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On Data Reutilization for Historian Based Predictive Control

J. M. Maestre1, Eva Masero1, J. R. Salvador2, D. R. Ramirez1 and Q. Zhu3

Abstract— This paper presents a robust finite-horizon control
scheme based on data that produces feasible control sequences.
The scheme makes use of a database that includes information
from prior experiences of the same and others controllers
handling similar systems. By the convex combination of
feasible histories plus an auxiliary control law that deals with
uncertainties, this scheme can be used as a robust historian-
based predictive controller. Further application could include a
cooperative learning-based strategy in which multiple controllers
share their previous executions to gain collective benefits in
terms of performance. The validity of the proposed controller
is tested in a simulated case study.

Index Terms— Predictive control; Data-based control; Cloud-
based control.

I. INTRODUCTION

Many applications of model predictive control (MPC) in
the industry, e.g., [1]–[3], have stimulated the interest in
approaches combining data-based and learning methods with
predictive control schemes [4]. We say renewed because
there was already some learning flavor in many control
methods based on historical data, e.g., those based on neural
networks [5], adaptive models [6], scenarios [7], and the
extension of terminal regions [8], to name a few examples. In
the recent literature, we can find an MPC scheme for repetitive
tasks that learns from previous executions to improve its
performance, e.g., [9], where the theoretical properties are
derived from the use of safe sets, which can be defined
as regions of the state space where there exists a control
law that guarantees constraint satisfaction for all successive
time steps. This topic is also addressed in [10], [11], where
methods for expanding regions of safe states are proposed.
Learning is also used to infer the plant model, as in [12],
where experimental data on system inputs and outputs are
used to feed a nonparametric machine learning method.

This paper focuses on reutilizing past historical information
following the method presented in [13], where a predictive
data-based approach that feeds the plant with a convex
combination of previously applied trajectories is proposed
for linear systems in the ideal case that successive executions
of the system remain constant and disturbance-free. In the
present study, we extend the original approach to outweigh
lack of robustness for constraint satisfaction, e.g., caused by
parametric uncertainties and process noise. For that reason,
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the trajectories employed by the historian-based controller
must fulfill a set of conditions to assure robust constraint
satisfaction. To this end, we can apply a strategy analogous
to traditional tube-based MPC [14], with the difference that
here it is the data-based controller that provides nominal
disturbance-free trajectories for the current system. Therefore,
the newly proposed method can even deal with databases
in which the information has been generated by different
instances of the system being controlled (e.g., consider a set
of autonomous vehicles that share a cloud-based database).

The outline of the rest of the paper is as follows. Sec-
tion II presents the problem settings and the control strategy.
Sections III and IV detail the design and implementation of
the nominal and auxiliary controllers. Section V illustrates
simulation results, and Section VI shows concluding remarks.

II. PROBLEM FORMULATION
The system dynamics is considered to follow a discrete-

time linear time-invariant (LTI) model with an unknown
vector of parameters w ∈ W ⊆ Rnw :

x+ = A(w)x+B(w)u, (1)

where x, x+ ∈ Rnx are the current and successor states, and
u ∈ Rnu is input of the system. Likewise, A(w) ∈ Rnx×nx

and B(w) ∈ Rnx×nu are, respectively, the state-transition and
the input-to-state matrices, which depend on the realization
of parametric uncertainty w. We assume that:

1) All system realizations (A(w), B(w)) are controllable.
2) There exists a robust control law u = Kx that can

stabilize all system realizations (A(w), B(w)).
3) Two different realizations of w, say wi, wj ∈ W, lead to

two different system realizations (Ai, Bi) and (Aj , Bj),
with

Ai −Aj ∈ ∆Aw, Bi −Bj ∈ ∆Bw, (2)

i.e., differences between system realizations are
bounded. Here, ∆Aw and ∆Bw are polytopic sets
accounting for the possible parameter variations.

