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Abstract: Urbanization dramatically transforms environments in ways that alter the evolution of 11 

life. We examined whether urban environmental change drives parallel evolution by sampling 12 

110,019 white clover plants from 6,169 populations in 160 climatically diverse cities from all 13 

inhabited continents. Plants were assayed for hydrogen cyanide, a Mendelian antiherbivore 14 

defence that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with 15 

the evolution of phenotypic clines for hydrogen cyanide in 47% of cities throughout the world. 16 

Variation in the strength of clines among cities was explained by environmental changes in 17 

drought stress and vegetation cover that varied among cities. Sequencing 2,074 genomes from 26 18 

cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution. 19 

Our results demonstrate that urban environmental change is leading to adaptation at a global 20 

scale. 21 

 22 

Once sentence summary: Convergent urban environmental change at a global scale drives 23 

adaptation in a cosmopolitan plant 24 

 25 
  26 
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Main Text: Urbanization is a driver of both environmental and evolutionary change. Towns and 27 

cities are rapidly expanding throughout the world to accommodate human population growth. 28 

These urban areas represent novel ecosystems, in which urban development alters multiple 29 

environmental factors (1). Recent research shows that urban environmental change can influence 30 

four evolutionary processes: mutation, genetic drift, gene flow, and adaptation due to natural 31 

selection (2, 3). Despite numerous examples of how urbanization affects genetic drift and gene 32 

flow (4, 5), the effects of urbanization on adaptive evolution have received less attention (6-8). 33 

Adaptation to urban environments can impact species’ conservation (9), the spread of pests and 34 

disease (2), eco-evolutionary feedbacks (10), as well as urban planning and human society (11). 35 

However, the few examples of adaptation to urban environments focus on just one or a small 36 

number of cities in a single region (2). It is therefore unclear whether populations can adapt to 37 

urban habitats in similar ways across cities throughout the world.  38 

Parallel adaptive evolution is most likely when populations experience similar environmental 39 

selective pressures on the same genes or phenotypes (12, 13). For urbanization to drive parallel 40 

evolution, urban areas must converge in environmental features that affect an organism’s fitness. 41 

Urbanization can lead to similar environmental changes across cities (14), but whether urban 42 

environmental convergence causes parallel evolution has never been examined at a global scale.  43 

Here we test how global urbanization affects environmental change and evolution in a 44 

cosmopolitan plant species, white clover (Trifolium repens L., Fabaceae). White clover 45 

populations are polymorphic for the production of hydrogen cyanide (HCN), an antiherbivore 46 

chemical defence controlled by two genes (15). At least one functional allele at each of two 47 

unlinked loci (Ac and Li) are required to produce HCN following tissue damage, while plants 48 

that are homozygous for gene deletions (ac and li alleles) at either locus lack HCN (16, 17). 49 
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Notably, these deletions occur throughout the world, resulting in standing genetic variation on 50 

which selection can act (18). Previous work showed that herbivores select for the production of 51 

HCN, and abiotic stressors (e.g., freezing and drought) influence the costs and benefits of the 52 

metabolic components underlying the defence (19, 20). Variation in these environmental factors 53 

is credited with driving the evolution of clines in HCN production at continental and regional 54 

scales (21, 22), including in response to urban environments (23-25). Thus, HCN production 55 

could evolve in response to urbanization if there are urban-rural gradients in herbivory, winter 56 

temperature, or drought. 57 

We examined global urban environmental and evolutionary change across the diverse 58 

climates that white clover inhabits. To this end, we created the Global Urban Evolution Project –59 

the largest spatially replicated test of urban adaptation and parallel evolution in natural 60 

populations. The present study builds on our previous work (23-25) by sampling cities globally 61 

across diverse climates in both the native (Europe and western Asia) and introduced ranges, by 62 

quantifying many environmental factors from each population, and by integrating evolutionary 63 

genomic analyses using whole genome sequence data. This project spanned 160 cities across 26 64 

countries (Fig. 1, 15) in white clover’s native (Europe and western Asia) and introduced ranges 65 

(Fig. 1, Fig. S1). From these cities, we phenotyped 110,019 plants from 6,169 sampling sites 66 

(hereafter “populations”, Table S1). Populations within each city were sampled along an urban-67 

rural transect, with half of each transect in urban and suburban areas (i.e., areas with high 68 

building density), and the other half in rural areas (Fig. 2E-G) (15).  69 

Across 160 cities, we tested whether urban white clover habitat converged to be more similar 70 

and less variable in their environments compared to rural habitats (15). Urban and rural habitats 71 

significantly diverged (H0: urbanmean = ruralmean, Pbootstrapped < 0.01, Fig. 2A) along two principal 72 
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component axes that accounted for 65% of the variation in the multivariate environments 73 

between the two habitats across cities. Urban locations consistently had more impervious 74 

surface, higher summer temperatures and less vegetation than rural populations (Fig. 2B, Fig. 75 

S2). The remaining environmental variables changed along urban-rural gradients in many cities, 76 

but these changes were less consistent in direction among cities (Fig. S2, Table S2). Although 77 

urban and rural environments diverged on average, urban-rural changes in the environment were 78 

not always parallel (H0: parallel urban-rural changes among cities, Pbootstrapped < 0.01, Fig. 2A). 79 

Additionally, environmental variance among urban populations was lower than the 80 

environmental variance among rural populations (𝐹𝐹9,1570 = 31.76, P < 0.001, Fig. S3). Together 81 

these results show that on average urbanization leads to similar and less variable environmental 82 

conditions in some factors (e.g., impervious surface, summer temperature, summer vegetation), 83 

but not in others (e.g. potential evapotranspiration, snow cover, winter vegetation), which could 84 

lead to variation in the degree of parallel evolution.  85 

We next tested whether convergent urban environmental change causes parallel evolution in 86 

an ecologically important trait of white clover. We examined evolution in response to 87 

urbanization by testing for a relationship between HCN production and distance to the urban 88 

center (i.e., an “HCN cline”), as well as other metrics of urbanization (15). Our model explained 89 

28% of the variation in the frequency of HCN production within populations (Table S3). Across 90 

160 cities, distance from the city center was positively related to the frequency of HCN-91 

producing plants (distance: 𝜒𝜒!"#$%  = 12.35, P < 0.001). The probability that a plant produced 92 

HCN increased by 44% on average from the center of an urban area to the furthest rural 93 

population (Fig. 2C, D). However, cities varied in the strength and direction of clines (distance × 94 

city interaction: 𝜒𝜒!"#$% = 1001, P < 0.001, Fig. 2C, D). Overall, 47% of cities exhibited a 95 
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significant (P < 0.05) cline (15), with 39% of cities (62 of 160) showing a positive cline in which 96 

HCN production was less common in urban than rural populations, and 8% of cities (13 of 160) 97 

had negative clines (Fig. 2, Table S4). Positive and negative clines occurred in both the native 98 

and introduced ranges, with the former being more prevalent among continents and across 99 

diverse climates (Fig. 1).  100 

Given the prevalence of HCN clines at a global scale, we sought to identify the evolutionary 101 

processes driving variation in the strength and direction of clines. In addition to natural selection, 102 

non-adaptive evolution can lead to the evolution of clines (26). Importantly, the epistatic genetic 103 

architecture of HCN production makes the loss of the trait more likely with increased genetic 104 

drift (26). Therefore, the prevalence of positive clines could reflect stronger drift in urban 105 

populations (4, 5). To examine whether urban populations exhibited stronger drift, we estimated 106 

pairwise nucleotide diversity (π) of putatively neutral sites using whole genome sequence data 107 

from ~80 individuals per city, with samples equally split between urban and rural habitats across 108 

26 cities (N = 2,074, 15). These cities were selected to capture variation in the strength and 109 

direction of clines, geography, and climate (Fig. 1) (15).  110 

Genetic diversity was not consistently different between urban and rural habitats and did not 111 

explain variation in the slope of HCN clines along urban-rural gradients. On average, urban and 112 

rural habitats did not differ in neutral genetic diversity (F1, 25 = 0.028, P = 0.87; Fig. 3A). 113 

Furthermore, the difference in π between urban and rural habitats within a city was not strongly 114 

related to the slope of HCN clines (F1, 24 = 0.25, P = 0.62; Fig. 3B, Fig. S4), and urban-rural 115 

differences in genetic diversity were similar between cities with and without clines (F1, 24 = 116 

0.017, P = 0.90).  117 
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Variation in the strength of genetic differentiation and gene flow between urban and rural 118 

habitats can influence the ability of populations to adapt to urban environments (27). To test the 119 

association between genetic differentiation and the evolution of HCN clines we estimated 120 

population genetic differentiation between urban and rural populations using both FST and 121 

principal components analysis (PCA) (Fig. S5), in addition to urban-rural admixture (Fig. S6) 122 

(15). Urban-rural FST was low (mean = 0.012 ± 0.002 [SE]) and did not differ significantly 123 

between cities with and without clines (F1, 24 = 1.47, P = 0.24; Fig. 3C, Fig. S4). Neither FST (F1, 124 

24 = 1.42, P = 0.25; Fig. 3D) nor urban-rural differentiation measured using PCA (F1, 24 = 1.10, P 125 

= 0.31, Fig. S5) predicted the strength of clines in HCN production. The absence of strong 126 

differentiation was associated with extensive admixture between urban and rural populations 127 

(Fig. S6). Since genetic differentiation is consistently low and gene flow appears to be high 128 

among urban and rural populations, the repeated evolution of clines suggests strong selection on 129 

HCN production along urban-rural gradients. This conclusion is further supported by direct tests 130 

of selection on the Ac and Li loci, as well as HCN production, in which differentiation (using a 131 

statistic equivalent to FST) between urban and rural populations was stronger than expected under 132 

neutral evolution in cities with HCN clines compared to cities without clines (Figs. 3E, 3F, 15).  133 

Multiple environmental stressors are known to influence the evolution of HCN production at 134 

continental scales (20-22, 28), so we asked: What environmental factors explain variation in the 135 

evolution of HCN production along urban-rural gradients? Environmental factors related to 136 

drought and vegetation cover were the strongest predictors of variation in HCN clines, 137 

accounting for 11.3% of the variation in the strength of clines (Table S5, Table S6). Change in 138 

potential evapotranspiration (PET) along urban-rural gradients was one of the most consistent 139 

predictors of evolution in HCN production (Table S5); the frequency of HCN production tended 140 
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to be higher in rural than urban populations where PET was also greater in rural habitats (Fig. 141 

4A,C; Fig. S7). Since high PET can lead to plant water stress under low soil moisture, this result 142 

is consistent with drought selecting for higher HCN production, a pattern also observed at 143 

continental scales (21). The effect of PET on the evolution of HCN production only occurs when 144 

the amount of vegetation in and around cities is low (Fig. 4A). When vegetation cover is 145 

relatively high (and impervious surface is low) along the whole urban-rural transect, HCN clines 146 

tend to be positive regardless of variation in PET (Fig. 4A-C). Importantly, the amount of 147 

vegetation is positively correlated with invertebrate herbivore biomass and diversity (29), which 148 

can select for increased HCN production (20). When combined with the observation that 149 

herbivores are often less abundant in urban habitats (30), our evidence suggests that herbivores 150 

are selecting for greater HCN production in rural than urban areas. The positive association 151 

between urban-rural changes in vegetation and the positive slope of HCN clines in some cities 152 

further supports this interpretation (Fig. 4D). Put simply, herbivory seems to select for higher 153 

HCN production in rural areas, but in the absence of strong pressure by herbivores (i.e., when 154 

there is less vegetation across the whole gradient), drought is the main selective agent. Contrary 155 

to previous findings, urban-rural changes in temperature did not explain changes in HCN 156 

production (24). Overall, these results suggest that biotic and abiotic factors influence the 157 

evolution of urban-rural HCN clines, but the particular factors that drive the evolution of clines 158 

vary among cities.   159 

Our results have general implications for understanding how environmental change affects 160 

adaptation in a widespread species. Parallel evolution is a hallmark of natural selection because it 161 

suggests that adaptation proceeds in a repeatable way when populations face similar 162 

environments (12, 13). However, departures from parallel evolution are common, and a major 163 
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goal of recent research involves quantifying how ecological and evolutionary factors interact to 164 

influence variation in adaptive responses to similar environments (12). Our results suggest that 165 

variation in the strength and direction of HCN clines is driven by variation in biotic and abiotic 166 

factors among cities. Variation in additional unmeasured factors (e.g., gene flow from 167 

agricultural varieties, pollution, etc.) might further explain variation in the strength of clines, and 168 

future work will seek to explore such mechanisms. Our study highlights the power of using 169 

globally replicated urban environments to understand the presence, causes and consequences of 170 

(non)parallel evolution. 171 

Urbanization is increasingly transforming rural and natural environments into unique 172 

ecosystems that Earth’s biodiversity has never experienced, and the change is altering the 173 

evolution of life on our planet. By performing a field study of urban environmental and 174 

evolutionary change across 160 cities distributed across all inhabited continents, our results show 175 

that urbanization leads to environmental change that can drive rapid adaptive evolution 176 

throughout the world. If adaptation to urban environments is common, as suggested by our 177 

results, then this could have multiple effects on populations and ecosystems. This knowledge 178 

could help conserve some of Earth’s most vulnerable species (9), mitigate the impacts of pests 179 

(2), improve human well-being (8, 11), and contribute to understanding fundamental eco-180 

evolutionary processes (10).  181 
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FIGURE LEGENDS 832 

Fig. 1. Cities sampled for urban environmental and evolutionary change. Blue dots indicate 833 

cities with positive clines for hydrogen cyanide (HCN) production along urban-rural gradients 834 

(HCNurban<HCNrural). Red dots show negative clines (HCNurban>HCNrural). Grey dots indicate 835 

cities without a cline. Plants from the 26 cities outlined in black underwent whole genome 836 

sequencing. Inset: White clover and a honeybee. 837 

Fig. 2. Urban environmental and evolutionary change across cities. (A) Principal component 838 

analysis showing environmental differences between urban (orange dots) and rural (green dots) 839 

habitats; ovals represent 95% CI. Lines connect urban and rural habitats from the same city. (B) 840 

The eigenvectors for environmental variables, coloured according to their contribution to PC2. 841 

The environmental variables included vegetation in winter (NDVIwinter) and summer 842 

(NDVIsummer), snow accumulation (NDSI), surface temperature in winter (LSTwinter) and summer 843 

(LSTsummer), aridity index (AI), potential evapotranspiration (PET), impervious surface (GMIS) 844 

and elevation (DEM). (C) Histogram of the slopes from binomial regressions of the relationship 845 

between HCN production within populations and distance from the city center. Distance was 846 

standardized to vary between 0 (urban center) and 1 (furthest rural population) in each city, so 847 

that cities that varied in size were compared on the same scale. The dashed vertical line 848 

corresponds to the mean slope across cities and overlap between bars showing cities with 849 

significant (blue and red) and non-significant clines (grey) are shown as muted colours. (D) The 850 

relationship between HCN production within populations and distance for each city; colours 851 

correspond to panel C. The black line shows the positive main effect of distance across cities (P 852 

< 0.001). (E-G) Examples of transects, with the orange lines showing the urban boundary, pie 853 

charts (jittered to reduce overlap) showing the proportion of HCN+ plants coloured in yellow. 854 
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(H-J) Frequency of HCN production versus distance for the cities shown in E-G. The line shows 855 

the regression line ± 95% CI. 856 

Fig. 3. Genetic diversity and differentiation within and between urban and rural habitats. 857 

(A) Mean (± SE) pairwise nucleotide diversity (π) for urban (orange) and rural (green) plants 858 

across cities. (B) The relationship between the slope of HCN clines versus the difference in 859 

nucleotide diversity between habitats, where each point is a city. (C) Histogram showing the 860 

distribution of genetic differentiation (FST) between urban and rural habitats for each city, 861 

coloured with respect to the significance of HCN clines. (D) Relationship between the absolute 862 

value of the slope of HCN clines versus FST. (E) Percentage of cities in which differentiation 863 

between urban and rural habitats at Ac or Li exceeds neutral expectation in cities with or without 864 

significant HCN clines (15). (F) Percentage of cities with differentiation in HCN production 865 

between urban and rural habitats that exceeds neutral expectation in cities with or without 866 

significant HCN clines (15). P-values in E and F correspond to 𝜒𝜒%-test for independence. 867 

Fig. 4. Environmental predictors of urban-rural clines in HCN production. (A) Change in 868 

potential evapotranspiration along urban-rural gradients (PET𝛽𝛽) interacts with the regional 869 

amount of summer vegetation (i.e., NDVIsummer_mean) to explain variation in the slopes of HCN 870 

clines. (B) The relationship between the slopes of HCN clines and the regional amount of winter 871 

vegetation (NDVIwinter_mean). (C) PET𝛽𝛽 interacts with the regional amounts of impervious surface 872 

(GMISmean) to predict the slope of HCN clines. (D) Change in summer vegetation along urban-873 

rural gradients (NDVIsummer_𝛽𝛽) interacts with regional aridity (AImean) to explain variation in the 874 

slope of HCN clines. Acronyms as in Fig. 2. 875 
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FIGURE 1820 

 821 
 822 

Fig. 1. Cities sampled for urban environmental and evolutionary change. Blue dots indicate cities with positive clines for 823 

hydrogen cyanide (HCN) production along urban-rural gradients (HCNurban<HCNrural). Red dots show negative clines 824 

(HCNurban>HCNrural). Grey dots indicate cities without a cline. Plants from the 26 cities outlined in black underwent whole genome 825 

sequencing. Inset: White clover and a honeybee. 826 
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FIGURE 2 828 

