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a b s t r a c t

A cooperative game theory framework is proposed to solve multi-robot task allocation (MRTA)
problems. In particular, a cooperative game is built to assess the performance of sets of robots
and tasks so that the Shapley value of the game can be used to compute their average marginal
contribution. This fact allows us to partition the initial MRTA problem into a set of smaller and
simpler MRTA subproblems, which are formed by ranking and clustering robots and tasks according
to their Shapley value. A large-scale simulation case study illustrates the benefits of the proposed
scheme, which is assessed using a genetic algorithm (GA) as a baseline method. The results show
that the game theoretical approach outperforms GA both in performance and computation time for a
range of problem instances.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Multi-robot systems (MRS) perform tasks in a cooperative
and efficient manner in many applications, e.g., inspection [1],
aerial filming [2], surveillance [3], agriculture [4], mobile edge
computing (MEC) [5], warehouses [6], and robotic sensor net-
works (RSN) [7]. To this end, MRS need to solve multi-robot task
allocation (MRTA) problems [8,9] so that the available resources
are employed in the most profitable way. MRTA problems can be
arranged according to the taxonomy proposed in [10] and fur-
ther developed in [11], including the inter-dependencies between
the tasks. Following the above taxonomy the problems can be
classified as:

• Single/Multi-task robot (ST/MT) problems, depending on
whether the robots can perform at most one or several tasks
simultaneously.

• Single/Multi-robot task (SR/MR) problems, considering the
absence or existence of tasks that require more than one
robot to be accomplished.

• Instantaneous/Time-extended assignment (IA/TA) problems,
depending on whether the information available allows
planning future allocations.

• No/In-schedule/Cross-schedule/Complex dependency (ND/ID/
XD/CD) problems, taking into account the different pos-
sible types of dependency between simple tasks and the
inter-schedule dependency between complex tasks.
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MRTA problems have been traditionally implemented in a cen-
ralized manner at the expense of high computation costs. MRTA
entralized approaches are usually classified into optimal assign-
ent problem (OAP) algorithms [12], which focus on finding the
ptimal solution of a constrained problem [13], and metaheuristic
lgorithms, where methods such as genetic algorithms (GA) [14]
nd ant-colony optimization (ACO) [15] provide a suboptimal
olution [16]. In contrast to centralized MRTA, distributed ap-
roaches divide the overall problem into pieces containing partial
nformation, improving scalability at the expense of reducing per-
ormance. Distributed schemes typically focus on market-based
lgorithms [17] with different robots auctioning and bidding for
he different tasks [18–22]. Finally, a possibility half-way between
entralized and distributed approaches is that of clustering [23–
5], which seeks a tradeoff between performance and computa-
ional burden. In this way, sets of tasks and robots are partitioned
nto loosely coupled clusters that can be managed efficiently in
arallel. The problem of partitioning large MRTA schemes into
everal smaller, manageable and mutually exclusive pieces is as
omplex as well-known NP-hard problems as the capacitated
lustering problem (CPP) [26,27], which consists of dividing a set
f elements into clusters with limited capacity and maximum
imilarity within the clusters. Therefore, heuristic methods such
s [28] become necessary. That being said, clustering is not new
n MRTA problems and has indeed been applied to forming robot
oalitions to perform complex tasks, e.g., in [29]. Also, in [30],
correlation clustering technique that enables similar robots to

orm coalitions is explored; and, in [31], an evolutionary algo-
ithm is proposed for the case in which robots must participate
n different clusters.

Note that clustering and cooperation fit naturally in the co-
perative game theory framework, where intelligent rational
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.robot.2022.104314
https://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2022.104314&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jgarmar@us.es
mailto:franmuros@us.es
mailto:pepemaestre@us.es
mailto:efcamacho@us.es
https://doi.org/10.1016/j.robot.2022.104314
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


J.G. Martin, F.J. Muros, J.M. Maestre et al. Robotics and Autonomous Systems 161 (2023) 104314

d
s
i
a
a
t
o
s

a
O
p
m
m
d
o
t
o
h
c
t
s
n
p
m
w
t
i
v
t
f
S
c
o
l
v
a
a
e
o
c
t
u
i
d
6
o
f
M

s
u
S
i
i
a
g

2

{

s
b

(

I
a
t
o
p
c

2

t
c
b
F

A

a
p

ecision-makers, known as players, are involved in cooperation
ituations or games. In this context, players can make sacrifices
n terms of their own welfare to improve overall performance,
nd any group of players or cluster is free to make agreements
nd unify strategies [32]. Applications of cooperative game theory
o engineering problems are usual, with contributions in the field
f cooperation structures [33], communication networks [34–37],
mart grids [38,39], MRS [40], and MRTA problems [41,42].
In this work, cooperative game theory is proposed to develop

