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Abstract—This paper deals with the problem of network pa-
rameter errors in state estimation. First of all, some experimental
resulis are presented showing the influence of these errors on the
performance of Weighted Least Squares state estimators. Secondly,
the preliminary step of identifying suspicious network parameters
is briefly discussed. A classification of the techniques proposed in
the literature to cstimate parameter errors is then suggested, fol-
lowed by a description of the main ideas behind each method. Fi-
nally, a discussion is included on the possibilities and limitations of
every class of methods.

Index Terms—Parameter errors, state estimation, transformer
tap positions,

1. INTRODUCTION

TATE Estimators (SE) are the heart of modern Energy Man-
S agement Systems (EMS). The performance of any other ap-
plication program (e.g., security analysis, economic dispatch,
etc.) strongly depends on the accuracy of data provided by the
SE. Resorting to field measurements, network parameters (R, L,
ete.), network topology (breaker positions, etc.), and other avaii-
able information, the SE takes advantage of the redundancy in
the measurement set to filter the noise inevitably associated with
the measurement process. The Weighted Least Squares (WLS)
is the preferred approach to solve the resulting model, due to its
well-known statistical properties.

Incorrect topelogical information normally produces large er-
rors in the estimated measurements and can be easily identified.
However, branch impedance errors ate less evident and may lead
to permanent errors in the data provided by the SE for a long
time without being detected.

This paper is intended to describe the state of the art on the
parameter estimation problem. Section IT presents some data
showing how a single parameter error may locally deteriorate
the performance of the SE. Section III is devoted to the pre-
liminary step of identifying suspicious network parameters. A
classification of the methods presented so far for parameter es-
timation is proposed in Section I'V. The two main categories of
methods are reviewed in Sections V and VI, followed by a sum-
mary of published results and a discussion in Sections VI and
VIII.

II. INFLUENCE OF PARAMETER ERRORS 7

Network parameters (branch impedances or tap changer po-
sitions) may be incorrect as a result of inaccurate manufacturing
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Fig. 1. Influence of a single parameter error on estimated measurements at
different distances.

data, miscalibration, tap changer being locally modified without
knowledge of the control center, etc., and may produce:

* A significant degradation of the results provided by the
SE and, therefore, of the conclusions arrived at by other
applications, like security assessment.

« Acceptable measurements being detected as bad data
owing to its lack of consistency with network parameters.

* A loss of confidence in the SE by the operator.

Although most papers on parameter estimation (PE) briefly
refer to the importance of including this function within the SE,
in order to prevent the consequences mentioned above, only a
few of them [24], [29], [30], [32], [35], contain any data sup-
porting this claim. Reference [6] presents some field experi-
ences obtained during the process of bringing the state estima-
tion function on line. Specially, [35] performs a complete study
about the influence of parameter errors on the state estimation,
analyzing the most important factors. Also, [17] presents a brief
review of the PE problem.

Fig. 1 shows the ratio between the average estimated mea-
surement error when a single line susceptance is erroneous and
the same average when the susceptance is correct. This ratio is
computed by considering measurements at different distances
to the erroneous susceptance. Measurements at distance 1 refer
to the power flows of the erronecus line, as well as the power
injections and voltages of its edge buses (adjacent set). Measure-
ments at distance 2 are those directly related to measurements
at distance I, and so on.

The simulations have been carried out on the IEEE 14-node
network and represent different load flow situations with max-
imum measurement redundancy. As the JEEE 14-node network



comprises 20 branches, and each point in the figure is the av-
erage of 60 state estimation runs with different measurement
values (for the results to be statistically significant), each line
has been tested 3 times. Error levels produced by class 1 trans-
ducers have been simulated,

The following conclusions may be obtained:

* Despite the high redundancy and the fact that a single
parameter is erroneous, a significant overali detcrioration
can be noticed as the parameter error grows,

* The error’s influence decreases with the distance to the
involved branch. In practice, this influence is negligible
at distances equal to or larger than 4, which means that
the process of estimating a certain parameter is of a local
nature,

¢« The harmful influence is more noticeable when the
available measurements are more accurate, although this
cannot be observed in the figure (see [35]).

