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A B S T R A C T

Manual analysis of electrocardiogram (ECG) signals is a laborious and prone-to-error task, even for a specialist
with many hours of experience. For this reason, research on automatic ECG diagnosis is widespread in the
literature and continues to grow each year. The present paper describes a novel and fully functional expert
system for automatic diagnosis of 13 different diseases using standard 12-lead ECGs. This system makes three
significant contributions to the state of the art: (a) the large number of different diseases diagnosed; (b) the
use of 5 leads for a more precise identification and measurement of the ECG waves; and (c) a novel noise
indicator that measures the quality of the acquired ECG signal. The kernel of the system consists of a set of
rules that replicate a specialist’s diagnostic process but with the speed of an automatic system. The rules use a
set of parameters generated after a noise-filtering process of the ECG signal and subsequent identification of its
different waves (P, QRS complex, T, and Delta). The design of the rules was carried out with the collaboration
of a specialist with more than 20 years of experience in ECG diagnosis and using a database of 284,000 ECGs
as support. The system was validated by the specialist, obtaining a reliability of 80.8%. Given the complexity
of the problem and the number of diagnoses covered, the results are considered satisfactory and make the
system a useful support tool for diagnosis.
. Introduction

The electrocardiogram (ECG) is the most widely used noninvasive
echnique in heart disease diagnoses. Since it reflects the electrical
ctivity within the heart during contraction, the time it occurs and its
attern provides much information about the state of the heart.

Each heartbeat constitutes a cardiac cycle, which is reflected in the
CG graph: a P-wave, a QRS complex and a T-wave. In addition, a small
-wave may be visible in certain ECGs. The line voltage ECG base is
lso known as the isoelectric line or baseline. Normally, the baseline is
he portion of the stroke that follows the T-wave and precedes the next
-wave. Fig. 1 shows a schematic record of a normal cardiac cycle.

An ECG can have different configuration of leads that reflect the
et of cardiac cycles of the heart from different perspectives or angles.
hus, the standard 12-lead ECG is one of the most commonly used
edical studies in the assessment of cardiovascular disease. It provides
complete picture of the heart’s electrical activity by recording infor-
ation through 12 different perspectives calculated using 10 electrodes

Anderson and DiCarlo, 2000). Each lead of the 12 (I, II, III, aVR,
VL, aVF, V1, V2, V3, V4, V5, and V6) represents a part of the heart
nd specialists/cardiologists use one or another lead depending on the
isease to be detected. Fig. 2 shows the different ECG leads and the
iew/perspective of the heart that each one provides. It is possible to
erform ECGs with a single lead (for example, this is done by some
f the smart watches currently on the market) (Samol et al., 2019),

E-mail address: imonedero@us.es.

but this implies limited studies and the possibility of detecting a small
number of diseases and with a lower degree of reliability.

The work presented in this paper arises in the framework of a collab-
oration by the Department of Electronic Technology at the University
of Seville with the Preving Investment Company, an important labor
risk company that covers more than 70,000 companies and 500,000
workers. The work consists of the design of a rule-based expert system,
developed as a software application, for the detection of 13 different
diseases using standard 12-lead ECGs. Looking at the current horizon
of the state of the art, analyzed in Section 2, the presented work is a
relevant contribution in terms of both the number of diseases covered
and the number of ECG leads used.

A specialist with more than 10 years of experience in ECG diagnos-
tics was available during the development of the work. This specialist
resolved the doubts that arose throughout the process and collaborated
in the system design. In addition, he was in contact with his peers to
discuss those aspects that required consensus.

In order to carry out the design of the system, a large ECG database
provided by the Preving Investment Company was used as support. This
database is described in Section 3.

The developed system works on the Microsoft Windows operating
system and was programmed in R language. The design of the system
is described in Sections 4 and 5. The system was validated with the
collaboration of the specialist. This validation process is described in
Section 6.
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Fig. 1. Waves reflected in an ECG corresponding to a cardiac cycle.

Fig. 2. ECG views of the heart. Image created by Nicholas Patche, Boston Medical
enter (CC BY-SA 4.0).

. State of the art

Automatic analysis and diagnosis of ECGs is an unresolved and
uch-debated topic in the literature (Berkaya et al., 2018; Martis et al.,
014). In this section the most relevant studies of recent years related
o the objective of the manuscript will be referenced and discussed.

.1. Noise filtering

In the studies on ECG classification referenced in this paper (Adam
t al., 2018; Alarsan and Younes, 2019; Altay et al., 2019; Chun-
heng et al., 2019; Golrizkhatami and Acan, 2018; Jun et al., 2018;
anungo and Sabut, 2015; Kasar and Joshi, 2016; Li et al., 2016; Li
nd Zhou, 2016; Haddadi et al., 2014; Nayak et al., 2019; Pingale
nd Daimiwal, 2014; Sahoo et al., 2017; Shao et al., 2018; Singh and
unkaria, 2017; Singh et al., 2018; Tripathy and Dandapat, 2016), the
irst problem that researchers face is the filtering of noise embedded
ithin the ECG signal. This arises because in practice, the acquired
lectrocardiographic signal is a weak signal which is often heavily
ontaminated by interference and high-frequency noise, such as power-
ine interference, electromyography noise, and instrumentation noise
Limaye and Deshmukh, 2016). These noise signals cannot be com-
letely removed by a differential instrumentation amplifier. In addition,
he signal is mixed with various low-frequency artifacts generated as a
esult of a deep breath or the movement of the patient. Finally, there is
2

also a certain amount of white noise generated by the amplifier system
itself. The types of noise and the different noise removal techniques are
described in the literature (Haritha et al., 2016; Limaye and Deshmukh,
2016).

