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A B S T R A C T   

Knowledge of customer phase connection in low-voltage distribution networks is important for Distribution 
System Operators (DSOs). This paper presents a novel data-driven phase identification method based on Bayesian 
inference, which uses load consumption profiles as inputs. This method uses a non-linear function to establish the 
probability of a customer being connected to a given phase, based on variations in the customer’s consumption 
and those in the phase feeders. Owing to the Bayesian inference, the proposed method can provide up-to-date 
certainty about the phase connection of each customer. To improve the detection of those customers that are 
more difficult to identify, after obtaining the up-to-date certainty for all users, the consumption of those who 
have an up-to-date certainty above a certain percentile compared with the rest of the substation (those that are 
more likely to be correctly classified) is subtracted from the phase in which they are classified. The performance 
of the proposed method was evaluated using a real (non-synthetic) low-voltage distribution network. Favourable 
results (with accuracies higher than 97 %) were obtained in almost all cases, regardless of the percentage of 
Smart Meter penetration and the size of the substation. A comparison with other state-of-the-art methods showed 
that the proposed method outperforms (or equals) them. The proposed method does not necessarily require 
previously labelled data; however, it can handle them even if they contain errors. Having previous information 
(partial or complete) increases the performance of phase identification, making it possible to correct erroneous 
previous labelling.   

1. Introduction 

Knowledge of the current state of distribution networks is essential 
for correct operation. In this sense, numerous efforts have been made by 
Distribution System Operators (DSOs) to monitor the grid, especially in 
secondary distribution networks (low-voltage), which have traditionally 
suffered major deficiencies in their documentation and monitoring 
systems compared with transmission or primary distribution [1]. 

The emergence of Smart Grid technology, such as the Advanced 
Metering Infrastructure (AMI), is an important milestone in low-voltage 
networks in the last decade, with the deployment of millions of Smart 
Meters that allows monitoring of energy consumption profiles, quality of 
service, and even customer management [2]. 

However, topological information remains a constraint in secondary 
distribution networks [2]. This type of information is typically recorded 
manually in the field by operators at the moment of connection to the 

grid. A clear example of this limitation can be found in low-voltage 
European feeder topologies with regard to single-phase customers, in 
which the actual phase the customers are connected to is usually un
known by the DSOs or, when this information is available, it is not al
ways reliable for reasons such as errors when the connection was 
registered, unnotified changes, grid reconfigurations after faults or 
maintenance operations, old networks that have never been docu
mented, etc. [3,4]. 

Obviously, knowledge of the loads’ connection phase in polyphase 
power networks is important for DSOs to achieve a balanced grid. An 
unbalanced three-phase system leads to higher technical losses, a 
reduction in the hosting capacity, problems in service quality (differ
ences among phase voltages that could lead to over/under voltages), 
reduced lifetime of assets, etc. Moreover, awareness of customers’ phase 
connection is not only important for balancing the grid but it also helps 
system operators in other situations, such as maintenance operations, 
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outage identification, non-technical losses detection, etc. [5]. 
Thus, awareness of the phase topology of low-voltage distribution 

grids contributes to better operation. In this paper, a novel data-driven 
phase identification method using load consumption profiles and 
Bayesian inference is proposed. The proposed method includes a func
tion that uses the energy consumption variations of the customers and 
phase feeders to obtain the likelihood probability of each hypothesis 
(phases). With the obtained likelihood probabilities, the current belief in 
each hypothesis is updated using Bayesian inference. Thus, up-to-date 
certainty regarding the connection of each customer is provided. To 
facilitate detection, when a customer is processed, the consumption of 
customers in the same substation who have a high certainty of being 
correctly classified is removed from their phase feeders. A percentile- 
based method was used to obtain a subset of customers that is more 
likely to be correctly classified. Informative and non-informative prior 
probabilities can be used, allowing the inclusion of prior knowledge of 
the phase topology to enhance identification. 

The proposed method is intended to be used in 4-wire low-voltage 
distribution networks in which many single-phase customers (with 
phase to neutral connection) and three-phase customers (balanced or 
not) coexist, similar to the European distribution model [6]. This model 
contrasts with the North American distribution schema, in which most of 
the distribution is done in medium-voltage, and a single-phase or a 
delta-connected two-phase transformer is used to supply a single 
customer or a small number of customers. In the European schema, a 
delta-wye power transformer with grounded neutral is usually con
nected to a medium-voltage distribution network and feeds a low- 
voltage network (usually 400/230 V) in which a large number of cus
tomers (usually between 200 and 500) are directly connected. Even 
though the proposed model is primarily intended to locate single-phase 
customers in European-like feeders, the model can be easily adapted to 
other schemes, such as two-phase loads, which are still found in some 
networks and are very popular in North American distribution networks. 

The rest of the paper is organised as follows: Section 2 reviews cur
rent state-of-the-art methods for phase identification. Section 3 in
troduces the problem formulation and methods used in the proposed 
solution. The phase identification algorithm proposed in this paper is 
presented in Section 4. The performance and comparison tests are pre
sented in Section 5. Finally, conclusions are presented in Section 6. 

2. Literature review 

The traditional approach to deal with phase connection identifica
tion by DSOs is to perform field-side testing, in which an O&M operator 
goes to the customer’s supply point to check the actual phase in which it 
is connected. The identification is usually performed by injecting high- 
frequency signals into each phase line at the secondary distribution 
substation and verifying which of the signals is received at the cus
tomer’s supply point [7]. This approach has several disadvantages: it is 
costly, time-consuming, needs specific hardware and requires well- 
trained workers. In addition, it is a static method (changes on the grid 
require to re-evaluate the phase topology) that requires a periodic 
campaign, which could be a bother for the customers and DSO. 

Owing to the drawbacks of using this field-based phase identification 
method and the increasing popularity of Smart Meters, current efforts to 
solve the phase identification problems are mainly focused on data- 
driven methods. Data-driven approaches in the literature can be classi
fied into two main groups depending on the magnitude used: voltage- 
based and energy-based approaches. 

Most voltage-based phase identification methods rely on finding the 
substation phase feeder that has the highest similarity voltage profile to 
that of the customer [8]. For example, in [3] and [9], the correlation 
between customers and feeder voltages was used to identify the network 
connectivity. Although most solutions seek customer-to-feeder voltage 
correlation, customer-to-customer voltage correlation can also be used 
in the phase identification problem [10,11]. Based on the same previous 

ideas, various authors have used clustering techniques to solve the phase 
identification problem, as in [12] that used a k-means algorithm, or [13] 
that proposed a cluster algorithm based on a multi-tree structure. 
Spectral clustering using voltage time series was proposed in [14] and 
[15]. Clustering algorithms establish the voltages of each phase feeder as 
representatives of the clusters as initial conditions to increase the 
convergence. Another phase identification method [16] used active and 
reactive powers in addition to voltages, and formulated the problem as a 
maximum marginal likelihood (MMLE). However, it did not yield good 
results in radial grids (as most distribution networks are, especially in 
low-voltage European networks). Moreover, the data requirements for 
this last method cannot be obtained with current metering in low- 
voltage distribution networks [17]. 