[II. PARAMETER ERROR IDENTIFICATION

From the SE point of view, a parameter error has the same
effect as a set of correlated errors acting on all the measure-
ments invoived in the erroneous branch, namely the power flow
measurements located on the branch and the power injection
measurements located at the ending nodes. This results from a
simple manipulation of the basic measurement model [23]:

zs = hy(x, po)+ v, = hy(, p) -+ [helx, po) — (e, Pl + v,
(L
where # is the measurement vector, # the state vector (bus
voltage magnitudes and bus phase angles), h the nonlinear
functions relating the measurement and state vectors, v the
measurement error vector, p the true value of the network
parameter, py the erroneous value of the network parameter
and the subscript s refers to the involved measurements only.
The term in square brackets in (1) acts as an equivalent
additional ‘measurement error. If the parameter error is large
enough, this term will generally cause bad data detection and
the involved measurements will most probably be among those
having the largest residuals [22], [23], [34]. The equivalent
measurement error can be linearized as:

| oh,
ha(2, po) — ha(z, p) % [ ap] o @

¢p = py — p being the parameter error.

Therefore, those branches whose involved measurements
have a large normalized residual are suspicious, and the PE will
be focused specially on those branches.

Reference [18] assumes that bad data has been identified and
removed previously so that a persistent presence of a bias term in
certain measurement residuals is an indication of the existence
of parameter errors.

The identification method proposed in [19] is also based on
the fact that an unexpected large normalized residual may indi-
cate that something is not correct in the neighborhood of that
measurement. Once a set of suspicious branches have been de-
tected, the suspicious parameters are estimated.

The method presented in [13] and [31} to estimate trans-
former tap positions, is applied when the difference between

the calculated and telemetered reactive power flows through
the transformer is higher than a preset tolerance,

Finally, measorement, parameter, and configuration errors on
the input data of a SE are identified by means of suitable statis-
tical tests in [1].

IV. METHODS FOR NETWORK PARAMETER ESTIMATION

Since Schweppe published his seminal work on SE in 1970
[26], [27], many other researchers have directed their efforts to-
ward this topic [12]. Comparatively, the number of papers de-
voted to the PE problem is modest. Methods for network PE
may be classified as follows [36]:

* Methods based on residual sensitivity analysis [13], [18],
[21]-123], [31], [34]
* Methods augmenting the state vector:
Solution using normal equations {2141, [7], [19], [25],
[33], [35].
Solution based on Kalman filter theory [5], [8], [10],
[11], [161, [28]-[30].

This classification emphasizes the most cutstanding differ-
ence between each class of methods, namely whether or not the
state vector is augmented with additional variables representing
suspicious parameters, indicating alse the particular method-
ology followed to sclve the resuiting model.

V. METHODS BASED ON RESIDUAL SENSITIVITY ANALYSIS

These methods make use of the conventional state vector and
perform the PE process when the SE has finished.

The method presented in [22], [23], and [34] is based on the
sensitivity relationship between residuals and measurement er-
rors [15]:

7= S 3)
where S, is the residual sensitivity matrix, given by [20]:
S, =1 -HG"HTW €Y
and
G=H'WH (5)

is the gain matrix. A linear relationship can be established be-
tween the involved measurement residuals r; and the parameter
error ¢, by means of (1)-(3):

. Ohy _
= ((‘s,.)wﬁ) ep + 7, (6)

where (5, )ss is the (s x s) submatrix of S, corresponding to
the ¢ involved measurements and 7, is the residual vector that
would be obtained in absence of any parameter errors.

Equation (6) can be interpreted as a linear model linking some
measurement residuals v, to an unknown parameter error e, in
the presence of noise ¥;. This makes the determination of e, a
local estimation problem.

The approach adopted in [ 18] is also based on measurement
residuals and a bias vector which combines the effect of param-
eter errors and the state of the system. The estimation is per-
formed in two steps: The first step estimates a bias vector while



parameter errors are obtained at the second step from a sequence
of bias vectors formerly computed. The main difference with
[22], [23], and [34] is that the bias vector is expressed in terms
of line flows.

