
Representing Complex Multi–Agent

Organisations in UML⋆

Joaquin Peña, Rafael Corchuelo and Miguel Toro

Dpto. de Lenguajes y Sistemas Informáticos
Avda. de la Reina Mercedes, s/n. Sevilla 41.012 (Spain)

E–mail: joaquinp@lsi.us.es, web page: www.tdg-seville.info

Abstract. Interaction has been proved one of the main sources of com-
plexity in Multi-Agent Systems (MAS) and many researches are working
on techniques to palliate it. Furthermore, Organization modelling tech-
niques lies on representing the groups of agents which are related by
some kind of interaction. Current UML approaches represent these rela-
tionships as a set of binary links usually represented as stereotyped UML
associations not providing abstraction tools to manage the complexity
derived from interactions. In this paper, we argue for multiparty links
in order to increase the level of abstraction of organization models and
thus, their ability to manage complexity.
keywords: Complex systems, organization modelling, multiparty inter-
actions, agent protocol descriptions, UML.

1 Introduction

1.1 Organizations and Complexity

The organizational metaphor has been proved one of the most appropriate tools
to engineer Multi-Agent Systems (hereafter MAS) being used as the abstraction
which guides the analysis and design of MASs, e.g. [14]. Organization of Multi-
Agent Systems is usually seen by many researchers as a collection of interacting
roles [8], e.g. GAIA [14] or AUML social structures representations [11]. An or-
ganization shows the groups of agents formed in the system due to get benefits
from one to another in a collaborative or competitive manner. As a matter of
fact, it shows that an organization emerges when exists some kind of interac-
tion between its participants (either through direct communication by means of
speech acts or through the environment).

Most researchers agree on that MASs are a special kind of distributed systems
(objects with their own threads of execution) with special features where a higher
degree of complexity exists than in current Object–Based Software Systems [7].
This complexity of MASs is consequence of their features and mainly of their
interacting nature: Complexity is caused by the collective behaviour of many basic
interacting agents. James Odell [7].

⋆ The work reported in this article was partially supported by the Spanish Ministry
of Science and Technology under grants TIC97-0593-C05-05



�✁✂✂✁✄☎✆ ✝✞✟✠ ✝✡☛✁✄☎✆ ✝✞✟✠
☞✌✍✟✎ ✌✏ �✞✂✁✆✑✡✄✒✓✞✆✁ Performs

currency transfer

✔✆✁✄ ✕✖✁✟✎
�✁✂✂✁✄☎✆ ✝✞✟✠ ✝✡☛✁✄☎✆ ✝✞✟✠

☞✌✍✟✎ ✌✏ �✞✂✁✆✔✆✁✄ ✕✖✁✟✎ Orders 
from

Order 
currency
transfer

Delivers to

Fig. 1. Multiparty organization relationships vs. biparty relationships

Thus, one of the main goals of Agent Software Engineering (AOSE) is focused
on dealing with complexity of MASs to which current software engineering tech-
niques are not specially tailored [5,6]. In this sense, Odell et al. [1], Wooldridge
and Jennings in [14], and others [11] has identified a set of techniques that cope
with modelling such complex interaction/social structures.

1.2 The Need for More Abstract Organization Modelling Artifacts

Interaction modelling, and thus organization modelling, encompasses two as-
pects: i) the structural aspect : which models the relationships between arti-
facts in the system from the interaction point of view, e.g. as it is depicted in
Figure 1, a seller’s bank agents is linked with a buyer’s bank agent by means
of a relationship that represents that they must interact to perform a money
transfer, and ii) the behavioural aspect : which models the order of apparition
of these relationships over time, e.g. first the items to be purchased are chosen
(orders items) to later purchase these items (orders money transfer), etcetera.
Notice that other aspects such as environment modelling [11,14] and organiza-
tion rules [14] are also crucial aspects which we do not cope with in this paper
since they do not affect directly the complexity of models.