In summary, voltage-based algorithms generally exhibit good per
formance [17]. However, they have some drawbacks that make difficult 
their use over secondary distribution networks. One disadvantage is the 
need for synchronisation. Voltage measurements must be taken at the 
same instants of time for correct operation, which is difficult because of 
clock deviations between devices. This requires dedicated instrumen
tation with synchronisation techniques, such as Phasor Measurement 
Units (PMUs). Some methods rely on averaging voltage measurements 
(e.g., hourly) to dilute timestamp discrepancies. However, the higher the 
time aggregation, the more difficult it is to find the similarity between 
customer and phase feeder profile. Unfortunately, these restrictions 
make the current Smart Meter deployment in Europe [18–20] unsuitable 
for this approach because Smart Meters are not intended for continuous 
synchronised voltage sampling nor recording voltage measurements for 
averaging. These meters commonly store specific events to monitor 
service quality. 

Another approach to solving the phase identification problem is to 
use active energy measurements, which are broadly available because 
they are used for billing. In this case, they are fully compatible with the 
information available through Smart Meters. Energy-based methods can 
be subdivided into two subgroups based on energy balance and spectral 
analysis. 

The first subgroup is based on a simple concept: the sum of con
sumption at the secondary distribution substation in one phase must be 
equal to the sum of consumption of the customers connected in that 
phase (plus the losses). Relying on the previous idea, [21] established 
the problem as a regression and used LASSO to solve it (which uses L1 
regularization to enforce sparsity in the solution). The same energy- 
balance concept was used in [22] to solve the phase identification 
problem with aggregated Smart Meter data. Mixed Integer Linear Pro
gramming (MILP) was used in [23] to solve a power flow which mini
mizes the difference between the estimated and measured power at the 
feeder head of the secondary distribution substation. In [24] the same 
authors extended this idea but considered the existence of photovoltaic 
panels. An approach to identifying low-voltage customers using Kalman 
filters was proposed in [25]. The authors of this previous paper estab
lished three Kalman filters, one for each phase, in which the state var
iables represent the phase connection of the customer, and the 
measurement of the filters is the energy delivered by the secondary 
substation. The use of graph theory and Principal Component Analysis 
(PCA) has also been proposed for phase identification [4]. 

However, even though this group of methods use input data that are 
widely available, they have a serious drawback: their performance de
creases as the percentage of unmeasured consumption increases. This 
unmeasured consumption may be due to different factors, such as 
technical and non-technical losses (i.e., fraud), measurement errors (e. 
g., due to instrument tolerance or failure), or simply customers without 
Smart Meters. Furthermore, three-phase Smart Meters usually report a 
single aggregated energy measurement; therefore, unbalanced three- 
phase consumption cannot be disaggregated between each phase. 

The second subgroup of the energy-based methods is based on 
looking for singular variations in customer consumption, which may 
also be reflected in the aggregated consumption profile of its phase 
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feeder at the head of the secondary distribution substation. This concept 
was first discussed by Xu et al. [19]. The algorithm used in that study is 
based on a spectral and saliency analysis, in which representative vari
ations in customer power consumption are identified. Subsequently, the 
correlation between these variations and those at the phase feeders of 
the secondary distribution substation are obtained using the Pearson 
Correlation Coefficient (PCC). The phase with the higher correlation is 
the candidate phase in which the customer is connected. This approach 
has two main advantages: it uses energy measurements as input, which 
are widely available for DSOs, and unlike the algorithms based on en
ergy balance, it can provide good results even if the sum of measured 
consumptions is not close to 100 % of the delivered power; (because the 
identification of a customer only depends on its consumption profile and 
the consumption profile at the feeder head of the secondary distribution 
substation). 

Jimenez et al. [26] improved the algorithm of Xu et al. by intro
ducing a change in the customer’s processing sequence and some sta
tistical metrics to evaluate if the number of variations found and the 
correlation results were significant enough to validate the identification. 
These changes result in a significant improvement in accuracy with 
fewer samples and a lower percentage of missing measurements than the 
initial algorithm. The same authors also published a novel phase iden
tification method based on the same ideas, but using genetic algorithms 
[27]. This method obtained better results than the previous one, but 
only when the percentage of measured energy is near 100 %. Hosseini 
et al. [20] proposed a method based on similar ideas, they performed a 
high-pass filter on consumption profiles to obtain the high-frequency 
components to later use them as input of the modified k-means clus
tering algorithm. In the modified k-means method, the centroids are 
predefined as the high-pass filtered profiles of the phase feeders, and the 
loss function is a linear correlation based on the PCC. 

Although this last subgroup of algorithms can obtain good results 
when having unmetered loads, they always provide a solution without 
any uncertainty metric to support the results. Furthermore, these algo
rithms are primarily intended for situations where the entire topology is 
unknown. Having prior knowledge about the connection of some cus
tomers could help in the convergence of the rest if the information of the 
previously assumed customers is valid. However, if the previous infor
mation about the connection contains errors, these would be unrecov
erable and would alter the results for all customers. 

Bayesian inference has been widely used in power systems [28–30] 
even in topology-related applications. For example in [31,32], to solve 
topology errors obtaining the current state of substation switches. 
However, its use in phase identification has not been researched. To the 
best of the authors’ knowledge, the only Bayesian-based approach used 
in the phase identification problem was presented in [33]. In this pre
vious paper, the authors used voltage and active and reactive powers to 
obtain the System State Estimation (SSE) of a bank of possible models; 
subsequently, they obtained the probability of each model to be correct 
in a Bayesian way. The approach is simple and has some drawbacks that 
make its application difficult. It requires the current topology of the 
network and the location of customers. In addition, the complexity of the 
problem increases exponentially as the number of customers increases 
(it needs to evaluate 3n SSE models in a three-phase system with n 
number of loads). 

In conclusion, some problems have been detected in the current 
phase identification methods. In this sense, this paper proposes a novel 
data-driven phase identification method based on Bayesian inference to 
overcome the disadvantages of the available methods. In summary, the 
main contributions and advantages of the proposed method are as 
follows:  

• It uses the energy measurements of customers and the feeder head of 
the secondary distribution substation, which, unlike voltages or 
other measurements, are collected periodically by the DSO and are 
widely available.  

• The proposed method works even with unmetered loads (low Smart 
Meter penetration, fraud, etc.) maintaining good performance even 
when large substations with many customers are processed.  

• Unlike other similar previous phase identification methods, and 
owing to the Bayesian inference, the proposed method can work 
online. Even though this feature could be considered just an imple
mentation consideration, it enables the possibility of providing up- 
to-date certainty about the results, which is a feature that no other 
similar phase identification methods have. Having up-to-date cer
tainty about the results makes possible to cast doubt on them.  

• It does not require previously labelled information about the phase 
topology or any other type of topology-related information. How
ever, if previous information (partial or complete) about the phase 
labelling is provided, the algorithm can handle it. If previously 
labelled information is provided, the performance of the algorithm 
increases substantially even when errors are present in the labels. In 
addition, erroneous labels are corrected.  