The method proposed in [13], applied later in {31], is intended
to estimate transformer tap positions and exploits the coupling
between this parameter and the residual of the reactive power
flow through the transformer.

Reference [21] presents also a transformer tap estimation al-
gorithm but uses the estimated and measured voltages in order
to generate a new tap position,

VI, METHODS AUGMENTING THE STATE VECTOR

These methods augment the state vector with suspicious pa-
rameters as if they were independent variables. This way, pa-
rameters are estimated along with bus voltage magnitudes and
bus phase angles.

Twao different alternatives have been used to deal with the
resulting augmented model:

» Normal equations.
+ Kalman filter theory.

A. Solution Using Normal Equations

The most straightforward approach to solve the WLS state
estimator is by means of the normal equations,

GAz'= H'WAz, 0]

The method proposed in [33] adds transformer taps to the
state vector. Consequently, new columns are appended to the
Jacobian whose elements are the partial derivatives of the mea-
sured quantities with respect to the newly defined state vari-
ables.

If there are measurements associated with the tap variables to
be estimated, additional elements will be appended to the mea-
surement vector and both the Jacobian and the measurement co-
variance matrices will have as many extra rows as new measure-
ments have been appended.

Tnitially, transformer taps arc modeled as confinuous vari-
ables and a best fit is calculated. Then, the best fit is set to its
nearest feasible discrete tap position and is later removed from
the state vector. The normal equations are solved again allowing
changes in the state vector resulting from the discretization of
the taps. One or several transformer taps can be estimated si-
multaneously.

A similar method is described in [19], but the incremental
flows due to parameter crrors are used as part of the unknown
state variables. Parameter errors are subsequently calculated in
terms of these associated flows.

More than two decades ago, the augmented state vector was
used in 2] and [3] to estimate all Y3, elements in polar form,

Other class of methods, designed for off-line estimation of
constant parameters, resort to several measurement snapshots to
increase the redundancy around the suspicious parameters [25],
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Fig. 2. Estimated line susceptance error versus relative paramcter weight
(IEEE 14-bus network, line 7-9),

[35]. Assuming ¢ simultaneous samples are handled, the state
and measurement vectors are:

r = {aj(l), IP(Q), Tty 33(4)1 p]t (8)

z= [Z(l), Z(2)J B Z(q)]ﬁ )

where 2 (k) is the state vector corresponding to the &th sample,
z(k) is the measurement vector corresponding (o the kth sample,
and p is the parameter vector.

The available values of suspicious parameters are included as
extra measurements in [25]. However, it is shown in [35] that the
estitnated parameters may be badly influenced by the weighting
factors adopted for this extra information,

Fig. 2 illustrates what happens when a broad range of
weighting factors (w),) are assigned to the initial parameter
value (in this case, the series susceptance corresponding to line
7-9 of the 14-bus network). The estimated parameter error is
represented versus the ratio wy, /10,, where w,, is the average
of the measurement weighting factors. Four initial parameter
errors are considered (5%, £10%). The rightmost part of
the figure shows the parameter error (about 2%) that would
be estimated solely based on regular measurements (whose
mean errot is 3.2% in this example), When the ratio wa, /wp 18
smaller than 103, the influence of the initial parameter value is
determinant and there is no way to improve the estimated value.
Only when this ratio is around 10° (in this example) could a
better parameter estimation be expected, provided the initial
error was negative. Note that it is not advisable to estimate
parameters whose initial error (e.g., 1% in this case) is smaller
than the average measurement error. As shown in Fig. 3 for a
different line, the estimated parameter error may be negative
as well, but the former conclusions still apply (this time, the
average measurement error is 3.8%}).

When only regular measurements are considered, the objec-
tive function becomes:

T, p) =33 wilz(k) = ha(a(k), p)I°. (10)

k=1i=1
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Fig.3. Estimated line susceptance error versus relative parameter| p. Then, the
objective function becomes weight (IEEE 14-bus network, line 10-11).