The wavelet transform (Rajini, 2016) is presented as an extended
tool when filtering the ECG signal. It divides the analyzed data into
different frequency components and then studies each component in
resolutions that fit its scale. Compared to other types of frequency
analysis, such as Fourier transform, it has the advantage of being
localized both in time and in the frequency domain, and enable the
researcher to observe and analyze data at different scales.

In many of the published studies on the topic (Chun-Cheng et al.,
2019; Haddadi et al., 2014; Kanungo and Sabut, 2015; Li et al., 2016;
Sharma et al., 2019; Singh and Sunkaria, 2017), wavelet transform
is used as the main tool for filtering the signal and/or extracting its
features. The aforementioned works obtain good results in ECG filtering
for small databases (mainly composed of arrhythmias).

There are other ECG signal filtering tools, used in various published
studies (Altay et al., 2019; Kasar and Joshi, 2016; Shao et al., 2018;
Singh et al., 2018), based on the classic filtering techniques, such as
the use of low-pass filters, the filters of moving average, the use of
the average of beats, and the approximation through functions. These
studies (again applied to a small number of diseases) show that classic
techniques can be a good filtering tool or a useful complement to other
more modern techniques.

The main problem that exists is that certain noise components
overlap in frequency with components of the different ECG waves. It
makes total noise filtering in an ECG a subject of high complexity
and implies additional complexity in tackling the problem of disease
detection.

2.2. Wave identification

In the works published on automatic ECG processing, after handling
the noise problem, the generation of a set of indicators (feature extrac-
tion process) that allow the detection of possible diseases in the ECG
is carried out. For this, a first ECG processing is usually necessary to
identify the different waves, time intervals, amplitudes, morphologies,
etc. This processing is also a complex problem (Wijaya et al., 2018).
The reasons for this complexity lie in the great difficulty involved
in programming accurately the calculation of the necessary temporal
parameters, considering the different possible morphologies of ECGs
and, above all, in ensuring that the noise found in the signal does
not alter the obtaining of the measurements with a certain degree of
accuracy.

Within the state of the art, wavelet transform is again seen as an ex-
tended tool for this objective (Chun-Cheng et al., 2019; Golrizkhatami
and Acan, 2018; Haddadi et al., 2014; Li and Zhou, 2016; Kanungo and
Sabut, 2015; Nayak et al., 2019; Sharma et al., 2019; Sahoo et al., 2017;
Singh et al., 2018). There are also studies that use other types of filters
to separate the waves (Altay et al., 2019; Pingale and Daimiwal, 2014;
Shao et al., 2018). Finally, it is possible to find some studies based
on supervised models, which directly perform a feature extraction of
the ECG signal without prior detection of the waves (Li et al., 2016; Li
and Zhou, 2016; Mathews et al., 2018; Tripathy and Dandapat, 2016;
Yildirim et al., 2019). The feature extraction and correct measurement
of waves and intervals are topics currently under research.

2.3. Modeling

Once the necessary waves, intervals and morphologies have been
measured, it is necessary to program a model or sets of these to perform
the classification. There are different published solutions, based on
different algorithms such as clustering (Fuzzy C-Means clustering in
Golrizkhatami and Acan, 2018; Haddadi et al., 2014, artificial neural

networks (Jun et al., 2018; Mathews et al., 2018; Singh et al., 2018;
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Yildirim et al., 2019)), decision trees (Alarsan and Younes, 2019; Kasar
and Joshi, 2016; Li and Zhou, 2016; Shao et al., 2018) or the generation
of mathematical rules and other techniques (Golrizkhatami and Acan,
2018; Mathews et al., 2018; Nayak et al., 2019; Pingale and Daimiwal,
2014; Singh et al., 2018; Tripathy and Dandapat, 2016). The selection
of the appropriate algorithm depends on the data sample and the
disease or diseases to be detected. Thus, if there is no solid data set on
which to use supervised algorithms (such as decision trees or artificial
neural networks), it is necessary to go to other tools (such as the expert
systems).

Regarding the number of different diseases classified, it is currently
not possible to find published works regarding the diagnosis of a
significant number. Thus, most of the studies found in the literature
are focused on detecting arrhythmias (Alarsan and Younes, 2019; Gol-
rizkhatami and Acan, 2018; Jun et al., 2018; Kasar and Joshi, 2016;
Nayak et al., 2019; Pingale and Daimiwal, 2014; Shao et al., 2018;
Sharma et al., 2019; Singh et al., 2018; Yildirim et al., 2019). Only
three works targeting other diseases have been found: (Tripathy and
Dandapat, 2016) focused on bundle branch block, heart muscle disease
and myocardial infarction, (Adam et al., 2018) on dilated cardiomy-
opathy, hypertrophic cardiomyopathy and myocardial infarction, and
(Sahoo et al., 2017) on left bundle branch block, right bundle branch
block and paced beats. On the other hand, few studies have been seen in
which several ECG leads are used for the analysis and detection of the
diseases (Kasar and Joshi, 2016; Tripathy and Dandapat, 2016). The
reason why published studies focus on arrhythmias, use a single-lead
ECG, and supervised models for classification is clarified in Section 3.