State and inputs of the system are subject to convex
polytopic constraints with the origin in their interior, i.e.,

x ∈ X ⊆ Rnx , u ∈ U ⊆ Rnu . (3)

A direct consequence of (2) and (3) is that it is possible to
recast the uncertainty of the system parameters as an unknown
disturbance. For example, the viewpoints corresponding to
the system realizations i and j can be related as

x+ = Aix+Biu
∈ (Aj ⊕∆Aw)x+ (Bj ⊕∆Bw)u
= Ajx+Bju+ η,

(4)



with η ∈ Ω ≜ ∆AwX⊕∆BwU being a polytopic convex set
that contains the origin in its interior. The symbol ⊕ denotes
the Minkowski sum: X ⊕ Y ≜ {x + y : x ∈ X, y ∈ Y}.
Finally, note that in case of need, set Ω can be enlarged to
deal with additional uncertainty sources.

A. Database and control goal

Any system realization has access to a database that
contains a set T ≜ {1, · · · , T} of feasible trajectories for
different realizations of (1). Here, note that we do not make
any particular assumption about how the trajectories are
generated. In particular, a trajectory t ∈ T is composed of a
sequence of samples

(
xr(kr), ur(kr)

)
for kr = {1, . . . , ktend}

that satisfy (1) and (3) for the particular system realization,
with ktend being the time instant where the sequence t reaches
the origin. Table I shows an example of the considered
database, where each trajectory also provides us with meta-
information about the trajectory identifier and the system
realization in which that data was generated. Each row of the
table can be considered as a partial trajectory with information
about the time instant, the state, and the control input.

TABLE I
EXAMPLE OF DATABASE STRUCTURE

Traj. ID System ID kr xr(kr) ur(kr)

1 1 1 xr(1) ur(1)
...

...
...

...
...

1 1 k1end xr(k1end) ur(k1end)

2 1 1 xr(1) ur(1)
...

...
...

...
...

2 1 k2end xr(k2end) ur(k2end)

...
...

...
...

...

The control objective is to regulate the system to the origin
while minimizing the following global infinite-horizon cost.

J∞ =

∞∑
k=0

ℓ
(
x(k), u(k)

)
, (5)

where ℓ(·, ·) is the stage cost, which is defined by the positive
definite weighting matrices Q ∈ Rnx×nx and R ∈ Rnu×nu :

ℓ
(
x(k), u(k)

)
= x(k + 1)⊤Qx(k + 1) + u(k)⊤Ru(k). (6)

For the sake of implementability, it is desirable to consider a
finite horizon N , so that the minimization of (5) is replaced
by that of

JN =

N−1∑
k=0

ℓ
(
x(k), u(k)

)
+ f

(
x(k +N)

)
, (7)

where f(x(k + N)) = x⊤Px is a terminal cost function,
with P ≻ 0.

B. Control strategy

We control the system realization (Ai, Bi) using a data-
based controller that combines the trajectories contained in
T . A robust feedback controller is also employed to deal

with the differences η due to the uncertain system realization
(recall Eq. (4)). That is, the control law becomes

u(x) = v(x) + ve(x, x̄), (8)

where v(x) corresponds to the first element of a sequence
of control actions generated by the data-based law (obtained,
e.g., following [13]), and ve(x, x̄) = K(x − x̄) rejects the
differences between the system state x and the corresponding
nominal value x̄, which is the predicted state in k computed
at instant k − 1, i.e., x̄(k) = x(k|k − 1). Since there is a
lack of information to compute x(1|0) at instant k = 0, we
consider x̄(1) = x(1|0) = x(1) at k = 1. A block diagram
of the proposed dual control law is shown in Fig. 1.

III. DATA-BASED CONTROL LAW

Let us consider a particular system realization (Ai, Bi),
which starts in state xi. In the most restrictive case, there
is no previous information in the database T on previous
executions of this system, i.e., we need to rely on information
from other system realizations.

