
Citation: Diaz-del-Rio, F.;

Sanchez-Cuevas, P.; Iñigo-Blasco, P.;

Sevillano-Ramos, J.L. Improving

Tracking of Trajectories through

Tracking Rate Regulation:

Application to UAVs. Sensors 2022,

22, 9795. https://doi.org/10.3390/

s22249795

Academic Editors: David Cheneler

and Stephen Monk

Received: 10 November 2022

Accepted: 8 December 2022

Published: 13 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Improving Tracking of Trajectories through Tracking Rate
Regulation: Application to UAVs
Fernando Diaz-del-Rio , Pablo Sanchez-Cuevas, Pablo Iñigo-Blasco and J. L. Sevillano-Ramos *

ETS Ingeniería Informática, Universidad de Sevilla, Av. Reina Mercedes s/n, 41012 Sevilla, Spain
* Correspondence: jlsevillano@us.es

Abstract: The tracking problem (that is, how to follow a previously memorized path) is one of the
most important problems in mobile robots. Several methods can be formulated depending on the
way the robot state is related to the path. “Trajectory tracking” is the most common method, with the
controller aiming to move the robot toward a moving target point, like in a real-time servosystem. In
the case of complex systems or systems under perturbations or unmodeled effects, such as UAVs
(Unmanned Aerial Vehicles), other tracking methods can offer additional benefits. In this paper,
methods that consider the dynamics of the path’s descriptor parameter (which can be called “error
adaptive tracking”) are contrasted with trajectory tracking. A formal description of tracking methods
is first presented, showing that two types of error adaptive tracking can be used with the same
controller in any system. Then, it is shown that the selection of an appropriate tracking rate improves
error convergence and robustness for a UAV system, which is illustrated by simulation experiments.
It is concluded that error adaptive tracking methods outperform trajectory tracking ones, producing
a faster and more robust convergence tracking, while preserving, if required, the same tracking rate
when convergence is achieved.

Keywords: UAV; mobile robots; path following; trajectory tracking; error adaptive tracking; Lyapunov
stability theory

1. Introduction

In a state space system, all the possible internal states of the system can be represented
as a vector of variables. Typical control engineering problems in these systems are the
stabilization problem, i.e., how to take the system to a fixed point in its state space, and
the tracking problem, i.e., how to follow a desired trajectory or path. This tracking problem
has been profusely studied in the area of motion control of mobile robots and autonomous
vehicles, where the desired path is either memorized or previously generated [1,2].

In the particular case of UAVs (Unmanned Aerial Vehicles), it must be remarked
that paths are usually defined as a set of straight lines and circular-orbit paths connecting
several waypoints. This means that these paths usually contain singular points in the
intersections of these lines, that is, they are not feasible trajectories for the UAV itself,
but imprecise paths that the UAV cannot accurately track. Nonetheless, a convenient
interpolation can convert this piecewise path into a smooth UAV trajectory passing over
the desired waypoints, which should fulfill its own state equations. Note that having well-
defined feasible desired trajectories is important when using UAVs safely (e.g., avoiding
collisions) in many applications, such as multi-UAV systems, cluttered urban environments,
etc. Navigation sensors are usually integrated into the robot in order to determine its
current position and, thus, calculate the errors between the desired and actual trajectory.

The most common tracking method is called “trajectory tracking” (TT) or “reference
tracking” and it explicitly considers time in the tracking [1]. In this case, the controller
aims to bring the robot as near as possible to a moving target (or reference) point (Figure 1,
top right). It is like servosystems (Figure 1, top left) where it must be guaranteed that the

Sensors 2022, 22, 9795. https://doi.org/10.3390/s22249795 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22249795
https://doi.org/10.3390/s22249795
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6184-1629
https://orcid.org/0000-0002-1392-1832
https://doi.org/10.3390/s22249795
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22249795?type=check_update&version=2


Sensors 2022, 22, 9795 2 of 19

system will approach the desired point in a deterministic time. Examples of this kind of
tracking can be found in most industrial robot applications (due to their strict real time
characteristics). In mobile robots, pursuing a real moving objective (such as an antimissile
system) is an example of a task that needs time determinism.

Figure 1. Classification of tracking methods regarding the descriptor parameter.

The second group, usually called “path following” (PF) (Figure 1, bottom left), does not
consider timing requirements and simply tries to converge to a path. A reference point
on the path must be selected at each instant according to some relation between actual
robot state and path shape, e.g., the “closest” point to the robot’s position. Consequently, a
notable PF inconvenience is assuring the projection uniqueness for all possible paths.

A common example of PF is car driving, which can be extended to most Intelligent
Transportation Systems (ITS) applications. For instance, in cars, usual control approaches
select a point at a look-ahead distance on the road and the vehicle is driven to that point.
Linear speed is preset, while orientation (or steering) is the single control variable used to
perform the convergence.

However, there is confusion in the literature regarding the terminology used for
these methods. For instance, a tracking rate that adapts to system errors has been used
in [3] to improve the TT guidance results for underactuated vehicles in the presence of
parametric modeling uncertainties, although these authors use the term ‘path following’
to refer to their implementation. There are other approaches, such as the one inspired by
the Dynamic Time Warping (DTW) algorithm (studied extensively in the automatic speech
recognition literature) in [4], where a strictly increasing rate of progression (

.
r > 0) is selected

by minimizing a cost function for finite-duration movements.
Although we can find several excellent compendia of both methods in some classic

books [1], the question of which tracking method is the most adequate for a given applica-
tion is an active research area and many papers choose to implement a TT or a PF controller
for UAVs and other mobile robots, depending on the application or with the purpose of



Sensors 2022, 22, 9795 3 of 19

easing the finding of a suitable controller (see more references in context in the rest of this
section). This question has been elucidated for some simple paths and specific systems:
in [5], TT and PF controllers were investigated for a linear time-invariant system with
unstable zero dynamics, and it was demonstrated (for the simple PF task of moving the
vehicle along a straight line) that there is a fundamental performance limitation for TT,
which does not appear for PF method.

In the field of UAVs, many variants have appeared, which are called “guidance laws”,
and are actually based on TT or PF methods. Many of them use a virtual target point (VTP)
on the path, which is selected through some projection, such as the line-of-sight (LOS)
point situated at a certain look-ahead distance from the nearest path point to the robot. The
selection of this point implies that they are a PF variant. Among these methods, we find a
first set that uses simple and intuitive methods, such as the classic carrot-chasing algorithms
and the Pure Pursuit. The number of works that have used these simple methods for UAVs
is considerable, with [6,7] being perhaps the first ones.

There is another set of methods that select the projection point using a pair of circles
that intersect with the desired path, which have been named “nonlinear guidance laws”
(NLGL). These methods were used many years ago [8], and are still very common in recent
years [9].

An alternative to guidance laws, which appeared 15 years ago, are those based on
vector fields (VFs). A VF is built for each position in the state space and as a function of
each specific path, that is, it is a geometric approach that computes a special projection
that returns a vector. This vector defines some of the desired variables that the system
must follow. Thus, according to our classification, VF are also a type of PF. It is worth
mentioning that, up to date, not all state variables are determined by the VF, and the
rest of the variables that remain free must be calculated by the controller. In this respect,
a Lyapunov-based controller can be simplified because some of the desired states are
predefined by the VF [10,11].

To sum up, designing VFs in 3D is not simple, and requires significant work [12].
Maybe the first proposal of a VF-based PF algorithm was developed in [13], as an intuitive
and easy way to compute the desired heading angle for simple paths, such as straight lines
and circles. Many other VFs for specific paths have followed since then, such as [14–16].
No VF has been implemented yet for any generic path; hence, this method should evidently
come across the same drawbacks as PF. It is not guaranteed that the virtual field exists for a
generic path, even for a simple one, such as a pure rotation around the robot center of mass.