In order to be able to face large MASs a set of abstraction mechanisms must
be proposed covering both aspects. By the best of our knowledge two techniques
can be used:

On the one hand, the use of role modelling techniques provides a crucial tool
for dealing with complexity since it allows us to ”divide and conquer” seeing
a complex organization as a set of separate sub–groups which can be studied
separately.

On the other hand, multiparty relationships provides means for more abstract
organization structure models than biparty links such as associations. As it is
depicted in Figure 1, some relationships may involve more than two agents, e.g.
a purchase where a buyer’s bank a seller’s bank, a User Agent and a Point of
Sales Agent participates. If a conceptually atomic relationship at some level of
abstraction is represented by means of biparty relations we have to divide it into



a set of biparty relations mentally thus decreasing the level of abstraction. For
example, since in Figure 1 the purchase can be represented abstractly by a single
four–party relationship if we limit to biparty relationships we have to represent
it by four finer grain relationships. In large MAS this implies decreasing the level
of abstraction of models from the beginning which in consequence decrease our
capacity of dealing with complex systems.

Many researchers has identified this need providing interaction abstractions
in order to encapsulate the protocol performed between an arbitrary set of
agents, e.g. AUML nested protocols, MESSAGE interactions or GAIA proto-
cols. Unfortunately, by the best of our knowledge the abstractions proposed in
the literature do not cover simultaneously both structural and behavioural as-
pects using UML.

In this paper, we present part of the notation of our methodology to model
complex Multiagent Systems (http://www.tdg-seville.info/joaquinp/MaCMAS).
We present an interaction abstraction based on previous work [1,2,12,13,14] to
graphically represent both aspects in UML 2.0 [9]. The main advantage of our
approach is that we provide the mechanisms needed to add a more abstract
model of the organization than other proposals that use UML. Furthermore,
our proposal does not disable others but it provides a mechanism of abstraction
which can be used to produce abstract simpler models which can be refined to
reach the level of details applied in others.

This paper is organised as follows: in Section 2 we present the related work;
in Section 3 we present a multiparty abstraction called multi-Role Interaction
to represent organization relationships; in Section 4 we present a case study; in
Section 5 we discuss on the most appropriate UML notation for mRIs and we
illustrate it with the case study; in Section 6 we present the UML models we
propose. Finally, in Section 7, we summarise our main contributions.

2 Related Work

There exists two paths in the organization modelling literature [11]: i) the be-
haviouristic perspective, and ii) the mentalistic perspective. The former sees
organization as a collection of roles whose features shows the external interface
that agents playing a role offer to the group, thus focusing on the macro–level
and requiring to understand organization (behaviour and structure) in a pro-
grammatic way. The later describes organizations in terms of mental notions
such us desires, believes, facts, rules, etcetera, thus focusing on the agent micro–
level and requiring to understand the organization as a branch of entities which
in conjunction offers a joint behaviour not described explicitly.

The frontier between both perspectives is placed between such systems that
can be understood programmatically and such whose complexity makes impos-
sible to treat them from a behaviouristic perspective1. This paper focus on the
behaviouristic approach providing mechanisms of abstraction that allows us to

1 Notice that a sharp separation can not be established



move the frontier of behaviouristic approach to more complex systems using
UML.

i) Structural Aspect

In AUML [11] structural relations between roles in an organization are repre-
sented as binary UML associations which force designers to decompose mentally
multiparty relations. We think that UML association is not the most appropriate
UML artifact to represent interaction relationships since they have been tradi-
tionally used to represent information relationships which may lead designers to
see these relationships as type relations. Notice that n–ary associations may be
used allowing representing relationships more abstractly. Unfortunately, they are
not usually used in current approaches and they also present the same semantic
drawbacks.

Although AUML recognises the need for multiparty interactions which they
called nested protocols, these multiparty interactions between roles are not used
to represent structural aspects in their organization models [11]. GAIA also
recognises the need for multiparty interactions which they called protocols. Un-
fortunately, they do not provide an UML notation. In MESSAGE Organiza-
tion models acquaintance relations to represent organization structure. Unfor-
tunately, these relations are based on stereotyped associations ignoring other
native UML constructions that represent the same concepts and which fit better
semantically with interaction relationships.