First, we consider that the information is obtained from
a single system realization (Aj , Bj), with j ̸= i. Since the
sequences of system realization j might not be feasible for
(Ai, Bi), we need to check their robustness. If we recall
the dynamics of the system from the viewpoint of system
realization j (Eq. (4)) and the double control law (Eq. (8)),
it yields

x(k + 1) = Ajx(k) +Bj

(
v(k) +Ke(k)

)
, (9)

where e(k) = x(k) − x̄(k) ∈ Ω captures the difference
between real and nominal values of the state. Hence, any can-
didate trajectory

(
xr(kr), ur(kr)

)
, with kr = {1, . . . , ktend},

must possess enough margin with the state constraints to
allow the uncertainty given by the closed-loop dynamics of
the errors due to model discrepancies. One way to do this is
to check:

xr(k)⊕R ∈ X, kr = {1, . . . , ktend}, (10)

where R is a robust positively invariant (RPI) set R, which
is assumed to exist, i.e.,

(Aj +BjK)R⊕ Ω ⊆ R ⊆ X,
KR ⊆ U. (11)

Therefore, we need to check the following conditions:

xi ∈ xr(1)⊕R,
xr(kr) ∈ X⊖R,
ur(kr) ∈ U⊖KR,

(12)

with kr = {1, . . . , ktend}, where the symbol ⊖ denotes the
Pontryagin difference defined as X⊖ Y ≜ {x ∈ X : x+ y ∈
X, ∀y ∈ Y}. In this way, we can determine which of the
available sequences of the database are valid by considering
a robust control problem from the viewpoint of subsystem
(Aj , Bj). Details on the calculation of K and R are given
in Section IV.
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Fig. 1. Block diagram of the combined data-based and feedback controller.

By checking (12), we can find the set of robust feasible
trajectories for each system j in the database, say Tj .1 Here,
let F denote the set of system realizations providing at least
one feasible trajectory, which is assumed to be nonempty.
For a given N -length partial sequence pj ⊆ t ∈ Tj , j ∈ F ,
obtained taking N consecutive states and control actions from
a trajectory t, that is

pj

{
xpj

= {xpj
(0), xpj

(1), . . . , xpj
(N − 1)}

upj
= {upj

(0), upj
(1), . . . , upj

(N − 1)} .

Let JN
pj

denote the performance of this sequence measured
by (7). A feasible weight vector Λ ∈ Rm for the convex
combination of control sequences when the current state
measurement is xi(k) can be computed as

min
Λ∈Rm

∑
j∈F

∑
pj∈Tj

λpjJ
N
pj
,

s.t.
∑
j∈F

∑
pj∈Tj

λpj
xpj

(0) = xi(k),∑
pj∈Tj

λpj
= 1,

λpj ≥ 0, pj ⊆ t ∈ Tj , j ∈ F ,

(13)

where Λ is the set of weighs λpj
, with pj ⊆ t ∈ Tj and

j ∈ F , which are the decision variables of (13).
Thus, let Λ∗ = {λ∗

1, λ
∗
2, . . . , λ

∗
m} be the minimizer of (13),

provided that it exists,2 then

uc =
∑
j∈F

∑
pj∈Tj

λ∗
pj

upj
(14)

is a nominal solution for system (Ai, Bi) and the first element
correspond to the control action v(k) = uc(1). The auxiliary
part of the control law becomes:

ve(k) = K
(
xi(k)−

∑
j∈F

∑
pj∈Tj

λk−1
pj

xpj (k|k − 1)
)
, (15)

where λk−1
pj

is the optimal weigh vector computed in k − 1
and xpj (k|k − 1), which corresponds to the nominal state x̄,
is the predicted state in k computed at instant k − 1.

As a consequence, the trajectory of the system realization
i will lie within a tube around the trajectory generated by
the data-based controller, which will be recursively feasible
because the combined partial sequences reach the origin. At
that moment, the state of the system will lie in a region R
around the origin. Likewise, it is also possible to produce a

1Feasible sequences can be extended with zeros so that their length
becomes greater or at least equal to N , i.e., ktend ≥ N .

2One option to guarantee the existence of the minimizer is to use soft
constraints in Problem (13).

new combination of partial sequences based on the most
recent information available in the database following a
receding-horizon strategy.