3. Database

In relation to the databases used for modeling, the vast majority
of the published studies use long-term ECGs, such as the MIT-BIH
(Massachusetts Institute of Technology − Beth Israel Hospital) and
the AHA (American Heart Association). These databases are freely
accessible and each of the records belonging to them is more than
30 min long, containing about 2000 cardiac cycles. MIT-BIH database
(MIT-BIH Database and Software Catalog, 2019) is in turn composed
of several databases with characteristics that encompass different dis-
eases (although in a limited number). Specifically, these databases
are: MIT-BIH Arrhythmia Database, Creighton University Ventricu-
lar Tachyarrhythmia Database, MIT-BIH Noise Stress Test Database,
MIT-BIH ST Change Database, MIT-BIH Malignant Ventricular Arrhyth-
mia Database, MIT-BIH Atrial Fibrillation/Flutter Database, MIT-BIH
ECH Compression Test Database, MIT-BIH Supraventricular Arrhythmia
Database, MIT-BIH Long-Term Database and MIT-BIH Normal Sinus
Rhythm Database.

The main problems of the above-mentioned databases are the num-
ber of records, which is very limited (for example, the MIT-BIH arrhyth-
mia database has 48 records) and mainly focused on arrhythmias, the
number of leads (the MIT-BIH arrhythmia database contains two-lead
ECG signals), and the length of the ECG (30 min each, which logically
exceeds the normal duration of an ECG performed in a medical center).
The advantage of these public databases is that all the registered
diagnoses are validated. This allows for supervised modeling in novel
classification techniques. Furthermore, it is not easy for researchers to
access other more extensive ECG databases.

For the development of the presented system, an ECG database pro-
vided by the Preving Investment Company was used. This database con-
tained around 284,000 anonymous ECGs (specifically 283,939 ECGs),
stored in electronic files in SCP format (European standard EN1064
for communication and storage of information related to ECGs). In
addition, the corresponding diagnosis associated with each of the ECGs
(performed by the doctors of the company), the date of completion, and
the age and gender of the patient were provided. The sample covered
the time interval between 2006 and 2017. Each of the ECGs had a
duration of 10 s with a sampling frequency of 500 Hz (sampling period
= 2 msec), which involved a total of 5000 samples per ECG.
3

Table 1
Set of 15 diagnoses and number of cases in the database.

Diagnosis Number of cases

Normal 212069
Artifacted or bad performance 1138
Incomplete right branch block 26375
Complete right branch block 2407
Incomplete right branch block with narrow QRS Not registered
1st degree atrioventricular block 565
Wolff–Parkinson–White preexcitation 163
Complete arrhythmia due to atrial fibrillation 181
Long QT Not registered
Short QT Not registered
Sinus tachycardia 2248
Sinus bradycardia 21439
Nodal/ectopic atrial rhythm Not registered
Sinus arrhythmia Not registered
Cardiac arrhythmia 2164

Fig. 3 shows the distribution of the ECGs in the database with
respect to ECGs registered with some type of disease versus nonpatho-
logical ECGs. As can be seen in the figure, 25% of the diagnoses were
registered with some type of disease.

The main problem of this database was the existence of a large
number of incorrect diagnoses for certain diseases. This was discovered
quickly with ECG diagnoses that included simple rules or parameters as
checks. For example, in sinus bradycardia, in which the heart rate must
be below 60 beats per minute (bpm), a large number of ECGs diagnosed
as such but with a value greater than 60 bpm could be found in the
database. Subsequently it was verified with the help of the specialist
that this was extrapolated to other diagnoses. A considerable number
of diagnostic errors arose because the professional who made the diag-
nosis was often not a specialist but a general practitioner. In addition,
there was the problem of the lack of unification of criteria among the
different doctors involved. It was not possible for the specialist to filter
incorrect diagnoses since the high ECG number did not allow one-to-
one validation of the entire database. As a second problem, there were
also diagnoses (such as long QT or nodal rhythm) that had not been
registered in the database to date and therefore there were no ECG
samples with these diagnoses.

The consequence of the above-mentioned problems was that the
database could not be used for the supervised training of models (for
example through deep learning with convolutional neural networks).
This database, thanks to the large number of ECGs registered in it,
was used as support for the development of the diagnostic system (for
example to verify the noise filtering and identification of waves or to
validate the outputs of the generated diagnostic rules).

Table 1 shows the set of 15 diagnoses (13 of them pathological)
included in the system, together with the number of ECGs registered in
the database for each case.

As can be seen, there are five diagnoses (incomplete right branch
block with narrow QRS, long QT, short QT, nodal/ectopic atrial rhythm,
and sinus arrhythmia) for which there were no ECGs with that diagnosis
in the database. This is because these diagnoses had not been taken into
account by the doctors who performed the ECGs.

4. Noise filtering and wave identification

For automatic signal processing corresponding to ECGs, it is neces-
sary, as a starting point, to identify the different waves by means of
algorithms that process the signals. But as was introduced in Section 2,
a captured ECG signal is so weak that it is heavily contaminated
with noise coupled in the form of interference from the power grid.
In addition, the acquired signal is mixed with various low-frequency
artifacts generated as a result of the patient’s breathing and other
causes. Hence, filtering of the noise before the identification of the
different waves becomes highly complex, but totally necessary.