n algorithm for large ST-SR-TA-XD MRTA clustering problems.
ur motivation stems out from the OCONTSOLAR Project, 1 which
roposes the use of fleet of robots to build dynamic irradiance
aps that can help increase the performance of large-scale ther-
al power plants [43,44]. In particular, spatially distributed irra-
iance information can be very useful whenever there are parts
f the plant covered by clouds, which requires monitoring and
racking the attenuation on solar irradiance to avoid, among
thers, problems such as strong temperature gradients in the
eat-transfer fluid. Keeping in mind the above application, we
onsider here the problem of assigning a set of measurement
asks, presumably generated by a higher layer of the control
ystem for the set of available robots. Due to the combinatorial
ature of the problem, it can become intractable from a com-
utational viewpoint, especially for large-scale systems where
any robots and tasks can be expected. To relieve this issue,
e propose a clustering approach to group sets of robots and
asks, which become the players of a game. The proposed method
s based on the ordering of players introduced by the Shapley
alue [45], the best-known solution concept in cooperative game
heory, with applications in water systems [46], biology [47],
inance [48], or power networks [49], among others. Certainly, the
hapley value has been applied to multi-agent systems to form
oalitions due to its relationship with the marginal contribution
f each agent [50]. Also, this value has been widely used in the
iterature to perform rankings, in works such as [51], where the
alue of the nodes in a social network is assessed to classify them
ccording to their level of influence; [52], where carbon quotas
re assigned to the different regions of China to reduce carbon
missions; [53], where wines are graded; or [54,55], where meth-
ds for ranking the links in control networks that may include
onstraints are proposed. Finally, a key feature in this context is
hat the Shapley value can be approximated in polynomial time
sing randomized methods [56–59]. In fact, there is a renewed
nterest in fast methods for computing the Shapley value [60–62]
ue to its use in large-scale machine learning applications [63–
5]. In this way, and as it will be shown in the results section,
ur method can outperform other heuristics such as GA, even
or hard timing constraints regarding the computation of the
RTA problem.
The rest of this work is organized as follows. The problem

tatement is introduced in Section 2. Some game theory concepts
sed in this work are presented in Section 3. In Section 4, the
hapley value-based clustering algorithm for MRTA problems
s proposed. Likewise, in Section 5, a large-scale case study is
ntroduced to assess the algorithm, which is also compared to
GA and a fully centralized approach. Finally, conclusions are
iven in Section 6.

. Problem statement

We consider sets of robots R = {1, 2, . . . , R} and tasks T =

1, 2, . . . , T }. For convenience, let us define set N = R ∪ T . To
olve the MRTA problem, the elements inside R and T need to
e properly matched considering the following assumptions:

1 Optimal Control of Thermal Solar Energy Systems. H2020 ADG-ERC project
Grant Agreement 789051). https://cordis.europa.eu/project/id/789051/es
2

Assumption 1. We focus on ST-SR-TA MRTA problems [10,11],
meaning (i) a robot can only perform one task at a time, (ii) tasks
can be fulfilled by only one robot, and (iii) all the tasks that must
be allocated to robots are known.

Assumption 2. For the sake of simplicity, robots are governed
by a controller that reaches the assigned tasks positions, avoiding
static and dynamic obstacles [66,67].

Under the premises above, let us introduce the MRTA cluster-
ing as

C = {C1, C2, . . . , CNc}, (1)

where Ch, h = 1, . . . ,Nc are disjoint clusters of robots and tasks
verifying⋃
h

Ch = N , Cha∩Chb = ∅, ∀Cha , Chb ∈ C, Cha ̸= Chb . (2)

Notice that the number of different clustering alternatives for C
is upper bounded by the Bell Number [68]

BN =

N∑
s=0

⎛⎝ 1
s!

s∑
j=0

(−1)s−j
(
s
j

)
jN

⎞⎠, with N = |N |. (3)

n particular, clusters Ch composed only of robots or tasks are
llowed in this definition. Nevertheless, as it will be shown later,
hey will be discouraged via penalties, specially those containing
nly tasks because task-only clusters lead to tasks not being
erformed as tasks can only be executed by robots. Hence, in
lusters without robots, tasks would remain undone.

.1. MRTA objective function

Centralized approaches for MRTA problems rely on functions
hat evaluate allocations, i.e., the plan to perform the tasks ac-
ording to criteria such as the distance traveled by robots, their
attery level and the time to fulfill the missions [14,69–71].
ollowing [71], the multi-criteria evaluation function used is

= argmin
U

(
T∑

t=1

δtηt (U) +

R∑
r=1

λrdr (U) + ϕ(U)

)
, (4)

where U =
[
ur,t
]
r∈R,t∈T , with ur,t being nonnegative integer

variables that indicate the order in which robot r performs task t .
Note that ur,t = 0 when robot r does not perform task t .
Likewise, δt corresponds with the priority given to a certain
task t ∈ T , i.e., it should be larger for urgent tasks. Also, ηt (U)
measures the completion time necessary for a certain robot to
accomplish task t in allocation U , which includes the time spent
by this robot in completing this and all previous tasks in U , and
also the robot displacements from the origin to the first task
and between tasks.2 Parameter λr refers to a certain penalty of
using robot r ∈ R, i.e., it should be smaller for robots that
are preferred to be used, while dr (U) is the distance traveled by
robot r in allocation U . Finally, ϕ(U) strongly penalizes unfeasible
llocations, e.g., if there is not enough power in the batteries to
erform allocation U .
In a nutshell, it is not only the distance, but its balancewith the

travel duration, which needs to be considered in the allocation.
In any case, the allocation provided by (4) does not guarantee an
optimal assignment, i.e., it might be possible to find better alloca-
tions [71]. Note also that (4) highly depends on the relevance of
each task, which may cause strong nonlinearities. This feature is

