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Abstract: Marinas are a gateway for the introduction and establishment of non-indigenous species
(NIS). In these habitats, competition and predation are crucial determinants for NIS establishment
and invasiveness. However, fish trophic preferences and biotic effects inside marinas are poorly
known. This study proposes a novel method that combines the deployment of settlement plates to
recruit different assemblages, followed by their use as bait in remote underwater video systems. This
combined approach, addressed as a remote video foraging system (RVFS), can record fish foraging
behaviour, including feeding choices and their impacts on fouling assemblage composition. An
experimental RVFS trial carried out in a marina of Madeira Island, Portugal (NE Atlantic), identified
the Mediterranean parrotfish, Sparisoma cretense, as the most important fouling grazer in the area.
S. cretense behaved as a generalist and increased the heterogeneity of fouling assemblages, which
can hamper NIS dominance of the fouling and reduce the pressure of propagules from the marina
to the natural environment. The RVFS tool was useful to understand the trophic links between
foragers and fouling and has the potential to provide relevant information for the management of
NIS introductions, establishment and spread.

Keywords: marina; trophic interactions; cascade effect; biotic resistance; RVFS

1. Introduction

The relocation of marine species outside their historical distribution has increased
significantly in recent decades [1–4]. When non-indigenous species (NIS) find favourable
conditions in their introduced ranges, they may become invasive. Invasive NIS can promote
biotope changes, habitat modifications and loss of ecosystem services, leading to severe
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environmental, socioeconomic and human health impacts [2,5]. With a growing number
of examples around the globe, marine invasions are currently one of the main drivers
of biodiversity loss and an important element of global change [6–9]. In this context,
understanding the factors underpinning NIS proliferation and success is an important issue
for conservation and mitigation of global change.

The proliferation of NIS is often shaped by a complex interaction of compounding
factors such as climate change, environmental pollution, local community resilience and
habitat degradation [10,11]. Although it is difficult to predict whether a NIS will succeed in
a given environment, there are many hypotheses designed to explain invasion success (see
Catford et al. [12]). For instance, some particular biological and ecological traits are shared
by many invasive species [13]. Invasive species tend to have faster reproductive and growth
rates and higher tolerances to extreme environmental conditions than native species [14].
Invasive species also often have traits that favour competition against native species and/or
provide enhanced defences against predators, i.e., [11,12,15,16]. Some NIS with invasive
traits have allelochemical defences such as toxins and non-palatable compounds that grant
them a repulsive smell or taste [17–19], often granting them ecological advantages towards
native taxa. In such cases, native consumers (predators and grazers) often reject feeding
on NIS and selectively target a native-based diet. This behaviour can facilitate the pro-
liferation and spread of NIS [20–23]. In contrast, local consumers that feed on NIS can
control NIS dominance through trophic interactions, exerting a top-down control over
potential invaders [24–27]. In this context, consumer–prey interactions can be particularly
relevant, as predators may either facilitate or hamper a newly arrived NIS from successfully
establishing and/or invading a new region by limiting its ability to spread from a site
where it is already established [28–30]. As such, understanding whether local consumers
exhibit selective or generalist feeding behaviours that favour or deter NIS dominance
may represent a crucial mechanism and an essential piece of the puzzle when assessing
resistance and susceptibility of local communities to biological invasions. Moreover, the
presence of benthic NIS in the ecosystem can also alter the feeding preferences and foraging
intensity of invertebrates and fishes [31]. Therefore, further research on trophic interac-
tions between native and NIS communities and their biotic functional response to current
and future climate scenarios is necessary to formulate an effective management strategy
against NIS [32–35].

