
Some Problems of Current Modelling Languages

that Obstruct to Obtain Models as Instruments

Jos�e Miguel Ca~nete Valde�on?, Francisco Jos�e Gal�an Morillo, and Miguel Toro

E.T.S. de Ingenier��a Inform�atica. Universidad de Sevilla.

Avda. Reina Mercedes, S/N. 41012. Sevilla. Spain.

Abstract. In this paper we reect on the usefulness of current modelling

languages. We defend that objects elaborated with such languages are

instruments that pursue one or several typi�ed purposes, which include:

(1) to represent knowledge about some subject, whether real or imagi-

nary; (2) to help in understanding and in answering questions about the

properties of some subject; and (3) to stimulate the engineer's creativ-

ity in solving some problem. We reason that achieving this instrumental

role in modelling languages is a necessary condition for a Model-Driven

Software Engineering. However, studying several languages of common

use in practice, we claim that there are at least four problem categories

that obstruct that useful models as instruments can be elaborated with

current modelling languages.

Keywords: models, models as instruments, design of modelling languages,

Model-Driven Engineering (MDE), Model-Driven Development (MDD).

1 Introduction

Models have been used for years in Software Engineering by the main method-

ologies and languages. From being secondary products of life cycles, they are

currently beginning to be thought of as central elements in leading the software

development process. This idea is being explored by initiatives such as the Model

Driven Architecture [13]. It has motivated the recognition of the need of a true

Model-Driven Engineering, which admits the importance of models not only in

the architecture (as product) but also in the process [7].

We believe that a Model-Driven Software Engineering is only feasible if mod-

els are understood as engineering instruments. From this perspective, models are

much more than simple descriptions of subjects: they are entities that can be

used to assist the software engineer. We began to explore this idea in a previ-

ous position paper [1], where we studied the instrumental role played in current

Software Engineering by the conceptual objects that are elaborated with the

so-called modelling languages, as well as by models in the scienti�c sense (e.g.

those to estimate cost and e�ort in the development process).

? For comments about this paper, please write to the address: jmcv@us.es



In this paper we reect on some problems that obstruct current modelling

languages of producing models that can be regarded as useful engineering instru-

ments. From the results of our previous study, we point three broad categories

of purposes that objects created with such languages may pursue as aspiring

engineering instruments. This sets a context in which we identify four types of

problems that move these models away from their intended purposes. Our ob-

jective is that these problems can be avoided in the design of future modelling

languages. We have detected the following categories of problems:

1. Existence of an inadequate ontology.

2. Inability of introducing and controlling uncertainty.

3. Lack of a precise constructive guide.

4. Lack of a forecast of reasoning roads.

After having analysed these de�ciencies, we claim that there is an even more

important problem: there is a shortage, in current Software Engineering, of mod-

elling languages capable of producing models as instruments of real usefulness.

We illustrate our results with well-known examples taken from the modelling

bibliography, mainly from the Requirements Engineering �eld: UML use-cases

in the Uni�ed Process [6], analysis models in OMT [11], essential models in

Syntropy [2], and problem diagrams in Jackson's Problem Frames approach [5].

We have complemented the exposition of some of the problems with additional

notations as Cockburn's approach to use cases [3] and UML state diagrams [12].

The rest of the paper is organized as follows. Section 2 introduces three

broad categories of purposes for modelling languages, and it exposes the intended

purposes of the case studies. Sections 3 to 6 elaborate on the four problems listed

above, illustrating each one with the appropriate case studies. At the end of each

section we expose our partial conclusions. Section 7 presents overall conclusions

extracted from our study, relating the obtained results with our reections about

the role of models in a Model-Driven Software Engineering. We close in Section

8 presenting related works.

