1

Ψ(f ,Xj), (17)

where Ψ ∶ H × H → R is some measurable function satisfying EΨ(f ,X) = 0 for each f ∈ H and

E||Ψ(⋅,X1)||2Q = ∫
H

E
[
Ψ2(f ,X1)

]
Q(df ) < ∞. (18)
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414 HENZE and JIMENEZ-GAMERO

In the sequel, the notation Wn = oP(1) always refers to a random element of L2
Q such that||W n||Q tends to zero in probability as n→∞. Starting with (8), the addition theorems for the cosine

and the sine function yield

cos⟨f ,Xj − Xn⟩ = cos⟨f ,Xj⟩ + ⟨f ,Xn⟩ sin⟨f ,Xj⟩ + O
(⟨f ,Xn⟩2) , (19)

sin⟨f ,Xj − Xn⟩ = sin⟨f ,Xj⟩ − ⟨f ,Xn⟩ cos⟨f ,Xj⟩ + O
(⟨f ,Xn⟩2) . (20)

Moreover, we have

exp
(
−1

2
⟨nf , f ⟩) = exp

(
−1

2
𝜎2

f

)(
1 − 1

2
⟨(n − )f , f ⟩) + oP (⟨(n − )f , f ⟩) , (21)

and it follows that

Vn(f ) =
1√
n

n∑
j=1

{
cos⟨f ,Xj⟩ + sin⟨f ,Xj⟩ − exp

(
−1

2
𝜎2

f

)}
+ ⟨f ,Xn⟩ 1√

n

n∑
j=1

{
sin⟨f ,Xj⟩ − cos⟨f ,Xj⟩} (22)

+ 1
2
⟨√n(n − )f , f ⟩ exp

(
−1

2
𝜎2

f

)
+ oP(1). (23)

Now, the term figuring in (22) equals −n−1∕2∑n
j=1 exp

(
− 1

2
𝜎2

f

) ⟨f ,Xj⟩ + oP(1). As for the term
figuring in (23), we have

⟨√n(n − )f , f ⟩ = 1√
n

n∑
j=1

(⟨Xj, f ⟩2 − 𝜎2
f

)
+
√

n⟨Xn, f ⟩2. (24)

Upon combining we obtain (17), where

Ψ(f , x) = cos⟨f , x⟩ + sin⟨f , x⟩ − exp
(
−1

2
𝜎2

f

){
1 + ⟨f , x⟩ − 1

2

(⟨f , x⟩2 − 𝜎2
f

)}
, (25)

and

||Vn − Vn,0||Q = oP(1). (26)

From the central limit theorem in separable Hilbert spaces, see Theorem 2.7 in Bosq (2000),
there is a centered Gaussian random element  of L2

Q with covariance kernel E[(f )(g)] =
E[Ψ(f ,X)Ψ(g,X)], such that Vn,0


→ in L2

Q. From Sluzki's lemma, we thus have Vn

→ in L2

Q, and
the assertion follows from the continuous mapping theorem. Using the fact that the joint distri-
bution of ⟨f ,X⟩ and ⟨g,X⟩ is the joint distribution of 𝜎f N1 and 𝜎g(𝜌N1 +

√
1 − 𝜌2N2), where N1,N2

are independent standard normal random variables and 𝜌= 𝜎f ,g/(𝜎f𝜎g), one easily obtains

E[⟨f ,X⟩ sin⟨g,X⟩] = 𝜎f ,g exp
(
−1

2
𝜎2

g

)
,
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HENZE and JIMENEZ-GAMERO 415

E[cos⟨f ,X⟩⟨g,X⟩2] = (𝜎2
g − 𝜎2

f ,g) exp
(
−1

2
𝜎2

f

)
,

E[⟨f ,X⟩2⟨g,X⟩2] = 𝜎2
f 𝜎

2
g + 2𝜎2

f ,g,

and straightforward algebra shows that E[Ψ(f ,X)Ψ(g,X)] = E[(f )(g)]. Notice that the condi-
tion ∫

H
||f ||4

H
Q(df ) < ∞ implies the validity of (18). ▪

Remark 1. Notice that the kernel given in (16) is in accordance with the kernel figuring in display
(2.3) of Henze and Wagner (1997), if one replaces 𝜎2

f with ||s||2, 𝜎2
g with ||t||2 and 𝜎f ,g with s⊤t.

Since the asymptotic null distribution of nTn depends on the unknown covariance operator
, it cannot be used to approximate the actual null distribution of nTn. To this end, we consider
a parametric bootstrap estimator, defined as follows: Given X1,… ,Xn, let X∗

1 ,… ,X∗
n be iid copies

of X∗ 
= N(0,n). Let T∗

n be the bootstrap version of Tn, which is obtained by replacing X1,… ,Xn
with X∗

1 ,… ,X∗
n in the expression of Tn given in (6). Let P∗ denote the conditional distribution,

given X1,… ,Xn, and let P0 denote the null distribution. The bootstrap estimates P0(nTn ≤ t) by
means of P∗(nT∗

n ≤ t). The next result gives the limit law of the bootstrap distribution of nTn.

Theorem 3. Let X1,… ,Xn,… be iid copies of a random element X of H with covariance operator
. Assume that ∫

H
||f ||4

H
Q(df ) <∞. Then nT∗

n

→ ||||2Q PX -almost surely, where  is the centered

Gaussian random element given in the statement of Theorem 2.