829 



34 

Fig. 2. Urban environmental and evolutionary change across cities. (A) Principal component 830 

analysis showing environmental differences between urban (orange dots) and rural (green dots) 831 

habitats; ovals represent 95% CI. Lines connect urban and rural habitats from the same city. (B) 832 

The eigenvectors for environmental variables, coloured according to their contribution to PC2. 833 

The environmental variables included vegetation in winter (NDVIwinter) and summer 834 

(NDVIsummer), snow accumulation (NDSI), surface temperature in winter (LSTwinter) and summer 835 

(LSTsummer), aridity index (AI), potential evapotranspiration (PET), impervious surface (GMIS) 836 

and elevation (DEM). (C) Histogram of the slopes from binomial regressions of the relationship 837 

between HCN production within populations and distance from the city center. Distance was 838 

standardized to vary between 0 (urban center) and 1 (furthest rural population) in each city. The 839 

dashed vertical line corresponds to the mean slope across cities. (D) The relationship between 840 

HCN production within populations and distance for each city; colours correspond to panel C. 841 

The black line shows the positive main effect of distance across cities (P < 0.001). (E-G) 842 

Examples of transects, with the orange lines showing the urban boundary, pie charts (jittered to 843 

reduce overlap) showing the proportion of HCN+ plants coloured in yellow. (H-J) Frequency of 844 

HCN production versus distance for the cities shown in E-G. The line shows the regression line 845 

± 95% CI. 846 
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FIGURE 3 848 

849 



36 

Fig. 3. Genetic diversity and differentiation within and between urban and rural habitats. 850 

(A) Mean (± SE) pairwise nucleotide diversity (π) for urban (orange) and rural (green) plants851 

across cities. (B) The relationship between the slope of HCN clines versus the difference in 852 

nucleotide diversity between habitats, where each point is a city. (C) Histogram showing the 853 

distribution of genetic differentiation (FST) between urban and rural habitats for each city, 854 

coloured with respect to the significance of HCN clines. (D) Relationship between the absolute 855 

value of the slope of HCN clines versus FST. (E) Percentage of cities in which differentiation 856 

between urban and rural habitats at Ac or Li exceeds neutral expectation in cities with or without 857 

significant HCN clines (15). (F) Percentage of cities with differentiation in HCN production 858 

between urban and rural habitats that exceeds neutral expectation in cities with or without 859 

significant HCN clines (15). P-values in E and F correspond to 𝜒𝜒!-test for independence. 860 

861 
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FIGURE 4 862 

863 
Fig. 4. Environmental predictors of urban-rural clines in HCN production. (A) Change in 864 

potential evapotranspiration along urban-rural gradients (PET𝛽𝛽) interacts with the regional 865 

amount of summer vegetation (i.e., NDVIsummer_mean) to explain variation in the slopes of HCN 866 

clines. (B) The relationship between the slopes of HCN clines and the regional amount of winter 867 

vegetation (NDVIwinter_mean). (C) PET𝛽𝛽 interacts with the regional amounts of impervious surface 868 

(GMISmean) to predict the slope of HCN clines. (D) Change in summer vegetation along urban-869 

rural gradients (NDVIsummer_𝛽𝛽) interacts with regional aridity (AImean) to explain variation in the 870 

slope of HCN clines. Acronyms as in Fig. 2. 871 



Global urban evolution–Supplementary Materials Santangelo et al. 

1 

Supplementary Materials for 

Global urban environmental change drives parallel evolution in a 
cosmopolitan plant 

James S. Santangelo, Robert W. Ness, Beata Cohan, Connor R. Fitzpatrick, Simon G. Innes, 
Sophie Koch, Lindsay S. Miles, Samreen Munim, Pedro Peres-Neto, Cindy Prashad, Alex T. 
Tong, Windsor E. Aguirre, Philips O. Akinwole, Marina Alberti, Jackie Álvarez, Jill T. Anderson, 
Joseph J. Anderson, Yoshino Ando, Nigel R. Andrew, Fabio Angeoletto, Daniel N. Anstett, Julia 
Anstett, Felipe Aoki-Gonçalves, A.Z. Andis Arietta, Mary T.K. Arroyo, Emily J. Austen, Fernanda 
Baena-Díaz, Cory A. Barker, Howard A. Baylis, Julia M. Beliz, Alfonso Benitez-Mora, David 
Bickford, Gabriela Biedebach, Gwylim S. Blackburn, Mannfred M. A. Boehm, Stephen P. 
Bonser, Dries Bonte, Jesse R. Bragger, Cristina Branquinho, Kristien I. Brans, Jorge C. 
Bresciano, Peta D. Brom, Anna Bucharova, Briana Burt, James F. Cahill, Katelyn D. Campbell, 
Elizabeth J. Carlen, Diego Carmona, Maria Clara Castellanos, Giada Centenaro, Izan Chalen, 
Jaime A. Chaves, Mariana Chávez-Pesqueira, Xiao-Yong Chen, Angela M. Chilton, Kristina M. 
Chomiak, Diego F. Cisneros-Heredia, Ibrahim K. Cisse, Aimee T. Classen, Mattheau S. 
Comerford, Camila Cordoba Fradinger, Hannah Corney, Andrew J. Crawford, Kerri M. 
Crawford, Maxime Dahirel, Santiago David, Robert De Haan, Nicholas J. Deacon, Clare Dean, 
Ek del-Val, Eleftherios K. Deligiannis, Derek Denney, Margarete A. Dettlaff, Michelle F. DiLeo, 
Yuan-Yuan Ding, Moisés E. Domínguez-López, Davide M. Dominoni, Savannah L. Draud, 
Karen Dyson, Jacintha Ellers, Carlos I. Espinosa, Liliana Essi, Mohsen Falahati-Anbaran, 
Jéssica C. F. Falcão, Hayden T. Fargo, Mark D. E. Fellowes, Raina M. Fitzpatrick, Leah E. 
Flaherty, Pádraic J. Flood, María F. Flores, Juan Fornoni, Amy G. Foster, Christopher J. Frost, 
Tracy L. Fuentes, Justin R. Fulkerson, Edeline Gagnon, Frauke Garbsch, Colin J. Garroway, 
Aleeza C. Gerstein, Mischa M. Giasson, E. Binney Girdler, Spyros Gkelis, William Godsoe, 
Anneke M. Golemiec, Mireille Golemiec, César González-Lagos, Amanda J. Gorton, Kiyoko M. 
Gotanda, Gustaf Granath, Stephan Greiner, Joanna S. Griffiths, Filipa Grilo, Pedro E. Gundel, 
Benjamin Hamilton, Joyce M. Hardin, Tianhua He, Stephen B. Heard, André F. Henriques, 
Melissa Hernández-Poveda, Molly C. Hetherington-Rauth, Sarah J. Hill, Dieter F. Hochuli, 
Kathryn A. Hodgins, Glen R. Hood, Gareth R. Hopkins, Katherine A. Hovanes, Ava R. Howard, 
Sierra C. Hubbard, Carlos N. Ibarra-Cerdeña, Carlos Iñiguez-Armijos, Paola Jara-Arancio, 
Benjamin J. M. Jarrett, Manon Jeannot, Vania Jiménez-Lobato, Mae Johnson, Oscar Johnson, 
Philip P. Johnson, Reagan Johnson, Matthew P. Josephson, Meen Chel Jung, Michael G. Just, 
Aapo Kahilainen, Otto S. Kailing, Eunice Kariñho-Betancourt, Regina Karousou, Lauren A. Kirn, 
Anna Kirschbaum, Anna-Liisa Laine, Jalene M. LaMontagne, Christian Lampei, Carlos Lara, 
Erica L. Larson, Adrián Lázaro-Lobo, Jennifer H. Le, Deleon S. Leandro, Christopher Lee, 
Yunting Lei, Carolina A. León, Manuel E. Lequerica Tamara, Danica C. Levesque, Wan-Jin 
Liao, Megan Ljubotina, Hannah Locke, Martin T. Lockett, Tiffany C. Longo, Jeremy T. 



Global urban evolution–Supplementary Materials Santangelo et al. 

2 

Lundholm, Thomas MacGillavry, Christopher R. Mackin, Alex R. Mahmoud, Isaac A. Manju, 
Janine Mariën, Deysi N. Martínez, Marina Martínez-Bartolomé, Emily K. Meineke, Wendy 
Mendoza-Arroyo, Thomas J. S. Merritt, Lila Elizabeth L. Merritt, Giuditta Migiani, Emily S. Minor, 
Nora Mitchell, Mitra Mohammadi Bazargani, Angela T. Moles, Julia D. Monk, Christopher M. 
Moore, Paula A. Morales-Morales, Brook T. Moyers, Miriam Muñoz-Rojas, Jason Munshi-South, 
Shannon M. Murphy, Maureen M. Murúa, Melisa Neila, Ourania Nikolaidis, Iva Njunjić, Peter 
Nosko, Juan Núñez-Farfán, Takayuki Ohgushi, Kenneth M. Olsen, Øystein H. Opedal, Cristina 
Ornelas, Amy L. Parachnowitsch, Aaron S. Paratore, Angela M. Parody-Merino, Juraj Paule, 
Octávio S. Paulo, João Carlos Pena, Vera W. Pfeiffer, Pedro Pinho, Anthony Piot, Ilga M. Porth, 
Nicholas Poulos, Adriana Puentes, Jiao Qu, Estela Quintero-Vallejo, Steve M. Raciti, Joost A. 
M. Raeymaekers, Krista M. Raveala, Diana J. Rennison, Milton C. Ribeiro, Jonathan L.
Richardson, Gonzalo Rivas-Torres, Benjamin J. Rivera, Adam B. Roddy, Erika Rodriguez-
Muñoz, José Raúl Román, Laura S. Rossi, Jennifer K. Rowntree, Travis J. Ryan, Santiago
Salinas, Nathan J. Sanders, Luis Y. Santiago-Rosario, Amy M. Savage, J.F. Scheepens, Menno
Schilthuizen, Adam C. Schneider, Tiffany Scholier, Jared L. Scott, Summer A. Shaheed,
Richard P. Shefferson, Caralee A. Shepard, Jacqui A. Shykoff, Georgianna Silveira, Alexis D.
Smith, Lizet Solis-Gabriel, Antonella Soro, Katie V. Spellman, Kaitlin Stack Whitney, Indra
Starke-Ottich, Jörg G. Stephan, Jessica D. Stephens, Justyna Szulc, Marta Szulkin, Ayco J. M.
Tack, Ítalo Tamburrino, Tayler D. Tate, Emmanuel Tergemina, Panagiotis Theodorou, Ken A.
Thompson, Caragh G. Threlfall, Robin M. Tinghitella, Lilibeth Toledo-Chelala, Xin Tong, Léa
Uroy, Shunsuke Utsumi, Martijn L. Vandegehuchte, Acer VanWallendael, Paula M. Vidal,
Susana M. Wadgymar, Ai-Ying Wang, Nian Wang, Montana L. Warbrick, Kenneth D. Whitney,
Miriam Wiesmeier, J. Tristian Wiles, Jianqiang Wu, Zoe A. Xirocostas, Zhaogui Yan, Jiahe Yao,
Jeremy B. Yoder, Owen Yoshida, Jingxiong Zhang, Zhigang Zhao, Carly D. Ziter, Matthew P.
Zuellig, Rebecca A. Zufall, Juan E. Zurita, Sharon E. Zytynska, Marc T.J. Johnson*

*Correspondence to: marc.johnson@utoronto.ca

This PDF file includes: 
Material & Methods 
Supplementary Text S1-S6 
Figs. S1-S16 
Table S1-S15 (legends only for Table S1-S9) 

Other Supplementary Materials for this manuscript include the following: 

Table S1-S9 (in xlsx format) 



Global urban evolution–Supplementary Materials Santangelo et al. 
 

 3 

Materials & Methods 

Study system  

Trifolium repens L. (Fabaceae) is an herbaceous perennial native to Europe and western Asia 

(22, 31). It grows low to the ground, spreading via stolons to form clonal patches up to 1 m 

across (32). Plants reproduce sexually via pollination of self-incompatible flowers that are 

arranged in dense inflorescences (Fig. 1 inset). Trifolium repens originated in the Mediterranean 

15 to 28 kya following hybridization between two diploid species, T. occidentale and T. 

pallescens (31), to form an allotetraploid. It has since expanded from its native range over the 

past several hundred years through anthropogenic distribution as a cover crop, fodder and for 

road stabilization. Today, it has a global distribution in temperate, continental, semiarid and 

tropical climates (22, 32, 33). While a recent allotetraploid, T. repens exhibits disomic 

inheritance of its two parental subgenomes (~500 Mb each, 31). It thrives in anthropogenically 

modified habitats, particularly mowed grass and grazed pastures, although it requires 

supplemental watering in drought-prone (e.g., semi-arid) habitats to persist.  

Populations of T. repens are often polymorphic for the production of hydrogen cyanide (HCN 

or cyanogenesis), an antiherbivore chemical defense that is present in over 3,000 plant species 

(34). Individual T. repens plants either produce hydrogen cyanide (i.e., cyanogenic, HCN+), or 

completely lack the ability to produce HCN (i.e., acyanogenic, HCN–) (35, 36). HCN is a toxic 

chemical defence produced when tissue is damaged, and it achieves its toxicity by binding to 

cytochrome oxidase in the mitochondrion where it inhibits cellular respiration (37, 38). The 

cyanogenesis polymorphism is controlled by the epistatic interaction between two independently 

segregating Mendelian loci (36). One encodes a biosynthetic cluster of three tightly-linked genes 

(hereafter referred to as Ac), which includes the cytochrome P450 enzyme CYP79D15 that 
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catalyzes the initial step in the production of the cyanogenic glucosides linamarin and 

lotaustralin (39, 40). The second locus, Li, encodes the hydrolyzing enzyme linamarase (17, 41), 

which cleaves the glucoside’s sugar moiety to liberate HCN. The cyanogenic phenotype exhibits 

complementary epistasis (42); plants require at least one functional allele at both loci to produce 

HCN (i.e., only genotype Ac– Li– is HCN+), and the expression of the functional alleles (Ac and 

Li) are partially dominant (i.e., heterozygotes have reduced expression) to the respective 

alternative recessive alleles (36). The recessive alleles of both loci are caused by partial or 

complete gene deletions (denoted ac for a deletion in the region containing CYP79D15, li for a 

deletion at Li). These deletions result in a loss of function for that gene copy and plants are 

acyanogenic when the recessive allele is homozygous at either locus (i.e., genotypes Ac–lili, 

acac Li–, and acac lili are all HCN–) (17, 18, 39, 43).  

City selection  

Our sampling was restricted to regions with suitable climates for T. repens (Fig. S1). We focused 

on cities that had clearly defined urban-rural gradients, and we avoided cities or transects within 

cities that had major elevational gradients. These criteria were necessary to avoid confounding 

variation unrelated to urbanization because temperature is an important driver of evolution in 

HCN production (19, 44-46), and HCN clines frequently occur along elevational gradients (44, 

47, 48). We selected cities that had a minimum distance of 4 km from the urban center to the 

edge of contiguous suburban development, which allowed for a target of 40 sampling sites 

(hereafter referred to as “populations” or “sites” interchangeably for convenience) per city with a 

minimum spacing of 200 m between populations as explained below (see Sample collection). In 

total we sampled T. repens from 160 cities (Fig. 1): including 34 cities in Europe, 94 cities in 

North America, 13 cities in South America, 1 city in Africa, 10 cities in Asia, and 8 cities in 
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Oceania (Australia and New Zealand). Africa had the fewest cities sampled because white 

clover’s distribution on the African continent is largely restricted to South Africa (49) (Fig. S1), 

and because South Africa experienced a prolonged historic drought at the time of sampling, 

which killed most plants in the region and prevented further sampling.  

Sample collection  

Trifolium repens samples were collected between 2016-2019 along transects that spanned urban 

to nonurban (typically rural, although occasionally forest, grassland or shrubland roadcuts in 

temperate, Mediterranean or semiarid sites) gradients (Fig. 2, Fig. S10). For each city, we aimed 

to sample between 20-50 T. repens populations (mean = 38.6 +/− 3.05 [SE] populations per city). 

Transect design and sample collection were performed using standardized protocols across all 

cities (Supplementary Text S2, Supplementary Text S3). Briefly, transects were designed to: 1) 

sample half urban (city and high-density suburbs) and half rural (periurban and rural) habitats, 2) 

include urban areas dominated by impervious surfaces, such as roads and buildings, and 3) avoid 

environmental gradients not directly associated with urbanization, such as changes in elevation 

or variation in proximity to large bodies of water (i.e., lakes, oceans, seas). The average distance 

between sampling sites was scaled to the total transect length, with the constraint that each site 

had to be a minimum of 200 m apart, which prevented sampling sites from overlapping since we 

could generally sample plants well within ~50 m of a central point. We aimed to sample 15-20 

plants from each site (mean = 17.8 +/− 0.22 [SE] plants per site), in which individual plants were 

represented by 3-4 leaves attached to a single stolon that were stored in a cooler prior to 

returning to the lab. To avoid sampling from the same clone, each sample was separated by a 

minimum of 3 m. At the lab, individual samples were transferred to 1.5 mL microcentrifuge 
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tubes and stored at −80°C until HCN phenotyping (see, HCN Feigl-Anger assays and 

Supplementary Text S4). In total, we sampled 110,019 plants from 6,169 populations worldwide. 

