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Abstract. This article reviews the chemistry of nickel and palladium complexes with terminally 

bound hydroxide and alkoxide ligands. The research carried out in our group is discussed in the 

context of the general literature. It is shown that suitable methods of synthesis, combined with 

the choice of adequate ligands allow the isolation of a range of stable complexes. This has 

enabled a detailed investigation of the chemical reactivity of the M-O bonds, once believed to be 

intrinsically weak. The elucidation of trends in thermodynamic stability and kinetic lability is the 

key for a better understanding the reactivity of this clas of compounds, that combines typical 

organometallic patterns, like b-hydrogen elimination, with classic properties as bases and 

nucleophiles. Based on reversible acid-base exchange and CO2 insertion reactions, we discuss 

how the polarity of the M-OR bonds influence their relative stability, their hydrolytic sensitivity 

and their tendency to react with electrophiles. 

 

Keywords: Nickel; Palladium; O-Ligands; b-Hydrogen Elimination; CO2 fixation. 

 

Introduction 

 

According to the conventional definition, organometallic compounds are those that contain 

at least one covalent metal-carbon bond.[1] However, the boundaries of Organometallic 

Chemistry are fuzzy.[2] For example, hydride or dinitrogen complexes have always been 

regarded as pertaining to the organometallic domain, even if they are lacking any metal-carbon 

bonds. In contrast, many other molecular metal compounds, such as titanium(IV) alkoxides or 

amides, nickel(II) acetylacetonate or palladium(II) acetate, are regarded as inorganic 

                                                
† Dedicated to Prof. S. L. Buchwald in the 25th anniversary of the first report on the aryl amination reaction. 
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coordination compounds, even though the metal is covalently bound to essentially organic 

ligands. Although some oxygen donors, like the above-mentioned acetylacetonate, or 

carboxylates are frequently found in many organometallic compounds, their role is usually 

passive, as “ancillary” or stabilizing ligands. Over the past decades, many studies have shown 

that many typical organometallic reactions, including reactions like migratory insertion, b-

hydrogen elimination or reductive couplings, are not exclusive of M-C or M-H bonds, but can 

also be observed for a range M-Heteroatom bonds. These reactions of covalently bound 

heteroatom-based ligands mean a wide expansion of the Organometallic Chemistry panorama. 

Amongst the earliest and most conspicuous cases of "organometallic-type" reactivity stand late 

transition amides, hydroxides and alkoxides. This article focuses mainly on the reactivity of 

nickel and palladium complexes with terminal hydroxide and alkoxide ligands. 

The terminal coordination mode of the M-OR bonds in alkoxides is in many regards 

analogous to s-M-C bonds of classic organometallic complexes. Alkoxide and amide ligands 

abound in the chemistry of the early transition metals, either in simple (binary) derivatives or in 

complexes containing other ligands. When bonded to such metals, alkoxide and amide ligands 

are relatively unreactive and contribute to stabilize their complexes. However, on moving to the 

right along the d transition series, this class of ligands become less common.[3] The reason is 

that, as the metal ions becomes more electron-rich and less electropositive, the M-alkoxo or M-

amido linkages become more reactive, to the point that such complexes become increasingly 

difficult to isolate and characterize. Although late transition metal hydroxide and alkoxide species 

have been long known to be intermediates in catalytic processes, e. g. palladium-catalyzed 

Wacker olefin oxidation,[4] or olefin alkoxycarbonylations,[5] well-characterized alkoxides of 

metals of groups 9 to 11 were chemical oddities until relatively recent time. Most often, the 

techniques and strategies successfully applied in the early days of organometallic chemistry to 

the synthesis of organometallic compounds failed to produce stable alkoxides or amido 

complexes, and when they did, their isolation was hampered by their high sensitivity to moisture. 

In addition, amides, alkoxides and even the more stable hydroxide complexes exhibit a 

pronounced tendency to expel other ligands, giving polynuclear species, or even polymeric 

insoluble solids. In 1988, Bryndza and Tamm reviewed the chemistry of monomeric late 

transition metal complexes with terminal hydroxide, alkoxide and amide ligands.[3a] Amongst 

these, just a few examples were true terminal alkoxides of the group 10 elements in their usual 

+2 oxidation state.  

The difficulties found in the synthesis of mononuclear late transition metal alkoxides and 

other related compounds, like amides, was formerly attributed to the inherent instability of the 

covalent M-O or M-N interactions. In a first approach, this proposal was justified in the context 

of Pearson’s hard and soft acids and bases (HSAB) theory,[6] as a consequence of the mismatch 
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between the “soft” metal acids and “hard” bases containing N and O donor atoms. In contrast, 

soft carbon anions would be a better match for late transition metal ions, leading to more stable 

M-C bonds. This essentially qualitative HSAB argumentation collides with the widespread 

occurrence of many oxygen-based ligands traditionally regarded as “hard” (e. g. carboxylates, 

acetylacetonates, etc) in the coordination chemistry of late transition metals. A more subtle 

argumentation resorted to the theory repulsive metal-ligand nonbonding p interactions.[7] 

According to this concept, whereas early transition metal alkoxides and amides are stabilized 

by p-donation from the electron pairs of the metal-bonded N or O atoms into the empty d orbitals 

of the metal, most d orbitals in late transition metals are filled, resulting in non-bonding, repulsive 

p-d orbital interactions. Such repulsions are alleviated if the lone pairs of the metal-bound 

heteroatom are delocalized by conjugation with ligand-based p* orbitals, as in carboxylates or 

acetylacetonates, or by push-pull interactions involving other ligands with p-acceptor capacity 

that may be present in the same complex, like CO.[7,8] Both lines of argumentation, HSAB and p 

p-d repulsions, have been used to justify the difficulty of preparing late transition metal 

complexes with strongly p-donor ligands, not only alkoxides or amides, but also fluoride, or 

oxo.[9] However, the relevance of p-d repulsions in the thermodynamic stability of late transition 

metal-heteroatom bonds is now considered less important.[10]  

More than three decades passed since Bryndza and Tamm’s review was published and, 

since that time, the chemistry of late transition metal complexes with alkoxo, amido and other 

hard, p-donor ligands has developed intensively.[11] The number of applications of the special 

“organometallic-like” reactivity of transition metal compounds with M-N or M-O bonds has 

experienced a continuous growth. Some prominent examples of these are the Buchwald-

Hartwig aryl amination[12] (now celebrating its 25th anniversary), the Suzuki-Miyaura 

reaction,[13,14] reductive couplings of carbonyl and unsaturated compounds,[15] reduction of 

carbonyl compounds,[16] aerobic[17] or acceptorless[18] alcohol oxidation, hydrogen borrowing 

alkylation,[19] or various dehydrogenative coupling reactions,[20] just to cite a few of them. In 

parallel, an intense effort has been deployed to understand the fundamental aspects of reactive 

metal-heteroatom bonds, either as catalytic intermediates or as stoichiometric reagents. 

Research in this field has been one of the interests in our group for many years, focusing mainly 

on the chemistry of Ni(II) and Pd(II) complexes containing reactive metal-heteroatom bonds. 

Although not exclusively, most of our work has concentrated in the use of the chelating 

diphosphine 1,2-bis(diisopropylphosphino)ethane, and the iPrPCP pincer ligand, shown in Figure 

1. Both systems have in common the strong PiPr2 donors, and the joint presence of M-C and M-

O bonds, confined into cis and trans geometries, respectively. The recent interest on the 

substitutive uses of abundant metals from the first transition series instead of precious or scarce 

elements, has put additional interest on the comparison of the analogous chemistries of Ni and 
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Pd. These considerations moved us to present an account of our investigations on the topic of 

Ni and Pd complexes containing reactive metal-oxygen bonds. 