In TT, time is the usual descriptor parameter of a path. Since time is an intuitive
parameter, TT seems to be the most straightforward method. However, for the rest of the
approaches, other path-descriptor parameters are possible. For example, in differential
geometry, the natural arc parameter, which makes the linear speed equal to one, is generally
preferred. In this paper, for the sake of generality, the descriptor parameter is denoted
by r. Therefore, other groups of tracking methods can be defined to explicitly control the
progression rate of a moving virtual target to be tracked; i.e., they impose a pace for r or
a value for

.
r (derivative with respect to time). Equivalently, in these methods, the real

robot is forced to follow a virtual robot (also called “reference” robot) that goes along the
reference path at a variable pace, which may be null when necessary; i.e., the reference
robot can “wait” for the real one [17,18]. This pace can be selected with several purposes
(as shown below).

Some scattered examples can be found in the literature, where the explicit control of
progression of the “virtual target” (that is, the VTP) helps design a control law. For instance,
in [18] a complete practical application, where the motion of the descriptor parameter
was governed by a differential equation depending on the errors’ and path’s shape, was
developed. In [19], a term related to the curvature (called “curvature effort” in that work)
was defined, and a penalty factor based on the curvature effort was introduced in the
dynamics of the path’s description parameter to prevent the performance degradation
of the tracking when the dynamic and kinematic constraints are exceeded. In [20], the



Sensors 2022, 22, 9795 4 of 19

target progression was tailored to design a nonlinear adaptive control law, which yields
the convergence of the (closed-loop system) error trajectories to zero in the presence of
parametric modelling uncertainties.

This family of methods can be considered a different path-tracking method that can
be named error adaptive tracking (EAT) [13] (Figure 1, bottom right). Furthermore, EAT
methods can be divided into two categories, depending on whether time deterministic
following is expected or not. Basic EAT variants can be named “non-deterministic” EAT
(NDEAT) because no aspect of time determinism is pursued. On the other hand, tracking
rate adaptation to system errors can be combined with convergence of r to time (that is,
convergence to the TT method). In this case, the rate of r can be extended to include
the “inaccuracy in the deterministic tracking”, i.e., the difference between the descriptor
parameter r and time t. For this reason, this variant can be named “soft” deterministic error
adaptive tracking (SDEAT) [21]. A tailored control law that includes a variable tracking
(similar to that of SDEAT) of the virtual target that helps design the control law was
exploited in [22] (these authors called it path tracking).

The aim of this paper is to provide a formal description and generalization of the
EAT tracking method (which was used in particular cases of terrestrial and underwater
vehicles [21]), and to show how it can be used in any system using the same control law, with
the additional advantage of improving error convergence and robustness. Afterwards,
EAT method is applied to a UAV model to show its benefits. We must emphasize that
this paper is not focused on the design of new control laws. The selection of a tracking
method, or more specifically, a proper form for

.
r when using EAT, has been exploited

in some systems [3,20,22] with the aim of finding a stabilizing control law (mainly via
second Lyapunov method). On the contrary, the present study is focused on how the
EAT method (instead of TT) can be applied using the same controller just by selecting a
proper pace for

.
r, having the additional benefits that error convergence and robustness are

improved. As a result, the burden of finding a new controller or a special path projection
(see VF, carrot-chasing and so on in the Introduction section) will not be necessary. An
additional benefit is that the switching between these two tracking methods (TT and EAT)
can be performed smoothly, since the controller is exactly the same. Our approach is here
particularized for a UAV, but it is worth mentioning that the same procedure can be applied
to other non-linear systems. In fact, this is the first time (to the best of our knowledge) that
an EAT method has been applied to a UAV, despite the fact that many tracking methods
have been implemented for UAVs (see Introduction).

In order to understand properly the different tracking methods and the notation used
in this work, we present first the simple case of a one-state system:

.
x = u, where x is

the coordinate and u is the input. The goal is to follow a reference xdes={xdes(r)} made
by a virtual system, which must fulfill x

′
des = udes(r), where (’) holds for derivative with

respect to r. Let us suppose that the whole reference path is known (memorized) and r is
extended all over real line R. Thus, the following relations for r hold: udes(t)=

.
r udes(r), and

.
xdes = udes(t) =

.
r udes(r).

This one-coordinate system will permit us to easily extract and analyze the differential
equations implicated in this proposal and to clearly see EAT running. Moreover, we will be
able to gain insight of the influence of tracking rate election over system behavior. Note
that the concept of trajectory does not exist for a coordinate only, but our analysis and
conclusions can be extended to a system with several coordinates.

For a fair comparison between TT and EAT, we will use the same control law for both
methods. We briefly present a problem that affects the model considered by the controller
(which are usual for UAVs). Evidently, with no perturbation, big errors or unmodeled
effects stationary tracking would be perfect and, consequently, there would be no need
for studying improvements introduced via tracking rate changes. The main idea is that,
using the EAT method, problems that affect the tracking will be partially “absorbed” by
the tracking rate in order to reduce tracking errors and to improve convergence.



Sensors 2022, 22, 9795 5 of 19

If TT were applied, the system error would be merely the difference: e(t) = x(t) -xdes(t),
and the state equation for the error would be:

.
e(t) = u(t) – udes(t);

It is clear that a simple convergent control law is: u(t)= udes(t)–Kpe , Kp >0
This yields the TT error equation:

.
e(t)= -Kpe.

The solution of the previous equation is: e(t) = e(0) exp(-Kpt), where e(0) is the initial
error. Therefore, exponential convergence is ensured, with a characteristic time constant
t = (Kp)−1.

Figure 2 depicts the role that the tracking methods play in the feedback control of a
simple one-state plant. Common blocks for the plant, controller and sensors work as usual.
However, the desired trajectory sent to the controller is computed through the product
of the desired path profile udes(r) and the

.
r evolution, which is selected by the desired

tracking method.

Figure 2. Diagram block of the control of a plant that considers the descriptor parameter evolution.

On the other hand, if EAT were to be applied, the system error (a superscript r is added
to clearly distinguish this error definition from that of TT) would be: er(t) = x(t) − xdes(r(t)),
and the error equation:

.
er(t)= u(t) − .

rudes(r). Now the same simple control law yields:

ėr= −Kper +
.
rudes(r) − udes(r);

An intuitive proposal for a NDEAT tracking rate can be (this intuitive form fulfills
completely the mathematical condition given by the Lemma in the next section):

.
r = 1 +

Kr

udes
er ; Kr>0

This yields to the EAT error equation:
.
er(t) = -Kper − Krer. The error evolution includes

a new parameter Kr that considers the rate of tracking, which is: e(t) = e(0) exp((−Kp − Kr )t),
where e(0) is the initial error. Exponential convergence for EAT method has now the
characteristic time constant t = (Kp + Kr)−1, which is faster than that of TT because error
decreasing is produced by two causes: the control law and the tracking rate selection.

Likewise, if SDEAT were to be applied, system error could be defined as:
ert(t) = x(t) − xdes(r(t)) + Art(t − r), Art >0. Therefore, an intuitive proposal for SDEAT
tracking rate could be:

.
r = 1 +

Krt

Art + udes
ert ; Krt>0

Transient behavior is more interesting with respect to the advancement along the
desired path r because this will be the main objective when following a memorized path,
for example, in mobile robot applications. Previous equations were simulated using
MATLAB, with the following conditions: simulation time = 10 s, e(0) = −1.5 m, Kp = 0.5 s−1

, Kr = 0.5 s−1 , and reference path defined by udes(r) = 1 m/s. In Figure 3a we represent TT



Sensors 2022, 22, 9795 6 of 19

and NDEAT error behaviors as a function of parameter r (being r = t for TT). Likewise,
.
r

evolution is shown in Figure 3b.