The Jacobian matrix of this enlarged model has the following
structure
on) hy (1)
hp(2)
H{g) hy(q)
which, upon substitution in (3), leads to a bordered-block-diag-
onal gain matrix

(2
(2) an

G(1) gp(1)
G(2) 9p(2)
G= : (12)
Gla) g,(9)
y;;(l) .0';9(2) Q‘;(Q) Gpp

Ateach iteration, this huge gain matrix must be formed and fac-
torized in order to obtain the state vector correction Az, Al-
though this seems to be, computationally, a prohibitive task, a
method especially tailored to the resulting block-diagonal struc-
ture can be applied whose overhead cost is modest compared
to the sequential processing of all snapshots [35]. In addition,
taking advantage of the local nature of the parameter estimation
problem, the computational effort can be significantly reduced
if only a small observable subnetwork surrounding every sus-
picious branch, along with the reduced set of related measure-
ments, is included in the model.

B. Solution Based on Kalman Filter Theory

The method presented in [10] is intended to estimate trans-
mission line admittances, transformer taps, biases in the mea-
surements, and standard deviations of measurement errors,

At every time sample k, the measurements are related to the
states by

2(k) = h(w(k), k, p) -+ v(k) (13)

where A is made dependent on & explicitly to reflect the pos-
sibility of network changes from one time sample to the next.

The parameters are assumed constant for the entire time period
under consideration.
In order to estimate the state vector, it is necessary to mini-
mize the following objective function: '
m .
J = Tailk) — hi(w(k), k, p)I*
i=1

. I/V(Zz(k) — h,'(ﬂl(k'), ka ]"))]

If a priori information about the parameter vector is available,
10, it can be used as a pseudo-measurement

(14)

po=ptep (15)

where ¢, is an etror vector with zero mean and covariance Iy,
Then, the objective function becomes

Ji=(p—po)" By (p— po) + J.

This algorithm, based on Kalman filter theory, is recursive in
the sense that at time sample &, only the vector z(k) is consid-
ered together with updated previous estimates of the parameters
and their covariances.

In [11], all the information acquired during the testing period
is resorted to in order to estimate state variables and parameters.

References [28]-[30] present two important differences with
respect to [10]:

* The problem is localized into several small observable
subnetworks containing the unknown parameters,

* Parameters are modeled as Markov processes, thereby al-
lowing estimation of time-varying parameters.

The method assumes that the probability density functions
of the @ priori parameter estimate errors, state variables, and
measurement errors are Gaussian with zero mean, leading to
an adaptive parameter estimator. It starts by estimating only
few highly telemetered branches. As impedance parameters of
those branches become established, they are used to extend the
process to less metered branches and so on, The solution will ul-
timately include all network branches with adequate redundancy
excluding only those for which a reliable parameter estimation
can not be performed.

References [5], [8], and [16], also based on Kalman filter
theory, augment the state vector with those parameters leading
to large residuals.

(16)

VIIL. SUMMARY OF PUBLISHED RESULTS

A fair and comprehensive comparison of the several ap-
proaches propoesed so far for PE, based solely on published
results, is virtually impossible, because the reported experi-
ments refer to different scenarios and, what is equally important,
vital information on the input data is many times missing,
When the results are obtained from actual snapshots, the true
state is logically unknown, and the only possible conclusion is
that both J(#) and the normalized residuals benefit from the
inclusion of suspect parameters in the state vector (in fact, the
more degrees of freedom, the lower the value of the objective
function). This kind of experiment is more appropriate when
transformer taps are estimated, because their actual values can
be readily checked on site. Most frequently, however, results
are obtained by simulation, in which case the accuracy of the



estimated parameters can be better assessed, Unfortunately,
several outstanding contributions omit the information on the
simulated measurement noise adopted for the experiments. In
what follows, some of the most significant results reported in
the literature will be summarized.