Proof. Let V∗
n be the bootstrap version of V n in (8), which is obtained by replacing X1,… ,Xn, Xn

and n with X∗
1 ,… ,X∗

n , X
∗
n and ∗

n , respectively, where X
∗
n is the sample mean and ∗

n denotes the
sample covariance operator associated with the bootstrap sample X∗

1 ,… ,X∗
n . Then nT∗

n = ||V∗
n ||2Q.

Proceeding as in the proof of Theorem 2, one obtains ||V∗
n − V∗

n,0||Q = oP∗
(1) PX -almost surely,

where

V∗
n,0(f ) =

1√
n

n∑
j=1

Ψ̂n(f ,X∗
j ),

Ψ̂n(f , x) = cos⟨f , x⟩ + sin⟨f , x⟩ − exp
(
−1

2
𝜎̂2

n,f

){
1 + ⟨f , x⟩ − 1

2

(⟨f , x⟩2 − 𝜎̂2
n,f

)}
,

and 𝜎̂2
n,f = ⟨nf , f ⟩. It thus only remains to show that V∗

n,0

→ in L2

Q PX -a.s. With this aim, we
apply Theorem 1.1 in Kundu, Majumdar, and Mukherjee (2000). To verify the conditions (i)–(iii)
of that theorem, let ∗

n,V and c∗n,V be the covariance operator and the covariance kernel of V∗
n,0,

respectively. Likewise, let  and c denote the covariance operator and the covariance kernel
of  , respectively. Notice that c∗n,V has the same expression as c in (16), with 𝜎2

f , 𝜎2
g and 𝜎f ,g

replaced by 𝜎̂2
n,f , 𝜎̂2

n,g and 𝜎̂n,f ,g = ⟨nf , g⟩, respectively. Notice also that c∗n,V (f , g) →
a.s. c (f , g), for

each f , g ∈ H, and that c∗V (f , g) is a bounded function, that is, for some finite constant M we have|c∗V (f , g)| ≤ M for each f ,g. Let {ek} k≥1 be an orthonormal basis of L2
Q. By dominated convergence,

it follows that

lim
n→∞
⟨∗

n,V ek, e𝓁⟩Q = lim
n→∞∫

H

c∗n,V (f , g)ek(f )e𝓁(g) Q(df )Q(dg)

= ∫
H

c (f , g)ek(f )e𝓁(g) Q(df )Q(dg) = ⟨ek, e𝓁⟩Q P
X − a.s.

 14679469, 2021, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12470 by U

niversidad D
e Sevilla, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



416 HENZE and JIMENEZ-GAMERO

Setting ak,𝓁 = ⟨ek, e𝓁⟩Q in the notation of Theorem 1.1 of Kundu et al. (2000), this proves that
condition (i) holds. Let E∗ denote the conditional expectation, given X1,… ,Xn. To verify condition
(ii) of Theorem 1.1 of Kundu et al. (2000), we use Beppo Levi's theorem, Parseval's relation and
dominated convergence and obtain

lim
n→∞

∑
k≥1
⟨∗

n,V ek, ek⟩Q = lim
n→∞

∑
k≥1

E∗⟨V∗
n,0, ek⟩2Q = lim

n→∞
E∗||V∗

n,0||2Q
= ∫

H

lim
n→∞

c∗n,V (f , f ) Q(df ) = ∫
H

c (f , f ) Q(df ) = E||||2Q <∞.

PX -almost surely. Finally, we must prove that Ln(𝜀,Θ)→0 for each 𝜀> 0 and each Θ ∈ L2
Q,

where

Ln(𝜀,Θ) =
n∑

j=1
E∗

[⟨ 1√
n
Ψ̂n(⋅,X∗

j ),Θ⟩2Q1

{||||||⟨
1√
n
Ψ̂n(⋅,X∗

j ),Θ⟩Q|||||| > 𝜀
}]

= E∗

[⟨Ψ̂n(⋅,X∗
1 ),Θ⟩2Q1

{|||⟨Ψ̂n(⋅,X∗
1 ),Θ⟩Q||| > 𝜀√n

}]
,

and 1{⋅} stands for the indicator function. In the sequel, let Θ≠ 0 without loss of general-
ity. Using the inequality t exp(−t∕2) ≤ 2∕e, t≥0, it follows that |Ψ̂n(f , x)| ≤ 4 + ||f ||H||x||H +
1
2
||f ||2

H
||x||2

H
and thus Ψ̂

2
n(f , x) ≤ ∑4

j=0 aj||f ||j
H
||x||j

H
for each f , x ∈ H, where a0,… ,a4

are positive constants. By the Cauchy–Schwarz inequality, we have ⟨Ψ̂n(⋅,X∗
1 ),Θ⟩2Q ≤||Ψ̂n(⋅,X∗

1 )||2Q||Θ||2Q. Moreover, |||⟨Ψ̂n(⋅,X∗
1 ),Θ⟩Q||| > 𝜀√n implies ||Ψ̂n(⋅,X∗

1 )||2Q > 𝜀2n∕||Θ||2Q and
thus
∑4

j=0 aj||X∗
1 ||jH∫

H
||f ||j

H
Q(df ) > 𝜀2n∕||Θ||2Q. As a consequence, we have

1
{|||⟨Ψ̂n(⋅,X∗

1 ),Θ⟩Q||| > 𝜀√n
} ≤

4∑
k=0

1

{||X∗
1 ||kH >

n𝜀2

5akbk||Θ||2Q
}
,

where bk = ∫
H
||f ||k

H
Q(df ), k∈ {0,… ,4}, and thus Ln(𝜀,Θ)→0 will follow if

lim
n→∞

E∗

[||X∗
1 ||jH1

{||X∗
1 ||kH > cn

}]
= 0, j, k ∈ {0,… , 4}, (27)

where c is a positive constant. Now, (27) holds trivially if k= 0, and if k> 0 we have to show
that E∗