Environmental data 

To determine how urbanization has shaped environmental change, and how urban-rural 

environmental gradients affect changes in HCN evolution within T. repens populations, we 

extracted environmental data from every sampled population using satellite images. This analysis 

involved performing data extraction based on pixel-level time series images that were then used 

for downstream analyses (Fig. S8). To do this, we used custom Python (v. 2.7.4) scripts to 

automate data extraction, processing and analysis, geoprocessing (e.g., data 

conversion/projection, spatial operations, and calculations of vector and raster datasets), data 

scraping, and map production. A detailed description of these methods and workflow is shown in 

Supplementary Text S1 and Fig. S8. A concise description of these methods follows below. 

For each city, a vector dataset was created from population GPS coordinates (latitude and 

longitude, Table S1) using the World Geodetic System 1984 (WGS 84) coordinate system. We 

then selected two recent 30 m resolution Landsat images for each city using the USGS-EROS 

Earth Explorer interface (https://www.usgs.gov/core-science-systems/nli/landsat); one image 

from summer and one from winter, including snow cover where appropriate (Table S8, Table 

S9). We took the most recent images possible that met our selection criteria for ensuring high 

quality images and data (Supplementary Text S1), with all images coming from the last 10 years, 

except for a single image in winter (Cincinnati: 

LE07_L1TP_020033_20030115_20160927_01_T1_MTL.txt) that came from 2003 because 

there was no recent clear image due to atmospheric interference. For each city, summer images 

were selected for the month with the highest mean temperature based on WorldClim data v.1.4 
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(50), and winter images were selected for the month with the lowest mean temperature. When no 

usable image was available for this time period (e.g., due to cloud/haze cover), we used the most 

recent image from the previous or following month. We used the projected coordinate datasets 

for each city to extract the following pixel-level environmental data for every sampled 

population from Landsat satellite images: summer land surface temperature (LST), winter LST, 

summer vegetation cover quantified using the normalized vegetation index (NDVI), winter 

NDVI, snow accumulation according to the normalized difference snow index (NDSI), and 

elevation above sea-level using a digital elevation model (DEM, Supplementary Text S1). 30 m 

resolution pixel values were averaged over a 100 m buffer around each collection site to obtain 

local environmental conditions for each population. 

We extracted additional environmental variables from curated raster datasets. Specifically, we 

estimated population-level annual aridity (AI) and potential evapotranspiration (PET) using 30 

arcsecond (~1 km) raster datasets provided by the CGIAR Consortium for Spatial Information 

(51). We also estimated percent impervious surface for each population using the 30 m 

resolution “Global Man-made Impervious Surface” raster dataset (GMIS) provided by the 

Socioeconomic Data and Applications Center (SEDAC). As with other variables, GMIS values 

were averaged over a 100 m buffer to characterize percent impervious surface in and surrounding 

each population (52).  

City characteristics 

In addition to population-level environmental variables extracted from each sampling location 

within a city, we examined how a city’s relative age, area, proximity to other cities (hereafter 

“no. cities”), human population size, and human population density were related to the strength 

of HCN clines (Table S1, Table S7). To estimate a city’s relative age, we first selected 30 
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random cities from our 160 sampled cities and used them to estimate the human population size 

of a hypothetical city with a 4 km radius, the minimum size of cities sampled. Across these 30 

cities, we found that on average a city with a 4 km radius contained 150,000 people. The year at 

which each sampled city reached this population size threshold was determined from historical 

urban population growth data (53). For 11 of the 160 cities, no historical data was available prior 

to the city reaching this population threshold, therefore, a regression of population size versus 

year was used to extrapolate the year at which the threshold was reached. The relative age of 

each city was calculated as the number of years prior to 2020 a city reached a population size of 

150,000; 52 cities had a population size below 150,000, so their age was set to 0 for analyses. 

To estimate city area (km2), Google Earth Pro (version 7.3.2, google.com/earth) satellite 

imagery was used to manually trace the boundaries between urban and rural areas (rural included 

periurban) using the most recent images available for each city as of December 2019. This 

manual determination of city area was necessary to ensure that estimates were based on 

consistent definitions in which urban and suburban habitats had a high level of impervious 

surface; estimates provided by governments are usually based on political jurisdictions and often 

include rural areas and may not include contiguous adjacent cities or suburbs. All mapping was 

performed using the Google Earth Polygon Tool with the viewing plane positioned directly 

above the city with the entire extent of the urban area in view. We then manually traced the 

margins of the city based on changes in impervious surface vs natural landcover in nonurban 

areas, such as vegetation, water, desert and farmland. Calculation of area excluded green spaces 

(e.g., parks, agricultural land, low-density suburbs, or undeveloped areas) with a diameter of > 3 

km within the focal city boundary, as well as green spaces and water bodies on the border of 

urban areas. Neighboring urban areas were included in a city’s area calculation when they were 
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separated by < 3 km of green space. This distance was chosen based on the limits of honeybee 

dispersal (54), one of the most common pollinators of white clover worldwide (32, 55, Fig. 1 

inset). 

The number of cities surrounding the focal city was calculated as the number of cities within a 

50 km radius of the sampled city’s geographic center. Using Google Earth we counted all cities 

(i.e., densely populated areas) with a radius of at least 4 km that partially or completely occurred 

within the 50 km radius circle. The focal city was also included in this count, so the minimum 

count was equal to 1.  

To estimate human population size, we used the City Population Database (56). For each city, 

the specified city population was used from the most recent census data. Some sampled cities 

were not found on the City Population Database and were supplemented from local census 

authorities. Finally, human population density was calculated as the human population size 

divided by the city area. 

HCN Feigl-Anger assays 

The cyanogenic phenotype (i.e., HCN+ or HCN-), and thus the presence of at least one 

functional Ac and Li allele at each locus, was determined using a colorimetric assay (i.e., Feigl-

Anger assay) following the protocol in Supplementary Text S4. Briefly, the Feigl-Anger assay 

uses filter paper soaked in a solution of copper ethylacetoacetate and tetrabase that turns green to 

blue in the presence of HCN (57, 58, Fig. S16). Tests show that the Feigl-Anger assay is >95% 

congruent with PCR amplification of Ac and Li alleles (17, 43, 59, 60), indicating it is an 

accurate and rapid method for determining the presence/absence of the functional alleles. We 

used Feigl-Anger assays to perform high throughput quantification of the frequency of 

cyanogenic genotypes (Ac– Li–) within populations. Whole genome sequencing of 2,074 
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samples confirmed that our phenotyping distinguished plants in which the Ac/ac alleles and Li/li 

alleles were present versus absent (Fig. S9), and was further able to distinguish individuals that 

were heterozygous vs homozygous (see Allele frequencies at Ac and Li). 

Feigl-Anger assay papers were prepared at the University of Toronto Mississauga using a 

modified version of the protocol of Gleadow et al (58). Solutions of copper ethylacetoacetate and 

tetrabase were prepared in chloroform and combined at equal volumes. Square filter papers 

(Whatman #3) were dipped into the solution and air dried, then stored in an opaque container at 

4°C to prevent UV degradation before use. Assay papers and 96-well plates were provided to 

each collaborator before sampling.  

When performing the Feigl-Anger assay, a single large leaf (1-2 cm diameter), or two small 

leaves (< 1 cm) from an individual plant (Figs. S11, S13), was placed into a well of the 96-well 

plate. We placed leaves from each sampled plant into every other well, grouping individuals by 

population in plates so that a plate contained a maximum of 48 individuals, ensuring one well 

separated samples in each direction to prevent bleeding of the blue pigment that would obscure 

the results from other samples (Fig. S16). Leaves were frozen at −80°C (where possible, −20ºC 

otherwise) immediately prior to the assay, macerated in 80 μL water (Fig. S14), and incubated 

with Feigl-Anger assay paper placed evenly over the plate’s wells for 3 h at 37°C (Fig. S15). 

After incubation, samples were immediately scored for the presence/absence of HCN; the 

presence of HCN was indicated by a pigmented spot (light green to dark blue) on the assay paper 

above the well, whereas a lack of any pigment indicated the absence of HCN (Fig. S16). The top 

and bottom of all filter papers were photographed and double-checked in M. Johnson’s lab to 

ensure data consistency. 

Tissue preparation & DNA extraction 
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Plant tissue was air-dried, dried using silica, or freeze-dried depending on the equipment 

available in collaborating labs and then shipped to the University of Toronto Mississauga for 

genomic DNA extraction. Leaves from each plant used for genomic library preparation (see 

below) were individually placed in strip tubes arranged in 96-well format, freeze-dried for 48 h 

in a Martin Christ Epsilon 2-6D LSC plus freeze dryer (Martin Christ, Osterode am Harz, 

Germany), then homogenized with three 2 mm beads per sample using a FastPrep-96 (MP 

Biomedicals, Solon, OH, USA) for 120s at 1,800 rpm. Homogenized tissue was stored at -80°C 

until DNA extraction.  

Total genomic DNA was extracted with a modified phenol-chloroform extraction protocol 

(61). The detailed protocol for DNA extraction is outlined in Supplementary Text S5. Briefly, 

homogenized tissue was incubated at 60°C with a 3% CTAB buffer (2.5M NaCl, 2% 

polyvinylpyrrolidone (PVP), 1% B-mercaptoethanol) for 30 min. Phase separation washes were 

performed using phenol-chloroform-isoamyl alcohol (24:24:1; Sigma, P2069) and RNAse A 

(Fisher Scientific, Mississauga, Canada) incubation was performed for 30 min at 37°C prior to a 

pure chloroform (Sigma Aldrich, Oakville, ON, Canada) phase separation. DNA was then 

precipitated overnight in chilled isopropanol at −20°C, eluted in 50 µL TE (Fisher Scientific, 

Mississauga, Canada), and quantified on a Qubit Fluorometer 3.0 (Life Technologies, 

Mississauga, Canada) using the dsDNA BR Assay Kit (Fisher Scientific, Mississauga, Canada).  

Genomic library preparation 

Cities were selected for whole genome sequencing to represent geographic variation among 

continents, climatic variation within continents, and the presence or absence of urban-rural HCN 

clines. Our aim was to maximize variation in each of these three categories, with the constraint 

that a high proportion of the extracted genomic DNA from a city had to be of reasonably high 
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quality (i.e., high molecular weight DNA with low fragmentation when visualized on a 1.5% 

agarose gel) and all samples needed to have ≥ 10 ng/µL gDNA. Lower quality DNA typically 

resulted from tissue that was air-dried or incompletely dried before shipping to the GLUE Lead 

Team. Given these constraints, we prepared 2,074 samples from 26 cities: 7 cities from the 

native range of Europe and Middle East, and 19 cities from the introduced range, including 6 

cities from North America, 5 from South America, 4 from Asia, 1 from Africa, and 4 cities from 

Australia and New Zealand (Oceania) (Fig. 1, Table S1). In each city, we sampled ~40 

individuals from the five populations closest to the urban center and another ~40 individuals 

from the five furthest rural populations (N ~ 80 individuals per city), ensuring approximately 

equal representation of individuals from each population (~8 individuals/population). All 

individuals were diluted to 10 ng/μL in TE (where necessary) to a final volume of 25 µL in 0.2 

mL Bioruptor Microtubes (Diagenode Inc., Denville, NJ, USA), and then sheared using a 

Bioruptor Pico Sonicator (Diagenode Inc., Denville, NJ, USA) for 3 cycles (15s on, 30s off) to 

achieve a mean fragment size of ~500 bp. When individuals had <10 ng/uL of DNA, we sheared 

25 µL.of the undiluted sample.  

Dual-indexed genomic DNA libraries were generated using Sera-Mag SpeedBeads (Fisher 

Scientific, Mississauga, ON, Canada) to clean DNA between each of the following reaction 

steps: 1) end repair, 2) A-tailing, 3) adapter ligation, and 4) index PCR with i5 and i7 indices 

(62-64). Our detailed protocol is outlined in Supplementary Text S6. Sheared DNA was first 

cleaned using a 0.8× SPRI bead:DNA ratio to remove fragments <250 bp. End-repair was 

performed by incubating sample DNA with a mixture of T4 DNA polymerase (Fisher Scientific, 

Mississauga, ON, Canada) and T4 polynucleotide kinase (Fisher Scientific, Mississauga, ON, 

Canada) to create 5’ phosphorylated blunt-ended fragments (65). Samples were then cleaned 
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with SPRI bead solution at a 2.8× bead:DNA ratio, which allowed us to retain the full 

distribution of fragment sizes. 3’ A-tailing was performed using Taq polymerase (Fisher 

Scientific, Mississauga, ON, Canada) (66) and samples were then cleaned with SPRI bead 

solution at a 2.2× bead:DNA ratio. Adaptor ligation was performed using T4 DNA Ligase 

(Thermo Scientific, ON, Canada) to ligate 5 μM annealed iTrusR2-stubRCp and iTrusR1-stub 

adaptors (64). Samples were then cleaned with SPRI bead solution at a 0.9× DNA:bead ratio to 

remove adaptor dimers and eluted in TE. The indexing PCR was performed using unique 5 µM 

iTru5 and iTru7 primers (64) and Phusion HiFi polymerase (New England Biolabs, Ipswich, 

MA, USA) under the following conditions: 3 min at 98°C, (30s at 98°C, 30s at 65°C, 60s at 

72°C) x 14 cycles, 1 min at 72°C. Finally, the PCR products were cleaned using a 0.8-1× SPRI 

bead:DNA ratio to remove primer dimers and other small fragments. All libraries were 

quantified on a Qubit using the high-sensitivity (HS) assay and run on a gel to visualize the size 

distribution of DNA fragments. We only sequenced genomic libraries with a minimum 

concentration of ≥ 0.8 ng/μL. Equimolar pools of 0.8 ng/μL were created for each library for 

sequencing.  

Whole genome sequencing and bioinformatics 

Sequencing, alignment, and quality control—We sequenced the genomes of 2,074 individual 

plants from the 26 cities on a Novaseq 6000 S4 platform using 150 bp paired-end reads (Table 

S1). 1,984 of these plants were sequenced at low coverage (mean = 1.05X) on four separate 

lanes, and 90 plants from Toronto were sequenced to approximately 10× as part of a separate 

project and downsampled to ~2.5× using SAMtools v1.10 (67) for inclusion in the present study. 

We trimmed raw reads using fastp v0.20.1 (68) with the -trim_poly_g argument to trim polyG 

tails that are commonly generated by Novaseq platforms. We performed per-sample quality 



Global urban evolution–Supplementary Materials Santangelo et al. 
 

 14 

control (QC) of both raw and trimmed reads using FastQC v0.11.9 (69) and mapped the trimmed 

reads to the ~1 Gb T. repens reference assembly (NCBI BioProject number PRJNA523044, (31)) 

using BWA MEM v0.7.17 (70). We marked duplicate reads and sorted and indexed resulting bam 

files using SAMtools v1.10 prior to performing QC of mapped reads using Qualimap v2.2.2 (71), 

Bamtools v2.5.1 (71), BamUtil v1.0.14 (72), and multiQC (73). QC of the mapped reads revealed 

18 samples with uncharacteristically high alignment error rates as reported by Qualimap. These 

samples might represent different species that were incorrectly identified as T. repens during 

sampling and were removed from all downstream analyses.  

Site frequency spectrum—All population genomic analyses described below (see Statistical 

Analyses) were performed using genotype likelihoods to avoid biases associated with calling 

genotypes from low or variable coverage data (74-76). One- and two-dimensional folded SFS 

(for pairwise nucleotide diversity and FST, respectively) were estimated in ANGSD v0.933 (76, 

77). For each city, we first generated separate urban and rural site allele frequency likelihood 

files (-doSaf 1) using the SAMtools genotype likelihood model (-GL 1, 78) with base alignment 

quality scores recalculated according to the “extended SAMtools” model (-baq 2) to reduce 

false-positive SNP calls around INDELS (79). To ensure the same major and minor allele calls in 

both urban and rural habitats for FST estimates, we polarized alleles by forcing the reference base 

to be the major allele in each habitat (-doMajorMinor 4 with -ref). We only considered reads 

with a minimum phred-scaled base quality score of 20 (-minQ 20) and mapping quality of 30 (-

minMapQ 30). We performed these analyses using a set of 250K randomly-selected four-fold 

degenerate sites (i.e., silent sites that result in no change in amino acid; -sites 4-fold 

random.sites) from across the genome as an estimate of neutral diversity, which we extracted 

from the T. repens genome using a custom script (https://github.com/tvkent/Degeneracy) that 
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requires Python3 (80) and bedtools v2.26 (81) as dependencies. Finally, for each city, we used 

the realSFS script that is packaged with ANGSD to estimate separate folded (-fold 1) one-

dimensional urban and rural SFS (N = 52), and two-dimensional urban-rural joint SFS (N = 26) 

for use in estimating urban and rural pairwise nucleotide diversity (π) and urban-rural FST within 

cities, respectively.  

Statistical Analyses 

We used a combination of general linear models and multivariate statistics to address our 

research questions related to whether global urbanization causes convergent environmental 

change, parallel evolution of HCN across cities, and to identify the environmental predictors of 

evolution. All analyses were performed in R version 3.6.3 (82).  

Environmental convergence—We started by regressing each environmental variable separately 

against geographic distance from the urban center, to understand how environments changed 

along our sampling transects (Fig. S2, Table S2, Fig. S7). Distance was standardized between 0 

and 1, where 0 represented the geographic center (i.e., most built up central area of a city) of the 

city, 1 was the most distant rural population, and the transition between urban/suburban areas to 

periurban and rural areas typically occurred at a distance of ~0.5. Standardizing distance in this 

way allowed all transects to be on an equivalent scale, regardless of city size. Environmental 

variables were standardized to a mean of zero and unit variance within each city, so that the 

differences in scale among cities would be removed. 