The oldest results on the use of the Kalman fifter for PE can be
found in [10] and {11]. Simulation results in [10] originate from
two experiments where over 10 parameters contaminated with
3—-10% errors are simultaneously estimated. After a few filtering
cycles, the estimated parameters are very close to the exact ones.
Another BPA subnetwork is tested in [11] by means of actual
snapshots, When all parameters are estimated, the value of J (&)
is an order of magnitude smaller and statistically unacceptabic
normalized residuals virtually disappear. A few estimated pa-
rameters differ from the available values by more than 10%. The
accuracy of the simulated measurements is, however missing in
[10]. In [11], an expression for the error variance is given, but
the variables appearing in the formula (e.g., the full scales) are
not provided. An interesting conclusion of this work, confirmed
also in [32] and [35], is that small errors in line conductance and
shunt capacitance are of little consequence.

In [18], a single line susceptance is perturbed and 2% random
errors are added to all measurements. An undesirable feature of
the method is that the estimated parameter error significantly
grows with the error of the initial value, as a consequence of
the linearized model adopted. Much better results are obtained
in [19], where both simulated and real-time measurements are
used in several experiments. The most complex case reported
contains two nearby erroneous branches as well as a bad mea-
surement (two branches away) in the presence of 3% random
noise.

The Kalman filter is extensively tested in [30], where time-
varying parametets are dealt with for the first time. In an out-
standing experiment, all parameters are significantly contami-
nated (100% random errors) and very accurate resuits are ob-
tained (again, no information is provided on the noise level as-
sociated with measurement samples). Another noticeable ex-
periment consists of estimating the parameters of 99 branches
based on 168 actual snapshots. The experiment concludes that
the error of 10% transfer admittances exceeds 50%. These pre-
liminary results, however, should be accepted with caution, be-
cause other sources of inaccuracy could influence the estimated
values.

The IEEE 14-bus network is used in [35] to test the normat
equations when the state vector is augmented with suspicious
parameters, It is concluded that, irrespective of the initial param-
eter errors, the accuracy of the estimated parameters is propor-
tional to both the accuracy of the measurement samples and the
local redundancy. In turn, the local redundancy improves in pro-
portion to the number of snapshots simultaneously used. Table I
summarizes the filtering capability of this approach. Similar re-
sults are obtained when 5 out of 20 branches are erroneous, but
the method is not intended to estimate all branch parameters.

~ The latest results are presented in reference [4], which is not
devoted exclusively to the PE problem. The reported experiment
refers to a huge network containing three separated branches
with wrong series impedances. Gross errors are simulated on
the power flow measurements of one of the corrupted branches

TABLE T
ESTIMATD PARAMETER ERRORS FOR DIFFERENT MEASUREMENT ERROR
LEVELS: (a) AVERAGE. MIIASUREMINT. ERROR (%), and {b) ESTIMATED,
PARAMETER ERROR (%).

Snapshots (a) || (b) | (a/b)

14.26 || 3.27 44

7 8.66 || 1.95 44

2.85 .65 44

14.20 || 4.38 3.2

4 8.52 || 2.65 32

2.84 90 3.2

13.53 || 8.73 1.5

1 8.10 (| 5.27 L5
270 | 170 | 16 ]

whose local redundancy is relatively low. While the initial pa-
rameter errors are significantly reduced, some relative crrors
still remain high (no information is given on the measurement
accuracy). '

Some interesting results have also been presented regarding
the estimation of transformer taps. In [21], the taps of 23 trans-
formers are simultaneously estimated by means of real-time
measurements. The average and largest errors reported are 1.5
and 6 steps respectively. The method strongly relies on the pres-
ence and accuracy of voltage measurements. Similar results are
presented in |22] for single tap errors, including a case in which
both the reactance and the tap position of the same transformer
are erroncous. In [33], one and two transformer taps are suc-
cessfully estimated from actual snapshots whose accuracy is not
provided. Finally, a dynamic filter is applied in [16] to estimate
three transformer taps (two of them adjacent). Robustness of the
algorithm to measurement noise is tested, including a gross error
on one of the reactive power flows.