MESSAGE also provides the concept of interaction which may be also used
to represent organization relationships. Unfortunately, authors do not show the
relation between acquaintance relations and interactions. They show neither the
UML construction on which interactions are based. Finally, MESSAGE is based
on UML 1.3 which did not represent roles properly [4].

ii) Behavioral Aspect

Using multiparty links to represent organization structure requires for tai-
lored tools that allows us to represents the sequences of execution of such abstract
joint tasks.

GAIA represents such order by means of regular expressions assigned to each
role in an organization based on FUSION notation [3]. For example, if a Role
A participates in three joint tasks namely I1, I2 and I3 with roles B and C in
all of them, the expression A = I1I2I3 shows that role A participates first in
the protocol (joint task) I1, to later participate in I2, and to finalize with I3.
Unfortunately, they do not provide an UML–based graphical notations nor a way
of representing the whole behaviour of an organization using a single model.

Finally, MESSAGE does not represent the sequences of interactions or ac-
quaintance relations. Although MESSAGES workflows represent the sequence
of tasks authors do not describe how interactions, acquaintance relations and
workflow relate.



3 A First Class Abstraction to Model Organizations

An mRI is an institutionalised pattern of interaction that we propose as abstrac-
tion tool to represent multiparty relationships between an arbitrary number of
roles. An mRI is the materialisation of a certain organization goal required in
the system at the analysis stage, i.e. mRIs represents multiparty interactions
that several agents playing the roles defined on it have to perform to achieve an
organization goal.

The information represented by an mRI focuses on the nature of the joint
process and not on how it is carried out.

They are the corner stone of our approach since organization is always de-
scribed by means of this abstraction. Using mRI as the minimum modelling
element, we do not have to take into account all the links required by a com-
plex task (structural aspect) nor the messages that are exchanged to accomplish
it (behavioural aspect) at stages where these details have not been identified
clearly or are not even known. Obviously, when the level of detail of mRIs has
been increased enough to clearly understand the system organization, biparty
links for the structural aspect and messages descriptions for the behavioural as-
pect are the most adequate approach to define mRIs internally such as those
proposed in AUML.

4 Case Study: The UN Security Council’s Procedure to

Issue Resolutions

The case study we use to illustrate our approach is a simplified version of the
Modelling TC UN Security Council’s Procedure to Issue Resolutions case study2.
In www.tdg-seville.info/joaquinp/MaCMAS/example is available the complete
model of the case study using our notation.

To pass a UN-SC resolution, the following procedure would be followed: 1)
At least one member of UN-SC submits a proposal to the current Chair ; 2)
The Chair distributes the proposal to all members of UN-SC and set a date
for a vote on the proposal; 3) At a given date that the Chair set, a vote from
the members is made; 4) Each member of the security council can vote either
FOR or AGAINST or SUSTAIN; 5) The proposal becomes a UN-SC resolution,
if the majority of the members voted FOR, and no permanent member voted
AGAINST; 6) The members vote one at a time; 7) The Chair calls the order
to vote, and it is always the last one to vote; 8) The vote is open (in other
words, when one votes, all the other members know the vote); 9) The proposing
member(s) can withdraw the proposal before the vote starts and in that case no
vote on the proposal will take place; 10) All representatives vote on the same
day, one after another; 11) A vote is always finished in one day. The date of the
vote is set by the chair.

2 http://www.auml.org/auml/documents/UN-Case-Study-030322.doc



5 UML Notation

When an extension must be defined, OMG strongly recommends to base it on
the most semantically near construction in order to avoid semantic mistakes or
redundant language extensions [10, pag. 3-26]. In this sense, we have carefully
studied UML to use the most appropriate modelling artifact to represent mRIs.
In this work, we have based on the last version of UML: UML 2.0 [9]. The
new features that it presents fits better with our purpose than previous versions
where roles were not properly supported [4].