 

 

Figure 1. Basic structural types of nickel and palladium complexes with reactive M-O bonds studied in our 
laboratories. 

 

Syntheses of nickel(II) and palladium(II) hydroxide and alkoxide complexes. 

 

Out of the group 10 triad, Ni, Pd and Pt, only Ni gives rise to a simple hydroxide and alkoxide 

derivatives, M(OR)2. Nickel(II) hydroxide is a paramagnetic (high spin), polymeric solid formed 

by two dimensional layers of octahedra sharing their edges (CdI2-type structure).[21] At the turn 

of the past century, the literature just mentioned a few nickel alkoxides, obtained by metathetical 

exchange between nickel halides and alkaline alcoholates. These are insoluble solids of 

unknown structure,[22] although a number of Ni and Pd hydroxide and aryloxide complexes 

stabilized by ancillary ligands were already known (see below). At the onset of our exploration 

of the chemistry of reactive alkoxides of Ni and Pd, one of our interests was to establish whether 

discrete species containing -OR ligands could be stabilized using bulky enough R groups. 

Therefore we investigated the reaction of [NiBr2(DME)] (DME = 1,2-dimethoxyethane) and 

[PdCl2(MeCN)2)] with sodium salts of phenols that had bulky substituents R in their ortho 

positions Scheme 1).[23] For R = tBu, diamagnetic aryloxides M(OAr)2 1a and 1b were obtained 

in moderate yields, as deep -colored crystalline solids, respectively, soluble in hydrocarbon 

solvents. They have unusual p-sandwich structures, with the ligands interacting in h3
 mode (p-

allyl-type) fashion through C2, C3 and C4, but not with the oxygen atom, therefore these 

compounds cannot be considered true aryloxides. However, solvated intermediates with a s-

type structure were also isolated.[24] By lowering the steric hindrance of the ortho R groups, 

normal oxygen coordination becomes prevalent. Thus, for R = iPr a black paramagnetic nickel 

compound 2 was obtained. Its X-ray diffraction structure reveals a linear array of three Ni atoms 

linked by four µ-OAr interactions, and two terminal terminal OAr ligands in the Ni atoms of the 

sides. These atoms are tricoordinated, a highly unusual environment for Ni(II). Complex 2 is a 

O
Ni

R’P

P

iPriPr

iPr iPr
R

MP P

O iPr
iPriPr

iPr
R

M = Ni or Pd
Chelating Diphosphine (DiPPE) Pincer (iPrPCP)



 7 

true molecular Ni(II) alkoxide, and remains hitherto the only example of this class of compounds 

in the group 10 triad, although several monomeric (linear) Ni(II) amides were reported later.[25]  

 

Scheme 1. Synthesis of binary Ni(II) and Pd(II) aryloxides with discrete molecular structures. 

The unusual p-allyl-type coordination found in complexes 1 led us to investigate the 

synthesis of similar complexes containing a plain h3-C3H5 fragment as an ancillary ligand, hence 

we explored the reaction of the dimeric allyl complexes [M(h3-C3H5)(µ-X)]2 (M = Ni or Pd; X = Br 

or Cl) with sodium phenoxides containing differently sized aryloxide anions.[26] For bulky 

aryloxides (ortho R = tBu), signs of destabilization of the M-O bond were observed again. As 

shown in Scheme 2, the outcome of such reactions is highly dependent on the metal and the 

metal/aryloxide ratio. For a metal/NaOAr ratio = 1, and for M = Pd, the “normal” s-aryloxide-

bridged dimer 3 was produced, but this is thermally unstable and decomposes in solution giving 

free ArOH and black palladium. For M = Ni, a monomeric p-aryloxide complex [Ni((h3-C3H5)(h5-

OAr)], 4 was obtained. Increasing the Ni/NaOAr ratio led to the “ate” allyl-aryloxide complex 5, 

solvated with a single molecule of THF. When this complex is mixed with an equimolar amount 

of 4, the p-aryloxide fragment displaces the solvent to yield 6a, another Ni-Na bimetallic complex 

with a Na atom linking s- and p-Ni aryloxide units. 6a, and its palladium analogue 6b can be 

directly obtained by carefully adjusting the M:NaOAr ratio and the reaction time. Shortly after 

our reporting of these complexes, A. Klein and A. Dogan reported the crystal structure of a 

cationic palladium p-aryloxide, [Pd(h2:h2-COD)( h5-OC6H2Me3)]+.[27] 
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Scheme 2. Synteses of allyl-aryloxide complexes of Ni(II) and Pd(II). 

Simultaneously with these studies, we also investigated the syntheses of nickel complexes 

with terminal alkoxide, hydroxide or other potentially reactive s-bound fragments, stabilized with 

suitable ancillary ligands. As mentioned above, a small number of molecular group 10 hydroxide 

and alkoxide complexes were known at this time. Most of them were Pd or Pt complexes, but 

very little was known about similar Ni derivatives. Scheme 3 summarizes some of the precedents 

on molecular Ni(II) hydroxides and alkoxides. The pioneering work of H. F. Klein with 

methylnickel complexes stabilized with monodentate PMe3 ligands revealed that square-planar 

complexes of the type [Ni(Me)(X)(PMe3)2] are stable if X = Cl, OCOR, or OAr, but not for X = OH 

or OR.[28]  The latter compounds spontaneously loss one PMe3 unit to afford dimers with µ-OH 

or µ-OR bridging ligands, because such interactions allow dissipating the excess of electron 

density localized at the oxygen atom. The trinuclear hydroxide 7 is another example of the 

tendency of basic OH ligands to share its electron density through bridging interactions is.[29] 

The discovery of this complex in E. Carmona’s group in the early 1980’s led the Sevilla team to 

investigate the chemistry of nickel hydroxide complexes [Ni(R)(µ-OH)(PMe3)]2 (8),[29b] a work 

that, years later, inspired us to pursue the investigation of monomeric hydroxides and alkoxides 

of nickel and palladium. Similar arylpalladium hydroxides [Pd(R)(µ-OH)(PPh3)]2 were reported 

by H. Alper and V. V. Grushin in 1993.[30]  
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Scheme 3. Precedents in the chemistry of Ni(II) alkoxide and hydroxide complexes. 

The tendency of basic, O-bound covalent ligands to bridge metal centers is very general 

and has deep effects in the properties of their complexes. For example, the bridging interaction 

partially cancels the reactivity on the O atom, but reversible M-OR dissociation can open a 

transient coordination site, providing low-energy pathways for processes such as b-hydrogen 

elimination,[31] reductive coupling[32] or migratory insertion.[33] In some other cases, the 

association of reactive species gives results in more complex behaviors. We observed one such 

situation when attempting to prepare nickel enolate complexes. A metal can bind either the 

deprotonated carbon atom (C-enolates) or the oxygen of the enolate functionality (O-enolates). 