Regressions were performed using robust regression fit with iteratively re-weighted least 

squares (IRLS) using the rlm function in the MASS package, which reduces the influence of 

potential outliers (83). In the absence of outliers, the standard ordinary least-squares regression 

(OLS) is the same as in the robust procedure, and comparisons of the two models yielded very 



Global urban evolution–Supplementary Materials Santangelo et al. 
 

 16 

similar results. To maximize our ability to describe variation between urban and rural 

environments for our measures of urban environmental change, we used the predicted values for 

environmental variables from the robust regressions for the urban center (distance = 0) and 

furthest rural (distance = 1) locations.  

To test whether urbanization leads to environmental convergence across the 160 cities, we 

calculated three multivariate attributes of environmental change between urban and rural 

habitats: (i) the magnitude of multivariate environmental change (Fig. 2A), (ii) the direction of 

environmental change (Fig. 2A), and (iii) variance in the environment among sampling sites 

within urban or rural habitats (Fig. S3). Together these metrics provide a comprehensive test of 

environmental convergence in response to urbanization. Due to missing environmental data from 

two cities, these analyses used 158 of the 160 cities studied. 

The first attribute measured the magnitude of change between urban and rural habitats using a 

multivariate approach modified from Collyer and Adams (84). We conducted a PCA on a matrix 

containing the predicted values for the urban and rural habitats (i.e., 2× 158 cities) across all 

nine environmental variables. If convergence was strong, we expected urban and rural sites to 

form distinct clusters regardless of their cities. To test for the differences in multivariate mean 

values between urban and rural sites, we used the F-value from a MANOVA on the same matrix 

to test whether urban and rural sites significantly differed in their mean environmental 

conditions. To estimate the P-value, we used a permutation test as described in Collyer and 

Adams (84) based on bootstrapped residuals from the MANOVA model.  

The second attribute measured the direction of change (i.e., angle) between urban and rural 

environments. For each city we estimated the multivariate angle between urban and rural sites 

across all environmental variables as in Collyer and Adams (84). Pairwise Euclidean distances 
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between cities in their angles were calculated and the total sum of distances was used as a test 

statistic. To estimate the P-value under the null hypothesis that cities did not differ in their 

direction of environmental change (i.e., they exhibited parallel environmental change), we 

estimated the MANOVA F-value and used the same bootstrapped-based permutation procedure 

from the MANOVA model described above. For each permutation, we re-calculated the 

multivariate angles and the sum of the Euclidean distances. Under the null hypothesis, this sum 

is smaller than if the alternative hypothesis is true that cities differ in the direction of change 

between urban to rural environments.   

The third attribute was designed to measure changes in environmental variance between urban 

populations versus rural populations. For each city, we used the predicted values for the five sites 

closest to the urban center, and the five furthest rural sites across all nine environmental 

variables. We then created two matrices, one for the five urban sites and another for the five rural 

sites (i.e., 5 sites × 158 cities = 1580 by 9 variables per habitat). Each variable in the matrix was 

standardized (i.e., mean = 0, sd = 1) and converted into absolute values. The two matrices (i.e., 

urban and rural) were then combined into a single matrix of 3160 rows. A PCA was performed 

on the resultant matrix and if variances differed between urban and rural sites, we expected 

greater multivariate dispersion in one habitat relative to the other. To estimate the P-value under 

the null hypothesis that cities did not differ in their multivariate dispersion, we used a MANOVA 

of the matrix of absolute values with urban and rural habitats as the two groups. This is 

equivalent to a multivariate Levene’s test for homogeneity of variance (85).   

Parallel clines in HCN—To test for parallel evolution of HCN clines across cities, we first fit a 

generalized linear mixed-effects model to the population HCN frequencies of all cities. For each 

population in each city, we estimated the proportion of plants producing HCN, and used this as a 
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response variable in a generalized linear mixed-effects model (family = binomial) with 

standardized distance, continent, and the distance × continent interaction as fixed effect 

predictors (Table S3). In this model, we used the total number of plants in the population 

assigned as observation weights during fitting. The model additionally included random effects 

that allowed both baseline HCN frequencies (i.e., random intercept by city) and the slope of 

HCN frequencies versus distance to vary across cities (i.e., random slope by city), in which the 

latter quantifies the extent to which cities varied in the strength and direction of HCN clines. We 

obtained parameter estimates (i.e., 𝛽𝛽 coefficients) directly from the output of glmer in the lme4 

package (86), while P-values for fixed effects were obtained using the Anova function from the 

car package (87), fit with type III sums-of-squares because of interactions being present in the 

model, and for the random effects using a likelihood ratio test implemented in the anova function 

of lmerTest (88). We ran similar models using percent impervious surface (global manmade 

impervious surface–GMIS) or the Human Influence Index (HII, 89) as predictors instead of 

distance to the city center. HII is a global dataset of 1 km grid cells based on data describing 

human population density, human land use, and infrastructure. The results from all three sets of 

models were qualitatively identical and models that included distance explained the most 

variation in HCN frequencies. We did not run an analysis including all three predictors in a 

single model (i.e., distance, GMIS and HII), because these urban metrics were correlated (|rPearson| 

range = 0.35-0.45). We therefore only interpret models with distance as a predictor in the main 

text, and include results using distance, GMIS or HII as predictors individually in Table S3. 

In addition to the mixed model described above, we performed separate binomial regressions 

quantifying the change in HCN frequency across each city’s urbanization transect. For each city, 

we fit a binomial regression with population-mean HCN frequencies as the response variable, 
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and standardized distance to the city center as the sole predictor. Binomial regressions were 

performed using the glm function in the stats package (82) with the total number of plants in the 

population assigned as observation weights during fitting. We used these models to evaluate the 

extent to which cyanogenesis clines are consistent in magnitude and direction across cities 

(Table S4). We used the loge(odds) slopes extracted from the full GLMM model run in glmer 

when evaluating the environmental predictors of variation in clines across cities, as described 

below.  

Diversity and population differentiation—To contrast the effects of genetic drift between urban 

and rural habitats, we estimated genome-wide nucleotide diversity (π) at 4-fold degenerate sites 

separately for the urban and rural plants from each city using the folded, one-dimensional SFS 

files as priors to the empirical Bayes estimation of π implemented in ANGSD (77). The number 

of sites used in estimating 4-fold π varied across cities and ranged from 191,599 (Hiroshimarural) 

to 236,280 (Torontourban), with a mean of 229,900. To test whether the urban-rural differences in 

π deviate from null expectations, we implemented a permutation test by randomly reshuffling 

individuals between habitats in proportion to their observed population sizes, re-estimating the 

urban-rural difference in π, and repeating this procedure 100 times. We calculated P-values as 

the number of permuted values that were larger or smaller than the observed difference in π (i.e., 

the P-value was the quantile). This analysis tests whether the observed urban-rural difference in 

π is greater or less than expected if all individuals were from a single population (Fig. S4A).  

To assess how urbanization might affect genetic differentiation, we estimated urban-rural FST 

for each city from the folded, two-dimensional urban-rural joint SFS using Hudson’s estimator of 

FST (90, 91, realSFS fst index -whichFst 1). We used Hudson’s estimator because Weir and 

Cockerham’s FST (-whichFst 0) can be inflated at low sample sizes (6) and biased when 
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replication is uneven (90). The number of sites used in estimating FST ranged from 186,401 

(Hiroshima) to 235,166 (Toronto) with a mean of 225,785. We performed a similar permutation 

test as above to assess whether the observed urban-rural FST is greater or less than expected if all 

individuals were randomly assigned to urban or rural habitats in proportion to the original sample 

(Fig. S4B). The P-value was again calculated as the quantile of the obverserved FST compared to 

the permuted neutral distribution.  

As an alternative measure of neutral genetic differentiation, we calculated the Euclidean 

distance between urban and rural centroids for each city from a PCA (Fig. S5). Using the same 

randomly-selected 4-fold sites as above, we used ANGSD to first estimate genotype likelihoods 

for all samples, with minor allele frequencies estimated directly from these likelihoods (-

doMajorMinor 1, 92). We used the same site and read filters as above with the following 

additions: (1) we only included sites with MAF > 0.05; (2) we only included SNPs with a P-

value less than 1e-6 (-SNP_pval 1e-6); (3) we excluded sites where >50% of samples were 

missing data (-minInd 0.5*N); and (4) we excluded sites with a total depth greater than 4200× 

(i.e., 2 × mean coverage × # samples), which excluded approximately 2% of sites likely 

corresponding to highly repetitive genomic elements. Following filtering, we retained 1,616 

four-fold degenerate SNPs (genome-wide) and used these as input to PCAngsd v0.99 (93), which 

estimates a covariance matrix of allele frequencies across input samples directly from genotype 

likelihoods. We imported this covariance matrix into R, performed a PCA using the princomp 

function, and extracted eigenvectors using the eigen function. For each city, we then calculated 

the urban and rural centroids as the mean of the within-habitat sample positions across the first 

two PCs, which together explained ~25% of the variation in allele frequencies (PC 3 explained 
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0.5% of the variance), and calculated the Euclidean distance between the urban and rural 

centroids for each city as: 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 	-(𝑃𝑃𝑃𝑃1!"#$% −	𝑃𝑃𝑃𝑃1"!"$&)' +	(𝑃𝑃𝑃𝑃2!"#$% −	𝑃𝑃𝑃𝑃2"!"$&)' 
 

This approach is similar to that implemented by Stuart et al. (see Fig. 4D in 94) 

Finally, we estimated admixture proportions using PCAngsd as a complementary analysis of 

urban-rural differentiation (Fig. S6). For each city, we estimated genotype-likelihoods in ANGSD 

using the same filtering criteria as above with the following minor modifications: (1) we did not 

impose a maximum depth filter due to the relatively fewer number of samples per city; (2) we 

excluded really low coverage samples in each city (< 0.2X) since these resulted in lots of missing 

data; and, (3) we excluded sites when >50% of remaining individuals within a city were missing 

data. The number of sites used in estimating admixture proportions ranged from 1,085 

(Hiroshima) to 11,369 (Toronto), with a mean of 4,640. We then used these genotype-likelihoods 

as input in PCAngsd with the -admix option to estimate per-sample admixture proportions for 

each city. PCAngsd implements a minimum partial average (MAP) test to determine the number 

of PCs (D) required to estimate individual allele frequencies, and the optimal K used for 

estimating admixture proportions can be estimated as D + 1 (59). Optimal K was 2 for every city. 

Differentiation of HCN relative to neutral expectation— We examined whether clinal cities 

showed on average greater urban-rural differentiation in HCN than expected if the HCN 

phenotype was encoded by two randomly-selected neutral sites from across the genome. The null 

hypothesis is that urban-rural differentiation observed in HCN could be driven by neutral 

differentiation in the genome. However, the dominant epistatic genetic architecture of HCN 

means that there may not be differentiation in both of the underlying Ac and Li loci where clines 

are observed. Therefore, we estimated the distribution of HCN differentiation that would be 
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expected in HCN if a random pair of neutral SNPs controlled the HCN phenotype and we 

compared the null distribution to the observed differentiation in HCN. First, we estimated urban 

and rural HCN frequencies using the predicted values from the binomial regressions run 

separately for each city. We then used these frequencies to estimate observed urban-rural 

differentiation in the HCN phenotype as: 

𝐻𝐻𝑃𝑃𝐻𝐻()** =	
𝐻𝐻+ −	𝐻𝐻,

1 −	𝐻𝐻,
 

In this way, HCNdiff is analogous to FST. HT is the fraction of times a pair of samples from the 

total population (city) are the same phenotype. HS  is the mean fraction of pairs sharing a 

phenotype from within the same sub-population (urban or rural) (95, 96). HT and HS were 

estimated as: 

𝐻𝐻, =	8(
1
𝐾𝐾8𝑝𝑝-)

.

-/0

)'
1

)/0

 

𝐻𝐻+ =	
1
𝐾𝐾88𝑝𝑝-)'

1

)/0

.

-/0

 

where K is the number of subpopulations (two in our case—urban and rural), I is the number of 

distinct phenotypes (also two in our case – HCN+ and HCN–), and pki is the frequency of 

phenotype i in subpopulation k.  

To generate a null distribution against which we could compare our observed differentiation 

in HCN, we first used ANGSD to identify 4-fold SNPs across all samples within a city. We then 

extracted these SNP positions and estimated their frequencies separately in each urban and rural 

habitat for each city. This approach ensures that we include sites that are fixed in one habitat but 

variable in the other. We estimated allele frequencies (-doMaf 1) using the samtools genotype 

likelihood model (-GL 1) and forced the major allele to be the reference base in both habitats (-
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doMajorMinor 4 with -ref). We only considered reads with a minimum phred-scaled mapping 

quality of 30 (-minMapQ 30), recalibrated base qualities using the extended samtools model (-

baq 2), and only considered sites with a minimum phred-scaled base quality of 20 (-minQ 20) for 

sites with high probability of being polymorphic (-SNP_pval 1e-6). For each city, we only 

retained sites with frequencies estimated for the same minor allele in both habitats and proceeded 

to generate a null distribution. 

To compare our observed estimate of HCNdiff to a null distribution of HCNdiff values generated 

from genome-wide 4-fold sites with a similar genetic architecture to HCN, we randomly sampled 

two 4-fold sites and assigned one to represent “Ac” and the other “Li”. We then estimated what 

urban and rural “HCN” frequencies would be from these pseudo-Ac and Li frequencies as: 

𝑝𝑝234 = (2𝑝𝑝56𝑞𝑞56 +	𝑝𝑝56
' ) ×	(2𝑝𝑝7)𝑞𝑞7) +	𝑝𝑝7)' ) 

where pAc and pLi are the pseudo-Ac and Li frequencies, respectively (and qAc and qLi are their 

complements). From these urban and rural pseudo-HCN frequencies, we calculated the urban-

rural null HCNdiff using the same approach as above and repeated this process 1000 times to 

generate a null distribution of HCNdiff. For each city, we assessed whether HCN was more 

differentiated than expected under neutrality by calculating the proportion of null HCNdiff values 

that were greater or equal to the observed urban-rural HCNdiff in HCN. Finally, we performed a 

𝜒𝜒'–test to examine whether cities with significant clines in HCN were more likely to show 

significant divergence in HCNdiff relative to neutral expectations.  

Allele frequencies at Ac and Li—We developed a novel genotyping method to estimate allele 

frequencies at Ac and Li for low coverage data. The method is based on the knowledge that HCN 

production requires the combination of functional proteins encoded by the Li and CYP79D15 

loci, whereas acyanogenic plants carry large deletions of both copies at one or both loci. The 
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upstream boundaries of these deletions are unknown, which has prevented the development of 

simple genotyping assays for their presence/absence (18, 43). We developed an assay to assign 

genotype likelihoods to individual plants and estimate allele frequencies based on the sequence 

read counts in the Li and CYP79D15 genes and their flanking regions. 

Individuals with two copies of the intact locus (+/+) should have a standardized read count 

consistent with the mean standardized read count of the rest of the genome (1.0×), while those 

carrying one (+/-) or two (-/-) deleted alleles would have 0.5× and 0.0×, respectively. Because 

the boundaries of the deletions are unknown, we defined “diagnostic regions” for the two loci by 

comparing samples known to be homozygous for the deletion to samples known to carry at least 

one intact allele. For each locus, a region surrounding the gene was at low coverage in the 

homozygous deletion samples relative to the other samples (Fig. S9). We therefore defined the 

diagnostic region for each locus that would be used to determine the genotype likelihoods of 

each sample. For Ac, the region was CM019103.1:19559221-19573344, where the 5' end abutted 

a scaffolded region in the genome comprised of ambiguous 'N' nucleotides (Fig. S9 A, B). For Li 

we used the region CM019108.1:30218214-30247247 after masking a repeat at 

CM019108.1:30229250-30230911 (Fig S9 C, D). 

The number of reads a given sample has in the diagnostic region is a function of its genotype, 

the total number of reads sequenced, the size of the focal region, alignment errors, and sampling 

error associated with sequencing. Initial observations indicated that the amount of sampling error 

was greater than that expected under a Poisson distribution (i.e., it was overdispersed). We 

therefore modelled read counts using a negative binomial distribution, where we could estimate 

the mean and variance of the number of reads expected for a given genotype. We fit these 

parameters using the following procedure: for each plant we counted the number of reads falling 
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in the focal region and normalized the read counts by the total unique aligned reads in that 

sample. When these read counts were plotted as a histogram, three peaks represented the read 

counts for plants that are -/-, +/-, +/+. The mean of each peak reflected the number of reads 

expected in a given genotype. The height of each peak reflected the genotype frequencies in the 

sample and the width (variance) of the peaks represented sampling noise around the expected 

number of reads for a given genotype. Using non-linear least-squares regression, we fit this 

trimodal distribution as a combination of three negative binomial distributions that correspond to 

the three genotypes with 0.0×, 0.5× and 1× probability of a read mapping in the diagnostic 

region. Our fitted distribution estimates the mean and variance in the number of reads expected 

to map for each genotype as well as the frequency of the deletion in the population, which is 

used to calculate the number of samples in each peak assuming Hardy-Weinberg equilibrium.  

Using the parameters from the fitted model, and the read counts from each sample, we 

calculated the likelihood that each sample was -/-, +/-, and +/+ at each locus. The likelihoods 

were normalized such that they add to 1.0 for each sample, allowing us to use the normalized 

likelihoods as estimates of genotype or allele frequencies for groups of samples. 