• In a worst-case scenario (no previously labelled information), the 
algorithm outperforms (or equals) other state-of-the-art phase iden
tification methods. 

3. Materials and methods 

3.1. Problem formulation 

Let a three-phase low-voltage network be fed by a secondary distri
bution substation with N single-phase customers, with M active energy 
measurements associated with each customer and to each phase feeder 
at the head of the substation. For this substation, let fpm be the energy 
consumption at phases p at instant m at the feeder head of the substation 
with p ∈ {R, S,T} , and cnm be the consumption of customer n at instant 
m. Both fpm and cnm are incremental (i.e., the measure in instant m is the 
energy consumed between instant m and m-1). 

For easy management, we create F (1) and C (2), which are two 
matrices with the three-phase feeders’ consumption per phase and the 
customers’ energy consumption profiles connected at the secondary 
distribution substation between instant 1 and M. 

F =

⎡

⎣
FR
FS
FT

⎤

⎦ =

⎡

⎣
fR1 ⋯ fRM
fS1 ⋯ fSM
fT1 ⋯ fTM

⎤

⎦ (1)  

C =

⎡

⎣
C1
⋮

CN

⎤

⎦ =

⎡

⎣
c11 ⋯ c1M
⋮ ⋱ ⋮

cN1 ⋯ cNM

⎤

⎦ (2) 

Let xpn be a binary variable representing customer n to be connected 
in phase p. Thus, for each single-phase customer, 

∑
pxpn = 1 is satisfied. 

The sparse matrix X (3) shows the connection of all loads in the sec
ondary distribution substation. 

X =
[

Xt
1 ⋯ Xt

N

]
=

⎡

⎣
xR1 ⋯ xRN
xS1 ⋯ xSN
xT1 ⋯ xTN

⎤

⎦ (3) 

Using the law of energy conservation, the problem can be repre
sented as (4). Where E (3xM) represents the unmeasured consumptions. 
In addition, unbalanced three-phase measurements that are reported as 
an aggregated single measurement they are included in this term as well 
because this information cannot be directly associated with any phase. 

F = XC + E (4) 

Therefore, the problem is to solve Eq. (4) to obtain X and E matrices. 
This can be easily solved as a linear regression problem, using LASSO 
(for example), which enforces sparsity on X owing to L1 penalty regu
larization [21]. However, as mentioned in the previous section, the 
performance of these energy-conservation approaches decreases as the 
unmeasured energy increases (E matrix). This major drawback makes 
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these approaches unideal. Nevertheless, as shown in [19,26,27] and 
validated by this study’s results, the correlation between variations in 
consumer consumption and supply in phase feeders can solve the 
drawback of the energy-balance approach. Thus, the proposed method 
does not use the energy conservation law (Eq. (4)) to solve the problem. 
Instead, the correlation of the consumption variations (frequency 
domain) will be used in the proposed phase identification method. 

The variation of energy consumptions can be calculated as a function 
of depth k, as the difference in consumption between instant k + t and t 
for each customer and each phase feeder can be obtained as (5) and (6), 
respectively. 

VCnk = [cn(k+1) − cn1, ⋯, cn(k+t) − cnt, ⋯, cnM − cn(M− k)]

∀k ∈ [1,M − 1], ∀t ∈ [1,M − k] (5)  

VFpk = [fp(k+1) − fp1, ⋯, fp(k+t) − fpt, ⋯, fpM − fp(M− k)]

∀k ∈ [1,M − 1], ∀t ∈ [1,M − k] (6) 

Where VCnk represents the variations in the energy consumption of 
customer n between instant k + t and t. Similarly, VFpk represents the 
variations in feeder p between instants k and k + t. The lengths of vectors 
(5) and (6) are not fixed and depend on the depth used to obtain the 
consumption variation (k value). In addition, M− 1 possibilities of k can 
be used thus, the same number of vectors (M− 1) can be obtained. Based 
on this, it is possible to define the variation matrices of the customers’ 
load profiles and phase feeders, as shown in (7) and (8), respectively. 

VC =

⎡

⎣
VC11 ⋯ VC1(M− 1)

⋮ ⋱ ⋮
VCN1 ⋯ VCN(M− 1)

⎤

⎦ (7)  

VF =

⎡

⎣
VFR1 ⋯ VFR(M− 1)
VFS1 ⋯ VFS(M− 1)
VFT1 ⋯ VFT(M− 1)

⎤

⎦ (8) 

Where the VC matrix represents the variations in the energy con
sumption of the customers connected to the secondary distribution 
substation, representing in each row the variation of a customer for all 
possible values of k (1 to M− 1). Each column represents the variations of 
all customers with the same value of k. Similarly, VF represents the 
variations in energy consumption in the three feeders of the secondary 
distribution substation. Each row represents the variations in a feeder 
for all possible values of k and each column represents the variations in 
the three feeders for the same value of k. These matrices represent the 
salient variations in the energy consumption profiles of customers and 
feeders. This is similar to the high-frequency part of the load profile 
signal in the frequency domain. With these variation signals, and 
considering a customer n connected to a phase p, other related studies 
[19,20,26,27] have shown that there is a strong correlation between the 
customer variation profile (VCn) and the aggregated variation profile at 
the feeder of the phase in which it is connected (VFp). A simple example 
to understand the rationale behind this idea is the next: if a customer has 
a significant change in their consumption pattern (either reducing or 
increasing its consumption or generation), that change will be reflected 
in some way in its phase feeder. As that significant change in the 
customer will only be reflected in the consumption measurement of its 
phase feeder, it is possible to locate in which of them the customer is 
connected by evaluating, for example, the correlation between cus
tomer’s consumption variations and each of the phase feeders’ 
variations. 

3.2. Bayesian inference 

One of the main deficiencies identified in the available phase iden
tification methods is the absence of a certainty metric for the result of a 
customer connected to a certain phase. A possible approach to overcome 
this is to introduce a way to always obtain an updated probability for 
each customer to be connected to one phase or another. Bayesian 

inference can be a powerful tool to achieve this goal. 
Bayesian inference provides a method to update the degree of belief 

associated with a certain hypothesis based on new evidence using Bayes’ 
theorem. Thus, using Bayesian inference, the certainty of a customer 
connected to a phase can be updated. 

Bayes’s theorem is shown in (9), where P(A) and P(B) are the inde
pendent probabilities for events A and B, and P(A|B) and P(B|A) are the 
conditional probabilities of A assuming B true, and B assuming A true, 
respectively. 

P(A|B) =
P(B|A)P(A)

P(B)
(9) 

Bayes’ theorem can be rewritten for a better understanding as (10a), 
where Hi represents hypothesis i and EV represents the new evidence. In 
Bayesian inference, the term P(EV|Hi) is called likelihood, which rep
resents the compatibility of the new evidence to support the hypothesis. 
P(Hi) is called a priori (or prior) probability, which represents the current 
probability of Hi to be true before seeing new evidence. P(EV) is the 
marginal probability, which can be rewritten as the sum of the joint 
probabilities of EV and all hypotheses (Eq. (10b)). P(Hi|EV) is called the 
posterior probability, which is the probability of hypothesis i in light of 
new evidence. 