For the design of the noise filtering and wave identification in the

diagnostic system, the set of stages shown in Fig. 4 was carried out.
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Fig. 3. Distribution of pathological ECGs versus nonpathological ECGs.
Fig. 4. Stages for the identification and measurement of waves.

4.1. Noise filtering

Regarding noise filtering, it was essential in the first place to identify
the different frequencies that can be found in the signal of an electro-
cardiogram (Haritha et al., 2016; Limaye and Deshmukh, 2016). The
noise in ECGs contains the following frequency components:

Relating to the components of the ECG:

– Heart rate: 0.67−5 Hz (i.e. 40−300 bpm)
– P-wave: 0.67−5 Hz
– QRS component: 10−50 Hz
– T-wave: 1−7 Hz.

Relating to the artifact and noise on the ECG:

– Muscle contractions: 5−50 Hz
– Respiratory: 0.12−0.5 Hz (e.g. 8−30 bpm)
– External electrical: 50 or 60 Hz
– Electrode contact: 60 Hz.

Others: Typically >10 Hz (muscle stimulators, strong magnetic fields,
pacemakers with impedance monitoring)

Taking into consideration the above frequencies, an algorithm was
designed in order to filter the signal. This algorithm performs two
successive filtrations:

In the first filtering stage, a second-order Butterworth (Fig. 5)
bandpass filter is applied. This filter has been used and analyzed in
previous work related to ECGs (Jagtap, 2012; Liu et al., 2018; Salsekar
and Wadhwani, 2012). It is applied to remove frequencies below 0.5 Hz
(corresponding to a baseline displacement and a modulation of ECG
amplitude with respiration) and above 150 Hz (corresponding to the
interference of the power line and noise by electrode contact).

The second signal filtering is based on a wavelet transform. The
purpose of this filtering is to soften the original ECG signal (without
removing valid frequencies of the different ECG components). This
4

Fig. 5. Second-order Butterworth bandpass filter in ECG (Fazel-Rezai et al., 2011).

filtering is performed in two steps: First, a discrete wavelet transform
(DWT) according to Mallat’s pyramid algorithm (Mallat, 1989) is ap-
plied in order to obtain the wavelet coefficients. Subsequently, these
coefficients are modified by applying signal smoothing (Nason and
Silverman, 1995). Finally, the signal is reconstructed from the modified
coefficients.

The filtering process is applied to the different leads of the ECG
required for the identification of the diseases (which were specifically
leads I, II, V1, V5, and V6). Since the noise of the ECG signals could
not be filtered in its entirety (because the frequencies of the ECG
overlap with ECG information), it was decided to generate a noise level
indicator (called NC50). This indicator would allow the professional
who performs the ECG to know if the level of noise has affected the
proper processing by the ECG. Thus, the system would indicate, by
means of the ‘artifacted or bad performance’ diagnosis, when the noise
level exceeds what is advisable to perform a reliable diagnosis. It would
enable the doctor to repeat the test. The design of the noise indicator
is described in Section 4.2 since it uses the signal processing described
in that section.

4.2. Identification and measurement of r-waves

For detecting the different R-waves in the ECG, wavelet transform
(Rajini, 2016) was used. This transform allows frequency intervals to be
detected and placed in time within the analysis window. It breaks down
the signal into different levels, each of which covers a frequency range,
and is composed of approximation coefficients (covering the lowest
frequencies of that level) and detail (covering the highest frequencies).
Fig. 6 shows these levels along with their frequency range for the signal
sampled in the ECG. The original signal contains frequencies of up to
250 Hz since each ECG is sampled at 500 Hz (according to Nyquist
theorem, the ECG can contain frequencies of up to half of the sampling).

It is shown that the R-wave is located at frequencies between 31.2
and 62.5 Hz (Haritha et al., 2016; Limaye and Deshmukh, 2016).
Thus, in order to detect the R-wave, an algorithm was designed that
performed a wavelet decomposition using the Haar transform function.
The algorithm detects the peaks of the level 3 detail coefficients (D3)

from a threshold value. The ECG lead used for the algorithm is I, which
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Fig. 6. Frequency range for each level of wavelet decomposition.
Fig. 7. Identification of R-waves.
as suggested by the specialist as the best lead for identifying R-waves.
ig. 7 shows an example of this detection process.

The threshold must be dynamic since the amplitude of a peak in the
avelet detail coefficients depends on the amplitude of the R-wave in

he original signal. This amplitude may vary depending on the patient’s
eartbeat strength, his body fat, electrode placement, etc.

For the calculation of the threshold, a large battery of tests was
arried out looking for the correspondence between the amplitude
evels of the R-waves of the original signal and the amplitude obtained
n the wavelet coefficients. After this analysis, the following calculation
or the threshold was reached (with maxR being the maximum value of
he signal):

threshold <- 0.25 * maxR - 25
if (maxR < 150)

threshold <- 12.5

if (maxR > 900)

threshold <- 200

his dynamic threshold allows the R-wave detection algorithm to work
ell at acceptable noise levels. The problem at this point is that an
rtifact ECG with a severe noise in the frequency spectrum of the
-wave produces additional peaks at this level of detail coefficients
Fig. 8). This means that the R-wave identification algorithm will not
ork correctly in those cases since the R-waves overlaps in frequency
ith the noise signal.