Differentiation at Ac and Li relative to neutral expectations—We used the allele frequencies at 

Ac and Li above to examine whether individual loci underlying HCN production were 

significantly differentiated relative to genome-wide neutral expectations. We first estimated 

observed urban-rural differentiation at Ac and Li using Hudson’s FST (90) separately for each 

city. We then compared these observed values to a null distribution of Hudson's FST values for all 

4-fold degenerate SNPs along the same chromosomes as the Ac and Li loci (CM019103.1 for Ac 

and CM019108.1 for Li) and considered the locus a significant outlier if it was in the top 2.5% of 

this distribution. Finally, we performed a 𝜒𝜒'-test of independence to assess whether cities with 
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significant clines in HCN are more likely to show differentiation in at least one locus, which is 

appropriate given that differentiation at a single locus is sufficient to drive clines in HCN 

production because of its epistatic genetic architecture (25, 26). 

Environmental predictors of clines in HCN—To evaluate the environmental predictors of 

variation in the strength of clines, we used regularized regression (elastic net) to identify the 

combination of environmental variables that best predict the strength of clines. We fit a single 

multivariate model with the slopes of urban-rural HCN clines across all cities as the response 

variable (i.e., one slope value per city, extracted from the full GLMM model) and the following 

predictors: regional means (i.e., mean environmental condition across all urban and rural sites 

sampled) of all nine environmental variables, slopes depicting the change in these nine 

environmental variables across urban-rural transects (i.e., slopes of each environmental variable 

vs distance from the urban center, calculated for each city), all two-way interactions between 

environmental slopes, and all two-way interactions between environmental slopes and regional 

environmental means. We did not include two-way interactions between different regional mean 

environmental variables because we were primarily interested in understanding how changes in 

the environment across urban-rural transects drive changes in HCN evolution. From this 

saturated model, we used elastic net regularization to identify predictors with little to no effect on 

the response relative to remaining predictors. Elastic net regression combines LASSO regression 

and ridge regression into a single method of analysis that allows for parameter estimation and 

model selection (97). This approach penalizes large coefficients, shrinking them to zero to avoid 

model overfitting and high variance in parameter estimates, with the strength of shrinkage 

determined by the tuning parameter 𝜆𝜆; when 𝜆𝜆 equals 0, the shrinkage penalty has no effect, and 

the estimates are the same as those obtained from OLS regression. One additional “mixing” 
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parameter 𝛼𝛼, determines whether the shrinkage method is more like LASSO or ridge regression. 

𝜆𝜆 and 𝛼𝛼 were estimated using 10-fold cross-validation implemented in the caret package (98), 

which selects 𝜆𝜆 and 𝛼𝛼 values that minimize the root mean-squared error of the model fit, with 

HCN slopes as the response variable and the matrix of environmental variables described above 

as predictors.  

Because independent runs of elastic net models can provide variable coefficient estimates, 

especially in the presence of collinearity, we repeated the elastic net model selection 100 times, 

each with a different random seed. We then estimated the number of models in which each 

environmental predictor was non-zero; important predictors should appear in many models, 

while uninformative predictors should be shrunk to zero in most models. We then estimated the 

average coefficient for each environmental predictor across the 100 models. Because all 

predictors were standardized prior to analysis, comparison of these model coefficients provides a 

direct estimate of the relative importance of different environmental predictors. Of the 136 initial 

environmental predictors, 11 were retained in at least one elastic net model, while the rest were 

consistently shrunk to zero. Our final model retained 6 predictors that appeared in >75% of the 

100 models (Table S5).   

As a complement to the elastic net model selection approach, we performed a principal 

component (PC) regression to evaluate the environmental predictors of variation in the strength 

of clines across cities (Table S6). This approach reduces the dimensionality of the multivariate 

data into PCs based on the covariance among predictor variables, and then tests how the PCs 

predict the slope of HCN clines. We began by performing two separate PCAs: the first was a 

PCA on the regional means (i.e., mean environmental condition across all urban and rural sites 

sampled per city) of all nine environmental variables (Fig. S7A), while the second was a PCA on 
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the slopes depicting the change in these nine environmental variables across urban-rural transects 

(i.e., slopes of each environmental variable vs distance from the urban center, calculated for each 

city) (Fig. S7B). For both PCAs, we retained the optimal number of PCs based on the broken-

stick model, which selects PCs that explain more variation in the component variables than 

expected under neutrality (99). This resulted in retention of two PCs (variance explained: PC1: 

42%; PC2: 22%) for the environmental-means PCA (Fig. S7A), and three PCs for the 

environmental-slopes PCA (variance explained: PC1: 36%; PC2: 21%; PC3: 19%) (Fig. S7B).  

Using the PCs retained above, we created a model that included each PC as main effect 

continuous predictors, and two-way interactions between environmental slopes PCs and between 

environmental mean and slope PCs. We did not include two-way interactions between 

environmental-mean PCs because we were primarily interested in understanding how changes in 

the environment across urban-rural transects affect changes in HCN evolution. To obtain our 

final model, we used a corrected Akaike Information Criterion (AICc)-based multi-model 

selection and averaging process, whereby models with differing combinations of predictors were 

ranked by AICc using the dredge function from the MuMIn package (100), and all models within 

2 AICc units of the best fitting model were averaged using model.avg. We interpreted the “full” 

model coefficients from the averaging process, which are more conservative and reported in 

Table S6 (100).  

City characteristics— To test how city characteristics affected the slope of HCN clines, we 

performed multiple regression. Four of the five predictor variables (i.e. city area, relative city 

age, human population size, human population density) were highly skewed, so we log-

transformed these variables, which substantially improved the homogeneity of variance of the 

full regression model and marginally improved normality compared to no transformations. We 
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also inspected the predictor variables for collinearity and removed population size because it was 

highly correlated (rPearson > 0.79) with city area and relative city age. City area and relative city 

age were also highly correlated (rPearson = 0.74), so we ran alternative models with one or the 

other variable included. The full model was estimated as: HCN slope = log(city area) + no. cities 

+ log (population density) + error, implemented using type II sums-of-squares since there were 

no interactions in the model. We substituted log(city age +1) for log(city area) and reran the 

analyses. Because a large number of cities (N = 52) had a relative city age of 0, we excluded 

these data in a third model and reran the analyses. No significant relationships were detected 

between the slopes of the HCN clines and any of the city characteristics in the models described 

above (Table S7). 
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Fig. S1. Distribution of white clover (Trifolium repens L.) as reported by GBIF (49). The 

distribution is shown as a heat map (yellow = fewest records, red = most records) based on 

946,694 georeferenced records of T. repens plants between 1756 and 2021 (downloaded July 15, 

2021). 
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Fig. S2. Changes in urban environments along urban-rural transects. Thin lines show the 
estimated relationship between: (A) annual aridity index (AI-lower values correspond to higher 
aridity), (B) annual potential evapotranspiration (PET), (C) digital elevation model above sea 
level (DEM), (D) global manmade impervious surface (GMIS or % impervious surface), (E) 
normalized difference snow index (NDSI), (F) land surface temperature in summer (LST), (G) 
LST in winter, (H) normalized difference vegetation index (NDVI) in summer, (I) NDVI in 
winter, and distance from the city center for each of the 160 cities. Lines are coloured with 
respect to the direction and significance of linear relationships (P<0.05) as shown in the figure 
legend; the thick black line in each panel shows the mean slope across all cities. Distance was 
standardized to vary between 0 (urban center) and 1 (furthest rural population) as described in 
the Methods and environmental variables were standardized to a mean of 0 and variance of 1. 
Results for each city and environmental variable are reported in Table S2. 
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Fig. S3. Environmental variance among populations within urban and rural habitats. 
Multivariate environmental variance was calculated among five populations within each habitat 
for every city, and the equality of the environmental variance was compared among habitats. (A) 
Principal components of the environmental variance among urban sites and among the furthest 
rural sites along each urban-rural transect; ellipses and connecting lines as in Fig. 2A. (B) The 
contribution of each environmental variable to environmental variance within each habitat, with 
loadings coloured by their contribution to PC1, which was associated with the greatest 
differences in environmental variance among urban populations and among rural populations. 
The environmental variables included winter (NDVIwinter) and summer (NDVIsummer) normalized 
different vegetation index, snow accumulation quantified using the normalized difference snow 
index (NDSI), winter (LSTwinter) and summer (LSTsummer) land surface temperature, aridity index 
(AI; lower values denote greater aridity), annual potential evapotranspiration (PET), percent 
global manmade impervious surface (GMIS), and elevation above sea level determined from the 
digital elevation model (DEM). (C) In addition to the multivariate Levene’s test, we calculated 
the log-determinant; higher values correspond to greater among-population environmental 
variance within a habitat. The points show the multivariate mean ± 95% CI. The environmental 
variance within rural habitats is significantly larger than urban habitats based on non-overlapping 
CI. 
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Fig. S4. Genetic variation within and between urban and rural habitats. (A) The observed 
difference in π (dashed vertical line) between habitats versus the null distribution of the 
difference in π within each city. Nucleotide diversity was estimated using 250,000 putatively 
neutral 4-fold degenerate SNPs across the genome. (B) The observed FST (dashed vertical line) 
between habitats versus the null distribution of FST. The P-values indicate the quantile of the 
observed (A) difference in π ,or (B) FST between habitats compared to the null distribution that 
individuals are sampled from the same population based on 100 permutations. Cities are 
arranged in both panels from top to bottom with decreasing values of the loge(odds) slope of the 
regression of HCN frequency versus distance. The colours of distributions indicate the statistical 
significance (P<0.05) and direction of each cline as indicated in the legend.  
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Fig. S5. Principal components depicting genomic variation across all cities and habitats. 
Genetic differences among individuals were determined using PCA (~80 individuals/city, split 
equally between urban and rural habitats), and the centroids of the ~40 individuals within each 
habitat are shown. The urban and rural centroids from the same city are connected by lines, and 
each city is labeled with respect to its rural habitat. The first two axes explained 24.3% of the 
variance in the global sample of genomic variation; PC3 and PC4 explained 4.5% and 4.0% of 
the variance, respectively, and is not depicted. 
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Fig. S6. Admixture proportions between urban and rural populations for each city 
estimated using PCAngsd. Optimal K for each city was selected as one plus the number of 
principal components used to estimate individual allele frequencies; optimal K was 2 for every 
city. Each coloured bar represents an individual, with the height of the colours indicating the 
proportion of an individual’s genome derived from ancestral populations within a given city. 
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Fig. S7. Eigenvectors from principal components analysis (PCA) of the regional mean 
environmental conditions and urban-rural environmental change. (A) Eigenvectors of 
regional mean environmental conditions using data from all cities. The regional mean 
environmental conditions for each environmental factor was determined by taking the mean of 
that factor across all populations sampled along an urban-rural transect in a given city. The 
regional means were then subject to PCA to reduce the dimensionality of the data, with PC1 and 
PC2 retained according to a broken-stick model. (B) Eigenvectors of the direction and rate of 
change in environmental conditions along urban-rural gradients using data from all cities. The 
direction and rate of change of each environmental variable was calculated as the slope of the 
relationship between each environmental factor versus standardized distance, estimated 
individually for all 160 urban-rural transects. PCA was then performed to reduce the 
dimensionality of the data and PC 1 through 3 were retained according to a broken-stick model. 
The contribution of each environmental variable in (A) and (B) are coloured by their contribution 
to PC1. The city scores along the retained PC axes from (A) and (B) were all used in a single 
multiple regression to identify the multivariate environmental factors that explain variation in 
HCN clines as described in the Methods. The results from multi-model averaging are reported in 
Table S6. 
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Fig. S8. Overview of geospatial environmental data collection. Detailed workflow used to 

process vector and raster datasets for feature extraction of environmental data. 

 
  



Global urban evolution–Supplementary Materials Santangelo et al. 
 

 38 

  
 
 
 

 
 
Fig. S9. Relative sequence coverage in the genomic regions including the Ac and Li loci for 
representative plants subject to whole genome sequencing. (A) Shows a plant with the 
presence of at least one copy of Ac, whereas (B) shows a plant with the absence of this region 
resulting from a homozygous deletion of the region. Ac is a 138 kb three gene metabolic cluster 
responsible for the production of cyanogenic glycosides, including the rate limiting cytochrome 
P450 enzyme encoded by CYP79D15 (16). (C) Shows a representative plant with at least one 
copy of the Li gene, which encodes the enzyme linamarase, and (D) shows a plant in which Li is 
absent due to the fixation of the homozygous recessive allele li. Linamarase is required to cleave 
the sugar moiety of cyanogenic glycosides to produce hydrogen cyanide. For both loci, we show 
the position in the T. repens genome (31). The vertical axis represents relative coverage of 
sequence reads in a sliding window (window size 10 kbp with 100 bp steps), calculated as 
coverage divided by the mean coverage in the surrounding ± 2 Mb. Dashed vertical lines 
represent the 5’ and 3’ flanking regions of the CYP79D15 (A,B) and Li (C and D) genes as 
annotated in the T. repens reference genome.  
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Tables S1-S9 are provided in supplementary file Tables S1_S9.xlsx 
 
Table S1. 160 focal cities sampled in the Global Urban Evolution Project, their general 
characteristics and sampling statistics. We indicate the continent, country and coordinates of 
each city, the city’s area (km2) covered by urban and suburban habitats, human population size, 
human population density, and relative city age (i.e., the number of years prior to 2020 that the 
city reached a population of 150,000). We also include the number of populations sampled, 
number of plants sampled, length of the transect (km), loge(odds) intercept and slope of the HCN 
cline determined by binomial (logistic) regression, whether the slope was statistically significant 
at P<0.05, the overall mean of HCN in the city, and the individuals that sampled the city. Cities 
in bold were used for whole genome sequencing.  
 
Table S2. Urban environmental change along urban-rural transects and regional mean of 
environmental conditions for each of the 160 cities. For each city we show regional mean 
values taken across all sampling sites for annual mean aridity (AImean), annual mean potential 
evapotranspiration (PETmean), elevation above sea-level (digital elevation model – DEMmean), 
percent impervious surface (global manmade impervious surface – GMISmean), normalized 
difference snow index (NDSImean), land surface temperature in summer (LSTsummer_mean) and 
winter (LSTwinter_mean), normalized difference vegetation index in summer (NDVIsummer_mean) and 
winter (LSTwinter_mean). The slopes (𝛽𝛽) and P-values of environmental change (with distance from 
the city center) for each environmental factor are also shown and correspond to the results shown 
in Fig. S2. When no value is included the environmental variable could not be obtained due to 
the lack of clear Landsat images for the location.  
 
Table S3. Binomial generalized linear models testing how distance from the city center, 
impervious surface and the Human Influence Index predict variation in HCN among 
populations. (A) Analysis of variance table showing results of how distance from the city center 
(Distance), continent, city, and the interactions of Distance with continent and city predict 
variation in HCN among populations (also see Fig. 2). (B) Same as A, but using the global 
manmade impervious surface (GMIS) as a predictor. (B) Same as A, but using the Human 
Influence Index as a predictor (89). All analyses are identical in structure; random effects in the 
model are italicized and their significance was tested using a log-likelihood ratio test.  
 
Table S4. The change in the frequency of HCN along urban-rural transects across 160 
cities. For each city we show the loge(odds) intercept (𝛽𝛽0) and slope (𝛽𝛽) coefficients, and the P-
value of the slope from binomial (logistic) regressions performed for each city, which correspond 
to Fig. 2.  
 
Table S5. Environmental predictors of HCN urban-rural clines. We show the predictor 
effects, their coefficients, and the number of permuted models (out of 100) the predictors appear 
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in using the elastic net method of regularized regression. The terms are arranged by the number 
of permuted models in which coefficients occurred within them. The main results are depicted in 
Fig. 4. 
 
Table S6. Environmental predictors of HCN urban-rural clines using multivariate 
environmental predictors from PCA. We show the predictor effects, their coefficient 
estimates, standard errors (SE) of the estimates, z-values and P-values for each predictor 
calculated using multi-model averaging of multiple regressions (see Methods). The original 
predictors in the full model included the scores from the first two PC axes of the mean regional 
environmental conditions for each city, and the first three PC axes from the slope of the urban-
rural change in environmental conditions for each city (Fig. S7). The response variable was the 
loge(odds) slope of HCN versus distance from the urban center extracted from the full binomial 
GLMM model. All predictors shown were retained in the final model 
 
Table S7. Multiple regression of HCN clines versus city characteristics. HCN clines were 
quantified as the slope of HCN frequency versus distance from the city center for each of the 160 
cities. The characteristics of cities included city area (km2), human population size, human 
population density, number of cities within 50 km (i.e. no. cities), and relative city age (i.e., 
number of years before 2020 that the city reached a human population of 150,000). All predictor 
variables except no. cities were log-transformed to reduce skew and increase normality of the 
predictors, which also improved homogeneity of variance and normality in the multiple 
regression analysis. We performed three separate analyses to examine whether city 
characteristics predicted the strength of HCN clines, measured as the loge(slope) of HCN 
frequency versus distance from the city center. Log(population size) was excluded from all 
analyses because it was highly correlated with city area and city age (rPearson > 0.78). (A) The 
first model included data from all cities (N = 160), and log(population density), no. cities, and 
log(city age + 1) as predictors. The model excluded log(city area) because it was highly 
correlated with log (city age + 1). (B) The second model was similar to the first one, but included 
log(city area) instead of log(city age) as a predictor. (C) The final model included N = 108 cities, 
and excluded all cities with a city age of 0. Results shown are from type II sums-of-squares for 
the full model. All models lead to the same conclusion that city characteristics do not predict the 
strength of HCN clines. 
 