Each of these modes has its own, characteristic reactivity, the O mode behaving as a 

nucleophilic alkoxide, and the C-enolate as a stabilized metal alkyl, but the difference is usually 

masked by the facile exchange of both coordination modes. Thus, we decided to synthesize a 

rigid nickelacyclic enolate, in order to prevent the otherwise facile isomerization of the C and O-

coordination modes.[34] As shown in Scheme 4, we started from 2-acylaryl nickel complexes 

(acyl = acetyl or propionyl), and then carried out the deprotonation of the acyl group with 

potassium t-butoxide. Pre-activation of the acyl fragment by the Ni center, confirmed by X-ray 

structures, promotes selective formation of the O-bonded isomer, and the strong chelate DiPPE 

ensures the stability of the O-enolate complex, 9. However, PMe3 as ancillary ligand leads to the 

unusual binuclear complexes 10. The formation of the latter can be rationalized as an aldol 

addition of an enolate unit across the acyl fragment of a second molecule of complex. In addition, 

it requires a molecule of water, that ends up in the bridging hydroxyl and the extra proton bound 

to the organic ligand. The mechanism of this reaction is shown in Scheme 5.[35] When the 

substituent R on the enolate unit is Me, 9’ is fairly stable in solution, but it spontaneously evolves 

to the final product 10 if isolation is attempted. The extra molecule of water in 10 suggests that 

the product somehow arises from a hydrolysis reaction. However, the reaction is triggered by 

the loss of volatile PMe3, allowing the appearance of alkoxide bridge interactions, and water 
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merely captures the reactive intermediate arising from this process. Replacement of PMe3 with 

the less volatile phosphine PMe2Ph hinders the dimerization equilibrium, and for R = Me the 

enolate is an isolable compound. Symmetric dimers like 11[33b] but were not detected in our 

system, because the initial stage of the association process brings about the irreversible C-C 

bond formation.[36]  

 

Scheme 4. Self-aldol reaction of nickel enolates promoted by bridging alkoxide interactions  

 

Scheme 5. Dimerization-driven mechanism of the self-aldol reaction. 

On continuing our investigation of the reactive M-O bonds of nickel and palladium, we 
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the reactivity of solid KOH was enhanced by sonication using a regular ultrasounds cleaning 

bath.  

 

Scheme 6. Syntheses of some of group 10 hydroxide complexes with iPrPCP pincer ligands.  

Straightforward exchange of halide hydroxides or alkoxides with alkali metal reagents be 

complicated by side reactions. Phosphine ligands can be attacked by hydroxide, causing partial 

or complete reduction of the starting material,[30,41] and strong bases can induce b-hydrogen 

elimination from alkoxide through not always well understood intermolecular mechanisms, 

particularly in the presence of free alcohols.[42] The occurrence of undesired side processes is 

difficult to predict, as some systems withstand more successfully than others the exchange with 

basic/nucleophilic reagents.[42-46] In our earliest attempts to prepare the Ni and Pd methoxides 

[(iPrPCP)M(OMe)], we tried to proceed as with hydroxides 12, but exchanging the precursor 

halide with sodium methoxide afforded mixtures due to incomplete conversion and competitive 

b-elimination,[46] the hydrides [(iPrPCP)M(H)] being identified among the products. A turnaround 

for this problem of competitive is selecting tertiary alkoxide groups without  hydrogen atoms on 

the position next to oxygen, as t-butoxide,[47,48] but the products can be very reactive and difficult 

to handle. Protic acid-base exchange reactions provide a milder and more general approach to 

the synthesis of alkoxide derivative. Alkoxide complexes are cleanly generated in solution when 

the corresponding hydroxides are treated with alcohols. Unfortunately, this reaction is 

synthetically unpractical, as the exchange are reversible equilibria, usually shifted to the side of 

the starting hydroxides.[49] In contrast, similar the reaction of alcohols with amido complexes is 

often satisfactory, if such precursors are available. The parent amido complexes 

[(iPrPCP)M(NH2)] (13a, M = Ni; 13b, M = Pd) proved to be very convenient precursors for this 

purpose for the synthesis of the corresponding alkoxides, as they react quantitatively with a 

variety of alcohols to give the alkoxides (Scheme 7).[50,51] The monomeric nickel amide, 13a, can 

be isolated as a crystalline solid and, although its palladium analogue 13b is unstable, it can be 

generated and used in solution. Thus, we developed a methodology to facilitate the generation 

of clean solutions of 13a and 13b, to be used in situ.[49] This method allowed the isolation and 

structural characterization of a series of derivatives with common OR groups.  
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Scheme 7. General synthesis of Ni and Pd pincer alkoxides from parent amido precursors. 

In comparison with amido complexes, late transition metal alkyls are usually unreactive 

towards such weak protic acids as alcohols. Although alkane elimination is a strong 

thermodynamic driving force, the lack of basic electron pairs on the C atom renders M-C bonds 

kinetically inert to protic acids, unless these are reasonably strong. A rare exception for this rule 

is Klein’s highly reactive dimethyl nickel complex [NiMe2(PMe3)3], which undergoes rapid and 

selective cleavage of a single Ni-Me bond by water, methanol or ethanol to afford the 

corresponding dimeric hydroxide or alkoxides (see Scheme 3).[28] In contrast, nickel dialkyls 

stabilized with DiPPE are unreactive even with 2,6-dimethylphenol, a stronger acid than primary 

alcohols.[52] Yet, [NiMe2(DiPPE)] reacts selectively with many stronger acids, including 

trifluoromethanesulfonic acid, triethylammonium chloride or the mildly acidic salt triethylamine 

trihydrofluoride. In each case, the acid selectively cleaves only one Ni-Me bond, affording a 

series of complexes of composition [Ni(Me)(X)( DiPPE)], with X = OTf (15), Cl (16) and F (17).[53] 

Thue fluoride 17 proved a very useful starting material for the syntheses of a range of alkoxide 

complexes. Thus, while the reactions of either 15 or 16 with alkaline hydroxides and alkoxides 

are incomplete and/or lead to mixtures of products, 17 reacts smoothly and quantitatively with 

LiOH, LiOR or LiNR2, affording selectively the corresponding methyl-hydroxide, methyl-alkoxide 

and methyl-amido derivatives (Scheme 8).[54] We believe that, rather than the arguable 

weakness of the Ni-F bond, the efficiency of these fluoride displacement reactions relates to the 

extra thermodynamic driving force provided by the elimination of LiF, one of the most stable and 

insoluble ionic solids. We later extended the range of application of the fluoride displacement 

methodology as an alternative method for the syntheses of iPrPCP-based nickel and palladium- 

alkoxo complexes (Scheme 9). 

 

Scheme 8. Fluoride exchange with lithium reagents as an efficient method for the syntheses of nickel-heteroatom 
covalent bonds. 
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Scheme 9. Fluoride exchange with lithium methoxide as an alternative method for the synthesis of Ni and Pd 

alkoxides. 

 

Thermal decomposition of alkoxide complexes of Ni and Pd. 

Alkoxide complexes of late transition metals can undergo thermal decomposition through 

standard pathways analogous to those of s-bonded organometallic compounds, such as 

reductive elimination or b-hydrogen elimination. These processes are key elemental steps in a 

number of catalytic processes for the transformation of alcohols and phenols into more complex 

organic molecules. Reductive elimination involving oxygen-bound ligands is unusual, even for a 

metal as prone to this as palladium.[55] C-O reductive couplings from organo-Ni or -Pd alkoxides 

can be induced by oxidation, of from high-valent precursors in the less common oxidation states 

+3 or +4.[56] In addition, bulky or wide-bite angle co-ligands can be tuned to favor C-O coupling 

from Pd(II).[32,57]  

The difficulty of C-O reductive eliminations is the cause of the lesser degree of development 

attained by palladium-catalyzed coupling of aryls and alcohols to ethers[58] in contrast with the 

analogous C-N coupling in Buchwald-Hartwig aryl amination.[12] On the contrary, b-hydrogen 

elimination is relatively frequent for alkoxides and constitutes the basis for a number of catalytic 

applications mentioned in the Introduction.[17-20] Mechanistic studies have shown that b-

hydrogen elimination may, in fact, involve different pathways, summarized in Scheme 10. 