Efforts to better understand trophic interactions between local consumers and NIS
communities in shallow coastal areas have primarily relied on indirect methods, such
as exclusion experiments, to assess the influence of predators and grazers in shaping
communities [36]. These studies manipulate consumer densities among treatments by
caging and assessing the effect of predation pressure as a top-down control mechanism
for NIS success. This approach does not inform which species are feeding on what, nor
does it allow the selective exclusion of predator species to assert the ecological importance
of a particular taxon [36]. In this regard, video surveillance methods may be a promising
tool for studying trophic interactions in the marine environment, allowing researchers to
identify predators and grazers, as well as foraging behaviours and prey selectivity [37].
Among video techniques, the use of baited remote underwater video (BRUV) to attract and
quantify various motile taxa could be a powerful tool to study these interactions [38,39].
Oricchio et al. [40] provided an example of how this approach could be used to assess
trophic interactions between fish and fouling recruited on caged polyvinyl chloride (PVC)
panels. This method allowed identifying main predator species and which fouling species
were targeted. Here, we advance this research approach one step further by combining
the two methods and use video and imagery analysis for a more detailed assessment of
prey–predator interactions. Specifically, we propose to assess how predator exclusion
shapes different fouling assemblages (i.e., higher native vs. higher NIS “content”) and offer
them as bait on a video setup so that one can inspect the imagery and the plates to identify
predators/grazers, study feeding choices and assess the effects of existing preferences on
the fouling community structure, diversity and abundances.
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Marinas and harbours are considered as hubs for enhanced NIS recruitment, as they
are under greater pressure from maritime traffic and human activities than other natural
and artificial coastlines [41–43]. These can serve as stepping stones for NIS introduction
into local natural habitats since they serve as a refuge for arriving NIS [14,44,45]. It is
often in these areas that newly arrived NIS pass through several ecological filters such as
prevailing temperature and salinity, pollutants in the water, and pressure from predators
or grazers, before taking hold, establishing and being able to disperse to natural habitats
in the vicinity [14,46]. With higher NIS diversity and abundance and with the facilitated
access, marinas and harbours are often considered as the ground zero for marine biological
invasions, where monitoring and early detection is likely to be essential for prevention
practices, mitigation activities and adequate NIS management.

In this context, the overall goal of this study is to (1) design, develop and test a
combined method that leverages recruitment panels and a remote video foraging system
(RVFS), custom designed to study trophic choices of foragers and their effects on fouling
assemblages present in marinas and/or harbours; (2) provide guidelines for integrating
the use of recruitment panels, RVFS and imagery analysis as a monitoring tool in marinas,
and; (3) evaluate the success of RVFS as a tool to detect potential fish consumers that may
provide biotic resistance against NIS in the marinas of Madeira.

2. Materials and Methods
2.1. Remote Video Foraging System

We designed and built a custom made remote video foraging system (RVFS), a non-
invasive system that avoids any contact or manipulation of the fish, complying with
general bioethics in research and with the European Community Council Directive (Di-
rective 2010/63/EU) on the protection of animals used for scientific purposes. The RVFS
comes up as a combination of techniques used to study trophic interactions inside marinas:
exclusion experiments (Figure 1A) and video experiments (Figure 1B). Exclusion experi-
ments have been used worldwide to investigate the trophic effect of foragers on the fouling
composition [36,47,48]. Video experiments can identify foraging species and their trophic
choices [37,40]. To this matter, the proposed RVFS would help to investigate trophic choices
of the fish foragers among fouling assemblages differing in variables such as fouling species
composition and NIS dominance (Figure 1C). The different assemblages offered to the fish
can be obtained by deploying plates in different environments or under different predation
pressure. Then, plates will be used as bait units to perform the RVFS trials by offering
all assemblages in a randomised blocks arrangement using a PVC structure with top and
frontal cameras. The RVFS was tested in this pilot study in order to assess its applications
and outline guidelines for its use in NIS monitoring and studies.