In order to control the above problem, the noise indicator NC50
as created. This parameter evaluates the level of overlapping noise at

requencies that make it difficult to detect the R-waves. It is calculated
s the number of times that the values of the detail coefficients cross,
n the Y axis, 50% of the threshold value calculated for that signal and
ubtracting from this value the number of identified R-waves. Thus,
5

NC50 identifies the overlapping noise in the frequency range in which
the R-waves are located in the ECG.

Fig. 9 shows the resulting histogram with normal curve of parameter
NC50 calculated for all ECGs in the database. A threshold of 40 was
configured in order to identify the ECG as ‘artifacted or bad perfor-
mance.’ Above this threshold there were 17,792 ECGs, which implies a
filtration rate of 6.3% of the ECGs.

Additionally, as a noise indicator that also considers other leads, the
number of R-waves in leads II and V5 was calculated. This subsequently
allows the system to filter based on the mismatch of the number of R-
waves identified in lead I with the number of R-waves identified in
leads II and V5 (in both leads the R-waves also have to be perfectly
identifiable). Thus, if they do not match, the ECG is filtered and
identified as ‘artifacted or bad performance.’

After applying the above filters to all the ECGs in the database, the
total number of records filtered was around 10%.

4.3. Identification and measurement of P, Q, S, and t waves

Once the R-wave set for an ECG was identified by the system, the
next step was the detection of the rest of the ECG waves. An algorithm
was designed to detect, for each of the R-waves, its attached P, Q, S
and T waves. In relation to the Q and S waves, the algorithm searches
for the relative minimums attached to the R-wave that follows any of
these possible QRS patterns (Fig. 10). Thus, it searches for a peak (this
is done in lead I and V5) to the left of the R-wave (Q-wave) and a peak
to the right (S-wave). It first finds the lower peak and then the end of
the wave.

The end of a Q or S wave is not indicated by the crossing of the
signal through the baseline, since it does not normally coincide, but
a change in the slope of the signal. Thus, as can be seen in Fig. 11,
the measurement of the S-wave covers up to the vertical line (which
coincides with the change in signal slope). The threshold angle from
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Fig. 8. Severe noise in ECG signal.
Fig. 9. Histogram of parameter NC50 for all ECGs in the database.

the baseline that marks the end of the wave was configured at 30◦ for
S and −30◦ for Q. This value was set after an extensive battery of tests
to find the optimal value.

According to the specialist’s recommendation, the values related to
the Q-wave are calculated by the algorithm for lead I but also for lead
V5, since in certain ECGs that wave is not observed in lead I.

The next step that the algorithm carries out is the detection of the
peaks relative to the P and T waves. This detection is performed by
searching for relative maximums in two time intervals of the filtered
signal (Fig. 12). Specifically for the P-wave, the 40% of the interval
from the start of the S-wave of the previous cycle to the Q-wave of the
analyzed pulse is searched for the relative maximum of the signal. On
the other hand, for the T-wave, the remaining 60% interval marked in
the figure (which starts at the end point of the S-wave) is searched for
the relative maximum of the signal.

The designed algorithm cannot detect negative P and T waves
(which may appear in some ECGs). However, it is not necessary for

the 13 diseases diagnosed by the system.

6

Fig. 11. Detection of slope change in S-wave.

Once the peaks of the P and T waves have been found, the algorithm
find the beginning and end of the P and T waves respectively in order
to calculate their widths. This algorithm searches for a slope change in
the decrease of the wave value from the calculated maximums (Fig. 13).
The threshold angle from the baseline for the start and end of the P and
T waves was configured at 70◦.

The calculation corresponding to the P-wave is also performed in
lead II, since in some ECGs this wave can be seen in lead II but not in
lead I. Moreover, the processing of the S-wave, in addition to lead I,
is also performed in lead V6 as a condition for the diagnosis of certain
diseases (specifically both right branch blocks).

Once the P, Q, S, and T waves of the ECG have been identified,
the following parameters were calculated by the algorithm: QRS width

(msec), QT interval (msec) and PR interval (msec).
Fig. 10. Possible QRS patterns to be detected.
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Fig. 12. Intervals for the detection of P and T waves.
Fig. 13. Detection of slope change in T-wave.
Fig. 14. Delta wave in ECG.

4.4. Identification of possible Delta wave

The Delta wave is an additional wave that may appear on the ECG
due to the appearance of Wolff–Parkinson–White preexcitation. This
disease is a preexcitation syndrome of the ventricles of the heart due to
an accessory pathway known as the Kent beam. Thus, the realization of
this diagnosis implies the identification of this wave, which can appear
as an extension of the R-wave, on the left side of it (Fig. 14).

For its detection, an algorithm was designed to identify the appear-
ance or not of this Delta wave, as well as to calculate its width. For
the detection of said wave, the wavelet coefficients of level 3 are used
in lead I. The Delta wave does not appear in the detail coefficients at
level 3 because it is not in the range of frequencies that they detect.
Hence, to perform the detection, an additional descent, with respect
to that marked by the wavelet detail coefficients at its crossing of the
baseline, is identified by the algorithm (Fig. 15). Thus, the Delta wave
is identified by measuring that width of this part of the signal.

4.5. Identification of structure rSR’ in lead V1

For diagnosis of some of the most common heart diseases (including
the right branch blocks), the detection of the appearance of an rSR’
structure in the lead V1 is necessary. The structure rSR’ (or, which is
the same, the stocks of double wave R) follows the pattern shown in
Fig. 16. However, in most cases the highs of both R-waves are different.
7

Thus, for identifying the rSR’ structure, an algorithm was designed
to count, within the QRS complex found in lead I, the number of peaks
(or R-waves) existing in lead V1, identifying the intermediate S-wave
(whose peak is below the baseline). Fig. 17 shows a representation of
the window analysis performed for the rSR’ detection.