Figure 3. (a) TT, NDEAT and SDEAT transient behaviors for a big initial error. (b)
.
r evolution.

The most interesting fact in Figure 3b happens during the first transitory moments for
EAT methods. Here,

.
r gets low values, thus, the desired point xdes(r) “waits” for the robot

to approach it. For a system with several coordinates, this means that a faster convergence
to the desired path can be reached with the EAT method. At the extreme case, if errors
were big, this approximation would become a straight line to the reference xdes(r(t)). This
desirable behavior clearly resembles that of the PF method [1,5].

On the contrary, for TT we find the usual behavior of a tracking system; the objective
advances continuously pulling the system ahead. In this way, in a system with several
coordinates, this attraction will prevent the system from approaching the path, and so the
system convergence will be delayed in relation to the path parameter r. Note also that
the final value of r for NDEAT in Figure 3b is lower than the final value of r (or t) for TT
because

.
r takes small values for the first seconds.

In the case of SDEAT, it can be seen that it behaves similar to NDEAT during the
first moments when errors are big (Figure 3a). That is,

.
r stays low (Figure 3b) because the

system intends to approach point xdes(r) (r is almost constant). Therefore, we will achieve a
fast convergence to the path (in case of several coordinates). However, when the system
is approaching convergence,

.
r grows above one, and the system tries to be deterministic

by tracking the reference point xdes(t), that is, the system recovers real-time conditions. In
this last part, the system velocity continues to be slightly bigger than the reference velocity
udes(r) to reduce the difference r−t. SDEAT evolution of Figure 3 has been reproduced
with exactly the same conditions and control law. Constants for SDEAT were chosen as
Art = 2.0 ms−1, Krt = 2.0 s−1.

In addition, let us analyze the existence of a parametric modeling uncertainty. Imagine
that the real system equation has a δ deviation from the ideal model, that is, the real system
behaves actually as

.
x = (1 + δ)u. Applying the same control law, the error equation

becomes now:
ė(t)= −Kp(1+δ)e + (d + 1 − .

r) udes(r)

Therefore, a steady error ess is unavoidably present. In the case of TT (
.
r = 1), when the

stationary state is reached (
.
e→0), we arrive at

ess,TT =
δudes

(1 + δ)Kp



Sensors 2022, 22, 9795 7 of 19

However, this error would be scaled down by
.
r if NDEAT were used. Applying the

NDEAT proposal for
.
r, the stationary state can be easily found as:

ess,NDEAT =
δudes

(1 + δ)Kp + Kr

It is clear that ess,NDEAT becomes smaller than ess,TT, as the reduction in tracking rate
(that is,

.
r < 1 for NDEAT) is absorbing the unmodeled behavior. More exactly for constants

Kp = Kr = 0.5 s−1, the stationary error is divided by almost 50%.
To sum up, two important considerations must be taken into account:

• As the control law and the system become more complex, the design of tracking rate
.
r

should contemplate more circumstances as it is discussed below for the case of UAVs.
• For complex systems, it is obviously more difficult to find robust control laws that

behave well enough under several problems (such as unmodeled behaviors, motor
delay responses and so on). When this happens, the EAT method may provide a
new form of avoiding oscillations, divergences, error enlargements, etc. This will be
presented at the following sections, where a generic method is formulated to extend
the EAT for any controller that is based on a Lyapunov function.

The paper is organized as follows. Basic formulation and the lemmas to use EAT
methods from a Lyapunov-based controller are stated in Section 2. In Section 3, an appli-
cation case is discussed in depth, a UAV model. Its asymptotically stable control law is
considered, and its validity for various EAT methods is demonstrated. Evaluation of these
methods through simulation is discussed to illustrate the EAT benefits in Section 4. Finally,
conclusions are presented in the last section.

2. Conversion of Trajectory Tracking into Error Adaptive Tracking for
Lyapunov-Based Controllers

In this section, we present a theoretical formulation of the tracking equations and
some Lemmas for using EAT straightforwardly from a Lyapunov-based controller. Let
us consider the state space representation of a dynamic system model:

.
q = fq(q, u, t),

where q is the state vector of dimension m, u is the input vector of dimension n, and t
is time. The initial conditions are given by q(0). A memorized, reference or desired path or
trajectory (or merely path) qdes(r) can be described by a single-descriptor parameter, namely
r. This path should be covered by the system, that is, it must fulfill the system model:
q
′
des = fq(qdes, udes, r), where (´) denotes derivative with respect to r. As we are interested

in convergence to a path, we assume in this work that the desired trajectory has no end
and it never stops, that is, rє(-∞, ∞), q

′
des 6= 0, ∀r (because if it ended at a certain point, this

would be a problem of stabilization instead of tracking).
To study the tracking, an error state vector should be defined through a diffeomor-

phism e = he(q, r, t), such that e = 0 if and only if q(t) = qdes(r(t)). Note that r dependence can
now be introduced in the definition of error e. Likewise, the input vector may be redefined
as v = hv(q, r, u, t) in order to express the dynamics in a more convenient form. In practical
cases, the dependence of error and input vectors on r are usually through qdes(r) and udes(r),
which are merely functions of r. Therefore, a new state variable r appears, whose state
equation can be freely defined (“modeled”) in general as:

.
r = σ(e, r, t), where σ can be

considered a new input, so dependence on v is prevented in σ. Thus, the system error
model is now

.
e = f (e, r, v, σ, t), and the initial conditions are given by e(0), r(0).

Minimal tracking control objectives for these state variables {e, r} can be set to

e→0 when t→∞ (1a)

|
.
r| bounded ∀t, r→∞ when t→∞ (1b)



Sensors 2022, 22, 9795 8 of 19

Objective (1b) is needed to prevent r from jumping suddenly, so tracking is performed
smoothly. These objectives are to be satisfied through the proper selection of control laws:

v = cv(e, r, t) (2a)

σ = g(e, r, t). (2b)

We want to point out that the expression g(e, r, t) is just a control law for r, and
the behavior of r (or its rate of progression) can be designed for any application—still
preserving the objectives stated in (1b).

A trivial rate of progression can be performed just by identifying parameter r with
time, that is, r(t) = t or σ = 1, which yield the simplest TT. This would mean that qdes(r)
advanced continuously pulling the system forward. In this case, error coordinates can be
simply defined as eq(t) = q(t)-qdes(t). Nevertheless, TT can be extended with a more general
assumption: let parameter r be a strict increasing function of time to fulfill objectives in
(1b), for example, r = at, a > 0. Therefore, error coordinates can be eq(t) = q(t)-qdes(r(t)).

However, if time was not critical, the tracking methodology could be freely designed,
as the whole trajectory is known a priori. The most common alternative in the mobile
robotics literature is path following. This is based on some relation between the actual system
state and the whole path. This relation or projection will give us the desired point qdes(r),
i.e., the descriptor parameter r as a function of the actual position and the path. Differently
from the TT case, here the real system must aim to follow this point. For example, the
desired point is usually selected to be the point on the path that is “closest” to the actual
robot’s position [23,24]. The main drawback of PF is that (to the authors’ knowledge)
projection uniqueness has not been guaranteed for all possible paths qdes(r). This problem
may occur when the projection is fulfilled for an interval of r [23], which means that (1b)
cannot be satisfied (r is undetermined in this interval). Finally, we have the EAT method,
which has very interesting properties: it can be applied to every tracking system and to all
sets of paths (because it does not depend on any projection); it can also consider timing
requirements, and, as it will be discussed in the next section, its controller design can be
performed in a way similar to that of TT, but achieving faster convergence and higher
robustness. In the approach presented here, the same control law can be used for TT and EAT
methods, thus, facilitating the design of the controller and allowing to choose between TT
and EAT when needed.