[||X∗
1 ||jH1

{||X∗
1 ||H > (cn)1∕k}] tends to zero PX -almost surely for each j∈ {0,… ,4}. The

latter convergence follows since X∗
1


= N(0,n) and n →  PX -almost surely. Hence, condition

(iii) of Theorem 1.1 of Kundu et al. (2000) holds and thus Vn,0

→ in L2

Q PX -almost surely. Now,
reasoning as in the proof of Theorem 2, the result follows. ▪

Theorem 3 (which holds regardless of whether H0 is true or not) states that the conditional
distribution of nT∗

n given X1,… ,Xn and the distribution of nTn when the sample is drawn from a
Gaussian population with covariance operator , are close to each other for large n. In particular,
under the null hypothesis H0, the conditional distribution of nT∗

n given the data is close to the null
distribution of nTn. More precisely, letting nTn,obs =nTn(X1,… ,Xn) denote the observed value of
the test statistic and, for given 𝛼 ∈ (0,1), writing t∗n,𝛼 for the upper 𝛼-percentile of the bootstrap
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HENZE and JIMENEZ-GAMERO 417

distribution of nTn, the test function

Ψ∗
n =

{
1, if nTn,obs ≥ t∗n,𝛼,
0, otherwise,

or, equivalently, the test that rejects H0 when P∗{nT∗
n ≥ nTn,obs} ≤ 𝛼, is asymptotically correct in

the sense that when H0 is true, we have limn→∞P(Ψ∗
n = 1) = 𝛼.

An immediate consequence of Theorems 1 and 3 is that, if Q satisfies (14), then the test Ψ∗
n is

consistent, that is, it is able to detect any fixed alternative in the sense that limn→∞P(Ψ∗
n = 1) = 1

whenever X is not Gaussian.
In practice, the bootstrap distribution of nTn cannot be calculated exactly. It can be approxi-

mated, however, as follows:

1. Generate a bootstrap sample X∗
1 ,… ,X∗

n , where X∗
1 ,… ,X∗

n are iid from N(0,n).
2. Calculate the sample mean X

∗
n and the sample covariance operator ∗

n of X∗
1 ,… ,X∗

n , and com-
pute nT∗

n = nTn(X∗
1 ,… ,X∗

n ) as given in (6), with Xn replaced by X
∗
n and n replaced by ∗

n ,
respectively.

3. Repeat steps 1–2 B times (say), thus obtaining nT∗1
n ,… ,nT∗B

n . Approximate the upper
𝛼-percentile of the null distribution of nTn by the upper 𝛼-percentile of the empirical distribu-
tion of nT∗1

n ,… ,nT∗B
n .

6 THE LIMIT DISTRIBUTION OF Tn UNDER
ALTERNATIVES

In this section, we derive the limit distribution of Tn both under fixed and contiguous alternatives
to Gaussianity. Notice that, by Theorem 1, we have Tn →a.s. 𝜏Q, where 𝜏Q is given in (10). We first
show that, under slightly more restrictive conditions on the underlying distribution,

√
n(Tn − 𝜏Q)

has a centred limit normal distribution. To this end, we first present an alternative representation
of 𝜏Q. Recall the standing assumption that Q is symmetric. We first notice that 𝜏Q does not depend
on the expectation𝜇 = E(X) of the underlying distribution, since𝜑X (f ) = 𝜑X−𝜇(f ) exp(i⟨f , 𝜇⟩) and
thus

|𝜑X (t) − 𝜑(f , 𝜇,)|2 =
||||𝜑X−𝜇(f ) − exp

(
−1

2
𝜎2

f

)||||
2
,

where X −𝜇 is centred. Since the covariance operator is invariant with respect to translations, the
result follows.

Proposition 1. We have

𝜏Q = ||z||2Q = ∫
H

z2(f ) Q(df ),

where

z(f ) = E[cos⟨f ,X⟩] + E[sin⟨f ,X⟩] − exp
(
−1

2
𝜎2

f

)
, f ∈ H. (28)
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418 HENZE and JIMENEZ-GAMERO

Proof. In view of the discussion above, we assume w.l.o.g. 𝜇= 0. Using Fubini's theorem and the
symmetry of Q, (10) entails 𝜏Q = 𝜏

(1)
Q − 𝜏 (2)Q + exp(−𝜎2

f ), where

𝜏
(1)
Q = ∫

H

(
∫Ω

ei⟨f ,X(𝜔)⟩
P(d𝜔) ⋅ ∫Ω

e−i⟨f ,X(𝜔′)⟩
P(d𝜔′)

)
Q(df )

= ∫Ω∫Ω

(
∫

H

ei⟨f ,X(𝜔)−X(𝜔′)⟩Q(df )
)

P(d𝜔)P(d𝜔′)

= ∫Ω∫Ω

(
∫

H

cos⟨f ,X(𝜔) − X(𝜔′)⟩Q(df )
)

P(d𝜔)P(d𝜔′), (29)

and

𝜏
(2)
Q = ∫

H

(
E
[
e−i⟨f ,X⟩] e−𝜎

2
f ∕2 + E

[
ei⟨f ,X⟩] e−𝜎

2
f ∕2
)

Q(df )

= 2∫
H

E[cos⟨f ,X⟩]e−𝜎2
f ∕2 Q(df ).