Mechanism A is analogous to typical b-elimination in alkyl complexes, and requires a vacant 

coordination site in cis to the b-hydrogen donor ligand. Examples of this mechanism were 

revealed by the studies of Hartwig and Milstein on the decomposition of Ir(I), Vaska-type square-

planar complexes, [trans-Ir(OCHRR')(CO)(PPh3)2][59,60] or octahedral Ir(III) alkoxides [mer-

Ir(OMe)(Cl)(H)(PMe3)3],[61] respectively. In both cases, the reaction begins with ligand 

dissociation and generation of a coordination vacancy. The first example involves dissociation 

a phosphine ligand, and a chloride anion the second. Surprisingly, octahedral d6 Ir(III) alkoxo 

complexes that lack dissociable ligands in cis to the alkoxide can also experience solvent-

assisted b-hydrogen elimination.[42c] In this case mechanism B was proposed, in which the 

alkoxide ligand itself dissociates, and then the electrophilic Ir(III) fragment approaches the anion 

from the carbon side to perform a C-H bond activation. This mechanism has been invoked for 

other systems where the required coordination vacancy cannot be readily generated.[42a,b] 
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Bergman discovered that a third mechanism, C, can operate also in the decomposition of the 

Ir(III) complexes [Ir(OCH2R)(PMe3)(Ph)(Cp*)]. The b-hydrogen abstraction is catalyzed by a 

small amount of the coordinatively unsaturated species, [Ir(PMe3)(Ph)(Cp*)]+ which, by binding 

the oxygen of the alkoxide, promotes the b-H elimination from the a bimetallic intermediate.[62]  

 

Scheme 10. Mechanisms for b-hydrogen elimination in late transition metal alkoxides. 

 

As pointed out in the Introduction, the paucity of alkoxides in the chemistry of the late 

transition metals was once attributed to the intrinsic instability of the metal-alkoxide linkage. 

Bryndza's mechanistic studies on the decomposition of well-defined Pt(II) methoxide complexes 

provided for the first time an insight on the relative ability of alkoxides and alkyls to decompose 

through the b-elimination pathway.[63] As shown in Scheme 11, the products formed in the 

thermolyses of a series of related complexes containing ethoxide and ethyl ligands can be 

explained as the result of a single mechanism involving b-hydrogen elimination and reductive 

coupling. The b-hydrogen abstraction step was suggested to proceed through a mechanism of 

type A, with the axial coordination site available in these square-planar complexes providing the 

required cis-coordination vacancy, as Yamamoto suggested for the analogous decomposition 

of Pd(II) dialkyls.[64] The structurally similar diethyl, ethyl-methoxy and dimethoxide derivatives 

decompose with increasing ease, as reflected on the decreasing temperatures required to 

induce the process. Apparently, these observations confirm that the methoxide ligand is 

intrinsically more prone to b-elimination than the ethyl. However, the ethane / ethylene ratio 

40:60 produced in the decomposition of the mixed-ligand complex indicates that, within the 

same compound, the energy barrier for H transfer from methoxide is higher than from ethyl. A 

similar conclusion is reached when comparing the b-hydrogen elimination for Ir(I) Vaska 

alkoxides with the corresponding alkyl complexes: The alkoxides [trans-Ir(OCHRR')(CO)(PPh3)] 

are thermally robust, decomposing only above 80 ºC, whereas analogous alkyl complexes (i.e., 

with b-hydrogen atoms) are barely stable above 0 ºC, rapidly undergoing b-elimination at higher 
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temperatures.[60] Noteworthy, b-hydrogen elimination in related Vaska-type amido complexes 

takes place at temperatures comparable to those required by the alkoxides.[65] 

 

Scheme 11. b-hydrogen elimination coupled with irreversible reductive elimination in platinum complexes. 

 

Our ability to synthesize a range of nickel alkoxide and amide complexes prompted us to 

examine the thermal stability of these complexes, in order gain some insight in their 

decomposition mechanisms. In one of our studies we compared the thermal stability of some 

methylnickel alkoxides and amides (18 – 21) available from the fluoride 17 (see Scheme 8).[66] 

To complete this study, we included the mixed dialkyl 22, also obtained through the mild fluoride 

exchange method. The decompositions of referred Ni compounds involves b-hydrogen 

abstraction and elimination of methane, as shown in Scheme 12. This is similar to the above-

discussed Pt(II) system, except that the product are stable Ni(0) complexes with h2-aldehyde, 

ketone, imine and olefin ligands originated in the b-hydrogen abstraction step. A mechanistically 

relevant detail is that, during the preparation of 22 we observed the formation of the isomeric 

alkyl 22' as a result of a "chain walking" process, as shown in Scheme 13. This demonstrates 

the reversibility of the b-hydrogen elimination step, at least for the alkyl case. Above the room 

temperature, 22 and 22' attain the equilibrium situation within few minutes or seconds. Thus, 

reversible b-hydrogen elimination is much faster than the final reductive elimination, that 

becomes rate-determining.  

 

Scheme 12. Different b-hydrogen types of b-hydrogen transfer H-Me reductive elimination 
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Scheme 13. Reversible b-hydrogen pre-equilibrium in alkyl-methyl complexes. 

An important difference between the Pt and Ni-based processes shown in Schemes 11 and 

12 is that, whereas the former involves different H/OMe and H/Et couplings, all decompositions 

in the Ni system entail reductive elimination of methane in the final step. In consequence, any 

important kinetic differences in the decomposition rates of the Ni complexes could be attributed 

to the b-hydrogen elimination step. Therefore, a comparative kinetic study of the decay rate of 

the alkoxide, amido and alkyl complexes 18, 20 and 22 was undertaken. As would be expected 

for an intramolecular mechanism like that shown in Scheme 13, the decomposition of alkyl 22 

obeys first-order kinetics, characterized with a near-zero activation entropy (DS‡ ≈ 0). The amide 

20 follows also first-order kinetics, but with a large and positive DS‡ . Therefore, both 

decompositions probably share essentially similar mechanisms, but these must have some 

significant difference. We believe that the positive activation entropy found for 20 might be the 

signature of pre-equilibrium step involving the opening of the diphosphine chelate ring, prior to 

the b-elimination and methane elimination.[67] The activation enthalpies (DH‡) for the 

decomposition of 20 and 22 are 48 and 23 Kcal·mol-1, respectively. Thus, discounted the entropy 

factor, the energy barrier for the decomposition of the amide is still higher for the amide than for 

the alkyl.[68] 

In contrast with 20 and 22, the decomposition of alkoxide 18 shows a surprising zero-order 

kinetic dependency on the starting complex. In addition to point out to a totally different 

mechanism, the zero-order kinetics is puzzling because apparently there are no other 

components in the chemical system to control the reaction, that advances at a constant rate. 

This implies that there must be some undetected substance to exert the control of the reaction. 

Very likely, this catalyst must be some coordinatively unsaturated nickel complex, that promotes 

b-hydrogen elimination in the manner of Mechanism C (Scheme 10), but the lack of kinetic 

dependency on the starting material 18 implies that the rate is determined in an irreversible step 

that involves exclusively the catalyst. We suggested that the catalyst could be monomeric Ni(I) 

alkoxide that, on decomposing by b-hydrogen elimination (the rate-determining step), transfers 

the hydride to 18, which then eliminates methane, as depicted in Scheme 14.  
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Scheme 14. Proposed mechanism for the decomposition of Ni(II) alkoxides catalyzed by Ni(I) species. 

 

In line with the previously discussed investigations for Ir y Pt complexes, our conclusion is 

that the ease of b-hydrogen elimination methylNi(II) system decreases in the order alkyl > amide 

>> alkoxide. However, Fryzuk has reported a nickel system closely related to ours, [(tBuPPC)Ni-

ECHRR’], that contains a cyclometallated diphosphine ligand (tBuPPC).[69] In this system, b-

hydrogen elimination for ECHRR’ = alkyl, amido or alkoxide ligands, is followed by irreversible 

H transfer to the metallacycle, to give Ni(0) olefin, imino and ketone complexes, respectively. 