2.2. Pilot Study
2.2.1. Experimental Setup

This pilot study was carried out in the marina of Quinta do Lorde (32◦44.5′ N, 016◦42.8′ W),
in Madeira Island, Portugal (Figure 2A), where the most common fish species present inside
the marina had been previously catalogued based on sightings during underwater surveys
(Table S1). Fouling assemblages used as bait units were recruited by haphazardly deploying
12 settlement plates [49], consisting of polyvinyl chloride (PVC) panels of 14 × 14 cm,
grouped in three treatments. These were chosen to manipulate predator pressure and
create artefact effects, which would provide three different assemblages. Treatments were:
uncaged (T1), caged with 15 mm mesh (T2), and caged with 1 mm mesh (T3) (Figure 2B).
Caged with 15 mm mesh was aimed to avoid predation, taking into account that meshes as
small as 5 mm did not cause artefact effects in Madeira (see Gestoso et al. [48]), whereas
caging with smaller mesh sizes (1 mm mesh) is expected to avoid predation and create an
artefact effect that alters the structure of the assemblages [47]. Settlement plates were hung
from the marina’s pontoons at 1 m depth and facing downwards from May to September
2018. After five months, plates were retrieved, photographed using an Olympus TG4
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camera, and checked under a binocular microscope (LEICA S8 APO, Portugal) for detailed
identification of the fouling community to produce a taxa inventory. Settlement plates
were also weighed individually using a scale (KERN KB 2000-2N, Portugal) (resolution
of 0.01 g) after holding them for 30 s in a vertical orientation to allow water to drain. To
ensure non-destructive sampling and no loss of live coverage and biomass, the plates were
kept separated from each other in tanks and submerged in seawater for less than two hours
during this inspection and photo capture period.
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Figure 1. Traditional approaches used to study trophic effects and interactions between fouling and
foragers inside marinas (A,B) and the proposed combined method (C). (A) Exclusion experiments
study the recruitment and colonisation of settlement plates by fouling assemblages under a caging
(predators exclusion) treatment against a procedural control (Ctrl 1), testing possible artefacts caused
by the exclusion method (mesh used for caging), and uncaged plates (Ctrl 2). (B) Video experiments
record fish trophic interactions with fouling species recruited on plates (e.g., caged settlement plates]).
(C) Remote video foraging system (RVFS) technique developed and tested in this study is baited with
different fouling assemblages (C.1 and C.2) recruited on settlement plates (e.g., caged and uncaged).

For RVFS trials, one randomly selected plate from each treatment (T1, T2 and T3)
was offered as bait in a randomised block arrangement. A total of four RVFS trials, of
4 h each, were carried out using a custom-built structure with two Olympus TG-tracker
cameras, suspended at 2 m depth from the marina pontoons (see Figure 2B). Cameras were
synced and set up in time-lapse mode with 2 s intervals (0.5 frames per second). After
each trial, the structure was retrieved, the plates detached, and these were re-weighted and
re-photographed for analysis (see the conceptual design of the experiment in Figure 1C).
Our RVFS trials were carried out in late September 2018 over a 2-day period, with one trial
in the morning and one in the early afternoon. RVFS deployment was at the same location



J. Mar. Sci. Eng. 2022, 10, 611 5 of 15

where water temperature (measured every 4 h using a HOBO temperature data logger)
ranged between 23.5 ◦C and 24.0 ◦C during the trial period.
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Figure 2. Pilot study experimental setup. (A) The study was conducted in Marina of Quinta do Lorde,
Madeira Island, Portugal. (B) The fouling assemblages used as bait were obtained using caging
treatments (T1: uncaged, T2: caged 15 mm mesh, and T3: caged 1 mm mesh) and were exposed
to foraging in a randomised blocks arrangement on a PVC structure with top and frontal cameras.
(C) Structure used for the remote video foraging system (RVFS) (top) and an image taken from the
frontal camera during trials (bottom).

2.2.2. Data Acquisition and Treatment

Images of the settlement plates before and after RVFS trials were labelled, colour lens
corrected, perspective cropped and resized. Using CPCe V4.1 software (Coral Point Count
with Excel extensions, Nova southeastern University, Florida, USA [50]), 99 points were
randomly overlaid in a stratified fashion over a 3 × 3 cell grid (11 points per cell) over each
image to quantify taxa relative abundance before and after exposure to predation during
video trials. The same 99 hit-point grid was also used to assess which taxonomic categories
had been removed from each plate. Point coordinates were maintained by using the same
*.cpce file on the cropped and resized images of each plate (prior and after exposure). Image
files of the same plate (prior and after exposure) were renamed to match during analysis on
CPCe. This strategy allows the same hit points to be sampled before and after exposing the
plates to predation in a repeated-measurement sampling strategy. The identified fouling
species were classified by major taxa, morphology (encrusting, massive and arborescent)
and status (native, cryptogenic and NIS). Species status was assigned based on the existing
literature [44,51–67].