VIII. DISCUSSION

It can be stated that methods which augment the state vector
have clearly surpassed those based on residual sensitivity anal-
ysis. Nevertheless, the latter approach is still necessary in the
process of identifying suspect branches. It is also evident that,
resorting to several snapshots, either sequentially or at once,
provides a more robust way of updating the data base. It is not
yet clear, however, whether a recursive filtering algorithm, or
whether the conventional scheme based on the normal equa-
tions, is the best choice in all circumstances, In the authors’
opinion, the Kalman filter may be more suitable to estimate
time-varying parameters, while the simplicity of the standard
WLS approach makes it more attractive to estimate constant pa-
rameters. Another controversial issue refers to whether a few
selected parameters (including transformer taps) should be esti-
mated, or whether the estimation process should be adaptively
extended to eventually include all network branches with ade-
quate local redundancy. A tentative answer to this question can
he given by looking at the results presented above, It can be
concluded (see Table I) that, for a given redundancy, the esti-
mated parameter errors are proportional to the average measure-
ment error. Consequently, if very accurate measurements are
available, the estimated parameter values will probably be better



than those available in the data base. But the opposite may also
happen; a rather good branch parameter can be updated with
a less accurate value if poor measurements are invelved in the
estimation process. Therefore, this risk should be kept in mind
when deciding which parameters should be estimated.

Finally, all the proposed methods will provide poor estimates
of parameters in the presence of persistent nearby gross errors
that remain undetected.

The following comments reflect to some extent the authors’
experience on this topic [35], [36]:

* Methods based on residual sensitivity analysis can be
simply inserted at the end of the SE process, without
having to modify any of the major routines which
constitute the estimator. Among the several techniques
which augment the state vector, those based on the
ordinary normal equations are simpler to implement
than the Kalman filter and require only straightforward
modifications to the existing code. When the available
information on the parameter value is not appended to the
model as an extra measurement, the Jacobian becomes
ill-conditioned at flat start. Hence, in order to elude this
potential problem, the state vector should be enlarged
only after the first iteration.

Any method, irrespective of the technique adopted, re-
quires that a certain measurement redundancy be locally
available. Power flow measurements are particularly rele-
vant in this regard, while the influence of injection mea-
surements is, on average, much less noticeabie.
Estimation of transformer tap positions, like detection
of topology errors, is inherently an on-line process.
However, off-line processing may be a more adequate
approach to estimate those branch parameters which
remain essentially constant over time, like inductance and
capacitance. Fluctuations of line resistance due to temper-
ature changes may be significant, but errors affecting this
parameter have been shown to be less influential on the
SE performance [32], [35). Additionally, if representative
temperatures were recorded along with every sample,
then it would be possible to refer the time-varying resis-
tance 1o the constant value corresponding to a reference
temperature. Off-line processing offers the following
advantages [24], [35]:

Parameter values can be routinely improved on a batch com-
puter by resorting to the last recorded snapshots, without in-
terfering with the execution of the SE or any other EMS crit-
ical application. There is no need to modify the code running
on line.

Computational issues are of secondary importance compared
to optimality of the estimated values. Hence, irrespective of
its complexity, the method deemed the most appropriate in
every case can be chosen.

As parameter etrors are permanent, no constraints are im-
posed on selecting a particular recorded snapshot. One or sev-
eral related snapshots can be discarded if measurement re-
dundancy is locally insufficient or the existence of bad data
is suspected. This “healthy” snapshot selection process can be
as sophisticated (i.e., costly) as required. Similarly, selection

of suspicious parameters can be based on a longer historical
series of data.

Simultanecusly using several snapshots increase locally the
redundancy because the additional parameter variables are
shared by all network states. This would be quite a cumber-
some process if carried out on line.

TX. CONCLUSIONS

In this paper, the network parameter estimation problem has
been reviewed. Some experimental data have been first pre-
sented showing that a single parameter error may significantly
deteriorate the accuracy of estimated measurements around the
erroneous branch. Then, the important subtopic of suspicious
branch ideniification has been briefly addressed.

A classification of existing methods for network parameter
estimation has been later proposed. Two main approaches can
be identified: On the one hand, methods which rely a poste-
riori upon the relationship between measurement residuals and
parameter errors, On the other hand, methods which consider
a priori suspicious parameters as additional state variables.

Some final comments are provided on the adequacy and lim-
itations of ¢ach category of methods, regarding the type of pa-
rameter being estimated.
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