2 Note that the dependence of ηt (U) on U makes the problem become XD
MRTA [10,11].

https://cordis.europa.eu/project/id/789051/es
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uitable for problems with a heterogeneous robot fleet where the
se of certain robots needs to be restricted so that they are used
n the most important tasks. For instance, in [44,71,72] the fleet
f robots is composed of both unmanned aerial vehicles (UAV),
nd unmanned ground vehicles (UGV). Since UAVs are faster, it
s reasonable to allocate the most urgent or relevant tasks to
hem. On the other hand, UGVs, which have higher operational
utonomy, will be assigned to perform the rest of the tasks.

.2. Cluster evaluation

Since it may not be possible to solve (4) in real time for
arge problems, we propose to divide robots and tasks into clus-
ers or coalitions, i.e., subsets of players, and then to apply (4)
ubsequently to find an allocation for each resulting cluster in
distributed fashion. To this end, we introduce a function J to
ssociate a cost J(S) to each coalition S ⊆ N according to its
obots and tasks, considering:

• The average distance between robots and tasks so that larger
distances are penalized.

• The velocity of the robots in the cluster. The faster the
robots, the better.

• The battery level of the robots in the cluster. Again, the
higher it is, the better.

• The penalties of the robots and tasks in (4) must be taken
into account so that neither critical tasks nor penalized
robots are concentrated in a single cluster.

• The operation time to fulfill each single task, since the
completion time ηt (U) in (4) depends on these operation
times and also on the travel times spent by the robots.

• Large cardinality of S must also be penalized.

According to all these premises, we define

J(S) = ψ(S)

(∑
i⊆S

Ji − α1D̂RT − α2|S| + ρ

)
, (5)

with

Ji =

{
α3Ei + α4vi − α5λi, if i ∈ R,

−(α6δi + α7τi), if i ∈ T ,
(6)

and

ψ(S) =

{
0, if {S ⊆ R} ∨ {S ⊆ T } ∨ {S ≡ ∅},

1, otherwise.
(7)

Several terms are considered by cost function (5). First, Ji is
related to the cost of each element i ∈ N , while D̂RT is the
average distance from robots to tasks in coalition S. Terms Ei
and vi refer respectively to the available energy and velocity of a
robot, and τi defines the operation time that a specific task i needs
to be accomplished. Parameters λi and δi, indicate respectively
the penalty of using a robot and the priority of a task, similarly
to their use in (4). Finally, term ψ(S) filters the cases where
there is only one type of player inside coalition S , i.e., either
robots or tasks, with ψ(S) = 0 in those coalitions, and ρ is
an arbitrarily large number that guarantees that J(S) is positive.
Notice that α1 to α7 are nonnegative weighting scalars with
different effects over the resulting clustering. Using larger α1
reduces the admissible distance between robots and tasks; simi-
larly, increasing α2 decreases the number of players in the formed
clusters; also, increasing α3, α4, α5, α6, and α7 prioritizes aspects
such as the battery level, velocity, robot penalty, task relevance,
and operation time, respectively. These weights can be set to 1
initially and then modified on the basis of the system designer’s
experience and their impact should be simulated in a trial and

error fashion.

3

Fig. 1. Clustering academic example.

Remark 1. Unlike other works, we consider that tasks can also
be players in the cooperative game, being characterized by their
locations and other parameters such as their relevance and the
operation time required to accomplish them. As can be extracted
from (6), conversely to robots, tasks will have a negative effect on
the cluster evaluation function (5).

Remark 2. The MRTA problem (4) has inspired the design of
function (5), but alternative evaluation functions and different
MRTA objective functions, such as that of [73], could be used
as well.

Remark 3. Parameter α2 in (5) penalizes the coalition size.
hus, lower/higher values of α2 will favor larger/smaller coali-
ions. Note that the cluster size affects the allocation computation
y (4). Indeed, larger clusters gain optimality at the expense of
omputation cost.

.3. Clustering evaluation

Among all the available clustering options, whose amount is
iven by the Bell number (3), it is necessary to define a cri-
erion to evaluate their performance. To this end, we define a
unction V (C) to assess clustering C as

(C) = Ω(C)
∑
Ch∈C

J(Ch),

s.t. (2),
(8)

ith J(·) given by (5), and where Ω(C) = 0 if any Ch ∈ C is com-
osed only of tasks and is set to 1 otherwise. This function V (C)
an be maximized to obtain the optimal allocation.
A clustering method based on game theory is proposed in the

ollowing section. In this method, it is necessary to compute the
alue of all the possible coalitions S ⊆ N by means of (5). Then,
he cost for each specific clustering solution C (1) is evaluated
y (8). Note that the cost of clusters Ch ∈ C is computed by
unction J in (8), since these clusters belong to the full set of
coalitions, i.e., Ch ⊆ N .