The number of R-waves in lead V1 is obtained by calculating the
number of relative maximums with intermediate S-waves. An interme-
diate S-wave is identified as a signal drop of at least 50% of the previous
R-wave or below the baseline.

5. Rule-based system design

Once it had been validated that the different ECG waves are de-
tected by the system (Fig. 18) and the necessary intervals and param-
eters had been measured, the design of the kernel of the diagnostic
system was carried out.

The design of the system is based on rules (as cardiologists and ECG
specialists work when making a diagnosis). It was not considered a
kernel designed from supervised training (except for a specific diagnosis
that will be described below) due to the low reliability for the diagnoses
registered in the ECG database. In addition, there were diagnoses (such
as long QT and short QT) that had not been considered in the past by
doctors who performed the ECGs and, therefore, were not registered in
the database.

For the modeling process, the work and knowledge of the ECG
diagnosis specialist were indispensable. Thus, a document describing
the diagnoses was provided by the specialist. This document contains
the following information for each disease:

– Necessary ECG parameters to be measured (intervals, waves,
morphologies. . . ).

– Conditions and rules for its diagnosis (required ECG leads, key
observations. . . ).

By doing this, and with the permanent support of the specialist,
the different diagnostic rules were modeled. The parameters involved
in the rule conditions are described in Table 2. These parameters are
calculated by the system from the noise filtering and wave identifi-
cation process (see Section 4) of the analyzed ECG. For 12 of the
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Fig. 15. Descent in Delta wave from the crossing of the wavelet coefficients on the X axis.
13 pathological diagnoses (all but ‘complete arrhythmia due to atrial
fibrillation’), the rules were designed from the information collected in
the specialist’s document and subsequently validated with the approval
of the specialist. The ECGs in the database in their entirety were used as
support for the design process of the expert system (first, verify correct
noise filtering; second, check the correct identification of waves by the
system; and third, test the output of the generated rule).

For the remaining diagnosis (‘complete arrhythmia due to atrial
fibrillation’), the diagnostic rules for this disease are not too clear. Thus,
for example, it is known that the intervals between R waves must be
irregular, but this irregularity is not defined. It was decided to ask the
specialist to generate, from the database, a validated sample of ECGs
with said disease. The objective for this diagnosis in particular was to
perform a supervised detection algorithm. To generate the sample, the
specialist took the 181 ECGs diagnosed with this disease (Table 1),
filtering the incorrect diagnoses, generating a sample of 144 ECGs.
From this sample and the rest of the ECGs in the database, a decision
tree was designed for the diagnosis of this disease (Fig. 19). The
chosen algorithm was the CHAID (Chi-squares Automatic Interaction
Detection), which provided the best results. The model was generated
with IBM Modeler 18 which used 30% of data for testing. From the
decision tree, a rule was extracted that covered 91.6% of the ECGs with
this disease and that was supported by 843 ECGs. It is important to
emphasize that the diagnostic errors of the system in this disease imply
some other disease related to some type of arrhythmia and they are
not diagnosed as nonpathological. This implies that these false-positive
errors are not critical.

The diagnostic rules for all of the 13 diseases covered are detailed
in Table 3. Those ECGs not identified as ‘artifacted or bad performance’
and not detected by some of the 13 rules were diagnosed as ‘normal’
(although they included, in addition to nonpathological ones, those
ECGs with any of the diseases not detected by the system).

The adjustment of the parameters of the rules was performed se-
quentially by means of an extensive battery of tests and with the
support of the specialist. In many rules in which percentages are used
(for example: P_exv2_porc <25), certain thresholds were set (in the
revious case 25). It avoids errors in the detection of a disease due
o the incorrect identification in any cardiac cycle of any of the waves.

At each step of the design, all of the ECGs (specifically 283,939
CGs) were processed in order to verify the correct functioning of the
ystem and to validate those parameter settings. For the generation and
djustment of the rules, the IBM Modeler 18 software was used. This
ool is designed for data mining processes and allows, in a fast and
omplete way, the processing of large databases. Once the diagnostic
8

Fig. 16. rSR’ structure in ECG.

rules had been designed, the expert system was programmed entirely
in R language.

With regard to temporal parameters, the total processing time for
the entire ECG database was 9 h and 53 min. This time involves about
130 msec per processed ECG. For testing it was used with an Intel Core
i5 9400 desktop PC with 16 GB of RAM.

6. Results

Once the system had been designed and implemented, it was vali-
dated with the help of the specialist. For this, for each of the diseases,
a set of diagnoses made by the system on ECGs randomly selected from
the database was sent to the specialist. Later the specialist returned a
report with the correct and incorrect diagnoses made by the system,
and with that data the reliability calculation was made.

The diagnoses used for validation were classified into three types:

• Type 1: Cases registered in the database with the disease that the
system confirms with that disease.

• Type 2: Cases diagnosed in the database as ‘normal’ (nonpatho-
logical) but that the system detects with that disease.

• Type 3: Cases diagnosed in the database with the disease and that
the system detects that the diagnosis is not correct.