It can be noted that PF on the one hand, and TT or EAT on the other, must define
completely dissimilar control laws. For example, in a system with two error variables and
two inputs, the PF projection causes a constraint that eliminates one of the variables [23],
which implies that PF control law is applied only to one variable. A common approach
consists of setting one of the inputs to be constant, thus, forcing the system to move.
Another approach consists of selecting a relation for both inputs that implies the overall
input to never be null. This “motion exigency” is not present in EAT (or TT). Depending on
the regulations performed for both tracking methods, one method will present potential
benefits over the other or vice versa. On the other hand, the control law will be identical
when applying NDEAT or SDEAT (see Lemmas below), and no design or tuning of a new
controller is needed.

Moreover, when using EAT, the convergence will be, at least, as fast as that obtained
with TT. In the next sections, this general procedure is illustrated for a PVTOL (planar
vertical take-off and landing aircraft). The subsequent tests will demonstrate that a) EAT
presents a faster convergence than TT, and b) it is valid even for those paths where PF
cannot be applied. Nonetheless, as mentioned before, the procedure shown here can be
applied to any other system that uses a Lyapunov-based control law.

Before presenting the Lemmas, it should be pointed out that their objective is to
change the tracking from TT to EAT due to the good properties of the latter. As a direct
consequence of these Lemmas, when using EAT the question would be: what tracking
rate must be selected for the EAT method so that the same controller presents a faster



Sensors 2022, 22, 9795 9 of 19

convergence to the desired posture? In this respect, finding an appropriate tracking rate is
crucial for nonholonomic system controllers. This is a direct consequence of the Brockett’s
Theorem [25], which prevents the existence of a smooth feedback stabilization control law.
We mean that a smooth controller may fail if the tracking rate is different from σ = 1 (this is
evident if the rate becomes near σ = 0, that is, if the tracking tends to stabilization). Another
consequence of nonholonomic constraints is that derivatives of a Lyapunov function V
cannot be a negative definite function but only a negative semidefinite function. This can be
observed for those postures where only an error is not null and the movement that should
reduce this error is prohibited, such as a lateral displacement in a car.

The next Lemmas allow selecting a valid rate that additionally improves initial TT
convergence and introduces an interesting relation with the PF method (see Remark 3).

Lemma 1. Conversion of TT into NDEAT.

Let
.
q = fq(q, u, t) be the model of a system that must follow a smooth desired path

given by qdes(r), rє(−∞,∞), which fulfills q
′
des = fq(qdes, udes, r), with udes(r) 6= 0 ∀r. Let et =

he(q,qdes(t)) be the definition of TT errors, and er = he(q,qdes(r(t))) those of EAT errors, being
he also smooth. Let us suppose that there exists a positive definite Lyapunov function V(et),
with the intention that a smooth control law v = cv(et, t) makes

.
V be negative semidefinite

and uniformly continuous, so it can be proved that et=0 is a global asymptotically stable
equilibrium point for the path qdes(t).

With these assumptions and for the same control law evaluated on r: v = cv(er, r),
we have that er = he(q, qdes(r(t))) = 0 is also a global asymptotically stable equilibrium
point, if a uniformly continuous NDEAT rate

.
r = σ(er, r) = 1 + eσ(er, r) is chosen, so

that eσ

〈
∂V
∂e

∣∣∣
e=er

, ∂he
∂qdes

fq(qdes, udes, r)
〉

is negative semidefinite with respect to e. Here, 〈x, y〉
represents the dot product of x, y and ∂

∂x stands for the gradient for a scalar function, or the
Jacobian for a vector function.

Proof of Lemma 1. Using the chain law,
.
qdes = σ q

′
des = σ fq(qdes, udes, r) = σ fq,des,

where it has been called fq,des = fq(qdes, udes, r) for clarity purposes. Deriving er =
he(q,qdes(r(t))) and using the change σ = 1 + eσ,

.
er

=
∂he

∂q
.
q +

∂he

∂qdes

.
qdes =

∂he

∂q
.
q +

∂he

∂qdes
fq,des + eσ

∂he

∂qdes
fq,des

The previous derivative can be expressed as:

.
er

=
.
et

t=r + eσ
∂he

∂qdes
fq,des ,

where
.
et

t=r =
.
q− q

′
des(t = r) represents the tracking error rate for the TT case when t = r.

By computing the derivative of V(er), we obtain

.
V(er) =

〈
∂V
∂e

∣∣∣∣
e=er

,
.
er
〉

=

〈
∂V
∂e

∣∣∣∣
t=r

,
.
er
〉

=

〈
∂V
∂e

∣∣∣∣
t=r

,
.
et

t=r

〉
+ eσ

〈
∂V
∂e

∣∣∣∣
e=er

,
∂he

∂qdes
fq,des

〉
Using the hypothesis, it holds that

.
V is negative (at least) semidefinite and uniformly

continuous in time. Therefore, the resulting NDEAT tracking will also make er be a globally
asymptotically stable equilibrium point for the path qdes(r), as was et. �

Remark 1. Note that the convergence of the NDEAT is, at least, as fast as that of the TT because
the term eσ

〈
∂V
∂e

∣∣∣
e=er

, ∂he
∂qdes

fq,des

〉
decreases or maintains the temporal rate of V.

Remark 2. Note that a simple election like eσ = −Kσ

〈
∂V
∂e

∣∣∣
e=er

, ∂he
∂qdes

fq,des

〉
; Kσ > 0 implies that

eσ → 0 ; σ→ 1 , i.e., the same desired tracking rate is preserved when the convergence is achieved.



Sensors 2022, 22, 9795 10 of 19

Remark 3. Path following controllers usually project real system posture over the reference path by
choosing that reference point that minimizes some kind of distance. A common and sensible distance
is given by the proper Lyapunov function [1]. In fact, this function gives an idea of the amount of
error, so the point on the path with minimum errors is chosen. In this case, the projecting point looks
for the value of r that makes the derivative of V null for a fixed system state, that is,

∂V
∂r

∣∣∣∣
q=constant

= 0 ;
∂V
∂e

∣∣∣∣
e=er

∂e
∂r

∣∣∣∣
q=constant

=

〈
∂V
∂e

∣∣∣∣
e=er

,
∂he

∂qdes
fq,des

〉
= 0 ;

The previous equation zeroes the same term that multiplies to eσ in
.

V(er), which
implies that the chosen eσ of Remark 2 makes EAT tracking tend to that of PF. Thereby, EAT
conserves most of the advantages of the PF method [1,5], while avoiding its main obstacle:
the non-uniqueness of the selection of a point in the path when the robot is far from it (in
other words, the need for the robot to stay in a tube around the path).

If the SDEAT method were to be applied, a way to obtain the proper function σ = σ(er, r, t)
is to select the next variant of the Lyapunov function: V2(er, t) = V(er) + 1

2 Art(r− t)2, Art>0.
Proceeding correspondingly,

.
V2(er, t) =

.
V + eσ Art(r− t) =

〈
∂V
∂e

∣∣∣∣
t=r

,
.
et

t=r

〉
+ eσ

(〈
∂V
∂e

∣∣∣∣
e=er

,
∂he

∂qdes
fq,des

〉
+ Art(r− t)

)
An evident SDEAT proposal that keeps

.
V2 uniformly continuous in time and negative

definite (other σ are possible), is making the last term quadratic by carrying out

σ = 1− Kσ

(〈
∂V
∂e

∣∣∣∣
e=er

,
∂he

∂qdes
fq,des

〉
+ Art(r− t)

)
, Kσ > 0

This allows us to enunciate the following Lemma.