Example 1. Consider a set N composed of R = 5 robots and
T = 12 tasks, i.e., 17 players, as shown in Fig. 1. The cost of
the corresponding 217 coalitions can be computed by (5). Then,
from the B17 ≈ 82.86 × 109 options, a possible clustering C =

C1, C2, C3}, Ch ⊆ N is represented, the cost of which would
e computed by (8), with the parameters involved also shown
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Fig. 2. Control scheme of the proposed approach. Note that the top layer is performed by a centralized controller while the bottom ones are local. The middle layer,
which performs the MRTA problem for each cluster, can be either distributed or centralized. Notice that the number of elements in each cluster are respectively
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[

i
c
e
r

n Fig. 1. Focusing on cluster C1 = {r1, t1, t5, t7}, consider than the
esulting allocation is given by U1 = [5, 7, 1]. Then, for instance,
ote that η1(U1) = τ5 + τ7 + τ1 +

d1(U1)
v1

.

.4. Proposed control scheme

To conclude this section, the overall control scheme proposed
n this work is illustrated in Fig. 2. On the top, a master control
ayer is in charge of performing the clustering, that is, dividing the
obots and tasks into Nc different groups (recall (1)), to minimize
function (8). Once the clustering is performed, a middle layer
solves the MRTA problem for each cluster Ch, h = 1, . . . ,Nc,
roviding a suitable allocation by establishing the sequence of
asks performed by each robot. Note that this allocation problem
or each cluster could be solved either in a centralized [71,72,74–
7] or a distributed [78–80] fashion. In this particular work, we
onsider the centralized solution introduced in [71], which is
ased on solving (4). Finally, once the allocation is sent to the
obots, two different bottom layers are also locally required. The
igh-level layer plans the trajectory of each robot to perform
ts tasks and avoid obstacles. Also, a low-level layer manages
echnical aspects such as battery level, data buffer capacity, etc.

. Game theory viewpoint

In this work, pair (N , J ) will be interpreted as a cooperative
game with transferable utility (TU-game) where N is the set of
players and function J assigns cost J(S) defined by (5) to each
coalition S ⊆ N . Note that, to properly consider J as the charac-
teristic function of a TU-game, a necessary condition is J(∅) = 0,
which is assured by ψ(S) in (5).

From the different cooperative game theory payoff rules avail-

able in the literature, we will consider the Shapley value [45]

4

to compute the relevance of the different coalitions among the
different players – robots and tasks – involved in the game.
The Shapley value assigns to game (N , J ) the vector φ(N , J ) =

φi(N , J )
]
i∈N , with

φi(N , J ) =

∑
S⊆N :i/∈S

S!(N − S − 1)!
N!

[J(S ∪ {i}) − J(S)], (9)

with N = |N |, S = |S|, and where γi(S, J ) = J(S ∪ {i}) − J(S)
s the marginal contribution of player i when it incorporates to
oalition S. That is, the Shapley value can be interpreted as the
xpected marginal contribution for each player when it joins
andomly to a coalition. Notice that S!(N−S−1)!

N!
is the probability

for player i to join S.
The key idea of our proposal is to use the ordering of players

generated by the Shapley value to perform the clustering, as it
has been previously done in other works for coalition formation,
e.g., [50]. Even when this value is oriented to the distribution of
payoffs among players in the grand coalition, the corresponding
payoff is based on their average marginal contribution when they
join a random coalition. Therefore, the Shapley value provides us
with a measure of the relevance of every player that is weighted
across the set of possible coalitions where it can participate,
hence, as done in, e.g., [51–53], it can be used as a ranking
criterion for players.

Notice that the Shapley value was introduced axiomatically
as the only solution concept that satisfies the properties of null
player, symmetry, additivity and efficiency [45]. In particular, the
efficiency property states that the sum of all Shapley values
remains constant by satisfying∑

φi(N , J ) = J(N ), (10)

i∈N
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hich implies that the grand coalition is completely shared
mong the players, and will be of particular interest in the
lustering algorithm presented later.
Alternatively to (9), the Shapley value can be rewritten in

erms of all possible orderings of players in N coming into a
oalition, i.e., N!. Hence, assuming equiprobable orderings, the
Shapley value can be computed by [81]

φi(N , J ) =
1
N!

∑
π∈Π (N )

γ πi (N , J ), ∀i ∈ N , (11)

here
π
i (N , J ) = J({j ∈ N | π (j) ≤ π (i)})

− J({j ∈ N | π (j) < π (i)}),
(12)

s the marginal contribution of player i to the players that are
anked before it in permutation π , and with Π (N ) being the
ollection of all permutations.

emark 4. Coalitions composed solely of either robots or tasks
re excluded by means of term ψ(S). Nevertheless, it is possible
o use other methods in the line of [82,83] to exclude prohibited
oalitions via a Shapley value redefinition.