2 Categories of purposes and case studies

2.1 Models as engineering instruments

Models have a consolidated role in modern Science. From the �elds of Physics,

Chemistry and Economics, Mary Morgan and Margaret Morrison [10] reasoned

that scienti�c models behave as instruments of investigation with three kinds

of functionalities: (1) to assist in the construction of new theories and in the

exploration of existing ones; (2) to structure and to show measurements about

the world, as well as to serve as measurement and prediction tools; and (3) to

help in the design of new technologies and mechanisms to intervene in the world.

We followed the spirit of the former authors in our previous paper [1], where

we analysed the instrumental abilities of models in current Software Engineering.

We studied not only \models" as objects created with modelling languages, but



also \models" in the scienti�c sense. In this paper we focus on those objects in

the �rst sense. We can �nd three, non-disjoint categories of purposes that such

objects may aspire to.

The �rst and most frequent purpose is to serve as a repository of knowledge

about some subject, whether real or imaginary. The description language usually

presents a graphical-textual form. As any narration, descriptive models can come

in a variety of levels of approximation towards the described subject (precision)

and of formality. The most commonly described subject is the system under

development itself; a extremely precise and formal descriptive model about the

system is its program code1, as it contains all the details needed to be executed

by a computer, and it is written in a formal language.

Another category of purposes is the analytical one. This includes to help

in understanding some subject, and to assist in answering questions about it

(whether immediate or complex). To use the model is to reason with it, so

the modelling language must be associated with a suitable reasoning framework

to be employed by the user (the software engineer). There must also exist an

underlying theory about the subject under analysis; such a theory constitutes a

basis on which the di�erent reasonings can be made.

The third category of purposes is the creative one. Such models are capable of

stimulating the user to discover ideas or even to suggest her/him ideas about how

a certain problem can be solved. As in the preceding case, there must exist both

a suitable reasoning framework and an underlying theory about the problem.

2.2 Case studies

Below we present our selected case studies and we catalogue each language with

respect to its intended purpose/s. In the next sections we will reason if the

intended purposes are achieved in fact.

UML use cases and the Uni�ed Process. The Uni�ed Modeling Language

[12] is a collection of notations, in principle with no associated guides of con-

struction. The intended purpose seems to be descriptive; pg. 1-1 of [12] states:

\The Uni�ed Modeling Language (UML) is a language for specifying, visualiz-

ing, constructing, and documenting the artifacts of software systems, as well as

for business modelling and other non-software systems". However, the UML is

been used by many methodologists as a basis to develop languages with analyt-

ical and creative purposes; in some cases they keep the UML as is, and in others

they explicitly modify it. An example is the proposal by Jacobson, Booch and

Rumbaugh: the Uni�ed Software Development Process (UP) [6]. Their method

contributes constructive guides aimed to elaborate UML models that can be

used not only as mere descriptions, but also as instruments for reasoning about

the development of a software system, as well as for stimulating the modeller

with ideas about the composition of the system. To make things concrete, let

1 It has been with the recent advent of MDA that code has also been considered a

model [13, 7, 9]



us take the UML use-case notation. We will centre on a claimed bene�t of such

models: the capability to drive the development process (chapter 3 of [6]). During

the \Analysis workow", activity \analyze a use case" (pp. 203{207) intends to

identify analysis classes from use-cases, with the assistance of previously elab-

orated \domain models". Therefore this activity is considering use-case models

as instruments with a creative purpose: they are intended to help the engineer

to solve the problem of obtaining a set of analysis classes that are part of the

essential architecture.

OMT analysis models. The Object Modeling Technique [11], aims in its

�rst phase, analysis, to elaborate three kinds of models2: object, dynamic, and

functional. With them, the authors pursue two purposes: (a) (descriptive) to

devise a precise, concise, understandable, and correct model of the real world

(pg. 148); and (b) (creative) to serve as the skeleton of the design (pg. 227). For

this second purpose, the authors provide a set of guidelines for using the three

former models, consisting in identifying design classes from those in the analysis

models (this is called \object design", chapter 10 of [11]). From this perspective,

the three kinds of models elaborated during analysis play the role of helping the

engineer in developing the software system: they have a creative purpose.