Lemma 2. Conversion of TT into SDEAT.

For the same conditions of Lemma 1, e = he(q,qdes(r(t))) = 0 is a global asymptotically
stable equilibrium point, if a uniformly continuous SDEAT rate

.
r = σ(er, r) = 1+ eσ(er, r, t)

is chosen, so that eσ

(〈
∂V
∂e

∣∣∣
e=er

, ∂he
∂qdes

fq,des

〉
+ Art(r− t)

)
is negative semidefinite with re-

spect to e and to (r − t), with Art > 0.

Proof. The proof can be guided in a way similar to that of Lemma 1, using the given form
of

.
V2(er, t).�

Remark 4. Note that r tends to t, so TT tracking rate can be achieved in the end.

Straightforward case uses can be easily obtained. For example, using Remark 2, a
uniformly continuous NDEAT rate for

.
r = 1 + eσ can be found for the TT controller of the

WMR presented in Section 34.4.2 of [1]. There, the authors use the kinematic model of a
unicycle robot: 

.
x = u1 cos θ
.
y = u1 sin θ
.
θ = u2


.
xdes = u1,des cos θdes.
ydes = u1,des sin θdes.
θdes = u2,des

where state q = (x,y,θ) represents the Cartesian coordinates of the driven wheel middle
point and the orientation with respect to a fixed frame, and (u1, u2) the linear and angular
speed of this point. Subscript ‘des’ is used for the virtual robot (the desired trajectory). They



Sensors 2022, 22, 9795 11 of 19

introduce the TT error definition zt = he(q,qdes(t)) = (z1, z2, z3) valid for θ − θdes 6= ±π/2
and given by 

.
z1 = (x− xdes) cos θdes + (y− ydes) sin θdes.
z2 = −(x− xdes) sin θdes + (y− ydes) cos θdes.
z3 = tan(θ − θdes)

where dependence on (t) has been suppressed for desired coordinates for clarity reasons.
Additionally, through the definition of the Lyapunov function V = 1

2

(
z2

1 + z2
2 +

1
k2

z2
3

)
;

k2 > 0, they propose a globally asymptotically stable TT control law that makes
.

V negative
semidefinite and uniformly continuous, provided that

∣∣u1,des
∣∣ is uniformly continuous and

does not tend to zero.
In order to apply NDEAT, gaining the benefits described previously, the necessary

terms for Lemma 1 are calculated:

∂V
∂e

∣∣∣∣
e=er

=

(
z1, z2,

1
k2

z3

)
,

∂he

∂qdes
fq,des =

(
−u1,des + z2u2,des, z1u2,des,−u2,des

(
1 + z2

3

))
Finally, using Remark 2, an expression for the NDEAT tracking rate that preserves the

validity of the same controller is obtained:

eσ = −kσ

(〈
∂V
∂e

∣∣∣∣
e=er

,
∂he

∂qdes
fq,des

〉)
= kσ

(
z1u1,des +

1
k2

z3u2,des

(
1 + z2

3

))
; kσ > 0

With this eσ, Lemma 1 ensures that the same control law is globally asymptotically
stable for errors zr=he(q,qdes(r)), and the convergence of the NDEAT tracking is, at least, as
fast as that of TT. Note that if timing requirements were needed, the SDEAT method can be
found in a similar manner.

Although several benefits of NDEAT tracking can be revealed for simple models, these
benefits can be better observed for more complex robots including non-linearities. In the
next section, EAT is compared with TT for a UAV, whose inputs saturate when their values
surpass a certain bound.

3. Application of EAT for the PVTOL

Mobile robots, and more specifically UAVs, are a traditional application example
when studying and selecting tracking methods because most of them do not need strict
timing requirements. The interesting control problems associated with the vertical/short
takeoff and landing aircraft has turned PVTOL into one of the most studied benchmarks
for controller design. More concretely, the fact that PVTOL has non-minimum phase zero
dynamics associated with its center of mass suggested that path following controllers could
be more appropriate than tracking controllers [3].

Firstly, we recall in the next paragraphs the main equations for the PVTOL according
to [26]. We refer the reader to this classic paper for further details on this system. After-
wards, the tracking method is transformed from TT to NDEAT and SDEAT by using the
previous Lemmas. Finally, in the next section, several results are shown to demonstrate the
benefits of using EAT methods instead of TT.

A simplified model for PVTOL is given by [26]:

m
..
x = − sin θ T

m
..
y = −mg + cos θ T

..
θ = −ω2

n sin θ + ksTσ2(u2).
T = −kt(T − σ1(Td)).
Td = u1

(3)

where x, y are the lateral and vertical positions, θ is the pitch angle, T is the actual propeller
thrust in Newtons (which is controlled through a second order dynamics by the input u1,



Sensors 2022, 22, 9795 12 of 19

being Td the desired thrust), and input u2 is the stabilator input used to generate a pitching
movement. Constants in (3) are: m = 2.15 kg (mass of the aircraft), g = 4.98 ms−2 (effective
gravity), ωn =

√
33s−1 (natural frequency in pitch), ks = 5.4 kg−1m−1 (stabilator constant),

and kt = 4 s−1 (thrust constant). Functions σ are saturations for the thrust and the stabilator
inputs, with the following upper and lower limits: max(σ1) = 16, min(σ1) = 0, max(σ2) = 1,
min(σ2) = −1.

It is well known that linearized forms of systems with nonholonomic constraints,
such as WMRs (Wheeled Mobile Robots) and UAVs, are not controllable [27]. For this
reason, other alternatives, such as feedback linearization have been profusely studied for
these systems. In [26] it is shown that system (3) is feedback linearizable provided that
saturations are not active. Using the linearizing coordinate change x =

(
x,

.
x, y,

.
y, θ,

.
θ, T, Td

)
7→ z ≡

(
x,

.
x,

..
x,

...
x , y,

.
y,

..
y,

...
y
)

u = (u1, u2) 7→ v ≡
(

x(4), y(4)
) (4)

the linearized dynamics (valid outside the saturation) result in

Ao =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 ; Bo =


0
0
0
1


A = block diagonal {Ao, Ao}
B = block diagonal {Bo, Bo}.
z = Az + Bv

(5)

A reference or desired path to be followed can be a feasible trajectory that fulfills (3).
Therefore, it can be expressed as a function of a descriptor parameter r: xdes(r), with desired
inputs udes(r). Alternatively, for the linearized system, the desired path {zdes(r), vdes(r)}
must fulfill z

′
des = Azdes + Bvdes.