P(Hi|EV) =
P(EV|Hi)P(Hi)

P(EV)
(10a)  

P(Hi|EV) =
P(EV|Hi)P(Hi)
∑

iP(EV ∩ Hi)
=

P(EV|Hi)P(Hi)
∑

iP(EV|Hi)P(Hi)
(10b) 

Thus, by using Eq. (10b), it is possible to derive the posterior prob
ability of a certain hypothesis as a consequence of the likelihood of new 
evidence and the prior probability of that hypothesis. In other words, it 
is possible to update the degree of belief for a given hypothesis under the 
light of new data. 

Coming back to the phase identification problem, the probability of a 
customer being connected to a certain phase can be updated every time 
that a new block of data is received by the DSO using Bayesian inference. 
Therefore, there is no need to use large data intervals to obtain a stable 
solution but use reduced data windows and update the degree of belief 
in the solution as the data arrive through the AMI system. This advan
tage implies that the algorithm could become an online tool which 
would always consider the most updated version of the available data 
(evidence). 

4. Algorithm description 

In this subsection, the proposed phase identification algorithm using 
Bayesian inference is described. The aim is to estimate the connectivity 
matrix X that relates each customer to a phase. To apply Bayesian 
inference, it is necessary to define how to construct the prior probability 
(initial values to start the inference) and the likelihood. 

4.1. Prior probability determination 

As described above, prior probabilities are the current probabilities 
of each hypothesis before receiving new evidence. In the first evaluation, 
when no evidence has yet been considered, and if there is no previous 
information about any of the hypotheses, the initial probabilities are 
considered as a uniform distribution (equal probability for each hy
pothesis). In Bayesian inference, when there is no previous information 
about the hypotheses, these initial priors are called non-informative a 
priori probabilities. 

However, if there is previous knowledge associated with the hy
potheses, it is possible to set initial priors based on that knowledge. In 
this case, it is called an informative prior. This is particularly interesting 
in the case of the phase identification problem because DSOs may have 
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some previous information in their databases. This possibility could be 
used to reduce the algorithm convergence time, even if it is not accurate, 
as evaluated in the next section. 

A matrix containing the prior probabilities can be formulated as (11), 
where each element P(Hpn) represents the prior probability of the hy
pothesis of phase p for customer n. If non-informative prior probabilities 
are considered, then P(Hpn) = 1/3. Thus, each column of the PP matrix 
contains the probabilities that a customer is connected to each phase, 
with the sum of the elements in the column equal to one. Similarly, each 
row represents the probabilities of all the customers of the substation to 
be connected to one of the phases (e.g., the first row represents the 
probabilities of customers being connected to phase R). 

PP =

⎡

⎣
P(HR1) ⋯ P(HRN)

P(HS1) ⋯ P(HSN)

P(HT1) ⋯ P(HTN)

⎤

⎦ (11)  

4.2. Likelihood determination 

Establishing the likelihood function is one of the key steps in 
Bayesian inference, as it is the way as new evidence modify the current 
belief on a specific hypothesis. In this study, the new evidence is the 
energy consumption profile of a customer, specifically its consumption 
variations, as shown in the previous section Xu et al. [19] proved that 
the customer’s consumption variations show a high correlation factor 
with its phase feeder consumption variations using the Pearson Corre
lation Coefficient (PCC). As mentioned in the state-of-the-art revision, 
this idea of using the PCC was also used by [20,26,27] in their phase 
identification methods, which showed good results. Thus, a possible way 
to establish the likelihood of the new data for each hypothesis (three in 
our case) is to perform the PCC between the variations of a customer and 
the feeder associated to that hypothesis. As we know, the PCC return 
values between − 1 and 1, where 1 a perfect correlation, 0 no correlation 
at all and − 1 a perfect inverse correlation (as one variable increases, the 
other decreases). However, probabilities range between 0 and 1. Thus, a 
relationship between PCC and likelihood probability must be stablished. 

As an initial alternative, a linear relationship can be defined (f(x) =

(x+ 1)/2) but that would imply that correlation values of 0 (no corre
lation at all) receive a probability of 0.5, which does not seem reason
able. Another possibility could be a piecewise linear relationship, such 
as the ReLU function (f(x) = max(0, x)). However, this is not a good 
approach either because a zero-likelihood probability would be assigned 
if a negative correlation is obtained. Zero likelihood probabilities would 
result in a posterior probability value of zero, as can be seen from Eq. 
(10b), which is not appropriate because it would exclude that possibility 
forever. Even, it could be possible that the three correlations for each 
phase would be negative, which would result in an impossible situation 
after obtaining the posterior probabilities. 

As a solution, in order to enhance Bayesian inference, a non-linear 
function that favors high correlation values was used while penalizing 
no correlation and inverse correlation results, avoiding giving zero 
probability results. The equation (12), which is based on the softplus 
function, is used to establish the likelihood function, where the proposed 
constants are the best ones that were empirically found. 

P(VCn|Hp) = min
{

1
4

ln
(
1 + e1+4⋅PCC(VCn ,VFp)

)
, 1

}

(12) 

Where PCC(VCn,VFp) is the result of the Pearson Correlation Coef
ficient between the consumption variations for customer n (VCn) and 
variations at the feeder of phase p (VFp). A representation of Eq. (12) is 
depicted in Fig. 1. As shown, for small and negative correlation values, a 
low likelihood is assigned, avoiding zero. Conversely, for medium and 
high correlations, the relationship is almost linear. Similar to some 
machine learning models (such as the activation functions of neural 
networks), this function has the advantage of introducing non-linearities 
into the problem even though this function does not have a physical 

interpretation. These non-linearities help enhance Bayesian inference, 
promoting strong correlations, as demonstrated in the results section. 

4.3. Processing sequence 

After defining the method for obtaining all the necessary elements to 
evaluate the Bayesian inference, the method for processing the new 
evidence (new data) is described in this subsection. In this sense, the 
data requirements of the proposed method are only the data currently 
provided by the AMI in European low-voltage distribution networks: the 
energy measurements from Smart Meters at the customers’ point of 
common coupling and the energy measurements at the phase feeders 
head of the secondary distribution substation. The formal description of 
the algorithm is presented in Table 1. 

An important feature of the proposed algorithm is its ability to be 
executed online. For this purpose, the algorithm should be executed 
periodically each time the AMI receives a meaningful set of data. 
However, small intervals of execution would result that customers’ 
consumption variations are not sufficiently correlated with their phase 
feeders. By contrast, large intervals of execution would result in slow 
certainty update rates. In addition, the granularity of the data interferes 
with defining the execution interval. Therefore, a trade-off must be 
established to set the update rate. For example, in Spain, the data are 
usually retrieved from Smart Meters once a day with measurements at 1 
h intervals. In this hourly data schema, it was found that a three-day 
update rate was a reasonable compromise between obtaining suffi
cient correlations and a good certainty update rate. Thus, blocks of three 
days of data were used to update the certainties associated with each 
hypothesis. 