We have determined that from the dynamic modelling artifacts provided by
UML 2.0, collaborations presents a quite similar semantic to mRIs. In [9] the
OMG provides the following summary of collaborations 3:

UML 2.0 [9, pag. 125]: A behaviour of a collaboration will eventually
be exhibited by a set of cooperating instances (specified by classifiers)
that communicate with each other by sending signals or invoking opera-
tions. However, to understand the mechanisms used in a design, it may
be important to describe only those aspects of these classifiers and their
interactions that are involved in accomplishing a task or a related set
of tasks, projected from these classifiers. Collaborations allow us to de-
scribe only the relevant aspects of the cooperation of a set of instances
by identifying the specific roles that the instances will play. Interfaces
allow the externally observable properties of an instance to be specified
without determining the classifier that will eventually be used to specify
this instance. Consequentially, the roles in a collaboration will often be
typed by interfaces and will then prescribe properties that the participat-
ing instances must exhibit, but will not determine what class will specify
the participating instances.

As can be seen the semantics of collaborations fit properly with our purpose
since they represent multiparty interactions using roles to abstractly describe
the features of agents that will play them.

UML provides two notations for collaborations: the internal structure nota-
tion and the composite structure notation. The former shows the internals of the
collaboration representing roles and their communication paths using biparty
links which is not our purpose (similar to [11]). The latter shows the collabora-
tion using a collaboration icon: a dashed ellipse which the name of the collabo-
ration inside without detailing how it is carried out. Roles of the collaboration
are shown as associations (CollaborationRole), e.g in Figure 2 we represent the
organization formed to vote a proposal where three roles participates: Chair,
Voter and Observer. At the end of CollaborationRoles we place the interface re-
quired by each role showing the external features that an agent playing a certain
role may expose to the organization [9, pag. 131]. UML interfaces may contain
services and attributes thus we place there the knowledge processed by each role
and the services offered.
3 Notice that the collaboration notation and semantics has change from previous UML

versions



✗✘✙✚✛✜✚✛ ✢✣✤✥✛
✦✧★✚✛

✩✩✪✫✬✭✮✯✰✱✭✲✲✪✳✴✵✭✮✶✭✮✷ ✸✥✙★✗✹✦✧★✚✙✷
✩✩✪✫✬✭✮✯✰✱✭✲✲✪✺✻✰✼✮✷ ✦✧★✚✷ ✸✥✙★✗✹✦✧★✚✙✷ ✸✥✙★✗✹✽✚✾✘✚✛✙✷ ✩✩✪✫✬✭✮✯✰✱✭✲✲✪✿❀✬✭✮✷ ❁✛✧❂✧✙✤❃✷ ✽✚✾✘✚✛✷ ✦✧★✚✷❄❅❆❇❈❉❅❇❊❋●❉❅❇❊❍■❏❑▲❍❋●▼❍❆❇◆❖❉❅❇❊❆▲■P❉❅❇❊❋●❉❅❇❊❍■◆◗❆❊❋❘❊❋●▼❍❆❇◆❖❉❅❇❊❆

❙❚▲❋P❈❉❅❇❊❋●❯❊❯◗❊❋■❅❇ ❍■❏❑▲❍❋●▼❍❆❇❅❖❉❅❇❊❆
❱❲❲❳ Vote❨❀✰❃❩ ❬★❂✚✛✹✧✛✾✙✤✙✥❳❭❃✚✜✧★✚✥❳✹✧✛✾✥❳❭✧✘✙✚✛✜✚✛✙