Now we recall the control law for the linearized system (5) presented in [26], and
we show that the same law can be used for EAT using the appropriate tracking rate (see
Lemmas 1 and 2). Therefore, no design or tuning of a new controller is needed. A linear
control law for system (5) is:

v =vdes + K(z − zdes) (6)

where Ac = A + BK is Hurwitz, which provides local stable trajectory tracking (global
in (z, v) if there are no restrictions in these coordinates). Linear dynamics result in
.
ez = Acez, being ez = z-zdes. According to [26], the experience with the actual PVTOL
shows that K can be decoupled for lateral and vertical modes and that values for K:
Ko =

[
−3604 −2328 −509.25 −39

]
, K = block diagonal{Ko, Ko} make the system

perform properly. System input u can be calculated from v, through (4) and (3). Thus,
provided that {x(t), u(t)} stays within the valid region, global exponential convergence
to the desired trajectory (that is, to ez = 0) is guaranteed. Consequently, given a positive
definite symmetric matrix Q (Q > 0), there exists a unique positive definite symmetric
matrix, P > 0, that fulfills the Lyapunov equation AT

c P + PAc + Q = 0.
Let us first analyze the case of NDEAT. Using Lemma 1, it is evident that: if (a) the

same control (6) is applied, being V = eT
z Pez a Lyapunov candidate (from now on the

superscript r of the error is omitted for simplicity reasons), and (b) the chosen uniformly
continuous NDEAT rate σ = 1 + eσ(ez, r) makes −2eσ

(
z′TdesPez

)
negative semidefinite

with respect to ez, then ez = z-zdes(r(t)) = 0 is a globally asymptotically stable equilibrium
point (if there are no restrictions in z, v coordinates).



Sensors 2022, 22, 9795 13 of 19

The proof can be guided by using the change σ = 1 + eσ, as in Lemma 1. In this case,
the new linear dynamics for the same control law (6) is

.
ez =

.
z− σ z

′
des = Acez − eσz

′
des. By

computing the derivative of V, and using the new linear dynamics, we obtain

.
V = eT

z

(
AT

c P + PAc

)
ez − 2eσ

(
z′TdesPez

)
(7)

Using the hypothesis and the Lyapunov equation, it holds that
.

V = −eT
z Qez − 2eσ(

z′TdesPez

)
is negative definite and uniformly continuous in time.

An evident proposal that makes the last term of (7) quadratic is:

σ = 1 + 2Kσ

(
z′TdesPez

)
= 1 + 2Kσz

′
des, ezP, Kσ > 0 (8)

but other functional proposals for σ are possible (depending on the application track-
ing requirements).

Remark 5. The proposed form (8) of σ includes a dot product, which gives an idea of the relative
posture (the “sign” of the errors) of the real and virtual robots when the robot is not too “far”
(according to the distance function given by matrix P) from the reference point. When the robot is
“ahead” with respect to zdes(r) (along the direction specified by z ¢des(r)), then this dot product will
be positive, but when the robot is delayed, it will be negative. If this product is zero, the errors are
perpendicular to the desired velocities, and the robot is neither ahead nor delayed. Therefore, the
tracking rate can be greater or less than 1. When the robot is ahead (according to the previous dot
product criterion), it is intuitive that a faster rate will get the reference point closer to the robot. On
the other hand, for a delayed robot, the lower value of σ means that the desired point will “wait” for
the robot.

If the SDEAT method were to be applied, another Lyapunov function can be defined
according to Lemma 2. Using V2 = eT

z Pez +
1
2 Art(r− t)2 and proceeding correspondingly,

(7) results in:
.

V2 = eT
z

(
AT

c P + PAc

)
ez − eσ

(
2z′TdesPez − Art(r− t)

)
An evident SDEAT proposal that keeps

.
V2 uniformly continuous in time and negative

definite (other σ are possible), is to make the last term quadratic by carrying out

σ = 1 + Kσ

(
2z
′
des, ezP − Art(r− t)

)
, Kσ > 0 (9)

Therefore, if a) the same control (6) is applied and b) the uniformly continuous EAT
rate σ = 1 + eσ makes −2eσ

(
z′TdesPez

)
− Art(r− t) negative definite, then ez = 0 is a global

asymptotically stable equilibrium point. The proof can be guided in a way similar to that
of the proof of Lemma 2.

4. Simulation Results

In this section, simulation results comparing the TT and EAT behaviors for the previous
UAV system are presented and discussed. Although the results are shown for this system,
these analyses and conclusions can be extended to other systems for which a classic
control law was previously obtained. Advancing one of the conclusions of our results,
using numerically the same control law for EAT leads to a faster and much more robust
convergence as Remark 1 points out. The reason is that errors that affect the tracking are
partially “absorbed” by the tracking rate

.
r. Therefore, a final thought is worth mentioning:

for complex systems, it is more difficult to find robust control laws that behave well enough
under several problems. When this happens, the EAT method may provide a form of
avoiding oscillations, divergences, error enlargements, etc.

Two tests are to be analyzed using a SIMULINK/MATLAB model [28]: (a) the diverse
initial extreme conditions, and (b) the convergence to a desired path that cannot be executed



Sensors 2022, 22, 9795 14 of 19

by the PF presented in [26] because the whole path fulfills the projection used there. The
first test is focused on big errors because in the case of small errors the simulated system’s
behavior will be similar to that of an exponential convergent system. The second test is
intended to confirm the advantage of EAT versus PF, which is the validity of EAT for all
kinds of paths.

The chosen form of σ for NDEAT is that of (8) with Ks = 0.0010 m−1s−1. To conduct a
fair comparison between NDEAT and SDEAT methods, the constant Ks of SDEAT is the
same as that of NDEAT, with Art = 400 m2/s2. Greater values of Art will bring the tracking
closer to that of TT, while lower ones will bring it closer to that of NDEAT. An important
property of σ is the linearity around ez = 0.

As our intention is to show the benefits of EAT against TT for a same controller, we
have used exactly the same controller of [26]. Therefore, the Lyapunov equation matrices
used are Q = I, and by solving Lyapunov equation: P = block diagonal {Po,Po}, with

P0 =


436.3905 281.1773 53.4184 0.0001
281.1773 189.7791 39.2207 0.1210
53.4184 39.2207 10.4683 0.0780
0.0001 0.1210 0.0780 0.0148


The first test (Figures 4–6) analyzes the tracking of a periodic lateral motion xdes(r) = A

sin(wref r) with constant ydes(r) = 0, where wref = 2π/5 s−1, and A = 1.857 π/2 m. The initial
desired state and value of parameter r are: zdes = 0; r = 0, for all tests. Two considerable initial
position errors in x and y are tested in order to compare EAT with TT (see Table 1, where
the corresponding figures are also shown). The rest of the real initial states are the same as
those desired.

Figure 4. Comparison of NDEAT, SDEAT, and TT when the robot is delayed (desired path consists
on a periodic horizontal motion xdes(r) = A sin(wref r), ydes(r) = constant). Up: Left, Y/X trajectories;

Right: evolution of
.

X/X Bottom: Left, Desired Thrust Td (with saturation). Middle: Lyapunov
function versus time. Right: evolution of σ = dr/dt with respect to time.



Sensors 2022, 22, 9795 15 of 19

Figure 5. Comparison of NDEAT, SDEAT and TT when the robot is ahead (same desired path as
previous Figure 4). Up: Left, Y/X trajectories; Right: evolution of

.
X/X Bottom: Left, Desired Thrust

Td (with saturation). Middle: Lyapunov function versus time. Right: evolution of σ = dr/dt with
respect to time.

Figure 6. Comparison of NDEAT, SDEAT and TT when the robot is neither delayed nor ahead.
Up: Left, Y/X trajectories (same desired path as previous Figure 4); Right: evolution of

.
X/X Bottom:

Left, Desired Thrust Td (with saturation). Middle: Lyapunov function versus time. Right: evolution
of σ = dr/dt with respect to time.



Sensors 2022, 22, 9795 16 of 19

Table 1. Initial robot positions and their corresponding figures.

Figure x-xdes (m) y-ydes (m) Case

Figure 4 −1.5 0 robot is delayed

Figure 5 1.5 −0.1 robot is ahead

Figure 6 0 0.7 robot is neither ahead nor delayed

The experiment is delayed for only 7.5 s, in order to see the transients more clearly.
For all figures, NDEAT curves are drawn with solid lines, SDEAT with dashed lines and TT
with dash-dotted lines.