Fryzuk reports that attempts to introduce the alkoxo moiety led directly to the Ni(0) aldehyde 

complex, suggesting that b-hydrogen from the alkoxide is very fast, whereas the b-elimination 

from an amido ligand was considerably slower. However, since no mechanistic studies were 

carried out, any conclusions should be taken with caution.  

We have also investigated the mechanism of the thermal decomposition of Ni and Pd 

methoxides with iPrPCP pincer ligands, [(iPrPCP)M-OMe] 14a and 14b (Scheme 15).[51] Both 

complexes decompose in solution, through processes that involve b hydrogen elimination and 

H transfer to the pincer ligand to yield different M(0) species. The decomposition of the Pd 

methoxide 14b is noticeable even at the room temperature, yielding formaldehyde and a 
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decomposition van be observed above 50 ºC. In this case, the process entails full 

dehydrogenation of methoxide ligands to yield polynuclear Ni(0) carbonyl complexes with 

bridiging iPrPCHP ligands, along with H2. Continuous monitoring of these decompositions in C6D6 
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ligand spontaneously. As represented in Scheme 15, the irreversible evolution of 23a into a 
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nickel(0) carbonyl is brought about by formaldehyde, with loss of H2. The identification of 23a 

and 23b enabled to us to gather experimental thermodynamic and kinetic data for the b-

elimination step, and compare sith the results of DFT calculations.[51b] The parameters shown in 

Scheme 15 confirm that both for M = Ni and Pd, b-elimination is reversible and slightly 

endothermic. This process is thermodynamically and kinetically more favorable for Pd than for 

Ni, but the activation barriers are similar,the difference being due to entropy effects. Two main 

conclusions were drawn from our mechanistic work on the decomposition of the Ni and Pd 

alkoxides 14a and 14b. First, the Pd alkoxide decomposes more readily than its analogue of Ni; 

the second is that for both metals, b-hydrogen elimination is reversible, and the equilibrium is 

slightly disfavored. In order to advance, reversible b-H elimination has to be connected to the 

irreversible decomposition of the hydrides 23a and 23b. This is facile for Pd, but for Ni requires 

a further reaction with formaldehyde to advance. Thus, the different stability of the methoxides 

of Ni and Pd is more connected to the behavior of the hydrides 23 than to the b-hydrogen 

elimination step itself. It is the reactivity of the hydrides 23 which largely determines the fate of 

the initial alkoxides 14. This is probably more the general rule than an exception in the chemistry 

of late transition alkoxides, and helps explaining the critical role that the choice of reagents, 

solvents and, in general, the experimental conditions have for the success of their isolation as 

stable compounds. 

 

 

 

Scheme 15. Mechanism of decomposition and activation parameters for b-hydrogen elimination from methoxide in 

Ni and Pd pincer complexes. 
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Basicity and hydrolytic sensitivity. 

 

 One of the most characteristic features of late transition metal alkoxides and related 

compounds, is their facile hydrolysis, even with moisture traces. The hydrolytic sensitivity poses, 

in practice, one of the main difficulties for their isolation as pure species. 

The reaction of the monomeric methylnickel hydroxide, t-butoxide and pyrrolidinide with 

enolizable ketones shown in Scheme 16 provides a good example of this type of reactivity.[53c] 

The hydroxide complex reacts reversibly with the relatively acidic acetophenone (pKa ≈ 24. 7 in 

DMSO), giving the corresponding O-enolate, but fails to deprotonate the less acidic ketone 

pinacolone (pKa = 27.7 in DMSO). The t-butoxide complex reacts quantitatively with 

acetophenone. It also does with pinacolone, but the reaction is sluggish and slowly approaches 

an equilibrium situation. In contrast, the pyrrolidinide, an aliphatic amide, not only deprotonates 

rapidly and quantitatively both ketones, but also weaker carbon acids like ethyl acetate or 

acetonitrile (pKa = 30 - 31 in DMSO). It is worth mentioning that protonation of the methyl group 

was never observed, even though the methide anion is a much stronger base than amides or 

alkoxides.  

 

Scheme 16. Reaction of methylnickel hydroxide, alkoxide and amides with methylketones 

 It is illustrative to compare in some more detail the basic reactivity of the hydroxide and the 

t-butoxide complexes of Scheme 16. The constants for the equilibria between the hydroxide and 
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and t-butanol in DMSO, 31.2 and 29.4, respectively. Thus, the apparent basicities of the t-

butoxide and hydroxide complexes would require some explanation. These are some: i) The t-

butoxide complex is sterically destabilized as compared to the hydroxide, which renders the 

former more reactive; ii) the Ni-O bond in the hydroxide is significantly more stable than the t-

butoxide; and iii) a combination of i) and ii). In order to provide a deeper insight in the acid-base 

relationships of alkoxide complexes of Ni and Pd, we examined water / alcohol proton exchange 

equilibria involving pincer hydroxo complexes 12a or 12b and several common alcohols, with 

not too different molecular sizes: methoxide, ethoxide, butoxide, 2-methoxyethoxide and i-

propoxide, as shown in Scheme 17.[49] 

The water / alcohol exchange equilibrium constants (Kex) were determined in dry C6D6 by 

titration of the hydroxides 12a or 12b with the alcohols. As can be seen, the equilibria are 

strongly shifted to the side of the hydroxide. This is consistent with the high hydrolytic sensitivity 

of the alkoxides, whose tendency to react with traces of water represents one of the major 

difficulties for the isolation and handling of pure samples of this type of compounds. The 

equilibrium constants for Ni are about one order of magnitude smaller than those of Pd, implying 

that nickel alkoxides are more sensitive to hydrolysis than those of palladium. This may be 

counterintuitive, because Pd alkoxides tend to be less stable and more difficult to isolate. 

 

Scheme 17. Alcohol-water exchange equilibria involving Ni and Pd pincer complexes. 

At first glance, the trends shown in Scheme 17 are consistent with a "common sense" view. 

Since alcohols are usually seen as much weaker acids than water, they would not be expected 

to protonate a hydroxide to a large extent. As discussed in the preceding example, the difficulty 

with this reasoning is that H2O is actually a much weaker acid in nonprotic organic solvents than 

it is as bulk liquid water. According to the pKa’s listed in Scheme 17 water behaves in DMSO as 

an acid of comparable force or, in some case even weaker, than alcohols. Thus, it could be 

expected that the equilibria shown in Scheme 17 should be more shifted to the right than they 

appear in our experiments. However, such an interpretation misses the fact that we are not 

dealing with H+ transfers between a neutral alcohol and a free OH- anion (or, conversely, 

between water and OR-), but exchanges between electroneutral, covalent species. Therefore, 

in order to give a correct interpretation to the values of Kex, or, what is the same, the 
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corresponding DGo
ex, it is necessary to evaluate not only the proton transfer capacities of the 

alcohol and water, but also the strengths of the M-OH and M-OR bonds. 

A simple approach to analyze neutral exchanges like those of Scheme 17 is to compute the 

reaction energy as the algebraic sum of the bond energies (or Dbond) that are being formed and 

broken. In these exchanges, M-OH and RO-H bonds break to form new M-OH and H-OR bonds 

(Eq 1). In this expression it is assumed that the entropy variation for the exchange is negligible, 

therefore DGºex ≈ DHºex. Eq. 1 can be reorganized as shown in Eq. 2, and the differences within 

brackets can be regarded as "relative bond energies" (DD) in scales referred to DM-OH or DH-OH, 

these becoming the common reference values. As the data for H-O bonds can be obtained from 

the literature, or computed by theoretical methods, the experimental DGºex provide an estimate 

of the DDM-OR values, i. e. the gauge for M-OR bond strengths that was being sought. These 

DDM-OR are more susceptible of interpretation than the crude Kex constants. 