The video files obtained during RVFS were visually inspected frame by frame, and
the following fish behaviours were annotated by scan sampling [68]: forager presence,
forager interest and forager feeding. Forager presence was defined as the occurrence of a
fish species within the frontal camera frame range (see Figure 2C). The image frames from
the top and frontal cameras were used for recording interest and bites. Forager interest was
defined as the percentage of present individuals displaying a curiosity action towards one
of the three offered plates (e.g., swimming towards or stopping less than 5 cm from the
plate and facing its surface). Forager feeding was defined as the number of bites over each
offered plate.
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2.2.3. Statistical Analyses

For multivariate analyses, fouling species relative abundance data were square-root
transformed and used to calculate a Bray–Curtis similarity matrix (Bray and Curtis, 1957).
This matrix was used to test the orthogonal factors: treatment (fixed with three levels: T1
uncaged, T2 caged with 15 mm mesh and T3 caged with 1 mm mesh); and time (fixed
with two levels: before and after predation) using permutational multivariate analysis of
variance (PERMANOVA). The heterogeneity of multivariate dispersions was tested using
permutational analysis of multivariate dispersions (PERMDISP).

Univariate analyses were carried out on fouling assemblage biomass (wet weight),
total biotic abundance, native species’ relative abundance and NIS relative abundance.
These datasets were used to calculate Euclidean distance matrices and tested using the
same design as multivariate analyses. Data on fish interest towards plates and num-
ber of bites (feeding) from RVFS trials were used to calculate Euclidean distance ma-
trices. These were tested using PERMANOVA on a randomised block design; for de-
tails, see Anderson et al. [69] (p. 58), including on factors’ treatment (fixed, three lev-
els) and trials (random, four levels). All non-parametric data analyses were carried out
with 9999 permutations using PRIMER v7 with PERMANOVA+ add-on (PRIMER-E Ltd.,
Plymouth, UK) [69,70].

3. Results

The Mediterranean parrotfish Sparisoma cretense (Linnaeus, 1758) was almost the only
species foraging on the settlement plates during the 16 h of remote video foraging system
(RVFS) trials. This species was registered showing interest 1829 times and feeding on the
settlement plates 421 times. The only exception to this occurred when a Mugilidae school
approached showing interest and fed once from the settlement plates. Overall, fish foragers’
interest and feeding on plates were similar across RVFS trials (Table 1). Among treatments,
foragers showed a higher interest in uncaged and caged 15 mm over caged 1 mm, although
feeding was similar among treatments.

Table 1. PERMANOVA results on foragers’ interest and feeding over settlement plates during
remote video foraging system (RVFS) trials. df = degrees of freedom; MS = mean square sum;
P (Perm) = p-values for permutation test; Tr = Treatment, 3 levels: uncaged (T1), caged 15 mm mesh
(T2) and caged 1 mm mesh (T3); Trial = random: four levels.

Foragers Interest Foragers Feeding

Source df MS Pseudo-F P (Perm) MS Pseudo-F P (Perm)

Treatment 2 826.48 70.8584 0.0172 * 541.58 2.8368 0.1381
Trials 3 155.17 10.4754 0.3144 408.75 2.141 0.1962

Residuals 6 105.17 190.92
Pair-wise (T1 = T2) > T3

* Statistically significant result.

Regarding the fouling community on the settlement plates, twenty-seven taxa were
recorded: six native species, eight cryptogenic species, nine NIS and three taxa unidentified
to species level (see Table S2). Annelida and Bryozoa were the most abundant phyla,
while the most abundant morphologies were massive and arborescent (Figure 3). Overall,
the structure of fouling assemblages was unique for each treatment, which confirms that
different choices of fouling were offered to the fish during RVFS trials (Figures 4 and S2).