Fig. 2. mRI Vote

❪❫❴❵❛❜❝❫❞❡❢❣❢❤❣✐❥❦❧♠♥♦ ♣qrst✉✈✇♦ ①②③✉④⑤⑥⑦q⑧q③⑨r⑩ ❶❞❷❸❹✐❡❣❥❤❺❣❻♥❣❼✐❤r❽❾⑧⑧q②❿✉✇✈❿✉③➀➁✈s➂r②❿➃⑨❿s❿✈➃q✉②⑨✉②q❿⑨➄q➂✉③q✇✈➃qqs➅➁②➀➁③➁q➂rs➄✈③qrs ❷❤❥❣❢❺❢♠❤❡❣❦❧♠♥♦ ♣qrst✉✈✇♦ ⑥⑦q⑧q③⑨r⑩❪➆❫➇➈❜➈➉➆➊➇t❿②✉②⑨✉q⑦➋➌⑧✈➍⑥⑨⑦✉②➀②⑧⑨❿✉➋➌⑧✈➍♣qrst✉✈✇➍⑥⑦q⑧q③⑨r ➎➏➏❿
Fig. 3. Parametrised mRI of FIPA ContractNet Protocol

Although UML 2.0 collaborations do not define any attribute we have added
the goal of the collaboration using a textual description. In Figure 2 this attribute
can be observed inside the collaboration icon in a compartment with the name
Goal. Furthermore, in order to represent the initiator of the mRI we represent
them with an arrow from the interface to the collaboration, in our example the
role Voter.

Each role that participates on an mRI can be decorated with a guard in order
to indicate when it is interested on participating in it. Guards are graphically
represented as textual notes linked with the association CollaborationRole. For
example, the Chair will only participate in the mRI Vote if and only if the voter
has not voted previously: V oter.V ote 6∈ Chair.ListOfV otes.

Finally, some interactions patterns can be generalised in order to reuse them.
Parameterised mRIs are represented as parameterized UML collaborations adding
a compartment to show the parameters of the mRI. It contains the concrete roles
that participate in the mRI and the concrete knowledge that is managed. For
example, in Figure 3, we show a parameterised mRI for the FIPA ContractNet
Protocol where we can see that the Type of the Producer Role and Consumer
role are open and also the knowledge that is exchanged. As this pattern should
be well known to be reused, it can be attached with a FIPA parameterised pro-



tocol description and a code framework that allows us to implement it almost
directly.

6 UML Representation of Organizations

In our approach we represent an organization from two perspectives: i) the Or-
ganization structure model which shows statically all the relationships that may
appear into an organization by means of UML collaborations and ii) the orga-
nization behaviour model which represent the order of apparitions of these links
over time. In followings sections we detail both models.

Notice that our approach must be applied to complex systems at the early
stages of modelling in order to clarify the organization of the systems thanks to
abstract models we provide. AS a matter of fact, we do not cover how roles map
into agents since this falls in the scope of finer grain techniques.

6.1 Organization Structure Model: Role Models

A role model represents an organization structure as a set of roles that relates by
means of mRIs. They represent a partial view of the whole organization of the
system where a certain organization goal of the MAS is represented orthogonally
to the rest of them.

As we can see its definition is similar to mRI but the main difference is the
level of detail that each concept represent. While an mRI represent a goal as a
whole, a role model represents the goal as a set of mRIs, thus giving a detailed
definition of the organization structure. Thus, when several mRIs are used to
describe the same goal, each of them represents sub–goals of the general one.

There may exist a direct mapping between origination structures represented
by means of a single mRI and role models which detail it. The refinement tech-
niques presented in [12] constitutes a way for identifying the role model which
represents an mRI internally.

Figure 4 shows the role model for the issue resolution organisational goal of
our case of study where we can identify several mRIs: Accept/Reject proposal,
Submit proposal, Vote, and withdraw proposal which model abstractly the whole
case of study. Notice that, since in this role model each role is used by several
mRIs several nested interfaces can be identified: one for each mRI linked to the
main interface, e.g. the interface required by the role Chair for the Vote mRI it
is nested in the interface IChair.