 

 

In a pioneering work by Bryndza and Bercaw,[70] this type of analyses was applied to 

exchanges between hydroxide or alkoxide complexes of Ru and Pt with various weak acids, HA 

(including not only alcohols). These authors found that the constants for such equilibria were 

close to unit, hence DGº ≈ 0. Thus, according to Eq 2, the relative metal-ligand bond energies 

(in this case, DDM-A) approximately equal to the corresponding values of DDH-A. The conclusion 

is that, in these particular systems, the metal fragment “senses” the effect of the in the same 

way the influence of R, or in a graphic image, that the Ru and Pt centers behave as "large 

hydrogens". However, later work by Andersen, Bergman, and Holland on similar protic exchange 

reactions on Cp-Ni anilido complexes with HA acids showed that the thermoneutral condition 

(DGº ≈ 0) is not a general feature of this type of exchange reactions.[71] The degree of departure 

from the thermoneutral condition depends largely on the metal fragment considered. A survey 

of constants for the exchange equilibria of various late transition metal hydroxide complexes 

with methanol gave values spanning over three orders of magnitude.49 Such deviations can be 

rationalized in terms of the different degree of polarization of the M-ligand bond and H-ligand 

bonds.[71,72] In Pauling’s classic description of the energies of polar covalent bonds, these have 

a significant covalent and ionic contributions, the latter a Coulombic attraction force between the 

charged fragments. The sum of the two components give rise to the overall bond energies. 

Accordingly, it has been shown that relative metal-ligand bond stabilities are satisfactorily fitted 

ΔGºex ≈ ΔHºex = DM-OR + DH-OH - DM-OH - DH-OR

ΔGºex ≈  (DM-OR - DM-OH) - (DH-OR - DH-OH) = ΔDM-OR - ΔDH-OR

(1)

(2)



 22 

with Drago’s empirical E-C model that accounts for both the electrostatic and covalent 

contributions of the bond.71  

The analyses of the spectroscopic and structural features on Ni and Pd hydroxides and 

alkoxides [(iPrPCP)M(OH)] and [(iPrPCP)M(OR)] confirm that the M-O bond is strongly polar, to 

the point that they can be regarded as partially ionic.49 Based on 13C NMR data for the 

[(iPrPCP)M] moiety, we deduced that the s-donor capacity of the hydroxide and alkoxide groups 

is very similar, hence that the covalent bond energy is relatively independent of R and nearly 

the same for hydroxides and alkoxides. Thus, the effect of the R groups of alkoxides on the Kex 

values is mostly due to electrostatic effects. Whereas the attractive force between the cationic 

metal fragment and the small and electronegative hydroxide ligand is particularly strong, the 

effect of large, polarizable R groups is to disperse the negative electric charge concentrated on 

the oxygen atom, reducing the magnitude of electrostatic attraction. The consequence is that, 

being the M-OR bonds are destabilized by R to a larger extent than the H-OR bonds, the 

difference DDM-OR-DDH-OR is always positive (DGºex > 0), and the water / alcohol exchanges are 

shifted to the side of the hydroxide. The effect is larger for the R groups with a larger capacity 

to disperse the charge (e. g., the iPr). This concept provides a rationale to the experimental 

order of the hydroxide-alcohol exchange constants, and also explains the fact that the effect of 

the R groups is more marked for Ni than Pd. This can be attributed to the smaller size of the Ni, 

and its slightly more electropositive character as compared to Pd. 

 

Nucleophilicity and insertion chemistry. 

In addition to their characteristic basicity of hydroxides and alkoxide complexes, the strong 

polarization of the metal-oxygen bond induces a significant nucleophilicity that results in a rich 

chemical reactivity. The role of bond polarization is especially evident in the case of enolate 

complexes. These can exist as either C-bound and O-bound isomers, each of which should 

exhibit a characteristic reactivity. The C-enolate should behave as alkyl alkyl, and the O-enolate 

is a special type of alkoxide. The effect of the coordination mode would be noticed if the chemical 

reactivity of the isomers could be probed independently, but the difference is usually masked 

due to the facile C/O exchange. As mentioned before, we have studied a series of nickel 

metallacyclic O-enolates, 9, stabilized with the chelating diphosphine DiPPE. Nickel O-enolates 

are competent nucleophiles that selectively react with aldehydes, enones, or CO2.[34,53b,73] As 

shown in Scheme 18, the cyclic structure of the complex restricts C/O isomerization. This takes 

place only when 9 is heated in solution above 50 ºC, with the thermodynamic isomer ratio 

becoming frozen when the solutions are rapidly cooled to the room temperature. When an 

aldehyde is added to a mixture of the O- and C- enolates, only the O-enolate isomer reacts with 
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aldehydes, leaving the C-isomer unreacted.[34] Due to the charge delocalization on the enolate 

functionality, the attack takes place invariably at the remote and less hindered CH2 site. In 

general, the nucleophilic reactivity of this type of enolate complexes can be assimilated to that 

of a conventional carbon nucleophile, hence it shall not be discussed here in detail. An exception 

is the reaction of the enolates with carbon monoxide, as it does take place at the metal site. CO 

becomes incorporated in ester-type products, because insertion comes immediately followed by 

reductive ring closure, as shown in Scheme 18. 

 

Scheme 18. Differential reactivity of isomeric O- and C-bound enolates with aldehydes 
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energy barriers for CO insertion, either in the M-C or M-O bonds are significant only for Pt, and 

much lower for Pd and Ni. For Pt and Pd, CO insertion into the M-O bonds is both 

thermodynamically and kinetically favored over M-C, but tor Ni, the kinetic preference is 

reversed. However, the size of the energy barriers for Ni is so low that the kinetic control 

probably would be overridden by the thermodynamic preference, were the insertion product 

stable enough to be detected. The preference for the carbonylation of the alkoxide linkage arises 

largely from the formation of the particularly stable C(O)-OMe bond, that is largely independent 

of the metal. The strength of the ester-type C-O bonds is due to the interaction of the oxygen 

lone pairs with the empty p* orbital of CO. This interaction is already present in the transition 

state of the migratory insertion (Figure 2), where it contributes to lower the energy barrier in 

comparison to the M-C insertion, that lacks this stabilizing factor. Independently of the 

participation of the oxygen electron pairs, the carbonylation mechanisms of M-OR bonds in 

square-planar d8 metal complexes resembles the situation for similar alkyls, clearly favoring an 

associative pathway with a 5-coordinate carbonyl intermediate for Ni, and 4-coordinate 

intermediates for Pd and Pt.[80] Further DFT studies on more realistic 

[Ni(Me)(OR)(HN=CHCH=NH)] and [Pt(Me)(OR)(PH2CH2CH2PH2)] as models confirmed the 

main predictions from the above study and showed the influence of the O-R group on the 

thermodynamic balance of the reaction, the carbonylation of the M-O bonds becoming 

thermodynamically disfavored when OR is an aryloxide group.[81] 

 

 

Scheme 19. Experimental and theoretical preference for CO insertion in group 10 alkyl-alkoxo complexes 

 

Figure 2. Transition states for the migratory insertion of CO into M-OMe and M-Me bonds. 
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The widespread application of pincer ligands in the 1990's opened new opportunities in the 

study of the fundamental reactivity of Ni-OR and Pd-OR bonds. When we synthesized the first 

monomeric Ni and Pd hydroxides with the iPrPCP ligand (12a and 12b), we were eager to 

investigate their reactivity towards small unsaturated molecules that typically undergo insertion 

reactions, CO in particular (Scheme 20).[40] We found that both complexes react rapidly with 

bubbling CO at the room conditions, but only the Pd gave a straightforward result. The product 

was isolated and structurally characterized as the binuclear complex 25b, that contains two 

[(iPrPCP)Pd] units linked by a bridging -C(O)O- ligand (another way to see this ligand is as [CO2]2- 

a doubly reduced CO2 molecule). The formation of this product can be rationalized as the result 

of the insertion of CO into the M-OH bond to afford a hydroxycarbonyl (M-COOH) species, 26. 

