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Abstract 

Gold is without a doubt the best known metal for chemicals oxidation. The noblest of 

the nobles gained its place because of its resistance to overoxidation, low temperature of 

operation, especially in gas phase oxidation, and fairly good selectivity when required. 

The aim for sustainable development and the need of new technologies opens the 

possibility to introduce new raw materials and new catalysts formulation. That is why 

new horizons appear in the otherwise uncertain future of gold catalysis. The old glory 

becomes now a glorious alternative and this minireview gives only a small example of 

it.  
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Introduction 

 The biorefinery concept dating from the end of the last century [1] is still subject 

of several definitions [2]. Although technologies involving biomass processing to 

bioproducts/bioenergy have been in operation before the establishment of the 

biorefinery concept, the direct synthesis of highly valuable (platform) chemicals has 

revolutionized the field in the last decades [3,4]. Lignocellulosic biomass is presented as 

the most abundant carbohydrate-rich source in our planet, being cellulose the main 

component (ranging 35-50 wt%) and by far the easily usable fraction since is a polymer 

formed by only one monosaccharide, i.e. glucose. The latter, usually used as model 

molecule, is considered one of the most important chemicals derived from biomass. Its 

great utility reflects on the high number of potential molecules in which glucose could 

convert, transformations extensively studied in the last decade [5,6].  

 The first studies concerning the application of gold catalysts in aerobic oxidation 

reactions were reported many years ago, focusing on CO oxidation and liquid phase 

oxidation of diols [7,8]. The low temperature CO oxidation, H2O2 synthesis from H2 and 

O2 [9], water gas shift [10], C-C coupling reactions [11] and conversion of 

carbohydrates and alcohols to corresponding aldehydes and carboxylic compounds 

[12,13] are some of the most successful applications of this type of catalysts. Regarding 

exclusively the liquid phase oxidation of organic compounds, the application list of gold 

catalysts is also extensive, from the oxidation of hydrocarbons through alkanes, alkenes, 

alcohols, polyalcohols, benzyl compounds, amines, heterocycles to any carbohydrate 

derived from biomass resources [14,15]. 

Among the existing reactions for carbohydrates conversion, the selective 

oxidation of plant-biomass monomers (hexoses and/or pentoses) to corresponding 

carboxylic acids presents a possibility to easy integration in existing technologies. The 
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latter presents an incremented economic interest arisen from the use of cheap and 

abundant raw stock. Particularly remarkable attention has been paid to the oxidation of 

glucose and 5-hydroxymethylfurfural (HMF), considered top building blocks in the last 

decade [16–18]. In both reactions, the great activity and selectivity of Pt, Pd and Au 

based catalysts have been demonstrated, being gold the most suitable mainly due to its 

higher resistance to overoxidation, reported as a cause for Pt and Pd catalyst 

deactivation. In an attempt to overcome catalyst deactivation, bimetallic catalysts 

(mostly AuPt, AuPd and AuCu systems) has been successfully employed, pointing out 

to an interesting synergetic effect between the metals [18,19]. 

This short contribution reviews the last advances in the selective oxidation of 

two of the most outstanding biomass derived platform molecules, i.e. glucose and HMF, 

over heterogeneous gold-based catalysts. As the activity of gold catalysts is strongly 

affected by its size and interaction with the support the influence of both will be 

discussed below. 

 

Glucose oxidation 

 The oxidation of glucose’ aldehydic and alcohol functions originates different 

added-value products mostly used in the pharmaceutical and food industries [20]  but 

also in polymer science and medicine [21]. The aldehyde group selective oxidation 

(Figure 1) is one of the most explored processes as demonstrated by the high number of 

related publications in the last years. The latter might be attributed to the apparent 

simplicity of the reaction and wide applicability of the main oxidation product − 

gluconic acid [20], currently produced by biotechnological processes. The subsequent 

oxidation of gluconic acid’s secondary alcohol group (C6) gives rise to glucaric acid 
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(see Fig. 1), used likewise in food/pharmacy industries and most importantly essential 

for cholesterol reduction [22] and cancer chemotherapy [23]. Nevertheless, the 

production of glucaric acid from biomass has been scarcely studied over gold catalysts 

reason why only the aerobic oxidation of glucose to gluconic acid will be undertaken in 

this short review.   