The foraging activity of Sparisoma cretense reduced mean fouling biomass by more
than 10% and its relative abundance by more than 40% (see Figure S2). Wet biomass among
treatments was different before but equal after RVFS, while relative abundance was similar
among treatments before and after RVFS (see Table 2). Similarly, the relative abundance of
NIS and native species decreased after RVFS (Figure S1; Table S3). However, native species
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were more abundant at the uncaged treatment (T1) before and equal to the other treatments
after RVFS, while NIS abundances were similar among treatments before and after RVFS.

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 7 of 16 
 

 

* Statistically significant result. 

Regarding the fouling community on the settlement plates, twenty-seven taxa were 

recorded: six native species, eight cryptogenic species, nine NIS and three taxa unidentified 

to species level (see Table S2). Annelida and Bryozoa were the most abundant phyla, while 

the most abundant morphologies were massive and arborescent (Figure 3). Overall, the 

structure of fouling assemblages was unique for each treatment, which confirms that differ-

ent choices of fouling were offered to the fish during RVFS trials (Figure 4; Figure S2). 

 

Figure 3. Mean relative abundance over settlement plates before and after remote video foraging sys-

tem (RVFS) trials, biogeographic status and functional morphologies for the main phyla. Other in-

cludes taxonomic categories with a relative abundance lower than 5% (Porifera, Arthropoda and 

Macroalgae). Unknown includes taxa that could not be identified to the species level (uncertain bio-

graphic status). Massive: domed or flat-topped shape; Encrusting: encrusting plate-like shape; Arbo-

rescent: erect branching shape. 

The foraging activity of Sparisoma cretense reduced mean fouling biomass by more than 

10% and its relative abundance by more than 40% (see Figure S2). Wet biomass among treat-

ments was different before but equal after RVFS, while relative abundance was similar 

among treatments before and after RVFS (see Table 2). Similarly, the relative abundance of 

NIS and native species decreased after RVFS (Figure S1; Table S3). However, native species 

were more abundant at the uncaged treatment (T1) before and equal to the other treatments 

after RVFS, while NIS abundances were similar among treatments before and after RVFS. 

Table 2. PERMANOVA results for the relative abundance and wet biomass. Tr = Treatment, 3 levels: 

uncaged (T1), caged 15mm mesh (T2) and caged 1mm mesh (T3); Ti = Time, 2 levels: before and 

after remote video foraging system (RVFS) trials. df = degrees of freedom; MS = mean square sum; 

P(Perm) =p-values for permutation test. 

  Relative Abundance Wet Biomass 

Source df MS Pseudo-F P(perm) MS Pseudo-F P(perm) 

Treatment 2 180.54 0.4924 0.6376 1.7689 7.4793 0.0059* 

Time 1 22083 60.23 0.0001* 23.764 100.48 0.0001* 

Tr × Ti 2 351.04 0.9575 0.419 1.9138 8.092 0.0032* 

Residuals 18 366.64   0.2365                  

Pair-wise  Before > After 
Before: T2 > (T1 = T3) 

After: T1 = T2 = T3 

Figure 3. Mean relative abundance over settlement plates before and after remote video foraging
system (RVFS) trials, biogeographic status and functional morphologies for the main phyla. Other
includes taxonomic categories with a relative abundance lower than 5% (Porifera, Arthropoda and
Macroalgae). Unknown includes taxa that could not be identified to the species level (uncertain
biographic status). Massive: domed or flat-topped shape; Encrusting: encrusting plate-like shape;
Arborescent: erect branching shape.
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Figure 4. A principal coordinates ordination (PCO) for an exploratory tool of the structure of the
assemblages (taxa relative abundance) to understand the components of multivariate variation. The
PCO displays 49.1% of variation and, using the blue vectors, those variables with a mean relative
abundance higher than 10% before remote video foraging system (RVFS) trials and Pearson correlation
coefficient (Pr) higher than 0.7 with any of the ordination axes. Vector’s length indicates the Pr value,
with the maximum value (Pr = 1) highlighted by blue circumference. T1 = uncaged, T2 = caged
15 mm mesh and T3 = caged 1 mm mesh.
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Table 2. PERMANOVA results for the relative abundance and wet biomass. Tr = Treatment, 3 levels:
uncaged (T1), caged 15 mm mesh (T2) and caged 1 mm mesh (T3); Ti = Time, 2 levels: before and
after remote video foraging system (RVFS) trials. df = degrees of freedom; MS = mean square sum;
P (Perm) = p-values for permutation test.