6.2 Organization Behavior Model: StateMachines and

ProtocolStateMachines

The behavioural aspect of an organization, that it is to say, how the mRIs in
a role model sequence, can be represented in two ways: a single dynamic view
based on UML 2.0 State Machines [9, pag. 446] which represents the order of
mRIs in the role model and a set UML 2.0 ProtocolStateMachines [9, pag. 422],



➐➑➒➓➔→➓➔➣↔↕➙➔
➛➜➑➝➙➞➞➓➔

➟➠➡➢➤➥➦ ➧➙➒➞➐➨➩➔➫➭➫➒↕➯➦ ➲↕➞➓➦ ➳➫➞➓➦ ➧➙➒➞➐➨➳➫➞➓➒➦ ➧➙➒➞➐➨➵➓➝➑➓➔➒➦ ➧➙➒➞➐➨➩➔➫➭➫➒↕➯➒➦
➟➸➺➻➼➤➽➾➥➦ ➩➔➫➭➫➒↕➯➦ ➵➓➝➑➓➔➦ ➲↕➞➓➦

➸➺➻➼➤➽➚➥➪➶➪➹➢➘➴➪➢➯➷➛➜➑➝➙➞↕➬➓➮➭➔➫➭➫➒↕➯➨➫➔↕➔➓➒➫➯➜➞➙➫➬ ➐➑➒➓➔→➓➔➣↔↕➙➔
➳➫➞➓➔

➟➱➻➹➾➥✃➾➥➦ ➧➙➒➞➐➨➳➫➞➓➒➦ ➩➔➫➭➫➒↕➯➦
➟❐➪➽➾➥➦ ➩➔➫➭➫➒↕➯➦ ➵➓➝➑➓➔➦ ➳➫➞➓➦

❐➪➽➾➴➪➢➯➷➵↕➬↕❒➓➞↔➓→➫➞➙➬❒➭➔➫❮➓➒➒➫➨↕➭➔➫➭➫➒↕➯ ➐➑➒➓➔→➓➔➣↔↕➙➔
➛➜➑➝➙➞➞➓➔ ❰➤➽➡Ï➥➢Ð➚➥➪➶➪➹➢➘➴➪➢➯➷Ñ➑➫➔➞↕➭➔➫➭➫➒↕➯➒➜➑➝➙➒➒➙➫➬

ÒÓ➾➶➽ÔÕ➾Ö➾Ó➽➚➥➪➶➪➹➢➘➴➪➢➯➷Ñ❮❮➓➭➞➫➔➔➓×➓❮➞↕➭➔➫➭➫➒↕➯➣↔↕➙➔ ➐➑➒➓➔→➓➔ ØÙÙ➬ØÙÙ➬ØÙÙ➬ØÙÙ➬

Fig. 4. Role Model Issue Resolution

one for each role, which represents separately the behaviour of each role in the
role model. In both cases, transitions are used to represent mRIs execution. UML
defines them as follows:

StateMachine: State machines can be used to express the behavior of part of
a system. Behavior is modeled as a traversal of a graph of state nodes in-
terconnected by one or more joined transition arcs that are triggered by the
dispatching of series of events. During this traversal, the state machine ex-
ecutes a series of activities associated with various elements of the state
machine.

ProtocolStateMachine: A protocol state machine is always defined in the
context of a classifier. It specifies which operations of the classifier can
be called in which state and under which condition, thus specifying the al-
lowed call sequences on the classifier’s operations. A protocol state machine
presents the possible and permitted transitions on the instances of its context
classifier, together with the operations which carry the transitions. In this
manner, an instance lifecycle can be created for a classifier, by specifying the
order in which the operations can be activated and the states through which
an instance progresses during its existence.



ÚÛÜÝÜÞßàÚÛáÝßÛßâãÜä åáæÝÛÜÝÜÞßà çÜÛßÛáÞÜàèâãÜäéÜâãäêÝÛÜëáÞÞãäÝÛÜêÛáÞÞ
ìèíîãâÚÛÜÝÜÞßà ÚÛÜÝÜÞßàßíÜÛâáïéÜâá