Using cos(𝛼 − 𝛽) = cos 𝛼 cos 𝛽 + sin 𝛼 sin 𝛽 and again Fubini's theorem, the expression given
in (29) equals

∫
H

(
(E[cos⟨f ,X⟩])2 + (E[sin⟨f ,X⟩])2)Q(df ).

Since the symmetry of Q implies ∫
H

E[sin⟨f ,X⟩]e−𝜎2
f ∕2Q(df ) = 0, the assertion follows. ▪

We now present the rationale why the limit distribution of
√

n(Tn − 𝜏Q) under fixed alterna-
tives to Gaussianity is a normal distribution. The main idea is borrowed from Baringhaus, Ebner,
and Henze (2017), who consider weighted L2-statistics in a more specialized setting. Putting
V ′

n(⋅) = Vn(⋅)∕
√

n, where V n(⋅) is given in (8), display (7) and Proposition 1 yield

√
n
(

Tn − 𝜏Q
)
=
√

n
(||V ′

n||2Q − ||z||2Q) =√n⟨V ′
n − z,V ′

n + z⟩Q
=
√

n⟨V ′
n − z, 2z + V ′

n − z⟩Q
= 2⟨√n(V ′

n − z), z⟩Q + 1√
n
||√n(V ′

n − z)||2Q.
Hence, if we can prove the convergence in distribution of

√
n(V ′

n − z) in L2
Q to a centred

Gaussian element  ′ of L2
Q, then the continuous mapping theorem and Slutsky's lemma yield√

n(Tn − 𝜏Q)

→ 2⟨ ′, z⟩Q, where the distribution of 2⟨ ′, z⟩Q is centered normal with variance

4E[⟨ ′, z⟩2Q].
Theorem 4. Assume that ∫

H
||f ||4

H
Q(df ) < ∞, and let X1,… ,Xn,… be iid copies of a random ele-

ment X satisfying E||X||4
H
<∞. Let V ′

n(⋅) = Vn(⋅)∕
√

n, where V n(⋅) is given in (8). With z(⋅) defined
in (28), there is a centred Gaussian random element  ′ of L2

Q with covariance kernel

K′(f , g) = E[𝜉(f ,X)𝜉(g,X)], f , g ∈ H,

 14679469, 2021, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjos.12470 by U

niversidad D
e Sevilla, W

iley O
nline L

ibrary on [26/01/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



HENZE and JIMENEZ-GAMERO 419

where

𝜉(f , x) = cos⟨f , x⟩ − E cos⟨f ,X⟩ + sin⟨f , x⟩ − E sin⟨f ,X⟩
+ ⟨f , x⟩ E[sin⟨f ,X⟩ − cos⟨f ,X⟩] + 1

2
e−𝜎

2
f ∕2
(⟨f , x⟩2 − 𝜎2

f

)
, x, f ∈ H,

such that
√

n
(

V ′
n − z
) 
→ ′.

Proof. Notice that
√

n
(

V ′
n(f ) − z(f )

)
= n−1∕2∑n

j=1
(

Rn,j(f ) + Sn,j(f ) − Tn.j(f )
)
, where

Rn,j(f ) = cos⟨f ,Xj − Xn⟩ − E[cos⟨f ,X⟩],
Sn,j(f ) = sin⟨f ,Xj − Xn⟩ − E[sin⟨f ,X⟩],
Tn,j(f ) = exp

(
−1

2
⟨nf , f ⟩) − exp

(
−1

2
⟨f , f ⟩) .

Using (19), (20), (21), and (24), straightforward calculations yield

√
n
(

V ′
n(f ) − z(f )

)
= 1√

n

n∑
j=1
𝜉(f ,Xj) + oP(1).

Since E[𝜉(f ,X)] = 0, f ∈ H, and since E||𝜉(⋅,X)||2Q < ∞ due to the conditions E||X||4
H
<∞ and

∫
H
||f ||4

H
Q(df ) < ∞, the central limit theorem in Hilbert spaces and Slutsky's lemma yield the

assertion. ▪

Corollary 1. Under the conditions of Theorem 4 we have

√
n
(

Tn − 𝜏Q
) 
→N(0, 𝜎2),

where

𝜎2 = 4∫
H
∫

H

K ′ (f , g)z(f )z(g) Q(df )Q(dg).

Proof. In view of the reasoning preceding Theorem 4, the proof follows from Fubini's theorem,
since

𝜎2 = 4 E[⟨ ′
, z⟩2Q]

= 4 E

[(
∫

H

 ′ (f )z(f ) Q(df )
)(

∫
H

 ′ (g)z(g) Q(dg)
)]

= 4 ∫
H
∫

H

E[ ′ (f ) ′ (g)] z(f )z(g) Q(df )Q(dg).
▪

We now show that the test for Gaussianity based on Tn is able to detect contiguous alternatives
that approach H0 at the rate n−1/2. To this end, let P = N(0,) a distribution from H0. Suppose
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420 HENZE and JIMENEZ-GAMERO

that, for each n, Xn,1,… ,Xn,n are iid random elements of H with distribution Pn, where

dPn

dP
= 1 +

g√
n
,

and g ∶ H → R is a measurable bounded function satisfying ∫
H

g dP = 0.
Notice that the boundedness of g implies dPn/dP≥ 0 if n is large enough.

Theorem 5. Under these assumptions, we have

nTn

→ || + c||2Q,

where  is the Gaussian random element figuring in Theorem 2, and

c(f ) = ∫
H

Ψ(f , x)g(x) P(dx), f ∈ H, (30)

with Ψ(f ,x) given in (25).