Syntropy essential models. The Syntropy method [2] aims to elaborate three

kinds of models: essential, speci�cation, and implementation. Similarly to OMT

models in the analysis phase, essential models pursue two purposes: (a) (descrip-

tive) to understand a situation, real or imaginary (pg. 12); and (b) (creative) to

help in devising a system speci�cation, i.e., a speci�cation model (pp. 269{272).

Jackson's problem diagrams. Problem diagrams were introduced by Michael

Jackson as part of a wider framework [5] aimed to help the engineer to solve the

problem of designing a correct decomposition for those real-world problems in

which a software system (\machine") is required. These models are intended

to achieve purposes in the three previously stated categories; some concrete

purposes in each category are:

{ Representative: the parts of the world where the problem is located, the

problem requirements, the machine speci�cation.

{ Analytical: to understand a real-world situation, to verify that a proposed

machine speci�cation actually satis�es the requirements of a given subprob-

lem.

{ Creative: to discover the main involved subproblems, to insert auxiliary sub-

problems whose introduction may be useful to alleviate other subproblems.

2 The name of these OMT models is \analysis models". Do not confuse with models

that pursue the analytical purpose, formerly introduced.



3 Problem: existence of an inadequate ontology

3.1 Ontologies

One of the ingredients that constitute a modelling language is an ontology, i.e., a

universe of concepts and relationships between them. A portion of the ontology

is intended to be used by the modeller, so it has an associated notation, whether

graphical or textual. The problem is that some modelling languages include an

ontology that is not adequate for the pursued purposes.

3.2 Examples

We �nd a classical example of this in the case of object-oriented languages that

intend to describe the real world, where the software problem is located, through

object-oriented ontologies. The inadequacy of such ontologies for the purpose of

describing the world has been noted by authors such as Cook and Daniels [2],

and Jackson [5].

If we consider use-case models with the purpose of describing the problem

domain of a system-to-be, we have another example of an inadequate ontology.

It only contains one element to represent all the important aspects in the world:

the \actor" concept. This clearly results insuÆcient when we try to structure

and describe the part of world concerned with the system requirements. To this

aim, use-case models need to be accompanied in UP with domain models. Do-

main models in turn contain an excessively simple ontology (based on classes,

associations and generalizations), so it needs to be specialized for each applica-

tion domain (e.g. the \business pro�le", [12]). In contrast, authors like Wieringa

[14] propose a more adequate ontology for the same purpose: physical domains,

social domains, conceptual domains, and lexical domains.

The ontology in Jackson's problem diagrams includes, among others, the root

concepts of \domain", \shared phenomenon", \interface" and \requirement".

The �rst two are subsequently re�ned in other concepts. This ontology allows

the modeller to acquire the relevant knowledge about a concrete real-world prob-

lem. Such knowledge, besides covering the representational purposes stated in

the previous section, constitutes, on one hand, the input for a mental pattern-

matching process, looking for what Jackson calls \problem frames": patterns of

commonly found problems. To this end, the author has de�ned the frames with

the same ontology of problem diagrams. Once identi�ed, a problem frame pro-

vides the engineer with additional knowledge about concerns and diÆculties of

that problem, and even suggests design ideas (e.g. to insert auxiliary subprob-

lems whose introduction may be useful to alleviate other subproblems). On the

other hand, problem diagrams are the basis for applying a number of reason-

ing schemes and strategies that, in turn, allow the application of the theoretical

knowledge of each problem frame, thus achieving the analytical and creative

purposes stated before. Section 6.2 elaborates on such reasoning schemes and

strategies.



3.3 Conclusions

There are some modelling languages whose ontologies are not adequate to their

purposes because they are not able to acquire the suitable knowledge to describe

what is required or because they do not allow the construction of the reasonings

that are needed to apply the underlying theory.