The latter behaves as an acidic "metalacarboxylic" acid, and reacts with one equivalent of the 

starting hydroxide to yield the binuclear product. The nickel analog, 25a, was obtained by careful 

reaction of 12a with the precise stoichiometric amount of CO (i. e., 0.5 equiv) in hexane, from 

which it precipitates. It was found that a larger amount of CO causes it to decompose into a 

mixture of unidentified products. More recently, Lee[82] and Zargarian[83] have reported that 

similar reactions of pincer-Ni hydroxide or siloxide complexes with CO lead to mixtures. Coming 

back to the reaction of the Pd hydroxide 12b with CO, full carbonylation of the Pd-OH bonds is 

enforced under 3 bar of CO. When this is carried out in a thick-walled NMR tube, the 

hydroxycarbonyl complex 26b was formed and was spectroscopically characterized in situ. 

However, upon CO removal 26b reverts to the binuclear µ-CO2 species 25b, which implies the 

reversibility of CO insertion.  

 

 

Scheme 20. Carbonylation of hydroxide pincer complexes 12a and 12b. 
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complexes [(tBuPCP)PdOH] and [(tBuPOCsp3POP)NiOH], both containing bulkier pincer ligands 

with CH2P(tBu)2 side arms.[84] These hydroxides react with CO to yield hydroxycarbonyl 

complexes that show no tendency to revert to the corresponding CO2-bridged dimers. In 

contrast, [(tBuPCP)PdCOOH] releases CO2, affording the hydride [(tBuPCP)PdH]. If the reaction 

is carried out in a closed container, CO2 can undergo “normal” insertion into the Pd-H bond 

resulting in overall isomerization of hydroxycarbonyl to formiate [(tBuPCP)PdOC(O)H]. CO2 

extrusion is the usual decomposition pathway for metal hydroxycarbonyl species, and a critical 

step in the catalytic cycle of the water gas shift reaction (WGS).[85]  

Likely, the different behavior of the iPrPCP and tBuPCP system originate from the large steric 

hindrance of the latter, that prevents the coupling of two pincer units into a CO2-bridged binuclear 

complex on the type 25. The dimer was not formed even when the hydroxycarbonyl 

[(tBuPCP)PdCOOH] was deliberately confronted with the hydroxide [(tBuPCP)Pd-OH]. 

Noteworthy, Y. Lee has reported an example of one such “neutralization” reaction with Ni, using 

an anionic PNP pincer system.[82] This author reported that an hydroxycarbonyl complex, 

[(PNP)Ni-COOH], is formed in the carbonylation of the corresponding hydroxide [(PNP)Ni-OH]. 

The [(PNP)Ni-COOH] complex proves acidic enough to be deprotonated with NaN(TMS)2, and 

also reacts with one extra equivalent of the hydroxide to afford the correspondig [{(PNP)Ni}2-µ-

CO2] species. Later, Lee reported that a Ni(I) pincer species [(acriPNP)Ni·] containing a modified 

PNP pincer reacts directly with CO2 to afford the corresponding CO2-bridged binuclear 

complex.[86] The reductive pathway to Ni2-µ-CO2 complexes, combined with the above-

mentioned reversibility of CO insertion, points at the potential application of Ni pincer hydroxides 

for the reduction of CO2 to CO, reverting the WGS reaction. Reverse WGS is a critical step for 

using CO2 as a renewable carbon feedstock for clean fuel production.[87] It is worth mentioning 

that this route for CO2 reduction and fixation is effectively carried out in anaerobic bacteria by a 

nickel-containing enzyme carbon monoxide deshydrogenase (CODH) [88] Remarkably, the active 

center of CODH bears a bimetallic Ni/Fe cluster where CO2 is initially trapped as a bimetallic µ-

CO2 complex (Figure 3).[89] During the last decade, intensive efforts have been devoted to 

explore molecular catalysts for efficient electrocatalytic reduction of CO2 based on Ni and Pd 

complexes with polydentate ligands.[90] 

 

Figure 3. CO2 binding to the active center of the carbon monoxide deshydrogenase (CODH). 
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The insertion of CO2 into M-C and M-heteroatom bonds has also been the subject of much 

research.[91] Specifically, CO2 insertion into M-O bonds is relevant to the direct synthesis of 

organic carbonates and polycarbonates from CO2,[74,92] and is also of great biological 

significance, for example in the enzyme carbonic anhydrase.[93] Early work on the carboxylation 

reactions of 18-e carbonylmetal alkoxides of the groups 6 and 7 (e. g. [W(CO)5OPh]- or fac-

[Re(CO)3(BIPY)(OR)]) showed that CO2 insertion is faster than carbonyl dissociation. Hence, it 

does not require the generation of a coordination vacancy, in contrast with the migratory 

insertion route preferred by CO. The commonly accepted view of the mechanism CO2 receives 

the attack of the lone electron pair of the metal-bonded oxygen. The rearrangement of the initial 

product to the final insertion product involves a shift metal fragment to one of the terminal oxygen 

atoms, as shown in Scheme 21.  

 

Scheme 21. Non-migratory CO2 insertion mechanism by direct attack on an alkoxide ligand 
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case of Pd is incomplete. A partial decarboxylation reaction from bicarbonate to carbonate was 

observed for a similar hydroxide with M = Pd and the hybrid pincer ligand tBuPCO, that contains 

CH2P(tBu)2 and CH2OMe donor fragments.[97] 

 

Scheme 22. Carboxylation of Ni and Pd hydroxide complexes with PCP pincer scaffolds. 
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products were only obtained in the two latter cases. In contrast, the analogous chemistry with 

the related amide [Ni(NC4H8)(Me)( DiPPE)] led to the expected insertion products with all three 

reagents.[53b] The availability of Ni and Pd pincer alkoxides [(iPrPCP)M-OR] furnished an excellent 

opportunity to explore the reactivity of these compounds with CO2.[98] Bubbling CO2 in solutions 

of the alkoxides in C6D6 immediately causes quantitative conversion to the corresponding 

alkylcarbonate products [(iPrPCP)M-OCOOR]. However, attempts to isolate the products by 

solvent evaporation led to contamination with variable amounts of the carbonates 28 (Scheme 

23). The reason is the reversible exchange of the alkylcarbonate functionality with traces of 

water, to afford the corresponding bicarbonates. Upon evaporation, volatile components in the 

mixture (CO2 and alcohol) are lost, causing the irreversible formation of the Ni or Pd carbonates. 

The process can be reverted, since both 28a and 28b react readily with alcohols. However, the 

thermodynamic balance for the insertion of CO2 into the M-OR bond is so favorable that the 

alkoxides cannot be regenerated from the alkylcarbonates by CO2 removal under vacuum. 

Therefore, the ease of this hydrolytic decarboxylation is due to the kinetic lability of the M-

OCOOR linkage, and is driven by the removal of volatiles under vacuum. In addition, the inserted 

CO2 molecule is readily exchanged with isotopically labelled 13CO2 or other unsaturated 

molecules, e. g. phenyl isocyanate, to yield a carbamate derivative (Scheme 24). Darensbourg 

has reported a similar reaction of the manganese methoxycarbonyl [Mn(OCOOMe)(CO)3(dppe)] 

with SCO to afford the [Mn(SCOOMe)(CO)3(dppe)].[99]   

 

 

Scheme 23. Carboxylation and reversible hydrolysis of iPrPCP-based alkoxides of Ni and Pd. 
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The lability of the alkoxycarbonates seems to be characteristic of the iPrPCP systems.[100] 

This feature prompted us to probe the relative stability of the bicarbonate and alkylcarbonate 

complexes, measuring the equilibrium constants for the reaction of the bicarbonate complexes 

with different alcohols, K’ex (Scheme 25). Not surprisingly, the K’ex values are close to unit, 

because the far-removed R group has little effect on the thermodynamic stability of the complex. 