Proof. We write Q(n) and P(n) for the n-fold product measures of Pn and P, respectively, and we put
Ln:= dQ(n)/dP(n). Since the function g is bounded, a Taylor expansion of the function t → log(1 + t)
yields

log Ln(Xn,1,… ,Xn,n) =
n∑

j=1
log

(
1 + 1√

n
g(Xn,j)

)

= 1√
n

n∑
j=1

g(Xn,j) −
1

2n

n∑
j=1

g2(Xn,j) + oP(n) (1).

By the Lindeberg–Feller central limit theorem and the law of large numbers, it follows
that log Ln


→N(−𝜏2∕2, 𝜏2) as n→∞ under P(n), where 𝜏2 = ∫

H
g2 dP. Hence, by Le Cam's first

lemma, see p. 297 of Li and Babu (2019), the sequence Q(n) is contiguous to P(n). Now, straight-
forward calculations yield limn→∞Cov(Vn,0(f ), log Ln) = c(f ), where c(f ) is given in (30), and
V n,0(f ) is defined in (17). Moreover, for fixed k≥ 1 and f1,… , fk ∈ H, the joint limiting distribu-
tion of V n,0(f 1),… ,V n,0(f k) and log Ln under P(n) is the (k+ 1)-variate normal distribution with
expectation vector (0,… ,0,− 𝜏2/2)⊤ and covariance matrix(

Σ c
c⊤ 𝜏2

)
.

Here, c= (c(f 1),… ,c(f k))⊤ and Σ has entries E[(fi)(fj))], 1≤ i,j≤ k, given in (16). From
LeCam's third lemma, see p. 300 of Li and Babu (2019), we thus obtain that, under Q(n), the
finite-dimensional distributions of V n,0 converge to the finite-dimensional distributions of the
shifted Gaussian random element  + c. Since tightness of V n,0 under P(n) and the contiguity of

Q(n) to P(n) entail tightness of V n,0 under Q(n), we have Vn,0

→ + c under Q(n). In view of (26)

(with P now being P(n)) and the fact that also ||Vn − Vn,0||Q = oQ(n) (1) (because of contiguity), the
assertion follows from the continuous mapping theorem. ▪
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HENZE and JIMENEZ-GAMERO 421

T A B L E 1 Description of alternatives

Alternative Half-normal Standard normal
Alt1 A0, C1,… ,C5, S1,… ,S5

Alt2 A0, C1,C2,C3, S1,S2,S3 C4,C5, S4,S5

Alt3 A0, C1, S1 C2,… ,C5, S2,… ,S5

Remark 2. All our results have been stated under the tacit assumption that realizations of
X1,… ,Xn, that is, complete trajectories of functions, are observable. In practice, these functions
are observed at a finite grid of points, and the curves X1,… ,Xn are recovered by using nonparamet-
ric techniques, such as local linear regression. The statistics are then calculated from X̂1,… , X̂n,
which stand for the resulting curve estimators. Under suitable assumptions, all previous results
remain valid when the test statistic is calculated from X̂1,… , X̂n, see, for example, Jiang,
Hušková, Meintanis, and Zhu (2019), in particular the comments made after the proof of their
theorem 2.

7 NUMERICAL RESULTS

In this section, we present the results of a simulation study that has been conducted in order to
study the finite-sample performance of the test for Gaussianity based on Tn, and to compare the
power of this novel test with respect to competing procedures. All computations have been carried
out using programs written in the R language, R Core Team (2017), with the help of the package
fda.usc, Febrero-Bande and Oviedo-de-la-Fuente (2012).

We first studied the performance of the bootstrap approximation to the null distribution of Tn.
With this aim, the following experiment was repeated 1,000 times: Independently of each other,
we generated n= 50 realizations of a standard Wiener process on [0,1] (denoted by W in Table 2),
and we calculated TM,n in (9), where M = 1,000 and Q is the Wiener measure on H. The associated
p-value was then obtained by generating 200 bootstrap samples. This setting has been repeated
for an Ornstein–Uhlenbeck process (denoted by OU in Table 2), and simulations have also been
run for both scenarios with the sample size n= 100. The results for this choice of Q are labeled
Tn(W) in the tables. Suggested by an anonymous reviewer, we also considered the measure Q
associated with Y =

∑13
j=1 NjSPj. Here, N1,… ,N13 are iid univariate standard normal variables,

and SP1,… ,SP13 are the 13 cubic B-splines on [0,1], with interior points 0.1,0.2,… ,0.9. See figure
3.5 in Ramsay and Silverman (2005) for a graphical representation of these B-splines. The results
for this choice of Q are labeled Tn(BS) in the tables.

To study the power, we generated samples from

Z(t) = A0 +
√

2
5∑

j=1
Cj cos(2𝜋jt) +

√
2

5∑
j=1

Sj sin(2𝜋jt), (31)

where A0, C1,… ,C5 and S1,… ,S5 are independent random variables, the distributions of which
are shown in Table 1.