4 Problem: inability of introducing and controlling

uncertainty

4.1 The need to introduce and control uncertainty in Software

Engineering models

Uncertainty is a natural companion of every engineer when devising an entity. As

the development process goes on, uncertainty about the entity is ideally reduced.

Therefore, it seems logic that a software engineer can have at her/his disposal

a collection of modelling languages that support a variety of uncertainty levels,

so that s/he can choose the most comfortable one depending on the stage of the

project. Uncertainty may present two forms: (a) to state something about what

we are not sure, and (b) to omit certain details we do not know or we are in

doubt. But allowing the introduction of uncertainty in a model is not enough: a

language should also provide some mechanism to control it. Control means: (1)

to specify exactly which model elements introduce uncertainty and how much it

consists of; and (2) to have mechanisms for the modeller to raise or to reduce

the uncertainty at will.

4.2 Examples

Cockburn's approach to use cases. A place where uncertainty is particu-

larly needed is the one constituted by the early phases of a project, when the

requirements are beginning to be discovered. In Alistair Cockburn's book about

use cases [3], we observe several examples in which the author needs to express

that some steps of the use cases were not known by the analyst at the moment

of writing (e.g. step 4a1 in \buy stocks over the web" {pg. 4{ and step 3a1 in

\get paid for a car accident" {pg. 5). As Cockburn's use cases are described in

natural language, the author resorts to interrogative sentences in the form \what

do we do here?". Therefore, the language does not o�er any means to control

uncertainty.

Uni�ed Modeling Language. The UML is intended to serve as a language

not only applicable to the phase of advanced design, but to all the development

process. However, we have not found almost any element in UML's ontology

that allows the controlled introduction of uncertainty. The reason is that UML

is a language primarily conceived to elaborate precise models. The fact is that

modellers often use UML with uncertainty semantics, because that is what they



need. However, the language metamodel does not allow this. As an example,

consider the model in �gure 1(a). Its purpose is to describe the behaviour of a

software system consisting of a controller of a lamp. Consider the LampOn state.

What we want to express with UML is the following:

LampOn = state : a \click" order has been sent to the lamp, requesting for

turning on, and the user has not issued any more \click" events.

This description does not make explicit the detail about the composition of

the LampOn state, perhaps because it was a design decision that the software

engineer had not still taken at the moment of elaborating the model, or perhaps

because s/he just did not want to indicate that information. However, when the

model in �gure 1(a) is interpreted in UML's metamodel, a metaclass must be

chosen for LampOn: SimpleState or CompositeState. There is not a metaclass that

allows the modeller to express such uncertainty about the controller. If no more

models are provided, LampOn is interpreted as SimpleState. There is no chance

of expressing uncertainty.

Fig. 1: Modelling the controller of a lamp. According to the UML metamodel,

LampOn is a SimpleState in (a), and a CompositeState in (b). However, the mod-

eller wanted to leave such detail unspeci�ed in (a).

Figure 1(b) shows two models. State LampOn in Model 2 re�nes state Lamp-

On in Model 1 through a re�ne dependency. Although LampOn in Model 1 has

exactly the same iconic form than in �gure 1(a), it is interpreted as belonging

to the CompositeState metaclass, due to the dependency.



The �re�ne� dependency is a promising resource to work with di�erent

levels of uncertainty. Page 2-18 in [12] states that \(a re�ne dependency) speci-

�es re�nement relationship between model elements at di�erent semantic levels,

such as analysis and design". This resource presents two problems. The �rst one

is that a theory must be established for de�ning which pairs of elements (or

pairs of groups of elements) can be legally related through this dependency. The

second one is that such related elements should allow \uncertainty" semantics.

For example, suppose that when we introduced the operation turnOn() in �g.

1(a), the modeller did not specify its parameters (because they were unneces-

sary for the model purposes or because the modeller had not still decided them).