.1. Estimating the Shapley value

Computing the Shapley value by (9) becomes increasingly
ifficult due to the exponential growth of the problem size.
epending on the number of players involved in the problem,
t may not be feasible to calculate J(S) for all S ⊆ N . To solve
this issue, there are several proposals in the literature [56–59] to
estimate the Shapley value in polynomial time. In particular, the
randomized algorithm proposed in [56] and improved in [57] is
used in this work. Thus, starting from the formulation in (11), a
set Q containing a sample of q different permutations π , taken
with replacement and with equal probability from set Π (N ), is
considered. Then, the Shapley value of each player is estimated
by the average of the marginal contributions over set Q, obtaining
vector φ̃(N , J ), which is defined by

φi(N , J ) =
1
q

∑
π∈Q

γ πi (N , J ), ∀i ∈ N . (13)

xpression (13) provides an estimation of the Shapley value with
esirable properties such as efficiency. Furthermore, following the

central limit theorem, it holds that the estimator follows a normal
distribution characterized by [56]:

φi(N , J ) ∼ N

(
φi,

σ 2
φi

q

)
, (14)

with

σ 2
φi

=
1
N!

∑
π∈Π (N )

(
γ πi (N , J ) − φi(N , J )

)2
, ∀i ∈ N . (15)

Consequently, if the number of permutations q is chosen satisfy-
ing the following condition, ∀i ∈ N :

q ≥
Z2
θ/2σ

2
φi

ε2
, (16)

he estimation error is guaranteed to be bounded by(
|̃φi(N , J ) − φi(N , J )| ≤ ε

)
≥ 1 − θ, ∀i ∈ N , (17)

with ε being the approximation error, Z ∼ N(0, 1), and where Z2
θ/2

is the value such that P(Z ≥ Z2
θ/2) = θ/2, with 0 ≤ θ ≤ 1. Given

that σ 2 is a priori unknown, in this work we assume ε = max εi,
φi i

5

with εi = ξσφi and ξ =
1

√
β
. Hence, the condition given by (16) is

reduced to

q ≥ βZ2
θ/2. (18)

Given that we are interested in qualitative information about
he different Shapley values regarding their relative position in a
anking, we propose here an iterative method starting with the
olution provided in (18), i.e., qini = ⌈βZ2

θ/2⌉. Once this initial
ample has been taken, φ̃ will be dynamically computed and
he agents ranked by their estimated Shapley value. Then, more
amples can be added to update φ̃ until the rank stays constant
or a given number of steps lmax without variations. The proposed
rocedure for computing q is given in Algorithm 1, with l being
counter variable for the steps without ranking changes.

Algorithm 1: Procedure for estimating the Shapley value with
a dynamic q criterion
Set q = qini and l = 0;
Compute φ̃ by (13);
Find ordering O with players ranked by their estimated
Shapley values φ̃i;

while l < lmax do
q = q + 1;
Recompute φ̃ by (13);
Find ordering O′ with players ranked by φ̃i;
if O = O′ then

l = l + 1;
else

l = 0;
end

end

Remark 5. According to [56], φ̃i converges to φi when q → ∞.
Therefore, Algorithm 1 eventually provides us with a stable rank-
ing based on the Shapley value with a certain error ε included in
the specifications.

4. Clustering algorithm

The Shapley value ranks robots and tasks according to their ex-
pected marginal contributions. It can be used to organize clusters
in order to enhance performance while balancing the computa-
tional burden. In particular, we propose to balance the clusters
according to the sum of the Shapley values of their elements.
To this end, each robot is initially set as the leader of a cluster
composed only of itself. Tasks are then distributed leveling the
aggregate Shapley values of the clusters, and a clustering result
is obtained. It is remarkable that robots with higher Shapley
values have the most to offer in terms of performance. On the
other hand, the most demanding tasks are those with lower
Shapley values. Therefore, we assign these tasks to the most
capable robots. At this point, the two robots with the lowest
Shapley values are merged in a new single player, the tasks are
again distributed and a new clustering result is obtained. This
process is recursively repeated by merging robots as many times
as rounds of tasks distribution have been done, until the grand
coalition of robots is achieved. Finally, from the set of possible
clusterings computed in each round, the most appropriate one
according to (8) is chosen as the solution. This method will be
named Shapley value clustering algorithm (SVCA) and is detailed
in Algorithm 2.

Remark 6. Robots and tasks typically have opposite signs re-
garding their Shapley values. Hence, grouping them into a single
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Algorithm 2: Shapley value clustering algorithm (SVCA)
Let N = R ∪ T ;
et s = 1 and q = qini;
ompute φ̃i(N , J ) using (13) and Algorithm 1;
tart with Nc = R clusters containing 1 robot;
hile Nc ≥ 1 do
while T > 0 do

Add task i ∈ T with the lowest |̃φi(N , J )| to the cluster
containing robot j ∈ R with the highest |̃φj(N , J )|.
A new mixed robot-task player a = {i} ∪ {j} whose
estimated Shapley value is φ̃i(N , J ) + φ̃j(N , J ) is
created, and old players i and j are deleted;

end
Take the clusters created as a possible solution Cs;
s = s + 1;
Reset original sets R and T ;
Nc = Nc − 1;
while R > Nc do

Take player i ∈ R with the lowest |̃φi(N , J )| and add it
to player j ∈ R with the second lowest |̃φj(N , J )|.
Therefore, a new robot-robot player b = {i} ∪ {j}
whose estimated Shapley value is φ̃i(N , J ) + φ̃j(N , J )
is created, and old players i and j are removed;

end
end
Compute V (Cs) for all possible clusterings Cs, with s ∈ [1,Nc],
by means of (8), and select the highest result as the
clustering solution;

cluster balances the Shapley value of the merger. Consequently,
robots with lower Shapley values tend to be grouped to form
competitive clusters. Finally, note that all clusters initially contain
one robot and therefore, the proposed algorithm prevents the
formation of task-only clusters. Clusters composed only of robots
are allowed because there is no need to assign all the robots.
However, all the tasks must be assigned.