Table S8. Landsat images for each city in summer. For each city we provide the Landsat 
scene from the warmest month, named following standard NASA/USGS naming conventions, 
the country, city, and estimated values of transmissivity, upwelling radiance and downwelling 
radiance. For some cities, multiple overlapping images from the same date were required to 
capture the entire transect. These landsat images were used for environmental feature extraction 
as depicted in Fig S8. 
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Table S9. Landsat images for each city in winter. For each city we provide the Landsat scene 
for the coldest month, and the name of the image following standard NASA/USGS naming 
conventions, the country, city, and estimated values of transmissivity, upwelling radiance and 
downwelling radiance. For some cities multiple overlapping images from the same date were 
required to capture the entire transect. These landsat images were used for environmental feature 
extraction as depicted in Fig S8.  
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Supplementary Text S1—Methods for collecting environmental data 

Collection of environmental data involved pixel-level time series analyses. These analyses 

involved extracting image pixel data at each sampled population from image datasets. To carry 

out this workflow, Python was used to automate data wrangling and analysis, geoprocessing (i.e., 

data conversion/projection, spatial operations and calculations of vector and raster datasets), data 

scraping and map production tasks. An overview of this workflow is shown in Fig. S8. 

Vector and raster datasets  

GPS coordinates (latitude, longitude) of each population were converted to decimal degrees 

(DD) notation to generate vector datasets (shapefiles) using the World Geodetic System 1984 

(WGS 84) coordinate system. A separate shapefile was created for each focal city.  

To understand how urbanization affected the physical environment, and how such changes 

could then influence plant evolution, nine environmental variables were collected as raster 

datasets, which included: land surface temperature in winter, land surface temperature in 

summer, vegetation cover in winter, vegetation cover in summer, snow cover, percent 

impervious surface cover, annual potential evapotranspiration, annual aridity, and elevation.  

Environmental variables were extracted from NASA’s Landsat images to create remote 

sensing datasets. We selected two Landsat images covering the sampling locations for each city: 

one image represented the summer period, and the other represented the winter period, including 

snow cover where applicable. A summer/winter period was determined as the month with the 

warmest/coolest temperatures, respectively, determined from the WorldClim global climate 

database for the city’s coordinates (50). The Landsat image selection workflow involved 

selecting suitable images using the United States Geological Survey (USGS) Earth Resources 

Observation and Science Center (EROS) interface (https://earthexplorer.usgs.gov/), which 
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involved a visual assessment of each image to determine if they were clear of any atmospheric 

effects (e.g., cloud or haze cover) in the city of interest. This assessment process was assisted by 

using the quality assessment (QA) band provided for Landsat 8 images; Landsat 5 and 7 images 

did not have a QA band, so assessment was done after the image was retrieved. Images were 

taken from 2010 or later (Table S8, Table S9), except in one case (Cincinnati OH, USA in 

winter) where recent images contained atmospheric interference (e.g., cloud cover), so we took 

the most recent clear image we could find (i.e., from 2003). When no images were available 

since 2000, we took an image obtained in the month preceding or following the target month 

(e.g., if the warmest month was July, then we would consider an image from June or August) 

from the past 10 years. When no clear images were available using these criteria, we took a clear 

image from any month; all such cases were from equatorial regions where cloud cover was 

frequent and seasonal climatic variation was small. Once clear images were selected, a bulk 

order request was submitted for Landsat Level-2 products using the USGS-EROS Center Science 

Processing Architecture (ESPA) on demand interface (https://espa.cr.usgs.gov/), and finally 

downloaded using the USGS EROS bulk downloader (https://github.com/USGS-EROS/espa-

bulk-downloader). A total of 330 Landsat images were retrieved for analysis. 

Level-2 Landsat images were used because they are radiometrically calibrated and corrected, 

orthorectified and geometrically corrected, atmospherically corrected using a radiative transfer 

model (RTM), and processed to surface reflectance data. Furthermore, only Landsat images 

designated as L1TP and as Tier 1 were selected as they are considered most suitable for time-

series analysis. However, a few images given the designation of L1TP and Tier 2 were also 

selected after careful analysis of the geo-registration error and other properties. This only 

affected a few images, especially ones that had substantial snow coverage (e.g., Trondheim, 
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Norway). Finally, all Landsat datasets come projected in the Universal Transverse Mercator 

(UTM) system.  

Land surface temperature—Land surface temperature (LST) was determined using the single-

channel method as proposed by Jiménez‐Muñoz and Sobrino (101) and modified by Jiménez-

Muñoz et al. (102). This method uses a single thermal infrared sensor (TIRS) band or channel, 

and requires a representation of the atmospheric profile to describe three atmospheric functions - 

atmospheric transmissivity, atmospheric upwelling radiance and atmospheric downwelling 

radiance - within the thermal infrared (TIR) window at the time of image acquisition. 

Atmospheric functions were determined using the National Centers for Environmental Prediction 

(NCEP) atmospheric profiles that use the MODTRAN 4.0 RTM code (103, 104), and are 

implemented in the web-based tool http://atmcorr.gsfc.nasa.gov. Additionally, the single-channel 

method requires resolving the non-unity of land surface emissivity (LSE) of ground features 

within an image (105). This was done using the NDVI-based emissivity method (NBEM) (106). 

Accurate measures of LST using the NBEM method require the following components: 1) at-

sensor radiance of a TIRS band; 2) at-sensor brightness temperature (temperature value near to 

the LST value) of a TIRS band; 3) NDVI surface (for LSE calculation); 4) LSE surface 

(emissivity values given by effective wavelength); and 5) atmospheric functions (transmissivity, 

upwelling radiance, downwelling radiance). For Landsat 8 images, Band 10 was selected since it 

is located in the lower atmospheric absorption region resulting in higher atmospheric 

transmissivity values (107), and it further has lower reported uncertainty of temperature 

estimates (± 1 K) compared to other bands (https://landsat.usgs.gov/landsat-8-data-users-

handbook-appendix-a). When Landsat 5 and 7 images were used, Band 6 was used as it was the 

only TIR band available.  
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The revised single-channel method by Jiménez-Muñoz et al. (102) for LST was developed 

from Planck’s Law and its derivatives and therefore uses the concept of an effective wavelength 

that is calculated using a certain channel’s width. The equation computes LST in K, which we 

converted to degrees Celsius (o C) as follows:  

𝐿𝐿𝐿𝐿𝐿𝐿 = 	𝛾𝛾[𝜀𝜀80(𝜓𝜓0𝐿𝐿9:%9;" + 𝜓𝜓') +	𝜓𝜓<] + 	𝛿𝛿 − 273.15 
 

The (γ, δ) parameters were calculated as: 

 𝛾𝛾 ≈ 	 ,!"#!$%&

#'7!"#!$%
	 

𝛿𝛿 ≈ 𝐿𝐿9:%9;" −
𝐿𝐿9:%9;"'

𝑏𝑏=
	 

Where: 

𝐿𝐿9:%9;" = at-sensor radiance (W m-2 sr-1 μm-1) at a given wavelength (channel) given by 𝜆𝜆 

(thermal band effective wavelength) 

𝐿𝐿9:%9;" = at-sensor brightness temperature (K) at a given wavelength (channel) given by 

𝜆𝜆 (thermal band effective wavelength); included with USGS-EROS ESPA 

Landsat Level 2 products. 

𝑏𝑏= = 𝐷𝐷'/𝜆𝜆   1324 K for Landsat 8 Band 10 (107);  

1277 K for Landsat 7 Band 6 (102);  

1256 K for Landsat 5 Band 6 (102) 

To derive 𝐿𝐿9:%9;", the at-sensor digital number (DN) values of the TIRS band were converted to 

at-sensor radiance as follows: 

𝐿𝐿9:%9;" =	𝑀𝑀7𝑄𝑄6$& +	𝐴𝐴7 
Where: 

𝐿𝐿9:%9;" = at-sensor radiance (W m-2 sr-1 μm-1)  
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ML = Band-specific multiplicative rescaling factor from image metadata 

(RADIANCE_MULT_BAND_x, where x is the band number) (Table S10) 

AL = Band-specific additive rescaling factor from image metadata 

(RADIANCE_ADD_BAND_x, where x is the band number) (Table S10) 

Qcal = Quantized and calibrated standard product pixel values (DN)  

 
Table S10. Values of ML and AL for different Landsat image types. 

Landsat Sensor Band ML AL 

Landsat 5 Band 6 5.5375E-02 1.18243 

Landsat 7 Band 6 (low) 6.7087E-02 -0.06709 

Landsat 7 Band 6 (high) 3.7205E-02 3.16280 

Landsat 8 Band 10 3.3420E-04 0.10000 

 

The atmospheric functions (𝜓𝜓1, 𝜓𝜓2, 𝜓𝜓3) are given by: 

𝜓𝜓1 = 0	
?
 

𝜓𝜓2 = −𝐿𝐿	 ↓ 	− 7	↑	
?

 

𝜓𝜓3 = 𝐿𝐿	 ↓ 

Where: 

𝜏𝜏 = atmospheric transmissivity  

𝐿𝐿 ↓ = downwelling atmospheric radiance  

𝐿𝐿 ↑ = upwelling atmospheric radiance 

𝜓𝜓1, 𝜓𝜓2, 𝜓𝜓3 as calculated here, relies on an atmospheric model to derive atmospheric 

transmittance (τ), downwelling atmospheric radiance (L↓), and upwelling atmospheric radiance 
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(L↑). These values were calculated by means of the Atmospheric Correction Parameter 

Calculator (ACPC) (103, 104). Input data into ACPC was provided from local meteorological 

stations for each city.  

Surface emissivity (ε) was derived using NBEM, which involved the calculation of a NDVI 

surface (see NDVI below) and was used as a conditional input for calculating an emissivity 

surface for LST. A pixel was considered to correspond to water/ice/snow when NDVI < 0, bare 

soil when 0 < NDVI < 0.2, mixed soil and vegetation given	0.2	 ≤ 𝐻𝐻𝐷𝐷𝑁𝑁𝑁𝑁	 ≤ 0.5, and vegetation 

when	𝐻𝐻𝐷𝐷𝑁𝑁𝑁𝑁	 > 0.5. The following equations were used: 

𝐻𝐻𝐷𝐷𝑁𝑁𝑁𝑁 = 	
𝐻𝐻𝑁𝑁𝑁𝑁 − 𝑁𝑁𝐷𝐷𝑅𝑅
𝐻𝐻𝑁𝑁𝑁𝑁 + 𝑁𝑁𝐷𝐷𝑅𝑅 

 

𝑃𝑃A =	 [
𝐻𝐻𝐷𝐷𝑁𝑁𝑁𝑁 − 𝐻𝐻𝐷𝐷𝑁𝑁𝑁𝑁B)%

𝐻𝐻𝐷𝐷𝑁𝑁𝑁𝑁B$C −	𝐻𝐻𝐷𝐷𝑁𝑁𝑁𝑁B)%
\
'

 

 

𝑃𝑃) =	 ]1 − 𝜀𝜀9,)^𝜀𝜀A,) ∙ 	𝐹𝐹E ∙ (1 − 𝑃𝑃A) 
 

𝜀𝜀) = a

𝜀𝜀F,) 																																			
𝜀𝜀9,) 																																				
	𝜀𝜀A,)𝑃𝑃A + 𝜀𝜀9,)(1 − 𝑃𝑃A) + 𝑃𝑃)
𝜀𝜀A,) + 𝑃𝑃) 																														

𝐻𝐻𝐷𝐷𝑁𝑁𝑁𝑁 < 0
0 < 𝐻𝐻𝐷𝐷𝑁𝑁𝑁𝑁 < 0.2

					0.2	 ≤ 𝐻𝐻𝐷𝐷𝑁𝑁𝑁𝑁	 ≤ 0.5
𝐻𝐻𝐷𝐷𝑁𝑁𝑁𝑁	 > 0.5

 

Where: 

NDVI = normalized difference vegetation index  

𝑃𝑃A = proportion of vegetation  

𝑃𝑃) = cavity effect (surface roughness)  

𝐹𝐹E= geometrical factor ranging from 0 to 1; typically given as 0.55  

𝜀𝜀F,) = emissivity of water at 𝜆𝜆:**:6G)A: of channel i 

𝜀𝜀9,) = emissivity of soil at 𝜆𝜆:**:6G)A: of channel i 
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𝜀𝜀A,) = emissivity of vegetation 𝜆𝜆:**:6G)A: of channel i 

The emissivity values were calculated at the effective wavelength of the TIRS band, which was 

defined as: 

𝜆𝜆:**:6G)A: =	
∫ 𝜆𝜆𝑓𝑓H𝑅𝑅H

∫ 𝑓𝑓H𝑅𝑅H
 

 

𝑓𝑓H is the filter function or spectral response for a specific TIRS channel i. The following effective 

wavelengths for the respective Landsat TIRS channels were used:  

Landsat 8 Band 10: 𝜆𝜆:**:6G)A: = 10.904	𝜇𝜇𝜇𝜇 (107) 

Landsat 7 Band 6: 𝜆𝜆:**:6G)A: = 11.269	𝜇𝜇𝜇𝜇 (102) 

Landsat 5 Band 6: 𝜆𝜆:**:6G)A: = 11.457	𝜇𝜇𝜇𝜇 (102) 

Our application of NBEM applied global emissivity constants reported in the literature. We used 

0.97 for soil, and 0.99 for vegetation and water (102, 106, 108-112) 

NDVI—We used the normalized difference vegetation index (NDVI) as a measure of vegetation 

cover (113). NDVI operates on targeting the red absorption curve of leaves due to chlorophyll in 

the visible spectrum, whilst exhibiting strong reflectance in the near-infrared (NIR) spectrum 

owing to the leaf structure (spongy mesophyll) (114), and was calculated as follows:   

𝐻𝐻𝐷𝐷𝑁𝑁𝑁𝑁 = 	
𝐻𝐻𝑁𝑁𝑁𝑁 − 𝑁𝑁𝑅𝑅𝐷𝐷
𝐻𝐻𝑁𝑁𝑁𝑁 + 𝑁𝑁𝑅𝑅𝐷𝐷 

 
NDVI values range between -1 and 1. Values from 0 to 1 indicate increasing vegetation cover, 

whereas negative values correspond to the absence of vegetation (e.g., soil, water, snow, etc.).  
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NDSI—The normalized difference snow index (NDSI) was used to quantify snow cover. NDSI 

uses the high reflectance of snow in the visible spectrum, and the low reflectance (high 

absorption) in the shortwave-infrared (SWIR) spectrum, to distinguish snow cover from clouds 

and haze (115-118). NDSI was calculated as: 

𝐻𝐻𝐷𝐷𝐿𝐿𝑁𝑁 = 	
𝐺𝐺𝐺𝐺𝐷𝐷𝐷𝐷𝐷𝐷 − 𝐿𝐿𝑆𝑆𝑁𝑁𝑁𝑁
𝐺𝐺𝐺𝐺𝐷𝐷𝐷𝐷𝐷𝐷 + 𝐿𝐿𝑆𝑆𝑁𝑁𝑁𝑁	 

 
NDSI ranges between -1 and 1, with values greater than zero corresponding to increased snow 

cover; values less than zero indicate the absence of snow. 

Impervious Surface (GMIS)—Impervious surface was recorded from each sampled population 

using the global man-made impervious surface (GMIS) dataset created by the Socioeconomic 

Development and Application Center (SEDAC) (52). We first downloaded Country-level GMIS 

datasets (N = 26) from SEDAC (https://sedac.ciesin.columbia.edu/data/set/ulandsat-gmis-

v1/data-download) and referenced the datasets to the WGS 84 coordinate system. Each GMIS 

dataset provided percent impervious surface for a given country at 30 m resolution. For each 

city, we first created a RasterLayer object from the appropriate country’s GMIS raster dataset 

using the raster function from the “raster” R package (119) and converted population latitude 

and longitude coordinates to a spatial points data frame using the SpatialPointsDataFrame 

function in the “sp” R package (120, 121). Finally, we used this data frame together with the 

extract function from the “raster” R package to extract population-level GMIS values from the 

GMIS RasterLayer object. GMIS extraction used a 100-metre buffer around each population, 

and final percent impervious surface values were taken as the mean of all cells within this buffer.  

 



Global urban evolution–Supplementary Materials Santangelo et al. 
 

 50 

Aridity and potential evapotranspiration—Aridity and potential evapotranspiration were 

extracted for each population using the Global Aridity Index (AI) and Global Potential 

Evapotranspiration (PET) geospatial datasets created and distributed by the Consultative Group 

for International Agriculture Research – Consortium for Spatial Information (CGIAR-CSI) (51). 

The Global-Aridity dataset is provided as a single raster representing aridity based on annual 

mean aridity from 1950-2000, and it is calculated as a function of precipitation, temperature and 

PET. A generalized climate classification scheme (122) can be used to quantify the pixel values 

from the AI dataset as shown in Table S11. 

Table S11. Climate classification with respect to the aridity index. 