Assume the operation is detailed in another model as turnOn (p: Integer). UML

interprets turnOn() as: \operation with zero parameters". However, if we con-

nect both operations through a re�ne dependency, the intended semantics for

turnOn() should be: \operation that does not specify the number and type of its

parameters, but they are detailed at the other side of the dependency".

The other promising resource to work with di�erent levels of uncertainty is

the generalization (Generalization metaclass). We can specify some details about

a class and later (or in another model) add more details through a subclass. In

UML, the new details must be additive wrt. the former ones, i.e., they cannot

re�ne existing elements, with the exception of methods ([12], p. 2-70). UML does

not support state machine generalization through the Generalization metaclass.

Instead, the language just suggests an example of how the�re�ne� dependency

could be used to de�ne two kinds of state machine generalization: subtyping and

strict inheritance (pp. 2-166 to 2-168), admitting that \these techniques are all

based on practical experience" and \this topic is still the subject of research"

(p. 2-166).

We must warn that what is not a resource to vary the uncertainty level is

the presentation option that allows to show more or less details about model

elements; e.g. suppress the type of an attribute in a class ([12], p. 3-43) or

suppress the argument list and return type of an operation (p. 3-46). These

are just presentation issues, but the modeller is forced to decide the type of an

attribute when de�ning it, as well as the parameters of an operation (as stated

by the metamodel, p. 2-13). What we are looking for are resources that allow the

modeller to be intentionally imprecise about some topics being modelled, while

still constituting valid models.

UML state diagrams contain some constructors with non-deterministic se-

mantics. Such constructors constitute a \lightweight" mechanism to introduce

some uncertainty in a model. Some examples are [12]: (a) the indeterminacy

about what transition is going to be �red in a \choice" pseudostate when the

guard conditions are true (p. 2-146); (b) the indeterminacy in the selection of

the next event that is going to be processed by a state machine when there are

several candidates (p. 2-161); the uncertainty in the selection of one between

several transitions that are ready to be �red (p. 2-161).



4.3 Conclusions

The ability of describing with uncertainty is basic in an Engineering. We have

found a shortage of this characteristic in commonly used modelling languages.

The introduction of uncertainty in a model should be accompanied by control

mechanisms provided by the language.

5 Problem: lack of a precise constructive guide

This problem is present in many languages that were designed with the intent

of producing analytical or creative purposes. These languages provide a guide

for using models as instruments, but in many cases it is just assumed that the

models are somehow elaborated, or at most some very general guides are given

for that. Although the use guides may be correct, these languages lack from a

precise guide that explains how to construct these models, taking into account

the pursued purposes.

5.1 Examples

Recall the UML use-case models in the Uni�ed Process (section 2.2). As we

reasoned before, they pursue a creative purpose: to help the engineer to solve

the problem of obtaining a set of analysis classes that are part of the essential

architecture. UP gives some pieces of advice to identify such classes, in the form

of guidelines (pp. 204{205), provided that the engineer has adequate use-case

and domain models. Such guidelines constitute the proposed use guide of the

use-case model as an instrument with a creative purpose. But to this purpose

to be successful, there should exist a constructive guide that precisely explains

how to elaborate use-case models and domain models; only then, they could be-

have as the creative instruments that the methodologists had conceived, and the

guidelines for identifying analysis classes would be useful. The Uni�ed Process

only provides with loose guides to elaborate use-case and domain models. The

authors explicitly admit that (pg. 204): \The use cases described in requirements

are not always detailed enough for identifying analysis classes [...] Thus to iden-

tify analysis classes you may have to re�ne the descriptions of the use cases with

respect to the inside of the system".

Regarding OMT analysis models, there is not a realistic constructive guide

for elaborating such models. The proposed guide depends on the existence of

a preexisting \problem statement": a document where all the requirements are

clear and the problem is correctly located and bounded in the real world. The

constructive guide proposed by the authors simply limits to identify model el-

ements from such problem statement: object classes, scenarios, state diagrams,

etc (chapter 8 of [11]).