Remark 7. Algorithm 2 is suboptimal because it does not explore
all possible coalition structures. Indeed, a full search may not be
computationally affordable as the problem grows exponentially
with the number of players by O(NN ).

. Case study

In this section, the proposed SVCA is applied to a simulated
obot fleet that performs maintenance labors and data acquisition
asks in an industrial plant. In the context of the aforementioned
CONTSOLAR Project, the tasks will include the gathering of spa-
ially distributed irradiance measurements throughout the plant
nd the maintenance of the solar collectors. For simplicity, it is as-
umed that robots can move straight to tasks without considering
bstacles. Also, it has been considered that all robots can perform
ll tasks and are equipped with the same instrumentation. Hence,
he time to perform a task only depends on the task. All the
imulations in this section have been performed using Matlab

®

n a 3.2 GHz Intel
®

Core™ i7/16 GB RAM computer.
Random problems for a certain size N are considered here,

ssuming R < T , and where the locations of robots and tasks
re determined randomly within a square map of 500 × 500 m.
eighting parameters are given by α1 = 0.1 (to allow large
istances between robots and tasks), α2 = 10 (to limit the size
f the clusters), and the rest of them, α3 to α7, neutral and equal
o 1 (to show a cluster forming scenario based on robot and task
6

Fig. 3. Randomly generated scenario (N = 60).

Table 1
Randomly generated scenario parameters for robots and tasks (r := i ∈ R and
t := i ∈ T ).
Robot Er vr λr Task τt δt Task τt δt Task τt δt

r1 97 6 5 t1 8 3 t16 5 1 t31 4 2
r2 99 8 1 t2 1 5 t17 9 5 t32 8 2
r3 43 18 1 t3 8 4 t18 5 1 t33 10 4
r4 90 11 4 t4 3 3 t19 6 4 t34 4 3
r5 2 8 3 t5 9 2 t20 5 1 t35 3 4
r6 1 18 1 t6 8 4 t21 6 2 t36 7 5
r7 6 20 2 t7 5 3 t22 9 4 t37 10 3
r8 58 8 4 t8 6 3 t23 2 2 t38 3 3
r9 8 13 5 t9 6 3 t24 9 2 t39 5 1
r10 80 8 3 t10 2 2 t25 1 3 t40 2 1
r11 70 5 5 t11 8 4 t26 1 5 t41 10 1
r12 86 8 1 t12 5 3 t27 6 5 t42 8 5
r13 31 10 4 t13 3 5 t28 3 1 t43 6 4
r14 58 6 5 t14 7 3 t29 8 2 t44 8 3
r15 62 5 3 t15 9 4 t30 2 4 t45 6 1

parameters where the distances between players in a cluster are
not very relevant). The remaining operating parameters of the
players affecting (5) will also be randomly determined within the
following ranges: E ∈ [0, 100], v ∈ [1, 20], λ ∈ [1, 5], τ ∈ [0, 10],

∈ [1, 5], with the specific values shown in Table 1. According
o these specifications, the scenario depicted in Fig. 3 has been
andomly generated with R = 15 robots and T = 45 tasks.

Henceforth, we will consider two different computation times
to analyze the burden of our algorithm. In particular, tclu is de-
ined as the time required to solve the clustering and tall refers
o the time required to sequentially solve the allocation in all its
lusters. Note that the allocation in the clusters could be solved in
arallel, but we have considered a sequential process to perform
fair comparison with other algorithms in the literature.

.1. Centralized clustering

At this point, it is possible to provide the centralized alloca-
ion of the aforementioned problem using (4), which is shown
n Fig. 4 and results in an allocation cost A = 61283.27. Nev-
ertheless, the computational burden of this solution is tall =

733.95s, which makes the centralized allocation unaffordable for
large-scale problems.
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Fig. 4. Scenario solved via a centralized allocation (one cluster).

Fig. 5. Scenario clustered by the SVCA. Different colors represent the 13 different
lusters while different line styles refer to different robots trajectories in the
ame cluster. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of this article.)

.2. SVCA clustering

The proposed SVCA ranks players according to their Shapley
alue. Given the large number of players (N = 60) we need
o estimate the Shapley value taking θ = 0.1, ξ = 0.08 and,
hus, β = 156 in (18), which results in qini = 423. Using a
topping criterion of lmax = 10 in Algorithm 1, we estimate the
Shapley value after q = 453 permutations. Finally, Algorithm 2
is implemented, obtaining the clustering results of Fig. 5. The
resulting clusters are detailed in Table 3, while the specific dis-
tance traveled by the robots and the tasks completion time due
to the clustering solution is shown in Table 4. The clustering
performance is given by V (C) = 10921.20, while the allocation
cost computed by (4) is A = 83392.52. Likewise, the overall
time to perform the clustering and achieve the allocation is tclu +

all = 8.53 + 1.57 = 10.10s. Note that the computation time is
ignificantly reduced with respect to the centralized solution at
he cost of a performance loss.