Relative Abundance Wet Biomass

Source df MS Pseudo-F P (Perm) MS Pseudo-F P (Perm)

Treatment 2 180.54 0.4924 0.6376 1.7689 7.4793 0.0059 *
Time 1 22083 60.23 0.0001 * 23.764 100.48 0.0001 *

Tr × Ti 2 351.04 0.9575 0.419 1.9138 8.092 0.0032 *
Residuals 18 366.64 0.2365

Pair-wise Before > After Before: T2 > (T1 = T3)
After: T1 = T2 = T3

* Statistically significant result.

Foraging activity modified the structure of the fouling assemblages, although with-
out having a homogenising effect across treatments at the level of species composition
(Figure 4, Table 3), major taxa or morphologies (Figure 3). However, in terms of multivariate
dispersions, the heterogeneity of the assemblages increased after RVFS, particularly for
the treatment caged with 15 mm mesh (Figure 4, Table 3). Overall, the variables with
a higher contribution to the multivariate dissimilarities were: the cryptogenic bryozoan
Cradoscrupocellaria bertholletii (Audouin, 1826), the NIS bryozoan Parasmittina alba Ramalho,
Muricy and Taylor, 2011, and the native annelid Spirobranchus triqueter (Linnaeus, 1758).
These species had 24.9%, 10.8% and 10.2% mean relative abundance before RVFS trials,
respectively (see Table S2).

Table 3. Results for the multivariate PERMANOVA and PERMDISP on fouling assemblage structure.
Tr = Treatment, 3 levels: uncaged (T1), caged 15 mm (T2) and caged 1 mm (T3); Ti = Time, 2 levels:
before and after. df = degrees of freedom; MS = mean square sum; P (Perm) = p-values for permutation
test; Tr = Treatment, 3 levels: uncaged (T1), caged 15 mm mesh (T2) and caged 1 mm mesh (T3);
Ti = Time, 2 levels: before and after RVFS trials; res. df = residual degrees of freedom for the
PERMDISP test.

PERMANOVA PERMDISP

Source df MS Pseudo-F P (Perm) df res. df F P (Perm)

Treatment 2 4224.8 3.3431 0.0007 * 2 21 1.555 0.4229
Time 1 7617.8 6.028 0.0001 * 1 22 19.836 0.0002 *

Tr × Ti 2 1219.8 0.9652 0.4983 2 18 24.108 0.0001 *
Residuals 18 1263.7 18

Pair-wise Treatment: T1 6= T2 6= T3 Before: (T1 = T3) > T2
After: T1 = T2 = T3

* Statistically significant result.

4. Discussion

The integration of novel technological tools in ecological studies is paramount for
enhancing current capability in collecting and processing qualitative and quantitative data
needed to increase the understanding of marine systems [71]. This is the case when integrat-
ing underwater video technology and imagery analysis tools in trophic and behavioural
studies. Regarding this matter, the use of a remote video foraging system (RVFS) in a new
enhanced method developed for this study allowed us to record fish foragers’ feeding
choices and gather knowledge on their effect on non-indigenous species (NIS) establish-
ment and proliferation inside marinas [72]. Furthermore, the RVFS allowed us to study
foragers’ preference between and within different fouling assemblage structures that can
be manipulated and pre-selected. This could be relevant, as fish can visually identify and
memorise different patterns in fouling and express interest towards a whole assemblage
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structure (food patches) rather than a single species [73]. The data output of RVFS can be
further enhanced by integrating other tools such as macro photography (i.e., high-resolution
photomosaics), machine learning (e.g., automated species abundance/biomass estimation
in plates, foraging behaviour and species identification in videos), environmental DNA
(for plate species composition) and stable isotope analysis (e.g., to validate trophic links)
(Figure 5). Additionally, the collection of samples of tissue and stomach content from
identified foragers could also help to better understand their feeding behaviour and the
effect of the inclusion of NIS in their diets [73]. Even though it was not the case during this
pilot study, this may be of particular interest if NIS present in the study area have allelo-
chemical defences (e.g., Caulerpa spp. Algae) which can promote adverse effects in native
foragers’ health, fitness and behaviour, as well as the accumulation of toxic compounds
in their tissues, which can ultimately pose risks to human health [74–76]. Regarding data
workflow, RVFS outputs can be analysed in multiple ways. For example, cluster analysis
and discriminant methods such as SIMPROF can assign fouling assemblages into different
groups post-settlement, before their deployment as bait. Before and after foraging, univari-
ate measures (e.g., total abundance or biomass, diversity index, behavioural metrics) can be
analysed using repeated measures ANOVA or t-tests (or their non-parametric alternatives),
while the multivariate species composition of fouling assemblages can follow a similar
approach to what was used in this pilot study (Figure 5).