Essential models in Syntropy are constructed in a similar, loose way. Au-

thors give a more precise constructive guide for essential models than the one

provided by OMT, but it also results insuÆcient to determine where the problem

is located and what are the important world aspects to capture into elements of

speci�cation models.



5.2 Conclusions

There are many modelling languages which lack from precise constructive guides.

Sometimes, this is due to they pursue too ambitious purposes, so almost every

guide would be insuÆcient, like in the cases of OMT's analysis models and

Syntropy's essential models, which are general-purpose methodologies.

6 Problem: lack of a forecast of reasoning roads

6.1 Reasoning roads

One of the elements that should accompany a modelling language is a map of

the possible reasoning routes that the potential users (modellers) can follow

when elaborating models or when using them (as instruments that they are). In

the �rst case, the language designer must provide precise enough construction

guides such that the modeller always obtains valid models, ready to be used. If

the models are intended to help in reasoning, the language designer must provide

a reasoning framework that guides the reasoning process of the modeller when

using the model. If the intention is to design a modelling language for stimulating

the modeller's creativity about solving a problem, the language designer must

foresee the creative mental roads that may arise in the mind of the modeller

when using the model.

6.2 Examples

Regrettably, there is not forecast of reasoning roads in the modelling languages

we have studied, with the exception of Jackson's problem diagrams. In the prob-

lem frames framework [5] we can �nd a number reasoning schemes and strategies

to be used on problem diagrams as a basis.

For verifying that a subproblem �ts a problem frame, Jackson implicitly

suggests a \reduction to the absurd" strategy: suppose that it does not �t, try

some other candidate frames, and consider if the domain descriptions that such

other frames require to collect make sense in the subproblem situation. Examples

of this can be found in pp. 141{142 of [5].

For verifying that a proposed machine speci�cation actually satis�es the re-

quirements of a given subproblem, the author provides a reasoning scheme with

each problem frame. Each scheme (\frame concern") is a correction argument

that tries to prove the so-called \system engineering argument"3 particularized

for the problem frame (chapter 5 of [5]).

Other reasoning strategies in the problem frames approach are based on

the particular concerns of each problem frame. For example, chapter 10 of [5]

describes how the �nding of a mismatch between the requirement phenomena

3 According to Wieringa [14], the system engineering argument states that the machine

speci�cation (S) together with the assumptions about the environment (A) entail

an emergent behaviour that must match the stated requirements (E): S ^ A j= E.



and the speci�cation phenomena in an \information display frame" may lead

to the introduction of auxiliary subproblems in the decomposition that alleviate

the subsequent design of the machine.

6.3 Conclusions

The engineer reasons with the model since s/he begins to elaborate it. Con-

clusions about the modelled subject can be extracted even from not complete

models. Reasoning roads must be forecast as much as possible; schemes and

strategies must be supplied to help to drive reasoning. The psychology between

engineer and model is an important aspect to be taken into account.

7 Overall conclusions

The overall conclusion that is extracted from our results is that there exists a

strong shortage of true modelling languages in the categories \analytical" and

\creative". Most languages that intend to produce models as instruments in

these two categories have failed in the intent, and their usefulness stays limited

to serve as descriptive languages. The four problem categories introduced in this

paper contribute to this situation.

We have remarked the necessity of real constructive guides in modelling lan-

guages. Devising an ontology for helping in reasoning, or for stimulating the

emerging of ideas, is a necessary ingredient for such purposes, but it is not

enough. A construction guide must be also included with the language, such

that it can realistically lead to the intended models. Otherwise, the language is

of little use. The lack of a precise constructive guide has revealed to be a serious

problem in current modelling languages. Such a guide must predict the reasoning

roads in the mind of the modeller and drive them to elaborate the right models.