ðëëáÝâñòáóáëâ
ôãâõïÛßæÚÛÜÝÜÞßà

éÜâá
ìèíîãâÚÛÜÝÜÞßàéÜâãäêÝÛÜëáÞÞçãäãÞõáïìèíîãâÚÛÜÝÜÞßà

Fig. 5. State Machine of Role Model Issue Resolution

ö÷øùøúûüö÷ýùû÷ûþÿø� ✁ý✂ù÷øùøúûü✄ø÷û÷ýúøü☎þÿø�✆☎✝✞ÿþö÷øùøúûü ö÷øùøúûü✟✝ø÷þý✠✡ÿþ☛✠÷û✂ö÷øùøúûü
✆☎✝✞ÿþö÷øùøúûü✆☎✝✞ÿþþý÷☞ù÷øþø✌øü✍ ✆☎✝✞ÿþö÷øùøúûü

Fig. 6. Protocol State Machine of Role Submitter

As can be seen, StateMachines fit with the purpose of representing the be-
haviour of a part of the system represented in a role model, and ProtocolStateMa-
chines are defined in the context of a classifier, which can be an interface, which
fits also with our purpose of using them to represent the protocol executed by a
single role.

In Figure 5 is represented the state machine that shows how to sequence the
mRIs in the role model of Figure 4. Notice that each transition represents an
mRI execution which requires all the roles involved to execute it. For example,
the transition labelled with the mRI Accept/Reject requires that role Chair and
Observer execute this mRI jointly. Notice that the guard of both roles for this
mRI must hold to traverse the transition. In State Machines mRIs represent
events that are produced/consumed by all the roles in it.

The another representation consist on providing a separate ProtocolState-
Machine for each role in the Role Model which may be useful at design state to
map several roles into the same agent. In Figures 7 and 6 are shown the protocol
of some roles of the Issue Resolution role model. All of the role protocols execute
its transitions coordinately [13]. Roughly speaking, when an mRI is executed by
more than one role we must perform a transition in all of its protocols. Each of
these transitions represents the part of the mRIs that each of them performs.



✎ ✏ ✑ ✒ ✑ ✓ ✔ ✕✎ ✏ ✖ ✒ ✔ ✏ ✔ ✗ ✘✑ ✙ ✚ ✖✛✒ ✏ ✑ ✒ ✑ ✓ ✔ ✕ ✜ ✑ ✏✔ ✏ ✖ ✓✑ ✕✢ ✗ ✘✑ ✙
✣ ✑ ✗ ✘✙ ✤✒ ✏ ✑ ✥ ✖ ✓ ✓ ✘✙✒ ✏ ✑ ✤ ✏ ✖ ✓✓

✦ ✢ ✧ ★ ✘✗ ✎ ✏ ✑ ✒ ✑ ✓✔ ✕
✩ ✓ ✓✢ ✖✪ ✖ ✓✑ ✕✢ ✗ ✘✑ ✙✪ ✖ ✓✢ ✕✗ ✓

✣ ✑ ✗ ✖✫ ✥ ✥ ✖ ✒ ✗ ✬ ✪ ✖✭ ✖ ✥ ✗ ✮ ✘ ✗ ✯ ✰ ✏ ✔ ✛✎ ✏ ✑ ✒ ✑ ✓ ✔ ✕✣ ✑ ✗ ✖ ✦ ✢ ✧ ★ ✘✗✎ ✏ ✑ ✒ ✑ ✓ ✔ ✕
✱ ✯ ✔ ✘✏ ✲✒ ✏ ✑ ✗ ✑ ✥ ✑ ✕ ✳

Fig. 7. Protocol State Machine of Role Chair

Whereby, to execute an mRI we must transit from one state to another in all
the roles that participate in it.

For example, traversing the transitions Submit Proposal in the protocol of
Submitter, Figure 6, implies to execute only this role part, but notice that as in
the previous case, this transition can not be traversed unless the rest of roles of
Submit Proposal, that is, the Chair, are in a state where this mRI is available and
the guards of both hold. Thus, Chair must be in the state Proposal Preparation
or Issue Resolution Results.

Finally, when several mRIs are available from a state, e.g. in Figure 5 from
state New Proposal for Resolution, we can execute Vote or Withdraw Proposal,
agents use guards to decide between them, e.g. CurrentDate() = Chair.Date

for Vote and CurrentDate() < Chair.Date for Withdraw Proposal. If no guard
is specified, the next mRI will be selected in a non deterministic way.