Therefore, once new evidence is acquired to support the hypotheses, 
and the update time has elapsed, the Bayesian inference is applied. The 
first time the algorithm is executed (Steps 1 and 2), the likelihood be
tween the variations of each customer and the phase feeders is obtained 
using Eq. (12). Subsequently, using Eq. (10b), the posterior probabilities 
are calculated for each customer and hypothesis. The phase with the 
highest probability is assigned as the candidate solution for each 
customer (Step 7). Steps 3–6 are omitted in the first iteration of the al
gorithm. These steps are used to increase convergence; however, they 
require at least one previous posterior probability. 

For the next iterations, after receiving new evidence (Step 3), the 
obtained posteriors become the new prior probabilities (Step 4). As it 
was said, after the first iteration, a change in the process is included to 
increase the convergence. As proven in [19,20,26,27], the correlation of 
customer variations with its phase increases if other customers’ con
sumption is subtracted from their phases. Therefore, removing some of 
the customers’ consumption in the phase with the highest probability 
could improve convergence if the hypothesis with the highest 

Fig. 1. Representation of Eq. (12) in which the relationship between the PCC 
and the likelihood probability is obtained. 
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probability is the correct one. To ensure that only customers with correct 
phase identification are removed, only a subset of customers that are 
more likely to be correct is used. To select this subset (Step 5), the value 
of the hypothesis with the highest probability in the previous iteration 
for each customer is extracted; only those whose probability is above a 
certain percentile are used, as they are the most likely to be correctly 
classified. The value of this percentile is a hyperparameter in the algo
rithm. It was found that the 25th percentile is a good trade-off between 
selecting customers that are likely to be correctly classified while leaving 
out the remaining ones. Thus, in the next iterations, for each customer, 
the consumption of the customers in the subset (excluding itself if it has 
been included) is removed from their phases with higher probability to 
obtain the likelihood (Step 6). Subtracting customers with a high 
probability of being correctly classified from their aggregate-phase 
feeder consumption causes the algorithm to substantially increase 
convergence. This is explained by the fact that by removing their 

consumption variations from the VF matrix, it is easier to find the var
iations of the rest of the customers, which could be more complex to 
locate because they do not have such significant consumption 
variations. 

5. Use case 

In this subsection, the results of the proposed algorithm are evalu
ated and compared with those of other state-of-the-art phase identifi
cation methods. 

5.1. Dataset 

First, it is necessary to describe the test network used to validate the 
proposed method, considering that it is primarily intended for European 
networks (although it would also work in other distribution schemas). 

There are numerous test networks that are typically used to evaluate 
electric power-related algorithms, such as IEEE distribution test feeders 
[34]. However, these test feeders mostly represent North American 
distribution networks, which have a different distribution schema than 
the European ones. As previously described, the North American energy 
distribution is mostly done in medium voltage, in which many single- 
phase transformers are used to supply a single customer or a small 
group of customers [25,35]. This distribution schema contrasts with the 
European model, in which the secondary distribution (the last mile) is 
mainly done with a 4-wire low-voltage network (400/220 V) provided 
by a delta-wye power transformer with a grounded neutral connected to 
the medium-voltage network [6]. The low-voltage network provided by 
the power transformer supplies many customers (usually between 200 
and 400). 

Although there is an IEEE European-like test feeder [34], this 
network does not adequately represent the European model. The 
network uses a 3-wire equivalent model using Kron’s reduction in 
Carlson’s equation [36], which assumes that multiple groundings are 
performed along the neutral wire and that the current from the neutral 
wire returns to the source through the ground connection. This may be a 
good simplification if balanced or very short networks are considered in 
which the neutral voltage differences between the secondary distribu
tion substation and customers are low. However, it is not an accurate 
representation of European networks, since lines can be quite long and 
follow a TT earth connection in which the ground connection from each 
customer is independent of the transformer ground and the neutral wire. 
In addition, this network has only 55 loads, which is quite small 
compared with the mean size of European low-voltage distribution 
networks. 

Therefore, to evaluate the proposed algorithm, a real European low- 
voltage distribution network (4-wire with isolated transformer neutral 
from consumer ground) was used instead of a typical synthetic test 
feeder. Specifically, the distribution network used was published in 
[35]. In the paper, the authors describe in detail the model of a real (non- 
synthetic) distribution network from northern Spain. The grid was 
composed of 8087 loads distributed among 30 secondary distribution 
substations. This network has also been used by other authors to test 
phase identification methods [25]. 

Table 1 
Phase identification algorithm.  

Inputs: 
I: vector of length N with the indexes of customers 
VC: variation matrix of customer’s energy profiles (Eq. (7)) 
VF: variation matrix of feeders’ energy profiles (Eq. (8)) 
PP: matrix of 3 rows and N columns with the prior probabilities (Eq. (11)) 
φ: percentile of customers with high probability to be considered for subtraction of 
their consumption 

Parameters: 
J: vector with the indexes that have a value in its highest probability hypothesis 
above φ percentile. 
X: binary matrix of 3 rows and N columns with the phase connection of all loads in 
the secondary distribution substation (Eq. (3)). 

Algorithm: 
Step 1: If the PP matrix has not been passed to the algorithm, initialize it. 

pppn = 1/3 ∀n ∈ I,∀p ∈ {R,S,T}. 
Step 2: If no evidence has been seen before (it is the first time the algorithm is 

evaluated), wait until evidence are available and then compute the likelihood for 
each customer and for each hypothesis using (12). Jump to step 7. 

P(VCn|Hpn) = min
{1

4
ln
(
1 + e1+4⋅PCC(VCn ,VFp )

)
, 1

}

∀n ∈ I,∀p ∈ {R,S,T}

Step 3: Wait until new evidence (VC and VF) are available. 
Step 4: Update the prior probabilities in the PP matrix with the posteriors obtained in 

the last iteration. 
pppn = P(Hpn)←P(Hpn|VCn) ∀n ∈ I,∀p ∈ {R,S,T}

Step 5: Extract the value of the hypothesis with the highest probability in the previous 
iteration for each customerP(Hn)max. Then, extract all indices of customers which its 
probability is above φ percentile and store them in J. 

P(Hn)max = max{P(HRn), P(HSn),P(HTn)}

∀n ∈ I
J =

{
i :

(
card({i : P(Hi)max < P(Hn)max}) < ϕ/100⋅N

) }

∀i, n ∈ I 
Step 6: For each customer in I. Obtain a matrix Y with the same shape and structure as 

X but only considering the phase connection of customers included in J. For the rest 
of customers not included in J and for the customer being processed (n), no 
connection is assigned to any phase. That matrix is later used to obtain the 
consumption of customers who are highly probable to be already classified and 
subtract them from the phase feeders. With the new VF(n) matrix, compute the 
likelihood for each hypothesis using (12) for customer n. 