J. Mar. Sci. Eng. 2022, 10, x FOR PEER REVIEW 10 of 16 
 

 

S. cretense in the marina of Quinta do Lorde during RVFS trials matches this pattern and 

corroborates its importance in shaping fouling communities. However, further research 

is needed to better understand this species’ functional role in artificial coastal habitats and 

to what extent it affects fouling and sessile communities at a broader spatial scale (i.e., 

beyond the marina infrastructure). 

 

Figure 5. Summary of techniques compatible with remote video foraging system (RVFS), highlight-

ing the pathway followed in this study. The section Tools includes additional tools that can be used 

to segregate the fouling assemblages used as bait before RVFS and for the visualisation and analysis 

of the final RVFS data output. 

Foraging fish can be attracted to novelty [73], and the PVC structure used for RVFS 

trials could have attracted foragers feeding over plates. Methodologically, this effect could 

be minimised by pre-deploying the RVFS structure before the beginning of the experi-

ment, so it is not perceived as a novelty for the fish. However, the intense feeding regis-

tered over plates could have been influenced by the structure of the fouling assemblages. 

The settlement plates were hung facing downwards during recruitment and vertically 

during RVFS trials, which would increase illumination over plates and make the fouling 

noticeable to the foraging fish. 

Figure 5. Summary of techniques compatible with remote video foraging system (RVFS), highlighting
the pathway followed in this study. The section Tools includes additional tools that can be used to
segregate the fouling assemblages used as bait before RVFS and for the visualisation and analysis of
the final RVFS data output.
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The RVFS pilot study identified the Mediterranean parrotfish Sparisoma cretense
(Linnaeus 1758) as the main fouling consumer in the study area. This is an edible fish of
high ecological and commercial relevance and the only parrotfish in the Mediterranean and
North-East Atlantic regions [77–79]. To some extent, the diversity of fish foragers identified
during this pilot study has likely been conditioned by the daytime period and or by the
two-day duration of the trials. As a pilot study, findings demonstrate the use of RVFS, how-
ever, future use of this new combined method should consider daytime activity patterns
and seasonality when assessing forager diversity and behaviour. S. cretense is a territorial
daytime grazer, predominantly herbivorous in the Eastern Mediterranean and omnivorous
in the Atlantic Ocean [80–87]. In the Madeira Archipelago, S. cretense is abundant from the
surface to 50 m depth and constitutes an important fraction of coastal fish biomass [88].
Along with Thalassoma pavo (Linnaeus 1758), Boops boops (Linnaeus 1758) and Chromis
limbata (Valenciennes 1833), S. cretense is one of the most common fish grazers [88] and
thus plays an important ecological role by influencing the structure of fouling and shallow
sessile communities in Madeira [89,90]. In this pilot study, the role played by S. cretense in
the marina of Quinta do Lorde during RVFS trials matches this pattern and corroborates
its importance in shaping fouling communities. However, further research is needed to
better understand this species’ functional role in artificial coastal habitats and to what
extent it affects fouling and sessile communities at a broader spatial scale (i.e., beyond the
marina infrastructure).