We also considered the alternatives Alt1', Alt2', and Alt3'. These are the same as the
alternatives given in Table 1, with the exception that the half normal distribution is through-
out replaced with an equal mixture of a half normal distribution and a standard normal
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422 HENZE and JIMENEZ-GAMERO

T A B L E 2 Empirical levels and powers for nominal levels 𝛼 = 0.05, 0.10

Tn(W) Tn(BS) JB RP

3 5 10 40
𝛼 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10

n= 50, empirical level

W 0.054 0.106 0.046 0.090 0.041 0.064 0.067 0.114 0.059 0.117 0.067 0.127 0.074 0.130

OU 0.044 0.109 0.048 0.090 0.037 0.055 0.063 0.107 0.069 0.107 0.069 0.124 0.070 0.115

n= 50, empirical power

Alt1 0.605 0.742 0.517 0.674 0.384 0.452 0.372 0.493 0.388 0.532 0.432 0.562 0.469 0.600

Alt2 0.502 0.667 0.435 0.626 0.154 0.203 0.355 0.459 0.365 0.492 0.374 0.513 0.416 0.557

Alt3 0.518 0.692 0.223 0.334 0.067 0.095 0.315 0.432 0.307 0.419 0.317 0.452 0.365 0.479

Alt1' 0.161 0.248 0.517 0.700 0.426 0.498 0.174 0.266 0.172 0.291 0.249 0.363 0.269 0.382

Alt2' 0.163 0.250 0.462 0.617 0.169 0.217 0.145 0.240 0.155 0.240 0.149 0.245 0.200 0.303

Alt3' 0.170 0.272 0.205 0.327 0.083 0.115 0.152 0.234 0.135 0.223 0.134 0.224 0.162 0.245

Alt1" 0.426 0.538 0.565 0.686 0.612 0.662 0.266 0.376 0.295 0.405 0.303 0.421 0.307 0.420

Alt2" 0.471 0.565 0.531 0.665 0.568 0.634 0.283 0.395 0.326 0.429 0.336 0.453 0.329 0.455

Alt3" 0.468 0.570 0.517 0.649 0.472 0.516 0.319 0.416 0.348 0.475 0.350 0.479 0.349 0.490

n= 100, empirical level

W 0.048 0.103 0.049 0.096 0.053 0.072 0.059 0.105 0.054 0.104 0.054 0.102 0.049 0.094

OU 0.050 0.095 0.048 0.096 0.051 0.077 0.058 0.097 0.063 0.114 0.057 0.107 0.047 0.095

n= 100, empirical power

Alt1 0.932 0.967 0.934 0.981 0.766 0.835 0.675 0.781 0.725 0.829 0.759 0.872 0.811 0.888

Alt2 0.910 0.956 0.876 0.954 0.468 0.538 0.638 0.734 0.658 0.776 0.695 0.828 0.747 0.851

Alt3 0.888 0.938 0.459 0.615 0.102 0.128 0.568 0.678 0.569 0.701 0.603 0.719 0.714 0.812

Alt1' 0.210 0.325 0.889 0.948 0.765 0.824 0.256 0.384 0.274 0.431 0.434 0.576 0.493 0.648

Alt2' 0.244 0.369 0.848 0.917 0.306 0.391 0.249 0.351 0.233 0.363 0.266 0.382 0.391 0.522

Alt3' 0.284 0.413 0.423 0.573 0.150 0.200 0.259 0.380 0.256 0.362 0.239 0.359 0.292 0.414

Alt1" 0.705 0.787 0.792 0.865 0.885 0.909 0.461 0.568 0.485 0.619 0.504 0.638 0.507 0.640

Alt2" 0.702 0.797 0.759 0.852 0.883 0.915 0.457 0.600 0.498 0.656 0.522 0.655 0.521 0.637

Alt3" 0.690 0.798 0.741 0.830 0.829 0.850 0.455 0.575 0.501 0.627 0.533 0.664 0.543 0.666

distribution. Likewise, the alternatives denoted by Alt1", Alt2", and Alt3" originate from through-
out replacing the half normal distribution with a Laplace distribution (two-sided exponential
distribution).

As competitors to the novel test for Gaussianity based on Tn, we considered the Jarque–Bera
type test in Górecki et al. (2018) for iid data (denoted by JB in the tables), and the random pro-
jection test of Cuesta-Albertos et al. (2007) (denoted by RP) with 3, 5, 10, and 40 projections.
Table 2 reports both the observed empirical level and the empirical power for the nominal levels
of significance 𝛼 = .05 and 𝛼 = .10.
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HENZE and JIMENEZ-GAMERO 423
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F I G U R E 1 The Berkeley growth data

T A B L E 3 p-values for testing Gaussianity for the Berkeley Growth Data

RP

Tn(W) Tn(BS) JB 3 5 10 40
Boys 0.323 0.078 0.301 0.126 0.167 0.235 0.153

Girls 0.144 0.064 0.433 0.107 0.138 0.153 0.248

From Table 2, we see that the empirical levels of the tests Tn(W) and Tn(BS) are quite close to
the nominal values, even for the moderate sample size n= 50. As for the power, it is not surprising
that there is no test having highest power against all alternatives considered. For the alternatives
Alt1, Alt2, and Alt3, the test Tn(W) outperforms its competitors; for the alternatives Alt1', Alt2',
and Alt3', the test Tn(BS) exhibits the highest power; while for the alternatives Alt1" and Alt2",
the test JB presents the larger power for n= 100. Notice that all alternatives considered belong to
the same basic model (31), in which the distribution of some coefficients is switched. The power
of the Tn-tests and of the random projection test change softly as the coefficients are switched. In
most cases, however, the power of the JB test drops as the alternative becomes closer to H0, that
is, as the number of coefficients with normal distribution increases.