Y =

[

ypj =

{
xpj if j ∈ J\n

0 otherwise

]

3×N

VF(n) = VF − Y⋅VC

P(VCn
⃒
⃒Hpn) = min

{
1
4

ln(1 + e1+4⋅PCC(VCn ,VF(n)p )),1
}

∀p ∈ {R, S,T}

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

∀n ∈ I 

Step 7: Compute the posterior probability for each customer of each hypothesis using 
Eq. (10b) with the likelihood values obtained in the current iteration and the prior 
probabilities extracted from the PP matrix. Complete X matrix evaluating the phase 
in which customers are connected as the hypothesis with its higher probability. 
Jump to step 3. 

P(Hpn
⃒
⃒VCn) =

P(VCn
⃒
⃒Hpn)P(Hpn)

∑

λ∈{R,S,T}
P(VCn |Hλn)P(Hλn)

∀n ∈ I, ∀p ∈ {R, S,T}

X =

[

xpn =

{
1 if argmax({P(HRn|VCn), P(HSn|VCn), P(HTn |VCn)} ) = Hpn

0 otherwhise

]

3xN  

Table 2 
Description of the used substations.  

Substation name ID N◦Customers % Single Phase 

CELLERUELO (S1) C001634 156  85.5 % 
EDIFICIO EL MARQUES (S2) C000626 273  87.9 % 
PLAZA_ARGUELLES (S3) C000627 369  85.2 % 
MARQUESILLA DE 

CANILLEJAS (S4) 
C000601 459  89.9 % 

VALERIANO LEON (S5) C001007 554  89.7 % 
LA GUAXA (S6) C001635 605  88.4 %  
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For this test, six representative substations of the selected network of 
different sizes were used to validate the algorithm. A summary of the 
characteristics of the selected substations is presented in Table 2. This 
table shows the name of the substation given by the DSO (a symbolic 
name is also given in parentheses for simplicity), the ID given in [35], 
the number of customers, and the percentage of them that are single- 
phase. The six secondary substations have a 22/0.42 kV, 630 kVA 
delta-wye power transformer with a grounded neutral. 

Unfortunately, the consumption profiles provided along with this 
network only have 20 days of records, which is not sufficient for these 
types of analyses. Therefore, the consumption profiles used in the model 
were replaced with real (non-synthetic) hourly consumption profiles 
from the Medina Garvey database (Spanish DSO). With this information, 
the model was simulated using OpenDSS. 

5.2. Performance of the proposed phase identification algorithm 

The proposed phase identification approach was evaluated using 
three months (90 days) of data. The evolution of accuracy for the six 
substations in Table 2 is shown in Fig. 2. As can be seen, the algorithm 
obtains a good final accuracy, with a slower dynamic in substations with 
a higher number of customers. In addition, the network was also simu
lated considering some customers without Smart Meters, which repre
sents substations with loads without associated measures. These loads 
without associated measurements have been simulated considering that 
just a percentage of customers have smart meters (percentage of Smart 
Meter penetration term in Fig. 2). Thus, accuracy results are just 
considering the identification of customers that have a measurable 
consumption. The effect of these non-measured customers (shown by the 

Fig. 2. Accuracy evolution for the phase identification problem using the proposed approach with the customers of substations in Table 1 and with different 
percentages of Smart Meter penetration. 
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color in Fig. 2) has little effect on overall performance. Even considering 
this situation, the proposed phase identification method has good per
formance, with accuracies higher than 97 % in almost all cases. This is 
especially important because, although DSOs are increasing the pene
tration of Smart Meters in their networks, reaching 100 % does not 
imply that all consumptions are known. This is because there are still 
unmeasured consumptions (technical and non-technical losses) that 
cannot be directly used in phase identification. Thus, consider a per
centage of customers without Smart Meter is similar to considering an 
increment in unmeasured consumption. 

As previously mentioned, one of the advantages of the proposed al
gorithm is that it can be run online. In other words, it can update the 
belief on each possible hypothesis (in which phase a customer is con
nected) based on new evidence (new data). This is done thanks to 
Bayesian inference. Thus, this approach can provide an up-to-date 

certainty of the phase connection of each customer, that is, the proposed 
algorithm provides the phase connection for each customer, and the 
confidence of the algorithm in this estimation (for all three phases). This 
is a clear advantage over other algorithms, making it possible to assess 
whether the estimation is good. To the best of the authors’ knowledge, 
the previously proposed algorithms of this class do not offer this type of 
information and do not have any metric on which to rely on for the 
certainty of the results. 

To demonstrate the value of this information, Fig. 3 shows the evo
lution of the probability for each hypothesis for six customers of S4 (the 
IDs shown in the titles correspond to the [35] OpenDSS model). These 
six customers were correctly classified after three months; however, the 
figures on the right (Fig. 3b, 3d, and 3f) were misclassified on day 30. 
However, on day 30, the probabilities of the misclassified ones did not 
show a clear preference from one hypothesis to the others, which made 

Fig. 3. Evolution of probability for each hypothesis for six different customers. Customers on the left (Fig. 3a, 3c and 3e) are correctly classified from the beginning. 
Customers on the right (Fig. 3b, 3d and 3f) are misclassified on day 30 but correctly classified on day 90. 
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them questionable. However, for the correctly classified on day 30 
(Fig. 3a, 3c, and 3e), there is a clear preference for one hypothesis. This 
provided valuable information regarding the certainty of the results. To 
the best of the authors’ knowledge, no other phase identification algo
rithm provides this type of information. 

5.3. Influence of measurement error 

To evaluate how the measurement error introduced by the Smart 
Meters affects the performance of the proposed method, a series of ex
periments with different levels of measurement error were performed. 
The current accuracy requirements for Smart Meters deployed in Europe 
follow IEC 62053-21 [37]. In this sense, the Smart Meter accuracy is not 
less than Class 2 (2 % error), being usual for manufacturers and DSOs to 
install Class 1 (1 % error) or lower. 

Gaussian noise was added to the dataset to emulate the measurement 
error. In particular, a Gaussian normal distribution proportional to each 
measurement was introduced, similar to other studies [4,21,23]. Con
sideringcnm, the measurement without noise for customer n at instant m, 
the erroneous measurement ̃cnm can be obtained as (13). 

c̃nm ∼ N(μ = cnm, σ = εcnm/k) (13) 

Where the mean (μ) is equal to the noiseless measurement, and the 
standard deviation (σ) is related to the range of the error considered (ε) 
in the measurement and the sigma rule k. A k value of 2 was considered 
in the following experiments (95 % of the values within the error 
considered). Similarly, noise has been introduced into phase feeders 
(fnm). 

To evaluate how the measurement error affects the performance of 
the proposed method, the accuracy after 30, 60, and 90 days of data 
were recorded for different levels of measurement error (0 %, 0.2 %, 0.5 
%, 1 %, 2 %, and 5 %). The results of the experiments are listed in 
Table 3. 

As shown in Table 3, the proposed method does not show significant 
changes in its performance under normal levels of measurement error in 
Smart Meters, with minor changes due to the random nature of the error 
being added. Just for a measurement error of 5 %, the effect in the 
performance of the proposed method is clearly visible. However, even 
with a measurement error of 5 %, the method still exhibited good per
formance, achieving 98.59 % accuracy after 90 days. 