For all the tests, it can be observed that the method with the fastest and best conver-
gence to the path is NDEAT. According to Remark 1, NDEAT and SDEAT convergences
are obviously faster than that of TT. This fact can be also verified by several reasons. First,
Lyapunov function diminution is very much faster for EAT than for TT (especially when
the robot is delayed). Moreover, the Lyapunov function is not decreasing when the system
comes into the saturation zone (Td > 16 N), which occurs in many occasions and for long
periods when using TT. This zone should be avoided because when the system enters this
zone, the feedback linearization control is not valid. As a consequence, PVTOL control is
lost and in some occasions coordinate Y goes so low that the actual system may collide
with the ground (a value below −0.5 m is not possible for the real PVTOL). In any case, the
evolution of s is the expected one: during the first transients, it reaches values that are far
from one, in order to “look for” the best desired reference (which fulfills that z

′
des, ezP is

near zero). Afterwards, it remains near one for NDEAT but greater than one for SDEAT,
which is necessary in order to reduce the difference between r and t. After 7 s, parameter r
has almost reached t in SDEAT; on the contrary, a gap remains when NDEAT is applied.

Other interesting points are the following: when the robot is ahead, all tracking
methods behave satisfactorily. Since the actual system response is slow (mainly due to the
second order dynamics of input u1) this case is not as critical as the delay in the robot’s
posture. Nevertheless, TT is the only method that comes into saturation in the first moments
of this test. Finally, TT shows also significant problems for the last trial (the robot is neither
ahead nor delayed). Although coordinate X presents a small error, Y falls considerably.
This is because the TT reference posture is continuously increasing, which implies high
input values that take the system out of the linear zone. In conclusion, one of the strongest
points of NDEAT is that its behavior is almost the same as the PF approach found in [26].
This can be observed very patently when the robot is delayed.

Moreover, and due to its large errors, the real speeds demanded by TT are greater
than those of NDEAT (Figure 7). It is obvious that input limitations will further degrade
TT’s response. In the end, the TT method introduces more oscillations than EAT, and it
has a transient response that separates the robot from the desired path. This is a well-
known advantage of PF that EAT retains [1]. Concretely, for the PVTOL system the
states variables barely enter the saturation zone when applying NDEAT. Moreover, if time
determinism were needed, SDEAT would be a possible option, which avoids TT drawbacks
and maintains the system’s response near to that of NDEAT.

In the second test, the segment that fulfills the PF projection used in [26] is previously
computed to serve as the path for the tracking (thick line in Figure 8). This path is composed
of the points that are equidistant from the origin according to the projection. The initial
posture of the robot is the origin (x = 0), and the desired initial position is (X,Y) = (−1.5,0).
As can be seen, there is no racking problem for any EAT method. Moreover, as expected,
NDEAT converges slightly better than SDEAT, and SDEAT converges better than TT. Note
that no comparison with PF is possible because the projection is not defined for it. Moreover,
and due to its large errors, the real speeds demanded by TT are greater than those of NDEAT.
It is obvious that speed limitations will degrade TT’s response even more. In the end, the
TT method introduces more oscillations than EAT, and it has a transient response that



Sensors 2022, 22, 9795 17 of 19

separates the robot from the desired path. This is also another advantage of PF [1] that EAT
also retains.

Figure 7. Inputs u when the robot is delayed. During transients, NDEAT demands less input than
SDEAT, and SDEAT demands much less than TT. The first instants are not depicted because TT inputs
rise to very high values, which would reduce the scale of the plot too much.

Figure 8. NDEAT, SDEAT and TT when the path is equidistant to the origin. Left: XY desired and
real trajectories. Right: evolution of σ = dr/dt with respect to time.

Similar comparisons can be made for other perturbations, such as saturation of inputs,
path’s curvature discontinuities, introduction of a scale between the inputs demanded by
the control and the real ones, etc. On the whole, this is because the inputs demanded by TT
are usually greater than those asked by EAT (see Figure 7), so TT experiences more problems
in the tracking. Thus, the EAT method is more robust than TT against perturbations or
unmodeled dynamics because the adaptive variation of r facilitates robustness. Finally,
it is important to observe that the qualitative behavior of EAT is similar to that of PF,
i.e.,

.
r is reduced in the presence of large errors until the system approaches the path.

Obviously, both methods are constructed in a very different way, so it is not easy to make a
quantitative comparison.

5. Conclusions

In this work, it is illustrated how a Lyapunov-based trajectory tracking control law
can be used for error adaptive tracking methods for any system. This is carried out by



Sensors 2022, 22, 9795 18 of 19

selecting the proper rate for the progression of the descriptor parameter of the reference
curve. This way, the burden of finding a new controller is not necessary. When EAT
method is applied to a UAV (PVTOL), it is shown, through several tests, that error adaptive
tracking methods outperform trajectory tracking ones using exactly the same controller
(with identical parameters). We can conclude that the behavior of the several alternatives of
error adaptive tracking is much better than that of a trajectory tracking under large errors,
disturbances, unmodeled parameters or delayed response. This is because in error adaptive
tracking, pace adapts to system errors. Two additional advantages of error adaptive
tracking are also presented: a) it conserves most of the advantages of the path following
method, and b) it avoids one of the main drawbacks of the path following method, that
is, it is valid for all feasible trajectories. Finally, the benefits of the variant here called
“soft deterministic error adaptive tracking” are also illustrated. This alternative presents
almost the same excellent behavior as any error adaptive tracking when errors are large
because temporal determinism is ignored in these situations. However, once errors have
decreased, it gains the additional benefit of taking into account timing determinism as in
classic trajectory tracking.

Author Contributions: Conceptualization, F.D.-d.-R., P.S.-C., P.I.-B. and J.L.S.-R.; methodology,
F.D.-d.-R., P.S.-C., P.I.-B. and J.L.S.-R.; software, F.D.-d.-R. and P.S.-C.; validation, F.D.-d.-R. and P.I.-B.;
formal analysis, F.D.-d.-R., P.S.-C., P.I.-B. and J.L.S.-R.; investigation, F.D.-d.-R., P.S.-C., P.I.-B. and
J.L.S.-R.; writing—review and editing, F.D.-d.-R., P.S.-C., P.I.-B. and J.L.S.-R.; project administration,
F.D.-d.-R. and J.L.S.-R. All authors have read and agreed to the published version of the manuscript.

Funding: This work has been supported by the Spanish project (with support from the European
Regional Development Fund) PID2019-110455GB-I00 (AEI/FEDER, EU) and by the Andalusian
Regional Excellence Research Project (with support from the European Regional Development Fund)
project US-1381077 (JJAA/FEDER, UE).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Siciliano, B.; Khatib, O. (Eds.) Springer Handbook of Robotics; Springer Handbooks; Springer International Publishing: Cham,

Switzerland, 2016; ISBN 978-3-319-32550-7.
2. Palacín, J.; Rubies, E.; Clotet, E.; Martínez, D. Evaluation of the Path-Tracking Accuracy of a Three-Wheeled Omnidirectional

Mobile Robot Designed as a Personal Assistant. Sensors 2021, 21, 7216. [CrossRef] [PubMed]
3. Aguiar, A.P.; Hespanha, J.P. Trajectory-Tracking and Path-Following of Underactuated Autonomous Vehicles With Parametric

Modeling Uncertainty. IEEE Trans. Autom. Control. 2007, 52, 1362–1379. [CrossRef]
4. Kingston, P.; Egerstedt, M. Time and Output Warping of Control Systems: Comparing and Imitating Motions. Automatica 2011,

47, 1580–1588. [CrossRef]
5. Aguiar, A.P.; Dačić, D.B.; Hespanha, J.P.; Kokotović, P. Path-Following or Reference Tracking? IFAC Proc. Vol. 2004, 37, 167–172.