Forecast of reasoning roads and suggestion of schemes and strategies are also

necessary when devising the use of the models by the engineer.

Modelling languages that exhibit a descriptive purpose use to tend to precise

narration. This is the case of the UML. However, we have reasoned that the con-

trolled introduction of uncertainty is necessary, and not only during requirements

elicitation, but also during analysis and design. For example, an early design can

contain an association between two classes, without committing any navigational

or multiplicity issues. This cannot be currently expressed with UML.

In our opinion, Model Driven Engineering needs more analytical and creative

modelling languages. However, descriptive ones are predominant, so current pro-

portions should be inverted, or at least balanced. Besides, the role of models as

instruments should be consolidated in Software Engineering. This entails some

logical steps. First, it should be made precise the purposes of models as engi-

neering instruments. Our proposal in [1] can be further re�ned. Second, it must

be investigated what elements models must be constituted of, in order to they

behave as instruments capable of achieving analytical and creative purposes. We

have pointed out some of these elements in this work. And third, engineering



practices should be devised for designing modelling languages capable of produc-

ing models in the former purpose categories. We believe that Model Engineering

should accompany Model Driven Engineering. These three points constitute our

current �elds of work.

8 Related works

The nature and functioning of models in scienti�c practice has traditionally

been an important research topic in Philosophy of Science [4]. Mary Morgan and

Margaret Morrison have recently made a deep study from the �elds of Economics

and Physics [10]. Their work has inspired us in the ideas as well as in the method.

Regarding to Software Engineering, there is an increasing interest about the

role of models, probably due to the introduction of the Model Driven Architec-

ture (MDA). Stuart Kent goes further, extending the role of models not only to

architecture, but also to the process, in what he calls a \Model Driven Engineer-

ing" [7]. From another perspective, Jochen Ludewig makes interesting reections

about models in Software Engineering [8].

References

1. J.M. Ca~nete, F.J. Gal�an, M. Toro (2004). Conciencia de Modelos como Instrumen-

tos en Ingenier��a de Software. Una Aproximaci�on desde las Ciencias Naturales y

Sociales. Proceedings of the MIFISIS'2004 workshop (Valladolid, Spain).
2. S. Cook, J. Daniels (1994). Designing Object Systems: Object-Oriented Modelling

with Syntropy. Prentice-Hall.
3. A. Cockburn (2001). Writing E�ective Use Cases. Addison-Wesley.
4. R. Giere (1997). Understanding Scienti�c Reasoning. Fourth Edition. Harcourt

Brace College Publishers.
5. M. Jackson (2001). Problem Frames. Analyzing and structuring software develop-

ment problems. Addison-Wesley.
6. I. Jacobson, G. Booch, J. Rumbaugh (1999). The Uni�ed Software Development

Process. Addison-Wesley.
7. S. Kent. Model Driven Engineering (2002). Proc. of Intergrated Formal Methods

(IFM 2002). LNCS 2335, pp. 286-298.
8. J. Ludewig (2003). Models in software engineering - an introduction. Software and

Systems Modelling, no. 2, pp. 5{14.
9. S. J. Mellor, A, N. Clark, T. Futagami. (2003) Model-Driven Development. IEEE

Software, pp. 14-18. September-October 2003.
10. M. Morgan and M. Morrison (1999). Models as Mediating Instruments. In Models

as Mediators. Perspectives on Natural and Social Science. Cambridge University.
11. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen (1991). Object-

Oriented Modeling and Design. Prentice-Hall.
12. Object Management Group (2001). Uni�ed Modeling Language Speci�cation ver-

sion 1.5. OMG document number formal/03-03-01.
13. Object Management Group Architecture Board ORMSC (2001). Model driven ar-

chitecture (MDA). OMG document number ormsc/2001-07-01.
14. R. Wieringa (2003). Design Methods for Reactive Systems: Yourdon, Statemate

and the UML. Morgan Kaufmann.