This classification in each of the diagnoses was adequate for the

objective of validation of the present work. In addition, it allows



I. Monedero Engineering Applications of Artificial Intelligence 107 (2022) 104536
Fig. 17. Detection of rSR’ in lead V1.
Fig. 18. ECG with the different waves identified.
Table 2
Parameters used for diagnostic rules.

Parameter Description

HR Heart rate (calculated on the average time between the different R-waves).
P_exv2_porc Percentage of P-waves in lead I over total cardiac cycles.
P_rv_mean Mean value (mV) of the amplitudes of the P-wave in lead I.
PD2_exv2_porc Percentage of P-waves in lead II over total cardiac cycles.
PP_msec_max Maximum value (msec) of the intervals between P-waves.
PP_msec_min Minimum value (msec) of the intervals between P-waves.
PR_exc_porc Percentage of PR intervals in lead I that are below 120 msec.
PR_exl_porc Percentage of PR intervals in lead I that are above 200 msec.
PR_msec_median Median value (msec) of the PR intervals in lead I.
QRS110_ex_porc Percentage of QRS components whose width is below 110 msec.
QRS1120_ex_porc Percentage of QRS components whose width is between 100 and 120 msec.
QRS120_ex_porc Percentage of QRS components whose width is above 120 msec.
QT_corr_long_porc Percentage of QT intervals that are above normal values for a heart rate. The intervals were calculated using the normal value tables of

Lepeschkin/Ashman.
QT_corr_short_porc Percentage of QT intervals that are below normal values for a heart rate. The intervals were calculated using the normal value tables of

Lepeschkin/Ashman.
RnV1_porc Percentage of rSR’ complexes over the total cardiac cycles in lead V1.
RR_msec_max Maximum value (msec) of the intervals between R-waves.
RR_msec_min Minimum value (msec) of the intervals between R-waves.
RR10_mean Number of R-waves whose distances deviate at least 10% from the average of the RR intervals.
RR10_mm Number of R-waves whose distances deviate at least 10% from the maximum/minimum of the RR intervals.
RR20_mean Number of R-waves whose distances deviate at least 20% from the average of the RR intervals.
RR20_median Number of R-waves whose distances deviate at least 20% from the median of the RR intervals.
RR20_mm Number of R-waves whose distances deviate at least 20% from the maximum/minimum of the RR intervals.
S_e_porc Percentage of occurrences of S waves in lead I over total cardiac cycles.
SeV6_porc Percentage of occurrences of S waves in lead V6 over total cardiac cycles.
T_ex_porc Percentage of T-waves in lead I over total cardiac cycles.
W_delta_max Maximum width (number of samples) of the different Delta waves in lead I.
(against, for example, a confusion matrix) information to be obtained

regarding the quality of the diagnoses registered in the database.

9

The number of cases sent to the specialist for each disease depended

on the diagnosis in question as well as its frequency of appearance
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Table 3
Rules for the 13 pathological diagnoses of the system.

Disease Rule

Complete arrhythmia due to atrial fibrillation (RR20_mean>0) and (P_exv2_porc<=50) and (RR10_mm>2) and (P_rv_mean<=1.32)
1st degree atrioventricular block (PR_exl_porc>25) and (PR_msec_median>170) and (QRS120_ex_porc<=25) and ((PD2_exv2_porc>25) or (P_exv2_porc>25))
Wolff–Parkinson–White preexcitation (QRS110_ex_porc<40) and (PR_exc_porc>60) and (W_delta_max>5)
Long QT (QT_corr_long_porc>75) and (T_ex_porc>75)
Short QT (QT_corr_short_porc>75) and (T_ex_porc>75)
Nodal/ectopic atrial rhythm (RR10_mean==0) and (P_exv2_porc<25) and (PD2_exv2_porc<25) and (QRS120_ex_porc<75) and (HR>=40) and

(HR<=70)
Incomplete right branch block (RnV1_porc>50) and (SeV6_porc>50) and (S_e_porc>50) and (QRS1120_ex_porc>25) and

(QRS1120_ex_porc>=QRS120_ex_porc)
Complete right branch block (RnV1_porc>50) and (SeV6_porc>50) and (S_e_porc>50) and (QRS120_ex_porc>25)
Incomplete right branch block with narrow QRS (RnV1_porc>50) and (SeV6_porc>50) and (S_e_porc>50) and (QRS1120_ex_porc<=25)
Sinus tachycardia (HR>100) and ((P_exv2_porc>25) or (PD2_exv2_porc>25)) and (RR20_mean==0) and (QRS120_ex_porc<=75) and

(PR_exl_porc<75)
Sinus bradycardia (HR<60) and ((P_exv2_porc>25) or (PD2_exv2_porc>25)) and (RR20_mean==0) and (QRS120_ex_porc<=75) and

(PR_exl_porc<75)
Sinus arrhythmia ((PP_msec_max-PP_msec_min>=120) or (RR_msec_max-RR_msec_min>=120)) and ((P_exv2_porc>25) or (PD2_exv2_porc>25))

and (QRS120_ex_porc<=40) and (PR_exl_porc<75)
Other cardiac arrhythmias (RR20_mm>0) or (RR20_mean>0) or (RR20_median>0)
in the database. The number of cases had to be limited due to the
significant time spent by the specialist validating an ECG and carrying
out a diagnosis.