 When referring to glucose oxidation it is important to mention that the majority 

of studies in the last 20 years reported the use of gold catalysts in alkaline conditions, 

usually employed to increase the reaction rate and to avoid irreversible deactivation by 

metal leaching and/or reaction intermediates adsorption [24]. Despite beneficial in some 

extent, the use of base affects negatively the economics of the process. A neutralization 

step is necessary to isolate pure gluconic acid at the end of reaction and also affects 

gluconic acid selectivity as glucose to fructose isomerization is favored at high pH [25]. 

The use of base can be avoided and recent works reported excellent results over mono- 

and bimetallic gold-based catalysts [19,26].  

  

 

Figure 1. Subsequent oxidation of glucose to gluconic and glucaric acids.  

 

 A lot of supports have been employed in this reaction, like simple TiO2 [27], 

MgO [28], ZrO2 [29], and mixed oxides CeO2/Al2O3 and Zn doped CeO2/Al2O3 systems 

[30] and Ca – Al layered double hydroxides [31]. Our group studied the support effect 
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in base free conditions over a series of gold nanoparticles (3-5 nm average particle size) 

supported on Al2O3, CeO2, and CeO2/ZrO2 solid solutions with different Ce/Zr molar 

ratio [32]. The correlation found between support’s Lewis acidity and catalyst activity 

and selectivity reveals that the presence of more acid supports, like zirconia, promotes 

the formation of by-products and decreases the selectivity to the desired gluconic acid. 

On the other hand, the presence of reducible ceria accelerates the oxidation reaction, 

pointing out to a possible Mars-van Krevelen type mechanism. However, contrasting 

results were reported in basic conditions [33] showing presumably different oxidation 

pathway in presence of OH-. In basic conditions, the oxidation of glucose is reported to 

proceed on Au surface via a Langmuir-Hinshelwood mechanism involving the OH- 

nucleophilic attack to C1 position in glucose molecule [34]. In this way, the oxygen 

incorporated in the produced carboxylic acid comes presumably from the base, being 

the support oxygen dynamics likely not involved.   

 In the last years the use of carbon supports in basic free media stars gaining a lot 

of attention [29,35,36]. The relevance of using carbon in aqueous-phase oxidation 

reactions derived from its hydrophobicity and chemical stability. The former improves 

catalysts resistance against leaching and improves catalyst’s inherent activity. As the 

deactivation phenomena in base-free environment is partially attributed to the metal 

leaching and active sites loss the use of carbon should avoid it. Related to this, an 

interesting and extensive recycling study over AuC catalysts has been recently reported 

[37]. This work evaluates the main factors of deactivation and the possible application 

of different reactivation procedures over the spent catalysts. Although particle 

agglomeration and intermediate adsorption were observed, the main deactivation cause 

in absence of base resulted to be gold leaching, converting all reactivation treatments 
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ineffective. Even though, the catalysts lost a part of their initial activity a very good 

recyclability with only 10% activity loss after the 4th cycle is reported.  

 The effect of gold particle size on the catalytic activity has been freshly studied 

over a series of AuC catalysts with sizes ranging 4 to 26 nm [35]. The particles size 

variation was controlled by a preformed colloids immobilization over activated carbon. 

The prepared catalysts were calcined to burn out the stabilizing agents and to elucidate 

the “real” size/activity effect by avoiding certain diffusional limitations during the 

reaction that can strongly influence the observed activity [38]. The structure/size 

relationship showed an optimal size around 9 nm, although after normalization to the 

exposed gold surface (TOF) the optimum shifted to 15-20 nm range. Benkó et al. found 

a similar trend at high pH [39] although opposite results have been also reported [40].  

 Nevertheless, gold particle size seems to be less influencing factor than the 

proper choice and modification of the support. As long as the gold particle size enters 

the 10-20 nm range the glucose conversion and product selectivity will depend on the 

nature of support, its acidity and oxygen mobility for the simple or mixed oxide 

supports, being the presence of ceria a key parameter. The activated carbons, on the 

contrary, must possess a fine balance in their hydrophobicity/hydrophilicity properties. 

More hydrophobic carbons avoid the gold particles leaching but also influence 

negatively the final gold loading during the preparation and mass transfers in aqueous 

phase media.  

 

HMF oxidation 

 The production of 5-hydroxymethylfurfural (HMF) from lignocellulosic 

derivatives is one of the top studied processes in the field of biomass valorization. HMF 
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can be obtained via glucose isomerization to fructose and subsequent fructose 

dehydration, process requiring tandem Brönsted/Lewis active sites [41]. Its importance 

relies in the huge number of chemicals that can be obtained through its conversion 

among which stand out those for fuel applications and polymers industry [42]. 