We close this section with a real data set application. As explained in Section 1, some infer-
ential procedures, designed for functional data, assume Gaussianity. An example is the test in
Zhang et al. (2010) for the equality of the mean of two functional populations. Zhang et al. (2010)
applied their test to the Berkeley Growth Data set. This dataset contains the heights of 39 boys
and 54 girls recorded at 31 not equally spaced ages from Year 1 to Year 18. The dataset is available
from the R package fda. The method in that paper is designed for Gaussian random func-
tions, but the assumption of Gaussianity had not been checked for either sample. We applied
all tests in Table 2 to each of the two datasets. First of all, proceeding as in Zhang et al. (2010),
the growth curves have been reconstructed by using local polynomial smoothing. Each of the
individual curves has been smoothed separately, using the same bandwidth h= 0.3674. Figure 1
shows the smoothed growth curves. Table 3 reports the p-values obtained. All tests but Tn(BS)
agree in not rejecting the assumption of Gaussianity for both populations, the boys and the
girls.
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424 HENZE and JIMENEZ-GAMERO

8 SOME COMMENTS ON THE CHOICE OF Q

This section gathers some recommendations for the choice of Q spread along the paper, and it
discusses some special choices of Q not considered so far.

Since the calculation of the integral in the definition of Tn involves generation of random
samples from Y having distribution Q and the p-values are calculated using a bootstrap approx-
imation, which requires the recalculation of the test statistic for a large number of bootstrap
samples, it is indispensable that Q can be sampled easily. A further criterion for the choice of Q is
consistency of the resulting test. In this regard, we gave recommendations at the end of Section 4.

If the alternative were known, one could in principle choose Q to maximize the power, but
this situation is unrealistic. Therefore, in practice, an optimal choice of Q (in the sense of yielding
the highest power) in unfeasible.

All results have been derived under the assumption that the measure Q is fixed. We now briefly
study the case that Q is allowed to vary with n, which is mainly motivated by the recommendation
for Q as the measure associated with the random element Y figuring in (15). In practice, random
samples from Y are obtained by truncating the infinite sum up to Mn terms, for some finite Mn.
Thus we are effectively sampling from a measure Qn that approximates Q.

Next we show that, under some weak assumptions, the hitherto obtained results still hold
if the measure Q is replaced with a sequence Qn, n≥ 1, of nonrandom measures that converges
weakly to some measure Q0, for short: Qn →w Q0. In order to emphasize the dependence of the
test statistic on the sample size and on Qn, we use the notation

Tn(Qn) = Tn(X1,… ,Xn;Qn) = ∫
H

|||𝜑n(f ) − 𝜑(f ;Xn,n)
|||2Qn(df ),

We confine ourselves to state Qn-analogues of Theorems 1 and 2. Mutatis mutandis, one can
obtain Qn-analogues of further results obtained so far.

Theorem 6. Under the assumptions of Theorem 1 and Qn →w Q0, we have

Tn(Qn) →a.s. 𝜏Q0 = ∫
H

|𝜑X (f ) − 𝜑(f ;𝜇,)|2Q0(df ).

Proof. Let Ω0 ⊂Ω be as in the proof of Theorem 1 and assume without loss of generality that
n−1∑n

j=1 ||Xj(𝜔)||2
H
→ E||X||2

H
for each 𝜔∈Ω0. Putting

hn(f , 𝜔) = |𝜑n(f , 𝜔) − 𝜑(f ;Xn(𝜔),n(𝜔))|2, h(f , 𝜔) = |𝜑X (f ) − 𝜑(f ;𝜇,)|2,
𝜔∈Ω, f ∈ H, (13) shows that hn(f ,𝜔)→h(f ,𝜔) for each 𝜔∈Ω0 and each f ∈ H. Now, fix 𝜀> 0,
𝜔∈Ω0 and f ∈ H. Since the integrand in the expression of Tn(Qn) is bounded from above by 4,
the result would follow from display (2.12) in Bosq (2000) if we can find a 𝛿 = 𝛿(f ,𝜀,𝜔)> 0 such
that, for each g ∈ H satisfying ||f − g||H ≤ 𝛿, we have |hn(g,𝜔)− h(f ,𝜔)|<𝜀 for sufficiently large n.
Now, using the inequalities ‖z|2 − |w|2|≤ 4|z−w| (z,w ∈ C, |z|≤ 1,|w|≤ 1) and |eiu − eiv|≤ |u− v|
(u, v ∈ R), the Cauchy–Schwarz-inequality and the fact that ⟨n(𝜔)h, h⟩ = n−1∑n

j=1 ⟨Xj(𝜔), h⟩2 −⟨Xn(𝜔), h⟩2, h ∈ H, straightforward calculations yield

|hn(f , 𝜔) − hn(g, 𝜔)| ≤ 4||f − g||H(2M(1)
n (𝜔) + ||f + g||H [M(2)

n (𝜔) +
(

M(1)
n (𝜔)

)2
])

,
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HENZE and JIMENEZ-GAMERO 425

where M(𝓁)
n (𝜔) = n−1∑n

j=1 ||Xj(𝜔)||𝓁
H

, 𝓁 = 1,2. Since limn→∞M(𝓁)
n (𝜔) = E||X||𝓁 , 𝓁 = 1,2, the

right-hand side of the above inequality converges to 0 if ||f − g||→0. The assertion now follows
from (13) and the triangle inequality. ▪

The next result gives the asymptotic null distribution of Tn(Qn).

Theorem 7. Let X1,… ,Xn,… be iid copies of a Gaussian random element X of H with covariance
operator . Assume that ∫

H
||f ||4

H
Qn(df ) ≤ M, n≥ 1, for some positive constant M, and that Qn →w

Q0. Then nTn(Qn)

→ ||||2Q0

, where  is defined in Theorem 2.