.3. Genetic algorithms (GA)-based clustering

Since problem (8) is highly nonlinear, it is not possible to
ind the optimal clustering without evaluating all the possibilities,
7

Table 2
Genome involved in the GA. Note that the number of genes generated increases
fast because the number of variations with repetitions is given by NN .
Player 1 · · · i · · · N

Cluster [1,N] · · · [1,N] · · · [1,N]

Fig. 6. Scenario clustered by the GA. As done in the previous case, different
colors represent the eight different clusters and different line styles refer to
different robots trajectories in the same cluster. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

which may not be computationally feasible. For this reason, in
order to measure the performance of the proposed algorithm, we
have considered the well-known genetic algorithm (GA) [84–86].
The rationale of GA is to start from a random population of genes
representing possible solutions and improve them by mixing and
mutating them. The gen used in GA has been defined as illustrated
in Table 2, and it can be expressed mathematically as a vector
g =

[
gi
]
i∈N , where gi ∈ [1,N] is the cluster containing player i.

inally, it is interesting to introduce the population size, i.e., the
mount of genes that the algorithm uses in each generation. In-
eed, increasing this parameter can improve the optimality of the
olution achieved, but it also rises the overall computation time.
In this work, the GA has been implemented using Matlab

®

unction ga with default settings. Specifically, the same scenario
s before with N = 60 has been solved using GA. The cluster-
ng results are shown in Fig. 6, with the clusters formed and
he clustering information being respectively shown in Tables 3
nd 4, to ease the comparison with those of the SVCA. In this case,
he clustering performance is V (C) = 5817.27 and the allocation
ost (4) is A = 86399.29. Also, the overall computation time is
given by tclu + tall = 9.05 + 1.83 = 10.88s. Note that the SVCA
utperforms the GA in these results.

.4. Averaging results

To reinforce our assessment, sets of 50 random problems
olved 10 times to average the results have been computed.
ndeed, random problems allow a proper study of the perfor-
ance of the heuristic algorithms considered. First, the problem
ize is fixed to N = 60 and the rest of parameters for robots
nd tasks are chosen randomly. For SVCA, the Shapley value is
stimated with qini = 423 as before (θ = 0.1, ξ = 0.08).
ote that the average computational load to solve the problem
ithout clustering, i.e., in a centralized manner, is in the range
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Table 3
Clusters obtained as a result of the application of SVCA and GA. It can be seen that the number
of clusters of the proposed approach is higher than those of the genetic scheme, which in turn
implies that clusters of GA contain more players and hence are more difficult to manage.

SVCA GA

C1 {r1, t11, t15, t20, t21, t27} {r1, r8, t1, t5, t12, t14, t29, t40, t42}
C2 {r2, t2, t6, t32, t37, t45} {r2, r4, r15, t2, t6, t16, t28, t33, t39, t41, t43}
C3 {r3, t36, t39} {r3, t4, t11, t18, t21, t26, t30, t31, t44, t45}
C4 {r4, t3, t4, t9, t38, t41} {r5, r7, t3, t8, t10, t13, t17, t19, t20, t24, t27, t34, t36, t37, t38}
C5 {r5, r6, t22, t33, t40, t44} {r6, r11, t9, t25, t35}
C6 {r7, r9, t14, t18} {r9, r10, r14, t7, t15, t22, t23}
C7 {r8, t1, t8, t29} {r12, t32}
C8 {r10, t19, t28, t34, t35} {r13}
C9 {r11, t5, t7, t26} –
C10 {r12, t10, t12, t42, t43} –
C11 {r13, t24, t31} –
C12 {r14, t13, t17, t25} –
C13 {r15, t16, t23, t30} –
Table 4
Distance traveled by robots (in m) and completion time of tasks (in s) after solving the MRTA problem with both
SVCA and GA clustering algorithms (r := i ∈ R and t := i ∈ T ). The best values have been highlighted in bold. Note
that they must be multiplied by parameters λr and δt in Table 1 to compute the cost function.
Robot dSVCAr dGAr Task ηSVCAt ηGAt Task ηSVCAt ηGAt Task ηSVCAt ηGAt