Concretely, the total oxidation of both ring substituents leads to 2,5-furandicarboxilic 

acid (FDCA) classified by the US Department of Energy as one of the top 12 high-

potential bio-based products [43] due to its high important future in bio-plastic 

production. The HMF oxidation to FDCA proceeds via two oxidation steps, the 

aldehyde oxidation is usually the preferred route when gold is used as catalyst forming 

5-hydroxymethyl-2-furancarboxilic acid (HMFCA) and subsequent alcohol oxidation to 

form 5-formyl-2-furancarboxylic acid (FFCA) and final FDCA (Figure 2). Strong basic 

conditions are mostly required to achieve the alcohol to carboxylic acid transformation, 

conditions that present a serious drawback, the HMF fast initial degradation in absence 

of catalyst. Therefore, highly active catalysts are vital to avoid all possible side 

reactions converting rapidly the HMF into FDCA [44,45].  

 

Figure 2. HMF oxidation reaction to FDCA including all possible intermediates.  

 

 For this reaction, as for glucose oxidation, the choice of support is determinant. 

The use of basic conditions assures the absence of gold metal leaching for the mineral 
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supports and many support formulations can be used.  The influence of the support’ 

Lewis/Brönsted acidity has been likewise studied in the last year over a series of 

Au/CexZr1-xO2 catalysts with different Ce/Zr molar ratios and homogeneous gold size 

and shape distributions [46]. After an exhaustive low temperature CO adsorption – 

FTIR study, the authors found a clear trend between the surface hydroxyl Brönsted 

acidity and the FDCA yield in a way that higher the acid character (higher the amount 

of Zr4+) higher the FDCA yields. The latter was related with the already known 

oxidation mechanism [47] focusing in the rate-limiting HMFCA to FFCA oxidation 

(Figure 3). In the proposed mechanism in presence of base, the support facilitates the 

alkoxy intermediate formation (step b) potentiated by the presence of surface O- sites 

(deprotonated Brönsted sites), favoring thus the FFCA formation and final FDCA yield. 

  

Figure 3. Proposed mechanism step for the rate-limiting step HMFCA to FFCA 

reaction in basic media. Reprinted with permission from [46]. Copyright © 2018, 

American Chemical Society.  
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 The particle size effect at low base concentration has been evaluated over a 

series of gold on carbon catalysts having 4-36 nm sizes [48]. The authors observed full 

HMF conversion in all cases however the products selectivity resulted to be strongly 

size dependent fact that was related with the Au 100/111 exposure ratio, oxygen 

reduction ability and base concentration. These results reveal important gold 

size/structure dependence in the HMFCA to FFCA oxidation at low base 

concentrations.  

One of the newest trend in this reaction are to protect the HMF’s aldehyde group 

before reaction in alkaline conditions [49] or to avoid the base addition during the 

oxidation process [50]. The former implies an additional step in the process, not 

preferred from industrial viewpoint but with promising results [49] thus opening a new 

operation route to successful exploitation of the biomass resources. On the other hand, 

employing strongly basic supports seems to be the key to avoid base addition during the 

HMF oxidation although support dissolution is now the main problem [50] difficulting 

the catalyst reutilization.  

 

Concluding remarks and perspectives 

 Based on their incredible resistance to overoxidation the heterogeneous gold-

based catalysts appeared nowadays as the best noble metal alternative for the liquid-

phase oxidation of glucose and HMF under mild conditions. The less significant effect 

of the gold particle size on the catalytic performance in both reactions makes possible to 

imagine a pilot scale catalyst preparation, otherwise unviable for the gas phase 

oxidation reactions. From the other side a careful optimization of the physicochemical 

properties of the support became primordial to produce active and durable catalysts 
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ready to be used in large-scale biomass conversion plants. Carbonaceous materials 

demonstrated a clear superiority for glucose oxidation and less for HMF oxidation. 

However, their tunable character opens a new horizon to be explored in order to achieve 

a new generation of durable gold/modified-carbon catalysts for biomass conversion 

purposes. 

 Gold-based catalysts activity can be controlled also by alloying with different 

noble metals such as Pd, Pt and Cu. The use of bimetallic catalyst decreases the 

necessity to employ basic conditions. Although promising results obtained, bimetallic 

catalysts activity depends on a fine tuning of the intrinsic variables, i.e. the interaction 

between the metals, their relative ratio and distribution at particle´ surface. The 

development of basic supports insensitive to pH however is presented as a competitive 

approach for base-free purposes.  
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