 

Aridity Index Value Climate Class 

< 0.03 Hyper Arid 

0.03 – 0.2 Arid 

0.2 – 0.5 Semi-Arid 

0.5 – 0.65 Dry sub-humid 

> 0.65 Humid 

 

The PET dataset is provided as a single raster representing an annual average of PET for the 

period of 1950-2000, from which we extracted values for each sampling point. Datasets came 

unprojected in the WGS 84 coordinate system, and data for each population was extracted as 

described below (see Feature Extraction).   
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Elevation—Elevation was estimated from each population using data collected from the Shuttle 

Radar Topography Mission (SRTM) (between 60°N latitude and 54°S latitude) and the Global 

Digital Elevation Model Version 2 (DEM) from the Advanced Spaceborne Thermal Emission 

and Reflection Radiometer (ASTER-GDEM V2) (above 60°N latitude). The former dataset was 

preferred when data were available for individual cities because SRTM is theoretically more 

accurate given that it uses radar to penetrate into canopies to retrieve accurate topographic 

measurements. By contrast, ASTER GDEM V2 uses stereo imagery and photogrammetric 

techniques to derive the vertical measurement. These datasets came unprojected in the WGS 84 

coordinate system and had to be projected to the UTM system for downstream analysis as 

described below (see Feature Extraction).  

Feature extraction  

Once the vector and raster datasets were processed, we performed feature extraction to obtain 

environmental data for each population. Our workflow involved overlaying a vector layer (i.e., 

shapefile) on a raster layer (i.e., raster dataset) and extracting the pixel data for each population. 

Feature extraction was straightforward for raster datasets that were unprojected in the WGS 84 

coordinate system (e.g., WorldClim, CGIAR-CSI), since the vector datasets were also in the 

same coordinate system, while the discrepancy of raster datasets using the UTM system had to 

be reconciled. We accomplished this using a lookup table approach to allow for conversion of 

graphical coordinate system to projection coordinate system, and on-demand spatial referencing 

for feature extraction. The lookup table enabled the re-projection of vector and raster datasets to 

the appropriate UTM zone of a Landsat image for each city. Additionally, the lookup table 

ensured that the vector and raster dataset were spatially coincident for feature extraction.    
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Supplementary Text S2—Protocol for creating urban-rural transects 

Supplies and Materials 

● 60 small sealable plastic bags  

● Paper to make labels that go in bags with samples 

● Black Sharpie marker 

● Notebook 

● Cooler 

● 4-8 kg of ice (place in bottom of cooler) 

● GPS or phone with GPS capability 

● A long (6-8”) nail or similar pointed tool to help lift stolons. Scissors also work well.  

● Pencil 

● 1.5 mL microcentrifuge tubes (enough for one per plant sample) 

● Cryoboxes 

Procedure 

Once a city has been selected, we used the following procedure to design a sampling transect: 

1. Use Google Earth or Google Maps to identify a transect that represents a clear and fairly 

continuous gradient in urbanization. Transects should satisfy the following criteria: 

● Urbanization gradients should include downtown areas dominated by impervious 

surface (buildings and roads), residential suburban areas, and rural or otherwise non-

(sub)urban areas. 

● Avoid transects that have environmental gradients unrelated to urbanization, such as 

elevation, varying proximity to an ocean or a major lake. 

● For safety, avoid transects through areas with high crime. 



Global urban evolution–Supplementary Materials Santangelo et al. 
 

 53 

2. Measure the radius from the city center to the edge of the residential area (i.e., where it 

transitions to rural, grassland or forested habitat); this represents half the length of the total 

transect. 

3. Measure a straight line that is 2× the length of the radius of the city, so half of the transect 

is in (sub)urban (city and high-density suburbs) habitat and the other half is in non-urban 

(rural, grassland, forest, low density residential [periurban]) habitat. 

4. Identify a driving/biking/walking/transit route that follows the transect (Fig. S10). Routes 

that pass through areas with an abundance of mowed lawns will have a greater abundance 

of white clover. When available, Google Street View can be used to identify suitable 

habitat and parking locations.  

5. Aim for roughly equal spacing between sampled populations along the entire transect 

length, ensuring there is a minimum of 200 m between populations. Aim for >40 sampling 

sites per city, so the shortest transect should be 8 km. In exceptional circumstances (e.g., 

clover is rare along a transect), sampling 20 populations is the absolute minimum threshold 

to enable robust estimation of a cline. Clover populations can be difficult to find in city 

centers due to high impervious surface, so try to collect samples from 3-5 populations in 

the downtown core of each city, even if they are off the transect. Elsewhere, when 

populations are difficult to find directly on a transect, sample populations in a similar 

habitat near the transect, and record the population coordinates.  
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Fig. S10. Example of sampling transect along an urban-rural gradient. Transect from 

Guelph, Ontario, Canada, shown as a thin red line: 8.8 km transect; 4.4 km in city; 200 m 

between each of 44 collection sites. 
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Supplementary Text S3—Protocol for Sampling Plants 

Standardization of sampling protocols across all cities was achieved by distributing a written 

protocol to all collaborators, accompanied by a video, distributed at 

www.globalurbanevolution.com.  

Identification of white clover (Trifolium repens) 

White clover (T. repens) is a distinctive herbaceous perennial plant. While there are ca. 255 

species in the genus (123), there are only a few Trifolium and related Fabaceae species that it 

regularly co-occurs with, and all can be easily distinguished in the field. To prevent 

misidentification, collaborators were provided with detailed written descriptions and photographs 

of T. repens, as well as the most commonly co-occurring species that it might be confused with, 

which included: T. hybridum, T. fragiferum, T. pratense and Medicago lupulina.  

Procedure 

1. If driving, park the car in a safe and secure location, ideally adjacent to where you will 

sample. 

2. Do a brief scan for plants to make sure white clover is present.  

3. Once plants have been found, record the following information for the site: 

● Latitude and longitude in decimal degrees (decimal degrees: 40.446° N 79.982° W) 

● Address or nearest major intersection 

● Population number 

● Whether the habitat is: i) urban (mostly impervious surface, lots of city buildings), ii) 

suburban (high density and continuous residential), iii) periurban (low density, 

discontinuous residential), iv) rural 
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4. Collect the target number of 20 plant samples (minimum 10) at each population; each 

sample should contain a stolon and 3-4 leaves (Fig. S11). 

● Take a minimum of 3 large paces between plants sampled to avoid sampling the same 

clone.  

● Sample along a route that does not double-back on itself.  

● You may have to cover an area as large as 100 m × 100 m to find an adequate sample. 

  Fig. S11. Trifolium repens stolon with 3-4 leaves. 

5. Record the population number and address/intersection on a small piece of paper and 

place inside the bag; seal the bag. 

6. Label the outside of the bag with a letter city code (e.g., PDX for Portland) and the 

population number using a Sharpie marker. 

7. Store the sample in a cooler containing ice.  

8. Move onto the next population, repeat steps 1 through 7. 

9. In the lab, transfer samples individually to labeled 1.5 mL microcentrifuge tubes within 

three days of collection. The samples should be stored in their sealable bags in a 
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refrigerator at 4°C prior to transfer. Label each tube with the city 3-letter code, population 

and plant number. 

10. Each individual stolon containing leaves is placed in its own individual 1.5 mL 

microcentrifuge tube using forceps. Extra stolon tissue can be removed, and for samples 

with large leaves, leaves can be placed directly in the tube, discarding the stolon. You do 

not need to be gentle when placing the tissue in the tube; the tissue is typically very 

crammed within the tube. 

11. Keep tubes organized within cryoboxes by population, ordered sequentially with respect 

to plant number, and place them into cryoboxes. You should be able to fit four 

populations per cryobox. If fewer than 20 plants are sampled from a population, leave the 

remaining places in the row empty.  

12. When the cryobox is full, clearly label the lid with the city, population numbers, (e.g., 

populations 15-18), date of collection, collectors, and place the box in the -80°C freezer. 

When a -80°C freezer was not available, samples were stored at -20°C and trials showed 

variation in storage method did not affect assay results (data not shown). 
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Supplementary Text S4—Assaying HCN production in plants 

The presence of HCN is indicative of plants having at least one functional copy of Ac and Li, 

whereas the absence of HCN indicates that plants are homozygous recessive for a deletion at 

either Ac and/or Li. Plants were assayed for the presence/absence of HCN using the Feigl-Anger 

assay as described in the Methods (see HCN Feigl-Anger Assays). Protocols were standardized 

among collaborators by following a single written protocol and video distributed via the project 

website www.globalurbanevolution.com. All assay papers were made in the lab of M. Johnson 

following the methods of Gleadow et al (58) adapted to a 96-well format. Feigl-Anger assay 

papers were distributed with 96-well plates to ensure consistency in assay methods. Our assay 

protocol was as follows:   

Supplies and materials to prepare Feigl-Anger assay papers 

● Filter papers (Whatman grade 3; precut to fit 96-well plates) 

● Incubator 

● Watch glass 

● Beaker (100 mL) 

● Tweezers 

● Retort stand  

● Fume hood 

● Hotplate stirrer 

● Heating block with spinner 

● Ice 

● Distilled water 

● Tetrabase (4-4’–methylene-bis-N,N-dimethyl-aniline) (Sigma-Aldrich,  M44451) 
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● Ethanol (Commercial Alcohols, Brampton, Canada) 

● Cupric sulphate (Sigma-Aldrich, cat #12849) 

● Ethyl acetoacetate (18% w/v) (Sigma-Aldrich, cat# 688983 ) 

● Sodium acetate (18% w/v) (Sigma-Aldrich, cat# S2889) 

● Chloroform (ACP, cat #C-3300) 

Preparation of copper ethyl acetate reagent 

1. Weigh 4 g cupric sulphate into a beaker and add 100 mL distilled water to make a 4% 

(w/v) solution.  

2. Gently heat 30 mL cupric sulphate (4% w/v) with 10 mL ethyl acetoacetate and 20 mL 

sodium acetate for 10 min in a small beaker on a hot plate in the fume hood. Set plate to 

90°C and spin bar set to medium; cover beaker with foil. Note: The temperature does not 

usually have time to reach 90°C. 

3. Cool the mixture in the beaker by placing it on ice.  

4. Collect the crystals that form: Pour mixture through filter paper then use spatula to collect 

crystals onto watch glass. 

5. Redissolve the crystals in 2 mL of ethanol in a watch glass.  

6. Recrystallize the copper ethylacetoacetate crystals by placing the watch glass in an oven at 

50°C and dry overnight.  

7. Collect and store crystals in brown glass jar. 

Preparation of Feigl-Anger test papers  

1. Dissolve 0.5 g of copper ethyl acetate reagent in 50 mL of chloroform.  

2. Dissolve 0.5 g of tetrabase in 50 mL of chloroform.  
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3. Make a solution containing equal volumes of copper ethyl acetate and tetrabase in a beaker 

in a fume hood (i.e., mixing 50 mL of each). Cover beaker with foil and allow to dissolve 

for 2-3 hours with spin bar set to medium-high. 

4. Tip solution into an open dish such as a Petri dish.  

5. Using tweezers, dip precut filter paper in solution and hang to air dry on a retort stand or 

horizontally oriented string/wire with clips.  

6. Store papers in a brown glass jar (or a jar covered with aluminium foil). Place a small 

amount of silica gel or other desiccant in the jar. Shelf life is extended beyond one year, if 

papers are stored at 4°C.  

Supplies and materials for performing HCN assay 

● Feigl-Anger assay papers (provided by M. Johnson lab) 

● Data template Excel sheet (downloaded from www.globalurbanevolution.com) 

● 96-well microtiter plate (Brandtech Scientific, VWR cat. #89093-588) (provided by M. 

Johnson lab) 

● Elastic bands (provided by M. Johnson lab) 

● Multichannel pipette trough (provided by M. Johnson lab) 

● Samples in -80ºC cryofreezer 

● Heavy weight (e.g., water bottle, brick, etc.) 

● Incubator set to 37ºC 

● 600 pipette tips (200 µL) 

● Cryoboxes  

● Distilled water  

● Forceps 
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● Kimwipes 

● Multichannel or single channel pipettor capable of dispensing 80 µL of water 

Procedure 

1. Remove samples from the freezer 20-30 min prior to starting the assay.  

2. While tissue is defrosting, download data template Excel sheet from 

www.globalurbanevolution.com. This sheet will be used to record and track which plant is 

in which well of the 96-well microtiter plate.  

● The assay uses 48 of the 96 wells; empty wells between samples containing tissue 

reduces contamination and false positives in the detection of HCN. 

● Begin in the top left of the plate (cell A1), working your way down the 8 wells (towards 

cell H1) before moving to column 2 (i.e., cell B2).  

● Avoid splitting populations across multiple plates. If not all plants from a population fit 

on the same plate, begin a new plate. This reduces errors. 

● Each unshaded cell in the data template Excel sheet represents a single sample (Fig. 

S12). For each plate, record: 

i. In the header: 

a. city name 

b. population number  

c. plate number (e.g. 1 of x, 2 of x, 3 of x, etc.) 

d. date assayed 

ii. In the spreadsheet, record: 

a. population number  

b. plant sample number within a population 
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Fig. S12. Data template used to record samples assayed and phenotyping results. In each 

cell we recorded the population number (e.g., 15) and the plant number (e.g., 1), written as 

15-1. Each plant in a given city had a unique population #-plant # combination.  

 

3. Once the tissue is defrosted (20-30 min), add leaf material from plants to wells in the 96-

well plate, following the template created in step 2.   

● Place a single large leaf (1-2 cm across, containing all 3 leaflets, minus the petiole) in 

every other well; 2 leaves can be placed in a well for plants with small leaves (<1cm 

across; see Fig. S13); one or two leaflets can be placed in a well for very large leaves 

(>2 cm diameter). 
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Fig. S13. Leaf sizes used for assays. The target sized leaf was 1-2 cm in diameter. When 

smaller or larger leaves were taken we adjusted the amount of tissue used as described in 

step 3.  

4. Pour distilled water into the plastic multichannel trough provided and add 80 µL of water 

to each well. It is easiest to use a multichannel pipette for this step, but a single channel 

pipette works too. It is fine to add water to empty cells. The same pipette tip can be used to 

dispense all water across a single plate.  

5. Using 200 µL pipette tips, macerate the tissue in the wells until well blended. The water 

should be a homogeneous green and an abundance of small bubbles will form indicating 

the tissue is properly macerated (Fig. S14). A separate pipette tip must be used for each 

plant to avoid contamination. 

6. Once all plants are macerated, wipe down the top of the plate with Kimwipes to remove all 

liquid outside of wells; water on the plate surface will interfere with the assay.  

7. Use a fine-tipped Sharpie marker or pencil to label the top and left edges of the upper 

surface of the Feigl-Anger assay paper with corresponding column numbers and row 
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letters, respectively; this will help minimize errors when scoring the plates once the assay 

is complete. Place the Feigl-Anger assay paper on top of the plate so that the paper covers 

all of the wells and the row and column labels are properly aligned. Add the 96-well plate 

cover on top of the plate and secure with elastic bands. The assay paper should be 

sandwiched between the plates and the cover (Fig. S15)  

Fig. S14. Macerated tissue displaying a homogeneous green hue to the water and the 

presence of bubbles on the surface. 

8. Place the plate in an incubator set to 37°C for 3 hours. Add a weight on top of the plate to 

ensure the assay paper maintains a firm and even contact with the top of the plate (Fig. 

S15). While in the incubator, the water in the wells will begin to evaporate–this is normal. 

If there is HCN in the solution, it will react with the copper ethylacetoacetate on the assay 

paper and create a blue circle over top of the wells containing cyanogenic plant samples 

(HCN+, positive).  
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Fig. S15. Feigl-Anger assay paper sandwiched between 96-well microtiter plate and plate 

cover with elastics securing cover to plate and weight ensuring assay paper is in firm 

contact with the plate.  

9. After 3 hours, gently remove the plate from the incubator. With the 96-well plate placed on 

top of the template paper in the correct orientation (Fig. S16), take a photo of the plate and 

assay paper from above. Turn the assay paper over, by turning it away from yourself, place 

the 96-well plate on top of the template paper again in the correct orientation, and take a 

second picture.  

● Photographs were used to double-check cyanogenesis scores.  

● Photos are taken of the upper and lower surfaces because sometimes cyanogenic plants 

can only be distinguished from the lower-side of the paper (i.e. the side in contact with 

the microtiter plate).  
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10. Immediately following removal, use the lower-side of the assay paper (i.e. side in contact 

with the plate during the assay) to record which plants are cyanogenic based on the 

presence of a blue or green dot (even if faint) over the well. Circle on the assay paper 

samples that are positive for the presence of HCN so it can be referenced later when 

entering the data. The filter paper will remain white above plants that are HCN-. 

11. After scoring the presence or absence of HCN, add the HCN scores to the Excel data 

sheet in the column labeled “HCN (1 = presence, 0 = absent)”. Cyanogenic plants (HCN+ 

= blue circle) should be coded as “1”; acyanogenic plants (HCN– = white) as “0”. Upload 

data and photographs to www.globalurbanevolution.com. 

Fig. S16. Scoring presence/absence of HCN from plant samples. (left) Photo of top side of 

Feigl-Anger assay paper along with associated template sheet. (right) Example of lower side 

photo of Feigl-Anger assay paper turned away. 
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Supplementary Text S5—CTAB-Phenol/Chloroform Genomic Extraction Procedure 

This protocol implements a modified phenol:chloroform extraction as in Arruda et al. (124) to 

extract genomic DNA in 96-well format. The tissue was freeze-dried and homogenized to a fine 

powder in 2 mL tubes prior to extraction. 