For the selection of the ECG sample for validation, random sampling
for each disease was carried out using the subset of ECGs corresponding
to the last two years of the sample (2016 and 2017). The results of the
validation for each of the diagnoses in the final version of the system
are shown in Table 4. These results include both the 12 diagnoses of
the expert system and the complete arrhythmia due to atrial fibrillation
diagnosis generated from the decision tree. For complete arrhythmia
due to atrial fibrillation, the result is marked with *. It refers to the
confidence of the rule on the total of the sample selected for that
diagnosis (since for that disease the total number of cases registered in
the database was used). The percentage obtained for these conditions
and number of cases is considered excellent. On the other hand, in those
diseases whose results are linked to the three types in the table, there
were no cases previously identified in the database.

The results obtained by the system in its validation were 97.51% on
average in the percentage of correct answers in type 1 diagnoses, 60%
on average in type 2 and 78.8% in type 3. It is necessary to bear in mind
that the most significant results are focused on type 1, since a good
percentage implies achieving at least the reliability of the diagnoses of
the doctors who performed the ECGs. On the other hand, in relation to
diagnoses without previous registration in the database (and therefore
not validated in the three types), the average percentage of success was
82.5%.

As a means of reliability, taking into account all cases sent to
the specialist for validation and excluding those related to type 1
for ‘complete arrhythmia due to atrial fibrillation’ (which were really
previously validated data), the system correctly diagnosed a total of
135 cases of 167 pathological ECGs sent to be checked by the specialist.
This implies 80.8% of average reliability in the diagnosis of diseases.
Thus, with the previous numbers, the validation results of the system
can be considered good enough in the context of a high-complexity
problem.

7. Conclusions and discussion

The paper describes the development of an expert diagnostic system
for standard 12-lead ECGs. The system includes a total of 15 diagnoses
(13 of them pathological). A database of 283,939 anonymous ECGs
compiled by the Preving Investment Company was used as support for
the design and validation process. In addition, a specialist with exten-
sive experience in ECG diagnosis was available during the development
of the work.

A total of 26 parameters were generated for the feature extraction

of the ECG. The kernel of the system consists of a set of 13 rules (one
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per pathological diagnosis) that were generated with the collaboration
of the specialist and using as support the data recorded in the database.

Furthermore, an algorithm was designed to filter the noise from
the signals of the ECG leads used (I, II, V1, V5, and V6). Since total
noise filtering is not possible when the frequency overlaps with the ECG
information, a noise indicator was generated. This indicator allows the
professional performing the ECG to know its noise level.

For the validation process, a set of diagnoses made by the system
for each modeled disease were sent to the specialist. In terms of the
reliability of the system, it correctly diagnosed a total of 135 cases
out of a total of 167 pathological ECGs. This is 80.8% effective in
diagnosing diseases. With this success rate and given the extreme
complexity of the problem, the results are considered adequate to make
the system a useful support tool for diagnosis.

Research on automatic ECG diagnosis is currently widespread, with
many supervised techniques (for example with convolutional neural
networks). These techniques are powerful but require a large amount
of reliable data for training. The main problem is that the diagnoses
registered in an extensive database contain errors or depend on the
judgment of the professional who made the diagnosis. The present work
adds an alternative approach to the majority of the studies found in the
literature. The contributions of this work are the following:

– A fully functional expert system that performs diagnoses follow-
ing the approach of a specialist. The set of rules in the system is
concise and based on electrocardiography parameters.

– A large number of diseases are covered by the system with a high
reliability rate. Most of the studies found in the literature are
focused on detecting arrhythmias. There is no study that includes
13 different diseases.

– The use of 5 leads of a standard 12-lead ECG to perform the
diagnosis. Most published studies use a single-lead ECG. This
implies that the diagnostic possibilities are limited since certain
diseases require several leads for their diagnosis.

– A novel noise indicator that measures the quality of the acquired
ECG signal. This allows the user to repeat the ECG if its noise level
is excessive. In this way, the system provides a solution for those
ECGs whose noise cannot be filtered.

– The unification of criteria for the diagnosis of ECGs. This pro-
vides a better organization of the Preving Investment Company’s
database. In addition, the system allows the company to detect
previously undiagnosed diseases.

Currently, the Preving Investment Company’s medical staff is testing
the system as a support for diagnoses. The company’s intention for the

future is to expand the project to include all heart diseases.
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Table 4
Validation results for the system.
Disease Type 1 Type 2 Type 3

Complete arrhythmia due to atrial fibrillation 132/144 (91.6%)* 2/10 (20%) N/A
1st degree atrioventricular block 7/7 (100%) 6/7 (85.7%) 6/6 (100%)
Wolff–Parkinson–White preexcitation 4/4 (100%) 0/4 (0%) 2/4 (50%)
Long QT 7/10 (70%)
Short QT 4/5 (80%)
Nodal/ectopic atrial rhythm 5/10 (50%)
Incomplete right branch block 10/10 (100%) 10/10 (100%) 9/10 (90%)
Complete right branch block 6/7 (85.7%) 3/7 (42.8%) 5/6 (83.3%)
Incomplete right branch block with narrow QRS 10/10 (100%) 10/10 (100%) 9/10 (90%)
Sinus tachycardia 7/7 (100%) 7/7 (100%) 4/6 (66.6%)
Sinus bradycardia 7/7 (100%) 6/7 (85.7%) 4/6 (66.6%)
Sinus arrhythmia 10/10 (100%)
Fig. 19. Decision tree for ‘complete arrhythmia due to atrial fibrillation’.
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