[CrossRef]
6. Breivik, M.; Fossen, T.I. Principles of Guidance-Based Path Following in 2D and 3D. In Proceedings of the 44th IEEE Conference

on Decision and Control, Seville, Spain, 12–15 December 2005; pp. 627–634.
7. Conte, G.; Duranti, S.; Merz, T. Dynamic 3D Path Following for an Autonomous Helicopter. IFAC Proc. Vol. 2004, 37, 472–477.

[CrossRef]
8. Park, S.; Deyst, J.; How, J.P. Performance and Lyapunov Stability of a Nonlinear Path Following Guidance Method. J. Guid.

Control. Dyn. 2007, 30, 1718–1728. [CrossRef]
9. Xavier, D.M.; Natassya, B.F.S.; Kalinka, R.L.J.C.B. Path-Following Algorithms Comparison Using Software-in-the-Loop Simu-

lations for UAVs. In Proceedings of the 2019 IEEE Symposium on Computers and Communications (ISCC), Barcelona, Spain,
29 June–3 July 2019; pp. 1216–1221.

10. Lawrence, D.A.; Frew, E.W.; Pisano, W.J. Lyapunov Vector Fields for Autonomous Unmanned Aircraft Flight Control. J. Guid.
Control. Dyn. 2008, 31, 1220–1229. [CrossRef]

11. Chen, H.; Chang, K.; Agate, C.S. Tracking with UAV Using Tangent-plus-Lyapunov Vector Field Guidance. In Proceedings of the
2009 12th International Conference on Information Fusion, Seattle, WA, USA, 6–9 July 2009; pp. 363–372.

12. Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned Aerial Vehicless.
IEEE Control. Syst. 2014, 34, 42–59. [CrossRef]

http://doi.org/10.3390/s21217216
http://www.ncbi.nlm.nih.gov/pubmed/34770522
http://doi.org/10.1109/TAC.2007.902731
http://doi.org/10.1016/j.automatica.2011.03.004
http://doi.org/10.1016/S1474-6670(17)31970-5
http://doi.org/10.1016/S1474-6670(17)32021-9
http://doi.org/10.2514/1.28957
http://doi.org/10.2514/1.34896
http://doi.org/10.1109/MCS.2013.2287568


Sensors 2022, 22, 9795 19 of 19

13. del Rio, F.D.; Jimenez, G.; Sevillano, J.L.; Amaya, C.; Balcells, A.C. Error Adaptive Tracking for Mobile Robots. In Proceedings
of the IEEE 2002 28th Annual Conference of the Industrial Electronics Society, IECON 02, Sevilla, Spain, 5–8 November 2002;
Volume 3, pp. 2415–2420.

14. Nelson, D.R.; Barber, D.B.; McLain, T.W.; Beard, R.W. Vector Field Path Following for Small Unmanned Air Vehicles. In Proceed-
ings of the 2006 American Control Conference, Minneapolis, MN, USA, 14–16 June 2006; p. 7.

15. Frew, E.W.; Lawrence, D. Tracking Expanding Star Curves Using Guidance Vector Fields. In Proceedings of the 2012 American
Control Conference (ACC), Montreal, QC, Canada, 27–29 June 2012; pp. 1749–1754.

16. Fari, S.; Wang, X.; Roy, S.; Baldi, S. Addressing Unmodeled Path-Following Dynamics via Adaptive Vector Field: A UAV Test
Case. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 1613–1622. [CrossRef]

17. Salazar, S.; González-Hernández, I.; Lopez, R.; Lozano, R. Simulation and Robust Trajectory-Tracking for a Quadrotor UAV.
In Proceedings of the 2014 International Conference on Unmanned Aircraft Systems (ICUAS), Orlando, FL, USA, 27–30 May 2014;
pp. 1167–1174.

18. Egerstedt, M.; Hu, X.; Stotsky, A. Control of Mobile Platforms Using a Virtual Vehicle Approach. IEEE Trans. Autom. Control. 2001,
46, 1777–1782. [CrossRef]

19. Maček, K.; Petrović, I.; Siegwart, R. A Control Method for Stable and Smooth Path Following of Mobile Robots. In Proceedings of
the 2nd European Conference on Mobile Robots (ECMR), Ancona, Italy, 31 August–3 September 2005. [CrossRef]

20. Lapierre, L.; Soetanto, D.; Pascoal, A. Nonsingular Path Following Control of a Unicycle in the Presence of Parametric Modelling
Uncertainties. Int. J. Robust Nonlinear Control. 2006, 16, 485–503. [CrossRef]

21. Basañez, L. Asociación Española de Robótica y Automatización Tecnologías de la Producción, International Federation of Robotics.
In Proceedings of the 40th International Symposium on Robotics Programme - AER-ATP, Barcelona, Spain, 10–13 March 2009.

22. Xiang, X.; Lapierre, L.; Liu, C.; Jouvencel, B. Path Tracking: Combined Path Following and Trajectory Tracking for Autonomous
Underwater Vehicles. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San
Francisco, CA, USA, 25–30 September 2011; IEEE: San Francisco, CA, USA, 2011; pp. 3558–3563.

23. Díaz del Río, F.; Jiménez, G.; Sevillano, J.L.; Vicente, S.; Civit Balcells, A. A Path Following Control for Unicycle Robots. J. Robot.
Syst. 2001, 18, 325–342. [CrossRef]

24. Encarnacao, P.; Pascoal, A. Combined Trajectory Tracking and Path Following: An Application to the Coordinated Control of
Autonomous Marine Craft. In Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), Orlando,
FL, USA, 4–7 December 2001; IEEE: Orlando, FL, USA, 2001; Volume 1, pp. 964–969.

25. Brockett, R.W. Asymptotic Stability and Feedback Stabilization. In Differential Geometric Control Theory; Birkhauser: Boston, MA,
USA, 1983; pp. 181–208.

26. Hauser, J.; Hindman, R. Maneuver Regulation from Trajectory Tracking: Feedback Linearizable Systems. IFAC Proc. Vol. 1995, 28,
595–600. [CrossRef]

27. De Luca, A.; Oriolo, G.; Vendittelli, M. Control of Wheeled Mobile Robots: An Experimental Overview. In Ramsete; Nicosia,
S., Siciliano, B., Bicchi, A., Valigi, P., Eds.; Lecture Notes in Control and Information Sciences; Springer Berlin Heidelberg:
Berlin, Heidelberg, 2001; Volume 270, pp. 181–226. ISBN 978-3-540-42090-3.

28. Fernando Diaz Del Rio, ETSII—Universidad de Sevilla. PVTOL_tracking_methods.Zip. MATLAB Central File Exchange.
Available online: Https://www.Mathworks.Com/Matlabcentral/Fileexchange/46938-Pvtol_tracking_methods-Zip (accessed on
9 November 2022).

http://doi.org/10.1109/TAES.2019.2925487
http://doi.org/10.1109/9.964690
http://doi.org/10.3929/ETHZ-A-010079482
http://doi.org/10.1002/rnc.1075
http://doi.org/10.1002/rob.1027
http://doi.org/10.1016/S1474-6670(17)46893-5
Https://www.Mathworks.Com/Matlabcentral/Fileexchange/46938-Pvtol_tracking_methods-Zip

	Introduction 
	Conversion of Trajectory Tracking into Error Adaptive Tracking for Lyapunov-Based Controllers 
	Application of EAT for the PVTOL 
	Simulation Results 
	Conclusions 
	References