Considering that Smart Meters have error levels less than or equal to 
2 %, which is a conservative value, it can be concluded that the proposed 
method does not have any pitfalls with regard to measurement errors 
under the tests performed. The method’s performance is similar to that 
obtained in a noiseless scenario. 

5.4. Comparison with other published phase identification methods 

The accuracy of the proposed algorithm was compared with similar 
algorithms proposed in the literature. Specifically, [21,19], and [26] 
were used. These three algorithms are based on energy measurements 
(as the proposed in this paper), being the first energy balance-based and 
the rest based on spectral and saliency analyses. Substation S5 and 90 
days of data were used for comparison. 

The final accuracy results for different percentages of Smart Meter 
penetration are shown in Fig. 4. As well as in Section 5.2, the percentage 
of smart meter penetration represent the customers that have Smart 
Meters installed in the secondary distribution substation. As can be seen, 
the proposed phase identification method outperforms [19] and [21], 
whereas it has a very similar accuracy performance after 90 days with 
the algorithm proposed by Jimenez et al. [26]. Therefore, a more 
detailed comparison of this last method and the proposed method was 
performed. 

To further compare the proposed method, the evolution of accuracy 
was obtained for the six substations listed in Table 2. However, clarifi
cations must be made before making a comparison between the pro
posed method and the one used as a reference. The available phase 
identification methods from the literature (including Jimenez et al. 
[26]) require a block of historical data (there is no way to update the 
accuracy result and see the evolution upon new data). Therefore, there is 
no direct comparison with the proposed method. However, it is possible 
to execute these algorithms multiple times using different sizes of input 
data to determine how the accuracy evolves and to obtain a set of graphs 
like the ones at Fig. 2. 

For better understanding, instead of representing a multitude of 
graphs, Fig. 5 shows a comparison of the proposed algorithm with the 
one that showed the best performance (together with the proposed in 
this paper) in the previous analysis (Jimenez et al. [26]). For the sake of 
representation, only 100 %, 90 %, and 80 % of Smart Meter coverage has 
been plotted. Each point represents the accuracy for the same period 
elapsed. Three months of data (90 days) in total were used to compare 
both algorithms. The y and x axes represent the accuracies obtained by 
the reference and proposed algorithms, respectively. Points below the 
gray line represent better performance for the algorithm proposed in this 
paper than the reference algorithm for the same elapsed time (the more 
distant from the gray line, the more difference between algorithms), 
whereas points above the gray line represent the contrary. 

As can be seen, the proposed algorithm performs better than the 
reference algorithm on medium and small size substations (Fig. 5a, 5b, 
5c, and 5d) where it performs faster up to 90 % accuracies. After that, 
both algorithms performed similarly. On larger substations, both algo
rithms perform nearly the same (Fig. 5e) or with a slight difference in 
favor of the reference algorithm (Fig. 5f). Nevertheless, the proposed 
algorithm still has the advantage of providing a level of certainty about 
the result by means of probabilities, with which misclassified customers 
can be put in doubt as described before. 

5.5. Performance of the proposed algorithm considering prior knowledge 

The results given until this point were obtained by considering non- 

Table 3 
Accuracy of the proposed method after different periods of time (columns) and 
under different levels of noise (rows).  

Measurement Error 30 days 60 days 90 days 

0 %  83.29 %  98.39 % 99.79 % 
0.2 %  84.90 %  97.58 % 100 % 
0.5 %  82.49 %  96.17 % 99.59 % 
1 %  85.71 %  97.58 % 100 % 
2 %  82.89 %  97.58 % 99.59 % 
5 %  77.06 %  95.37 % 98.59 %  

Fig. 4. Accuracy for different percentages of Smart Meter penetration com
parison between other state-of-the-art phase identification methods and the 
proposed in this paper in S5 and using 90 days of data. 
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informative initial prior probabilities. Thus, no initial information (true 
or false) about the phase in which the customers are connected is pro
vided. However, as described in Section 6, if the DSO has any previous 
information about the customers, it is possible to set initial prior prob
abilities to consider that information, that is, assigning a higher proba
bility to the phase in which the DSO has the customer registered. 

However, DSO information is incomplete in many cases and is not al
ways reliable. Thus, to consider all these possible scenarios, the pro
posed algorithm was evaluated in Substation S4, considering different 
percentages of customers that have initial information with different 
degrees of validity of that information and levels of Smart Meter pene
tration. Previously known customers (being their information valid or 

Fig. 5. Accuracy comparison between this paper’s proposal and the proposal of Jimenez et al. [26] for the substations of Table 1.  
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not) are assigned a probability of 0.4 to the phase declared in the DSO 
documentation and 0.3 to the others. Fig. 6 shows the time required to 
achieve 95 % accuracy for the proposed algorithm. Four different situ
ations were evaluated for the accuracy of the phase connections previ
ously known by the DSO: 0 % (no error), 10 %, 20 %, and 30 % errors. 
The last column of each graph represents 0 % of the known connections, 
that is, no information about the phase topology of the substation is 
previously known. Therefore, this column can be used as a reference. 

As can be seen, the performance of the proposed algorithm increases 
with the presence of previous information, being more noticeable when 
the information error is low or non-existent (Fig. 6a and 6b). Further, 
when the presence of error is relatively high (Fig. 6c and 6d), the 
improvement is noticeable with medium and high percentages of 
measured customers (40–100 %), being the improvement slightly better 
in some cases or unnoticeable with low percentages of measured cus
tomers (10–40 %). It is important to note that the proposed algorithm 
performs well even with incorrect previous information. In addition, 
these tests also show that it can correct the erroneous information given. 
Even with up to 30 % erroneous prior information (Fig. 6d), the algo
rithm still achieved 95 % accuracy (so it has corrected the wrong 
information). 

Moreover, the experiment presented in this subsection demonstrates 
one of the advantages of the algorithm: its ability to operate online. 

Introducing informative prior probabilities (i.e., certainty values for the 
hypotheses) is the same as considering that the method has been running 
for a certain period of time and it has already identified these customers, 
obtaining the probabilities for each of the hypotheses. In this situation, if 
a new group of customers is added to the grid, the phase connection of 
these new customers can be verified within a few days. In contrast, the 
existing phase identification methods would have to wait to collect more 
data about these new customers (typically two or more months). 

6. Conclusions 

Awareness of the customers’ phase connection in low-voltage dis
tribution networks gives DSOs useful information to help in the man
agement and operation tasks of their grids. Unfortunately, field-side 
phase identification methods are costly and time-consuming; therefore, 
data-driven approaches have become more popular in recent years. As 
was explained above in the state-of-the-art revision, the available data- 
driven approaches have some drawbacks that, to the best of the authors’ 
knowledge, have not yet been solved by any previous method in the 
literature. 