Foraging fish can be attracted to novelty [73], and the PVC structure used for RVFS
trials could have attracted foragers feeding over plates. Methodologically, this effect could
be minimised by pre-deploying the RVFS structure before the beginning of the experiment,
so it is not perceived as a novelty for the fish. However, the intense feeding registered
over plates could have been influenced by the structure of the fouling assemblages. The
settlement plates were hung facing downwards during recruitment and vertically during
RVFS trials, which would increase illumination over plates and make the fouling noticeable
to the foraging fish.

Overall, Sparisoma cretense showed a generalistic feeding behaviour with a “bulldoz-
ing” effect (sensu Flecker et al. [91]) on the fouling assemblage. This feeding behaviour
increases the heterogeneity of fouling assemblages and can reduce the dominance of species,
including NIS and cryptogenic species [30,91,92]. Due to this apparent lack of preference,
S. cretense can play an important regulatory role in marine ecosystems, particularly in
oceanic islands with relatively low diversity but high endemism [29,30,93,94]. Therefore,
coastal ecosystems in oceanic islands exert lower biotic resistance against NIS than their
counterparts in continental coastlines [95]. Biotic resistance is particularly relevant in
artificial structures, where native competition is lower than in natural areas, which can
facilitate NIS success and impacts [23,26,96–98]. Ultimately, a low horizontal competition
can increase the relative importance of consumers (grazers and predators) in the biotic
resistance exerted by the ecosystem. Regarding this matter, the foraging on fouling can
promote a more heterogeneous fouling assemblage, whether the total NIS and crypto-
genic species abundance in the fouling community may decrease, increase or remain the
same [48,89,99,100]. In other words, the empty patches created by the foraging activity can
be re-colonised by NIS and cryptogenic species [11]. However, the increase in heterogeneity
and lower community dominance by a single species will reduce its propagation capacity.
Thereby, a better understanding of the functional trophic role of S. cretense in artificial areas
can improve our ability to manage NIS proliferation and spread to nearby areas, such as
natural habitats and boat hulls [42,101–104].

The RVFS tool created and tested in this study constitutes, to our best knowledge,
the first in situ study of trophic interactions in the marinas of the Macaronesia region.
Furthermore, there are still major knowledge gaps regarding trophic interactions in coastal
marine systems, mainly when dealing with NIS-dominated fouling assemblages inside
marinas. A better understanding of the functioning of the trophic web inside marinas could
be beneficial, as local fish populations with a significant trophic role should be considered
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when planning management actions against NIS [105,106]. Against that backdrop, in
situ experimental approaches such as the one proposed can serve as a tool to improve
knowledge in these topics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jmse10050611/s1, Figure S1: Mean relative abundance over
settlement plates for the main phyla, biogeographic status and functional morphologies, and for
each treatment: T1, T2 and T3, before and after remote video foraging system (RVFS) trials. Other
includes taxonomic categories with a relative abundance lower than 5% (Porifera, Arthropoda and
macroalgae). Unknown includes taxa that could not be identified to the species level (uncertain
biographic status); Figure S2: Relative abundance and wet biomass for each treatment before and after
remote video foraging system (RVFS) trials. T1: uncaged; T2: caged 15 mm mesh; T3: caged 1 mm
mesh; Table S1: Fish species sighted inside the marina of Quinta do Lorde; Table S2: Fouling taxa and
their mean percent coverage on each treatment before and after being exposed to foraging during
the remote video foraging system (RVFS) trials, including the references used for their identification
and previous records for the archipelago of Madeira. Species status was assigned using the most
updated list [52]. C = Cryptogenic species; N = Native species; NIS = Non-indigenous species;
U = Unresolved taxa; T1 = Treatment 1 (uncaged); T2 = Treatment 2 (caged with 15 mm mesh);
T3 = Treatment 3 (caged with 1 mm mesh); Bef = Before predation; Aft = After predation; Table S3:
PERMANOVA results on the relative abundance of NIS and native species among treatments before
and after Remote Video Foraging System (RVFS) trials. Tr = Treatment, 3 levels: uncaged (T1), caged
15 mm (T2) and caged 1 mm (T3); Ti = Time, 2 levels: before and after Remote Video Foraging System
RVFS trials.
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