Proof. Recall that nTn(Qn) = ||Vn||2Qn
, where V n is given in (8). Proceeding as in the proof of

Theorem 2, it follows that ||Vn − Vn,0||Qn = oP(1), where V n,0 is defined in (17). Now, taking into
account that ||Vn,0||2Qn

= ||Vn,0||2Q0
+ Rn, where Rn = ∫

H
V 2

n,0(f )(Qn − Q0)(df ), it suffices to prove
Rn = oP(1) in view of the proof of Theorem 2. To this end, let Δn:=Qn−Q0, and put Ψ2

h ∶=
Ψ(h,X)2, h ∈ H. Considerations of symmetry involving the fourfold sum V 2

n,0(f )V
2
n,0(g) and the

fact that EΨ(h,X) = 0, h ∈ H, yield

E(R2
n) ≤ 3

(
∫

H

E(Ψ2
f ) Δn(df )

)2

+ 1
n∫

H
∫

H

E(Ψ2
f Ψ

2
g) Δn(df ) Δn(dg). (32)

From the assumptions made, it follows that ∫
H
∫
H

E(Ψ2
f Ψ

2
g) Δn(df )Δn(dg) ≤ K for some pos-

itive constant K, and thus the second term on the right-hand side of (32) converges to 0. Since
E(Ψ2

f ) = 1 − exp(−𝜎2
f )(1 + 𝜎2

f + 0.5 − 𝜎4
f ) is a continuous bounded function of f , and since Qn →w

Q0, it follows that the first term on the right-hand side of (32) also tends to 0, and the proof is
finished, because E(R2

n) → 0 implies Rn →P 0. ▪

In the above approach, we have truncated Q, but a common approach in functional data anal-
ysis consists in truncating the data as follows. If E||X||2

H
< ∞, then X admits a Karhunen–Loève

expansion

X = 𝜇 +
∑
j≥1

√
𝜆j Zj vj. (33)

Here, 𝜆j and vj, j≥ 1, are the eigenvalues and the corresponding eigenfunctions—called prin-
cipal components—associated with the covariance operator of X , and Z1,Z2,… are centered
uncorrelated random variables, which are even iid standard normal under the null hypothesis of
Gaussianity. In practice, the 𝜆j's and vj's are unknown, and they are estimated from the data. More-
over, only a finite number dn (say) of projections are used in applications, yielding the sample
analogue

Xj ≈ Xn +
dn∑

k=1

√
𝜆̂k 𝜉jk v̂k, 1 ≤ j ≤ n,

of (33). Here, the 𝜆̂k 's and the v̂k 's are the eigenvalues and the corresponding
eigenfunctions—called sample principal components—associated with the sample covariance
operator, and 𝜉jk = ⟨Xj, v̂k⟩∕√𝜆̂k, 1≤ j≤n, 1≤ k≤ dn. There are several proposals for the practical
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426 HENZE and JIMENEZ-GAMERO

determination of dn, see Chapter 3 of Horváth and Kokoszka (2012). One of the most popular
methods chooses dn so that

∑dn
k=1 𝜆̂k∕

∑n
k=1 𝜆̂k ≥ 0.85. Under the null hypothesis of Gaussianity,

the random vectors 𝜉1 = (𝜉11,… , 𝜉1dn)
⊤,… , 𝜉n = (𝜉n1,… , 𝜉ndn)

⊤ are approximately iid from a
dn-variate normal law with mean zero and unit covariance matrix. These quantities play a role
similar to that of the scaled residuals in the finite-dimensional case. So it is tempting to compare
the ECF of 𝜉1,… , 𝜉n with the CF of the law Nd(0,Id). This heuristic derivation can be formally
obtained as follows. Let Q̂n be the probability measure associated with the process

Wn =
dn∑

k=1
𝛽𝜆̂

−1∕2
k v̂k Nk,

where 𝛽 > 0 is a positive constant and N1,… ,Ndn are iid standard normal random variables. Then,
routine calculations show that

∫
H

|||𝜑n(f ) − 𝜑(f ;Xn,n)
|||2Q̂n(df ), (34)

coincides with Tn,dn,𝛽 defined in (1), with Y 1,… ,Y n replaced with 𝜉1,… , 𝜉n. Notice that the results
of Theorems 6 and 7 do not apply to Q̂n because Q̂n is a random measure. The study of the test
based on (34) deserves further study.

9 CONCLUDING REMARKS AND FURTHER RESEARCH

We have introduced and studied a novel genuine test for Gaussianity in separable Hilbert spaces
that is applicable for functional data. Some preliminary simulation results show that the proce-
dure compares favorably with the hitherto few existing competitors. It would be interesting to
modify and generalize the approach with respect to testing for Gaussianity in situations in which
the mean and/or the covariance operator have a certain parametric structure. For example, one
could test for a Wiener process on [0,1], where 𝜇= 0 and c(t, s) = 𝜗min{t, s}, for some 𝜗> 0. It
would also be tempting to test for Gaussianity of multivariate functional data that take values in
L2([0,1]d).

It would be interesting to have a consistent estimator of the variance of the limit normal
distribution under alternatives to obtain an asymptotic confidence interval for 𝜏Q.

A test for Gaussianity could be based on applying the BHEP test to the principal scores. We
have seen that the resulting test statistic has the same expression as that studied in this paper,
but the measure involved in the definition of the test statistic is of random nature, which requires
subsequent study.
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