r1 1464.59 1633.79 t1 106.46 198.89 t16 174.25 21.65 t31 34.45 7.10
r2 1247.24 1028.90 t2 19.52 19.52 t17 39.82 205.99 t32 188.91 24.70
r3 358.76 787.09 t3 147.98 527.89 t18 10.38 53.72 t33 52.98 58.01
r4 1297.75 567.26 t4 56.84 61.98 t19 216.29 347.11 t34 71.20 500.29
r5 548.85 3671.10 t5 90.87 37.74 t20 245.70 285.37 t35 140.90 41.24
r6 611.57 562.36 t6 111.78 90.18 t21 111.81 86.73 t36 25.59 13.82
r7 270.81 442.46 t7 107.96 30.21 t22 27.25 70.45 t37 154.48 171.63
r8 881.55 209.03 t8 132.19 21.75 t23 224.87 46.63 t38 95.25 424.40
r9 69.98 398.25 t9 16.49 8.05 t24 15.40 70.12 t39 31.93 142.63
r10 1602.31 491.62 t10 165.12 123.21 t25 78.18 19.81 t40 33.72 26.37
r11 464.78 0.00 t11 278.10 75.46 t26 27.29 12.82 t41 45.45 165.61
r12 1152.98 133.58 t12 29.49 100.80 t27 59.54 241.12 t42 47.36 283.82
r13 214.53 0.00 t13 7.28 31.12 t28 38.79 124.45 t43 101.43 62.57
r14 391.08 0.00 t14 20.54 35.13 t29 34.23 310.30 t44 78.61 36.28
r15 1079.34 0.00 t15 176.41 11.14 t30 98.28 41.33 t45 56.85 23.90
i
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of thousands of seconds. This time is strongly reduced by divid-
ing the main problem into smaller clusters, which are allocated
independently. More specifically, the computation time is in the
range of hundreds of seconds in the case of the GA, and ranges
between tens and hundreds of seconds for the SVCA. However,
when the clustering is performed the allocation cost increases
by 20% in comparison with that of centralized solutions. In any
case, the significant reduction of computation time, around 98%,
balances this loss of performance for problems requiring a fast
allocation in few seconds.

5.5. Scalability analisys

Focusing on the SVCA and the GA, an additional comparison is
erformed to assess results with problem size. To this end, sets
f problems with N ranging from 6 to 80 have been solved for
ini = 423. The overall computation time tclu + tall and clustering
erformance V (C) of both approaches as a function of the problem
ize are represented in Fig. 7, where the results of the SVCA
onsidering an exact evaluation of the Shapley value by (9) have
lso been included. Note that the use of the exact Shapley value
ecomes computationally intractable for schemes of around 20
layers. This issue is solved by estimating the Shapley value
sing (13), which also outperforms the computation time of the
A for problems up to N = 65. In addition, performance results
re very similar up to N = 30, from which the SVCA provides
etter outcomes.
8

Finally, a comparison of performance vs. time is presented
n Fig. 8, for N = 60 and increasing values of q for the SVCA and
he population size for the GA in order to exploit the available
ime represented in the x− axis of this figure. By increasing both
arameters, the clustering performance improves but indeed the
omputation time gets worse. More specifically, our results show
hat the performance of the GA is very limited for small com-
utation time requirements and improves as more time to solve
he problem is allowed. Conversely, for the SVCA algorithm, Fig. 8
hows satisfactory performance results even with strong timing
estrictions. The main reason for this performance is the use
f qualitative rather than quantitative information by the SVCA,
.e., the use of a relative ranking of robots and tasks based on their
hapley values. Finally, as can be seen in Fig. 7, the computation
ime required for the proposed algorithm grows polynomially,
eing around 1 min for problems with 200 agents. Therefore, the
ize of problems that can be solved with the proposed method
epends on the accessible computational resources, which will be
mployed to find the best possible solution within the available
ampling time.

. Conclusions

In this work, a game-theory based algorithm is presented for
lustering multi-robot task allocation (MRTA) problems consid-
ring not only the distance but also the features of robots and
asks, which are measured by the Shapley value. The proposed
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Fig. 7. Computation time (left) and performance (right) comparison between the SVCA and the GA.
i
c

lgorithm groups the robots and tasks to balance the aggre-
ate Shapley values in the resulting clusters. Also, this clus-
ering algorithm can be applied in large problems using ran-
omized methods such as the one proposed in [56,57] with
atisfactory results in terms of computational burden and per-
ormance, outperforming other metaheuristic methods such as
enetic algorithms (GA) and achieving a feasible solution much
aster than centralized schemes. It is important to remark that
he proposed method does not only provide a clustering, but also
ualitative information regarding how useful a robot is or how
emanding a task is.
In the current implementation, the proposed method can man-

ge problems of about hundreds of agents. Therefore, there might
e limitations in the number of players derived from the avail-
ble time for the computations. Nevertheless, parallel computing
echniques can be implemented to reduce not only the allocation
uration but also the Shapley value calculation time because
he algorithm in [56,57] allows to compute each sample inde-
endently. Furthermore, the new techniques being developed to
ompute the Shapley value of problems with thousands of players
n machine learning applications might enhance the applicability
f our method.
Future work will deal with adaptative approaches that allow

recalculating the clustering cyclically for cases where robot and
task features change or where there are different events such as
unreachable objectives, dynamical appearance of new tasks, etc.
Finally, link-games where players are the connections between
robots and tasks will also be explored.
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Fig. 8. V (C) vs. computation time. Both algorithms, GA and SVCA, tend to
mprove with the computation time increase. In the case of GA, this fact allows
onsidering a higher population size. For SVCA, larger q will produce more
accurate Shapley value estimations.
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