Supplies and materials 

● CTAB buffer (see recipe)  

● β-mercaptoethanol (Sigma-Aldrich, cat #M6250) 

● Phenol-chloroform-isoamyl alcohol (25:24:1) (Sigma-Aldrich, cat # P2069-400ML) 

● Chloroform (ACP, cat #C-3300) 

● RNAse A 10 mg/mL (Fisher Scientific, cat. #FEREN0531) 

● 2-Isopropanol (Caledon Laboratory Chemicals, cat #8601-7-40) 

● Tris-EDTA (TE) (Sigma-Aldrich, cat no. T4415-4L) 

● 2 mL cluster tubes + strip caps (VWR, cat. #82006-694 (tubes), cat. #93000-046 (caps)) 

● 96-well assay blocks (VWR, cat. #82051-228) 

● 96-well aluminum sealing film (Axygen Scientific, PCR-AS-200) 

CTAB recipe 

This buffer is a combination of the recipes from Arruda et al. (124) and Inglis et al. (125).  

● 1M Tris buffer pH 8.0 (Fisher Scientific, cat. #15568025) 

● 0.02 M EDTA (made from 0.5M solution; VWR, cat. #97062-656) 

● 2.5 M NaCl (made from 5M stock; Lonza, VWR, cat. #CA12001-384) 

● 3% (m/v) Hexadecyltrimethylammonium bromide (CTAB) (Sigma-Aldrich, cat #H6269 

● 2% (m/v) Polyvinylpyrrolidone (PVP) (Bioshop, Burlington Canada, cat #PVP504) 

● 1% (v/v) β-mercaptoethanol (added immediately before use) 
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Procedures 

1. Heat water bath to 60°C.  

2. Add 1% β-mercaptoethanol to the working CTAB solution. Invert to mix. 

3. Add 624 µL CTAB mixture to each 2 mL tube. Cap tubes and carefully invert plates to 

mix powdered sample and buffer. 

4. Incubate plates in a 60°C water bath for 30 min. Invert the tubes every 10 min. 

5. Remove plates from the water bath; let cool for 5 min.  

6. Centrifuge plates for 10 min at maximum speed (4060 rcf, Beckman Coulter Allegra X-

14R with deep well plate rotor attachment, Beckman Coulter Life Sciences, California, 

USA) at room temperature.  

7. Transfer ~500 µL of liquid into new 2 mL tubes.  

8. Add 500 µL of phenol:chloroform:IAA (25:24:1) to tubes. Invert plates for 10 min or 

vortex for 1–2 min. 

9. Centrifuge plates for 20 min at 4060 rcf at room temperature.  

10. Pipette 400 µL of aqueous upper layer and transfer to a new set of 2 mL tubes 

11. Add 2.0 µL RNAse A (10 mg/mL) to tubes. Incubate for 30 min at 37 °C 

12. Add 400 µL of chloroform to tubes. Invert tubes for 10 min or vortex for 1–2 min. 

13. Centrifuge plates for 20 min at 4060 rcf at room temperature.  

14. Remove ~250 µL of aqueous (top) layer being careful not to take up chloroform (bottom) 

layer; transfer to 96-well assay block.  

15. Add 1 volume of chilled isopropanol to wells to precipitate DNA. Seal plates with 96-

well plate sealing adhesive cover and affix with roller; incubate at –20°C overnight. 
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16. Centrifuge plates for 20 min at maximum speed (1788 rcf, Eppendorf 5430R with plate 

rotor, Eppendorf, Hamburg, Germany) at room temperature to pellet DNA.  

17. Pour off supernatant. 

18. Add 200 µL of cold 70% ethanol and invert. 

19. Centrifuge plates for 20 min at 1788 rcf at room temperature to pellet DNA.  

20. Pour off supernatant. Dry plates at 37 °C for 60 min or until dry.  

21. Elute in 50 µL TE.  
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Supplementary Text S6—Genomic Library Preparations 

This protocol was used to create dual-indexed, Illumina-compatible gDNA libraries for whole 

genome sequencing. It does not rely on any commercial kits, but instead uses homemade master 

mixes for all reactions. Briefly, the protocol uses an “on-bead” library preparation (62) with 

“home-brewed” master mixes (62, 65, 66) and SPRI beads (63), and incorporates i5 and i7 

Illumina indices into adapters through PCR (64). 

Supplies and materials 

Reagents: 

● 0.2 mL Bioruptor tubes (0.2 mL, Diagenode, cat. # C30010020)  

● PCR tubes (0.2 mL, VWR, cat. #93001-118) 

● Pipette tips 10 µL and 200 µL (Axygen, T-300-L and TR-222-C-L, respectively) 

● dNTP (ThermoFisher, R1121) 

● ATP (ThermoFisher, R0441) 

● Tango buffer 10X (ThermoFisher, BY5) 

● T4 Polynucleotide Kinase (ThermoFisher, EK0032) 

● T4 DNA polymerase (ThermoFisher, EP0062) 

● Nuclease free ultrapure water (Invitrogen, cat. # 10977015) 

● dATP 100 mM (Invitrogen, cat #10216018 

● taq DNA polymerase (Invitrogen, cat #18038067) 

● iTrusR2-stubRCp (IDT) 

● iTrusR1-stub (IDT) 

● T4 DNA ligase (ThermoFisher, EL0011) 

● Cytiva Sera-Mag SpeedBeads (ThermoFisher, cat no. 09-981-123) 
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● PEG-8000 (VWR, cat. # 97061-098) 

● EDTA (VWR, cat. #97062-656) 

● 1M Tris buffer pH 8.0 (Fisher Scientific, cat. #15568025) 

● Tween 20 (VWR, cat. #97062-332) 

● 5M NaCl (Lonza, VWR, cat. # CA12001-384) 

● 50 bp DNA Ladder (ThermoScientific, cat. # FERSM0371) 

● ITru5_Group1_8-Indices (IDT) 

● ITru7_Group1_12-Indices (IDT) 

● Phusion HiFi polymerase (New England BioLabs, cat no. M0530S) 

Equipment: 

● Bioruptor Pico Sonicator (Diagenode, Denville, NJ, USA) 

● PCR thermocycler with heated lid 

● Gel rigs 

● 96-well plate magnet (e.g., Dynamag-96 well #12331D) 

● Racks for 0.2 mL PCR tubes or plates (VWR, cat. #93001-118) 

● PCR plates or tubes 

● 10 and 100 μL multichannel or single channel pipettes 

● Qubit 3.0 Fluorometer (Invitrogen, ThermoFisher, Mississauga, Canada) 

● Qubit dsDNA High Sensitivity Assay Kit (ThermoFisher Scientific, Cat. No. Q33231) 

Protocol 

This protocol assumes that you have: 
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1. Hydrated all index-containing forward and reverse PCR primers (described in 

supplementary file: Protocol for preparing 1.25 nmol iTru primer aliquots for use during 

library preparation in Glenn et al. (64)). These are diluted to 5 μM working solutions. 

2. Annealed the adapter stubs (i.e., iTrusR2-stubRCp, iTrusR1-stub) to form the Y-yoke 

adapter (supplementary file: Protocol for preparing double-stranded iTru adapters for use 

during library preparation in Glenn et al. (64)). These are diluted to 5 μM working 

solutions. This is referred to as the adaptor mix throughout the protocol. 

3. Prepared the SPRI bead solution, which replaces Ampure XP beads for cleaning enzymatic 

reactions (63); reproduced in supplementary file: Protocol for preparing an inexpensive 

substitute for AMPure in Glenn et al. (64)). Be sure to also prepare a PEG solution lacking 

the actual SPRI beads (described in the same file), which will be used throughout the 

protocol. Addition of 0.05% Tween-20 to this PEG/NaCl solution will greatly facilitate the 

bead wash. 

4. Prepared a fresh aliquot of 80% ethanol.  

DNA Shearing: 

1. Normalize DNA to 10 ng/μL (quantified by Qubit BR) in 25 μL of TE (10 mM Tris-HCl 

pH8 and 0.1 mM EDTA) in Bioruptor tubes. Note, this volume allows for two library preps 

per sample. 

2. Shear DNA by sonication to mean fragment size of ~500 bp. 

● For our samples we used 3 cycles of 15s “ON”, 30s “OFF” on a Bioruptor Pico 

Sonicator 

3. After shearing, move 25 μL of DNA to empty PCR tube and proceed to post-shearing 

cleanup. 
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Post-shearing cleanup: 

1. Add 20 μL of SPRI bead solution to each sample. This is a 0.8× bead:DNA ratio, which is 

meant to remove fragment < ~250 bp. 

2. Incubate at room temperature for 5 min. 

3. Place samples on magnetic rack and allow the beads to bind to the side of the tube. The 

supernatant should be clear. 

4. Remove and discard the supernatant. 

5. Add 80 μL of freshly prepared 80% ethanol. Let sit on magnetic rack for 30 to 60 s and 

discard ethanol using a pipette. 

6. Perform a second ethanol wash as in step 5. 

7. Remove any residual ethanol using a 10 μL pipette. Let samples sit uncovered at room 

temperature for 5 to 10 min or until all ethanol has evaporated. 

● Important: Do not let beads dry out too much as this will reduce yield. Beads should 

be matte brown (not glossy). Dry beads will begin to crack. 

8. Elute DNA in 20 μL TE for 5 min. Pipette mix to homogenize beads and TE. The DNA 

will now be in solution. 

Note: The beads from the above reaction will be kept through all subsequent enzymatic reactions 

and reused for all SPRI bead cleanups (except PCR). The beads do not interfere with the 

reactions (62). 

End-repair:  

1. Prepare the end-repair master mix below shown in Table S12. Each reaction requires 10 

μL.  
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Table S12. End-repair master mix from Meyer and Kircher (65). Final concentrations 

determined from the total master mix (10 µL) + sample (20 µL) volume. 

  Reagent   Units   Initial conc.   Vol. (µL)   Final conc. 

  Tango buffer   X   10   3   1 

  ATP   mM   10   3   1 

  dNTP   mM   10   0.3   0.1 

  T4 PNK   U/µL   10   1.5   0.5 

  T4 POL   U/µL   5   0.6   0.1 

  Water   NA   NA   1.6   NA 

  Total   NA   NA   10   NA 

 

2. Pipette 10 μL of master mix into 20 μL of each DNA sample. Mix thoroughly by pipetting 

or flicking. 

3. Incubate reaction in thermocycler using the following conditions (62): 

● 15 min at 12°C followed by 15 min at 25°C (30 min total). 

Post end-repair cleanup: 

1. Add 84 μL of 20% PEG-8000/2.5M NaCl (i.e., SPRI bead solution without the beads) to 

samples. This is a 2.8× bead:DNA ratio (62). 

2. Perform bead cleanup as in post-shearing cleanup, eluting DNA in 20 μL of TE for 5 min. 

A-tailing: 

1. Prepare the A-tailing master mix shown in Table S13. Each sample requires 10 μL of the 

master mix. 



Global urban evolution–Supplementary Materials Santangelo et al. 
 

 75 

  Table S13: A-tailing master mix from Kobs (66) and wiki from the Rausher lab at 

Duke. Final concentrations determined from the total master mix (10 µL) + sample (20 

µL) volume. 

  Reagent   Units   Initial conc.   Vol. (µL)   Final conc. 

  Taq buffer   X   10   3   1 

  dATP   mM   10   0.6   0.2 

  Taq   U   5   0.75   0.125 

  MgCl2   mM   50   1.5   2.5 

  Water   NA   NA   4.15   NA 

  Total   NA   NA   10   NA 

 

2. Add 10 μL of master mix to 20 μL of each DNA sample. 

3. Incubate in thermocycler for 30 min at 70°C. 

A-tailing cleanup: 

1. Add 66 μL of 20% PEG-8000/2.5M NaCl (i.e., SPRI bead solution without the beads) to 

samples. This is a 2.2× bead:DNA ratio (62). 

2. Perform bead cleanup as in post-shearing cleanup, eluting DNA in 20 μL of TE for 5 min. 

Adapter ligation: 

1. Prepare the adapter ligation master mix shown in Table S14. Each sample requires 10 μL. 
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  Table S14: Adapter ligation master mix from Meyer and Kircher (65). Final 

concentrations determined from the total volume (35 µL) of the combined adapter mix (5 

µL), master mix (10 µL) and sample (20 µL). 

  Reagent   Units   Initial conc.   Vol. (µL)   Final conc. 

  Ligase buffer   X   10   3.5   1 

  PEG-4000   mM   50   3.5   5 

  T4 Ligase   U   5   0.88   0.125 

  Water   NA   NA   2.12   NA 

  Adapter mix      5   5   0.143 

  Total   NA   NA   35   NA 

 

2. Add 5 μL of 5 μM adapter mix (see point 2 of Protocol introduction about preparing Y-

yoke adapter) to each DNA sample. 

3. Add 10 μL of adapter ligation master mix (distinct from “adapter mix”) to each sample. 

Pipette mix thoroughly. The total volume should now be 35 μL. 

4. Incubate in thermocycler for 30 min at 25°C 

Adapter ligation cleanup: 

1. Add 31.5 μL of 20% PEG/2.5M NaCl (i.e., speedbeads without the beads) to samples. This 

is a 0.9× bead:DNA ratio. This will get rid of smaller DNA fragments (e.g., < ~250 bp) 

like adapter dimers that may have formed during the ligation reaction. 

2. Perform bead cleanup as in post-shearing clean-up, eluting DNA in 20 μL of TE for 5 min. 
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3. After elution, place beads on magnet and carefully transfer the supernatant to new 

tube/plate by slowly drawing up the supernatant containing the DNA with a pipette. This 

sample will be used for indexing PCR. 

Indexing PCR: 

1. Prepare the PCR master mix shown in Table S15. Each reaction requires 12.5 μL. 

Table S15. Indexing PCR master mix. Final concentrations calculated from total sample 

volume (i.e., master mix + primers + sample = 25 μL) 

Reagent   Units   Initial conc. Vol. (µL) Final conc. 

Phusion buffer   ×   5 5 1 

dNTP   mM   10 0.5 0.2 

Phusion polymerase   U/μL   2 0.25 0.02 

Water   NA   NA 6.75 NA 

Total   NA   NA 12.5 NA 

 

2. Add 12.5 μL of master mix to empty PCR tubes/plates corresponding to the number of 

samples to be amplified and indexed. 

3. Add 10 μL of DNA sample to each well containing PCR master mix. 

4. Add 1.25 μL of forward primer and 1.25 μL of reverse primer to each sample. 

● Note: Each sample should receive a unique combination of forward and reverse primers 

since these will incorporate the indices into the libraries. 8 forward + 12 reverse primers 

can uniquely tag 96 individuals. 

● See Glenn et al. (64) for details on these primers. 

5. Perform PCR using the following conditions:  



Global urban evolution–Supplementary Materials Santangelo et al. 
 

 78 

98 °C for 30s 

15 cycles of: 

98 °C for 30s 

65 °C for 30s 

72 °C for 60s 

72 °C for 1 min 

2nd indexing PCR and pooling (optional): 

Because only 10 μL of the pre-PCR (i.e., ligated) library is used in the indexing PCR, each 

library prep allows for a total of two PCR reactions. If you find that final library concentrations 

(i.e., after cleaning, see post-PCR cleanup) are too low, you can perform a second PCR reaction 

on the remaining pre-PCR library using the same conditions as above. These two reactions can 

then be pooled prior to cleaning, and then eluted in a lower volume to increase concentrations 

(see post-PCR cleanup).  

Post-PCR cleanup: 

1. Add 0.8× volume of the SPRI bead solution to each sample of the post-PCR DNA. If you 

only performed a single PCR reaction, this should be approximately 25 μL. If you pooled 

two 25 μL PCR reactions, this should be approximately 50 μL of SPRI bead solution. This 

should remove primer dimers and other small fragments remaining from PCR. 

2. Perform bead cleanup as in post-shearing cleanup, eluting for 10 min in 23 μL (i.e., 20 μL 

for sequencing and 3 μL for post-cleaning QC) 

3. Quantify library concentration using Qubit HS assay. Further QC library by visualizing on 

a gel using a 50 bp ladder or by passing through an Agilent Bioanalyzer with a DNA 1000 

high sensitivity chip. 
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Pooling for sequencing 

Dual-indexed libraries were pooled into equimolar ratio pools to ensure approximately equal 

sequencing coverage. This was done in two steps: (1) Creating equimolar dilutions for each 

sample, and (2) creating an equimolar pool for all samples to be multiplexed on a single lane. 

Creating equimolar dilutions: 

1. Create equimolar dilutions for each sample, diluting the concentration down to that of the 

least concentrated sample (0.81 ng/µL was used as our minimum concentration). For 

highly concentrated samples, serial dilution was required. The script in step 1 outputs the 

volume required for each library, in addition to the volume of TE required to create the 

equimolar pool. It additionally indicates whether serial dilutions are necessary and any 

required volumes. 

● Note: This script can facilitate determining the library volumes required to create 

equimolar pools for sequencing. 

Creating equimolar pool: 

1. Pipette the same volume from each sample (which are now normalized to the same 

concentration from step 1) into the appropriate tube. You should have 1 tube for each 

sequencing lane. 

● Note: To avoid pipetting error associated with using very small volumes, it is best to 

ensure that at least 2 μL is being taken from each sample when creating the equimolar 

pool. 

Quality control of final libraries 

We performed the following QC steps prior to sending samples for sequencing. 
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1. Quantify the concentration of the final library pools to be sequenced using a Qubit 

fluorometer. Quantify each lane separately. 

2. Visualize the library on a gel 

● Use 50 bp DNA ladder 

● Use a 1.5% agarose gel with 3 μL of 1% Ethidium Bromide (EtBr) added to gel 

● Run gel for 60 min at 100 V with 3 μL EtBr added to buffer 

3. (optional) Visualize fragment size distribution using an Agilent Bioanalyzer with a DNA 

1000 High Sensitivity chip 

 

 
 
 
 
 