In this paper, a novel data-driven phase identification method is 
proposed. The proposed solution does not require external hardware nor 
changes in the current distribution networks because it is based on 

Fig. 6. Time in days to achieve a 95 % of accuracy for the proposed algorithm under different levels of previously known connections, Smart Meter coverage and 
possible errors in the known connections. 
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energy measurements (which are already collected by the DSOs). In 
addition, the algorithm is based on Bayesian inference which, in con
trary with current phase identification methods, it allows one to have an 
up-to-date certainty, providing valuable information about the solution 
of the phase identification of each customer, making it possible to cast 
doubt on the misclassified ones. Moreover, in contrast with other similar 
methods, the method proposed in this paper can handle previous 
labelling (even if they have errors). 

The performance of the proposed phase identification algorithm was 
tested on six secondary distribution substations of a non-synthetic low- 
voltage distribution network. The results show good performance under 
small and large substations and even in situations with low Smart Meter 
penetrations (unmeasured consumption), with accuracies higher than 
97 % in almost all cases. In addition, a comparison with state-of-the-art 
phase identification methods was performed, showing that the proposed 
method outperforms most of them using 90 days of input data. A more 
detailed comparison with one that showed a similar performance in the 
previous test shows that the proposed solution can achieve better ac
curacy results using less data. 

Moreover, the results also show that having previous information 
increases the performance of phase identification, and it is even possible 
to correct erroneous labelling. Thus, even considering that in a worst- 
case scenario (no previously labelled information), the performance of 
the proposed method equals other phase identification methods, when 
the DSO has previous information (even with errors), the proposed 
method outperforms other similar state-of-the-art phase identification 
methods. 

In summary, this paper proposes a data-driven phase identification 
method which outperforms (or equal in a worst-case scenario) the cur
rent state-of-the-art methods while addressing the drawback of these 
methods, adding new functions to provide up-to-date certainty metrics 
and handling previous knowledge about phase topology (even with 
errors). 

In future work, the authors would like to conduct a deeper investi
gation into the effects of distributed energy resources and local gener
ation on the performance of the phase identification method. Moreover, 
the authors are currently investigating an extension of the method to not 
only identify the phase topology, but also to identify on which line the 
customers are. 
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nonlinear Kalman filters to the identification of customer phase connection in 
distribution grids. Int J Electr Power Energy Syst 2021;125:106410. https://doi. 
org/10.1016/j.ijepes.2020.106410. 

[26] Jimenez VA, Will A, Rodriguez S. Phase identification and substation detection 
using data analysis on limited electricity consumption measurements. Electr Power 
Syst Res 2020;187:106450. https://doi.org/10.1016/j.epsr.2020.106450. 

S. García et al.                                                                                                                                                                                                                                  

https://doi.org/10.1109/TSG.2014.2371853
https://doi.org/10.1109/TSG.2018.2818167
https://doi.org/10.1109/TSG.2015.2421304
https://doi.org/10.1109/TSG.2017.2680542
https://doi.org/10.1109/TPWRS.2015.2481078
https://doi.org/10.1109/TPWRS.2015.2481078
https://doi.org/10.4028/www.scientific.net/AMM.878.291
https://doi.org/10.1109/TSG.2012.2219081
https://doi.org/10.1109/TSG.2012.2219081
http://refhub.elsevier.com/S0142-0615(22)00527-0/h0045
http://refhub.elsevier.com/S0142-0615(22)00527-0/h0045
http://refhub.elsevier.com/S0142-0615(22)00527-0/h0045
https://doi.org/10.1016/j.ijepes.2020.106079
https://doi.org/10.1016/j.ijepes.2021.106851
https://doi.org/10.1109/ICMLA.2016.0050
http://refhub.elsevier.com/S0142-0615(22)00527-0/h0065
http://refhub.elsevier.com/S0142-0615(22)00527-0/h0065
http://refhub.elsevier.com/S0142-0615(22)00527-0/h0065
https://doi.org/10.1109/EI2.2018.8582318
https://doi.org/10.1109/EI2.2018.8582318
https://doi.org/10.1049/iet-stg.2019.0280
https://doi.org/10.1049/iet-stg.2019.0280
https://doi.org/10.1109/TPWRS.2020.2977071
https://doi.org/10.1109/TPWRS.2020.2977071
https://doi.org/10.1109/OAJPE.2021.3067632
https://doi.org/10.1109/OAJPE.2021.3067632
https://doi.org/10.1109/TSG.2016.2619264
https://doi.org/10.1109/TPWRS.2020.3011133
https://doi.org/10.1109/TPWRS.2020.3011133
https://doi.org/10.1109/PESGM.2018.8586483
https://doi.org/10.1016/j.cor.2018.02.010
https://doi.org/10.1016/j.cor.2018.02.010
https://doi.org/10.1109/SGC49328.2019.9056591
https://doi.org/10.1109/TSG.2021.3074663
https://doi.org/10.1016/j.ijepes.2020.106410
https://doi.org/10.1016/j.ijepes.2020.106410
https://doi.org/10.1016/j.epsr.2020.106450


International Journal of Electrical Power and Energy Systems 144 (2023) 108525

13

[27] Jimenez VA, Will A. A new data-driven method based on Niching Genetic 
Algorithms for phase and substation identification. Electr Power Syst Res 2021; 
199:107434. https://doi.org/10.1016/j.epsr.2021.107434. 

[28] Clements KA, Costa AS, Agudelo A. Identification of parallel flows in power 
networks through state estimation and hypothesis testing. Int J Electr Power 
Energy Syst 2006;28:93–101. https://doi.org/10.1016/j.ijepes.2005.11.015. 

[29] Hosseini S, Sarder M. Development of a Bayesian network model for optimal site 
selection of electric vehicle charging station. Int J Electr Power Energy Syst 2019; 
105:110–22. https://doi.org/10.1016/j.ijepes.2018.08.011. 

[30] Moradkhani A, Haghifam MR, Mohammadzadeh M. Bayesian estimation of 
overhead lines failure rate in electrical distribution systems. Int J Electr Power 
Energy Syst 2014;56:220–7. https://doi.org/10.1016/j.ijepes.2013.11.022. 

[31] Lourenco EM, Costa AS, Clements KA. Bayesian-based hypothesis testing for 
topology error identification in generalized state estimation. IEEE Trans Power Syst 
2004;19:1206–15. https://doi.org/10.1109/TPWRS.2003.821442. 

[32] Xu Y, Valinejad J, Korkali M, Mili L, Wang Y, Chen X, et al. An Adaptive- 
Importance-Sampling-Enhanced Bayesian Approach for Topology Estimation in an 

Unbalanced Power Distribution System. IEEE Trans Power Syst 2022;37(3): 
2220–32. 

[33] Huang H, Hu Y, Liu S, Xie L. A recursive Bayesian approach to load phase detection 
in unbalanced distribution system. In: 2017 IEEE Texas Power and Energy 
Conference (TPEC), 2017, p. 1–4. https://doi.org/10.1109/TPEC.2017.7868280. 

[34] Schneider KP, Mather BA, Pal BC, Ten C-W, Shirek GJ, Zhu H, et al. Analytic 
Considerations and Design Basis for the IEEE Distribution Test Feeders. IEEE Trans 
Power Syst 2018;33(3):3181–8. 
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