7 Summary

The main contribution of this paper is the identification of the most semanti-
cally appropriate UML artifacts to represent more abstract organisation models
than current approaches. In this sense, we have provided three UML models
to represent organizations: i) the organization structure model to represent re-
lationships statically and ii) two equivalent organization behaviour models to
show the order of apparition of these relations; one represents role behaviours
isolated and another to represent organization behaviour as a whole both based
on UML state machines.

Our approach must be applied to complex systems at the early stages of
modelling in order to clarify the organization of the systems thanks to abstract
models we provide. Then, other approaches based on finer grain descriptions can
be applied.



8 Acknowledgments

This paper has been written as a result of the ideas discussed on the FIPA
Modelling and Methodology TC with J. Odell, M. Conssentino, R. Levy, D.
Greenwood, G. Wagner, M. Huget, Hong Zhu, etcetera. We would like to thank
all of them for their fruitful comments.

References

1. B. Bauer, J. Müller, and J Odell. Agent UML: A formalism for specifying multia-
gent interaction. LNCS, 1957:91–103, 2001.

2. G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, J. Pavon, P. Kearney,
J. Stark, and P. Massonet. Agent oriented analysis using MESSAGE/UML. In
Proceedings of Agent-Oriented Software Engineering (AOSE’01), pages 101–108,
Montreal, 2001.

3. D. Coleman et al. Object Oriented Development: The Fusion Method. Prentice-
Hall, 1994.

4. R. Depke, G. Engels, and J. M. Küster. On the integration of roles in the uml.
Technical Report 214, Dep. of Computer Science, University of Paderborn, August
2000.

5. N. Jennings. An agent-based approach for building complex software systems.
Communications of the ACM, 44(4):35–41, 2001.

6. J. Odell. Agents (part 2): Complex systems, executive report. Technical Report
Volume 3, Number 6, Cutter Consortium, Arlington, MA, 2000.

7. J. Odell. Agents and complex systems. Journal of Object Technology, 1(2):35–45,
July-August 2002.

8. J. Odell, H. Parunak, and M. Fleischer. The role of roles in designing effective agent
organizations. In A. Garcia and C. Lucenaand F. Zambonelliand A. Omiciniand J.
Castro, editors, Software Engineering for Large-Scale Multi-Agent Systems, number
2603 in LNCS, pages 27–28, Berlin, 2003. Springer–Verlag.

9. Object Management Group (OMG). Unified modeling language: Superstruc-
ture. version 2.0. Final adopted specification ptc/03–08–02, OMG, August 2003.
www.omg.org.

10. Object Management Group (OMG). Unified modeling language (UML), version
1.5. Technical report, OMG, March 2003. www.omg.org.

11. H. Van Dyke Parunak and James Odell. Representing social structures in UML.
In Jörg P. Müller, Elisabeth Andre, Sandip Sen, and Claude Frasson, editors,
Proceedings of the Fifth International Conference on Autonomous Agents, pages
100–101, Montreal, Canada, 2001. ACM Press.

12. J. Peña, R. Corchuelo, and J. L. Arjona. A top down approach for mas protocol
descriptions. In ACM Symposium on Applied Computing SAC’03, pages 45–49,
Melbourne, Florida, USA, 2003. ACM Press.

13. J. Peña, R. Corchuelo, and J. L. Arjona. Towards Interaction Protocol Opera-
tions for Large Multi-agent Systems. In M. Hinchey, J. Rash, W. Truszkowski,
C. Rouff, and D. Gordon-Spears, editors, Second International Workshop on For-
mal Approaches to Agent-Based Systems (FAABS 2002), volume 2699 of LNCS,
pages 79–91, NASA, Greenbelt, MD, USA, 2002. Springer–Verlag.

14. F. Zambonelli, N. Jennings, and M. Wooldridge. Developing multiagent systems:
the GAIA methodology. ACM Transactions on Software Engineering and Method-
ology, to be published 2003/2004.