Notice that, as shown in Scheme 25, the K’ex constants can be composed with those of the 

above-discussed hydroxide-alcohol exchange (Kex, see also Scheme 17) to compute the 

constants Keq. These constants describe a hypothetical CO2 redistribution equilibria involving 

bicarbonates and alkylcarbonates. Keq measures the relative tendency of CO2 to insert into a 

given M-OR bond, with regard to the same process in the M-OH bond. These are always 

significantly higher than unit, indicating that CO2 insertion is invariably more favorable for the M-

OR bond than the M-OH. This reflects the fact that the stronger bond is usually the least reactive. 

The differences are more acute for the Ni than the Pd compounds, as expected for the stronger 

electrostatic effects associated to the shorter Ni-O bonds. Consistent with these data, we 

observed that alkylcarbonate species [(iPrPCP)M-OCOOR] are formed preferentially over the 

bicarbonates. The preference is so high that, in the presence of alcohol, the hydroxides react 

with CO2 to give directly the alkylcarbonates, rather than bicarbonates. This circumstance is 

fortunate for the design of processes aimed at the incorporation of CO2 in carbonate-type 

products.[98] 

 

Scheme 25. Use of reversible water-alcohol exchange to probe the thermodynamics of CO2 into different M-OR 

bonds. 
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in the reactivity of M-C bonds are much less common. Only substrates with exceptional binding 

capacity like CO can override the natural tendency of the alkoxide to fill up any coordination 

vacancy by electron pair donation. However, the adequate selection of ancillary ligands may 

overcome this situation, and some fascinating examples of migratory insertions of olefins into 

M-N and M-O bonds have been reported.[102] On the other hand, the nucleophilic reactivity of 

covalently bond M-O ligands is not limited to insertion reactions. Electrophilic M-OR bond 

cleavage is a very common reaction for metal alkoxides. In addition to cleavage by protic acids 

(already discussed as a acid-base reaction), these include a number of potentially useful 

reactions with a variety of electrophiles. Alkylation with alkyl halides and sulfonates has received 

relatively little attention. We recently showed that nickel and palladium alkylcarbonates 

[(iPrPCP)MOCOOR] do react with methyl iodide or methyl triflate to afford the corresponding 

carbonates, MeOCOOR, and the corresponding iodide or triflate complex as byproducts.[98] The 

reaction is efficient for Pd and sluggish fo Ni, which affords lower yields of the organic carbonate, 

illustrating the higher nucleophilicity of the former. A similar reaction with Zn methylcarbonates 

was reported by Vahrenkamp to afford mainly dimethylether, after CO2 extrusion.[103] In addition, 

Ni and Pd alkoxides do react with silanes to afford hydrides, a reaction that very likely involve 

nucleophilic attack of the alkoxide on silicon. A well-characterized example of this type of 

reaction, used as a preparative method for the syntheses of hydrides,[54] is shown in Scheme 

26. This process constitutes an important step in catalytic hydrosilylation of carbonyl 

compounds.[48a,104] Zargarian has explored similar reactions of nickel siloxide complexes with 

silanes. These may entail not only the metal-siloxide linkage, but can also MO-SiR3 bonds.[105] 

Nucleophilic attack of reactive palladium or nickel hydroxide species on organoboron reagents 

is involved in the key transmetallation step that takes place in the Suzuki-Miyaura reaction.[13,14] 

 

 

Scheme 26. M-OMe bond cleavage by silanes to yield hydride complex and siloxide. 
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tailored to harness their reactivity, in a way somehow reminiscent of enzymes. However, an 

important advantage of small rigid ligands is their relative simplicity, accessible to detailed 

mechanistic and theoretical investigation. Research in this direction has highlighted the 

similarities and differences between discrete alkoxides and alkyls. Perhaps one of the most 

salient developments is the elucidation of the roles of thermodynamic and kinetic control on the 

chemical reactivity of alkoxides. Contrary to some early ideas that invoked HSAB theory 

concepts or repulsive nonbonding interactions between p-d filled orbitals, neither the available 

experimental evidence and computational analysis support the concept that late transition metal-

oxygen bonds are weak.  

Much of the high reactivity that in practice characterizes late transition metal alkoxides has 

a kinetic origin. The presence of reactive lone electron pairs localized directly on the metal-

bonded oxygen atom provide a highly reactive basic/nucleophile site that can be readily attacked 

by acids and electrophiles. An example is the extremely facile exchange with weak acids like 

water, which is the cause of the high hydrolytic sensitivity of Ni and Pd alkoxides. DFT 

calculatons have also demonstrated that these lone electron pairs assist migratory insertion of 

CO, and promote the insertion of CO2 by directly donating into the empty p* orbital of the 

electrophilic molecule before it interacts with the metal center.  

It is remarkable that quantitative measurements show that Ni complexes are 

thermodynamically more prone to hydrolysis than their Pd congeners, despite the nucleophilicity 

and lower thermal stability of the latter. This difference is a consequence of the highly polar 

nature of the M-O bonds. The ionic stabilization forces are stronger for Ni but, at the same time, 

this implies a larger bias in favor of hydroxides over alkoxides. Such polarity effects also control 

the selectivity other reactions under thermodynamic control, like CO2 insertion, appreciably more 

favorable for the M-OR than for the M-OH bond. An interesting consequence of this is that, 

whereas the M-OR complexes are very prone to hydrolysis, the trend is reverted in the presence 

of CO2 and alkylcarbonates M-OCOOR become preferred over bicarbonates M-OCOOH.  

 Despite the progress in the understanding of the reactivity of late transition metal alkoxides 

and related complexes, there is much to be said still on the reactivity of the organometallic-like 

reactivity of metal-element bond. Thus, it is not clear yet to which extent the active role of the 

heteroatom lone electron pairs could be enhanced by their repulsive, nonbonding interactions 

with the filled d orbitals in the metal. Although such interactions play a quantitatively minor role 

on the stability of the M-O bonds, they certainly exist and manifest in spectroscopic and 

structural effects. Destabilization of the oxygen lone pairs may have a role increasing their 

nucleophilicity. Furthermore, it is uncertain whether the lower M-O bond strength predicted by 

DFT calculations for Pd as compared to Ni, has to do only with the decreased contribution of 



 33 

ionic bonding, or there is also a reduction in the covalent contribution, as predicted by the HSAB 

theory.  

As mentioned in the Introduction, the combination of "organometallic-like" reactivity with 

exceptional basicity and nucleophilicty makes the chemistry of well-defined, discrete alkoxides 

of the late transition metals a fascinating subject. To this it should be added that the alcohols, 

phenols and their derivatives compounds are one of the most abundant substances in natural 

resources and their transformation is one of the keys in Organic Synthesis. There are many 

applications of palladium catalysts for the transformation of functional groups carbon-

heteroatom coupling (e. g., Buchwald-Hartwig amination, and its etherification counterpart) or 

alcohol oxidation that rely on the properties of Pd-heteroatom bonds. Extending some of with 

applications to Ni catalysts, or other first-row, non-precious metals will augment the versatility of 

the available reactions and contribute to reduce the costs associated with the use of scarce and 

essentially non-renewable metals.  
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