Algorithm 1 details the steps of the proposed robust
historian-based controller. Note that we consider as a selection
criterion that only the m feasible partial trajectories of the
database can be combined to obtain the control input to
relieve the computational burden.

Algorithm 1
Inputs: k, x(k), Tj , K, R

1: Compute the distance between the current state measure-
ment x(k) and the state xr of all rows in the database:

d(x(k), xr) = |x(k)− xr|2.

2: Select the m feasible partial sequences of the database
with the lowest distance.

3: Evaluate the cost (7) of each candidate p ∈ m.
4: Solve (13) to optimize the weight vector Λ∗ for the convex

combination of the m control sequences.
5: Obtain uc as (14) and then v(k) = uc(1).
6: Calculate the auxiliary control input term ve(k) that penal-

izes the deviation between current and the corresponding
nominal states using (15).

7: Apply u(k) = v(k) + ve(k) to the system.

IV. AUXILIARY CONTROL LAW

The design of a robust feedback controller u = Kx is
based on standard linear matrix inequalities (LMIs) [15]. In
particular, we assume that the uncertainty set (A(w), B(w))
of system realizations is polytopic with vertices denoted by
set V , leading to the dynamics:

x+ = Aix+Biu, i ∈ V.

In this context, it is possible to find K by maximizing the
trace of matrix W subject to the set of LMIs:[

W WA⊤
i + Y ⊤B⊤

i

AiW +BiY W

]
≻ 0, i ∈ V, (16)

where W and Y are the optimization variables. The stabilizing
control law is K = YW−1 and the corresponding Lyapunov
function becomes P = W−1. Then, given an ellipsoidal
bound on the disturbance, it is straightforward to find an RPI
for the system realizations by using standard LMIs methods.
As for the polytopic case, one can employ methods such as
the LP proposed in [16] to compute a common minimal RPI
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Fig. 2. Scheme of the quadruple-tank plant.

for the system realizations. Likewise, one can find a feedback
gain and an RPI set for each vertex and then use the union
of the RPI sets in the checking steps (12).

V. CASE STUDY

We evaluate the proposed control scheme in the quadruple-
tank plant presented in [17], which consists of four intercon-
nected water tanks, as shown in Fig. 2.

The two upper tanks (#3 and #4) discharge flow rates
to the lower ones (#1 and #2), and these, in turn, into a
sinking tank. The plant is controlled by two pumps that keep
the water circulation between tanks. There are also two three-
way valves that divide the flow into two ways. Applying the
mass balance and Bernoulli’s law to the plant, we obtain the
following:

S
dh1

dt
= −a1

√
2gh1 + a3

√
2gh3 + γa

qa
3600

,

S
dh2

dt
= −a2

√
2gh2 + a4

√
2gh4 + γb

qb
3600

,

S
dh3

dt
= −a3

√
2gh3 + (1− γb)

qb
3600

,

S
dh4

dt
= −a4

√
2gh4 + (1− γa)

qb
3600

,

(17)

where hn is the water level of tank n ∈ {1, 2, 3, 4}, an is
the cross section of the outlet pipe n, S = 0.03 m2 is the
cross section of all tanks, γa, γb ∈ [0, 1] are the opening of
the three-way valves (γa = 0.3,γb = 0.4), g = 9.81 m/s2 is
the gravitational constant, and qa, qb are the pump flow rates.

The nonlinear system dynamics expressed by (17) can be
linearized by its Taylor expansion. Given the operating point:

h0 = [h0
1, h

0
2, h

0
3, h

0
4] = [0.5006, 0.4704, 0.5206, 0.4319] m

q0 = [q0a , q
0
b] = [1.5355, 1.6794] m3/h,

the discrete linearized state-space dynamics are

x̂+ = Ax̂+Bû, ŷ = Cx̂, (18)

with x̂ = [h1−h0
1, . . . , h4−h0

4]
⊤ and û = [qa−q0a , qb−q0b]

⊤.
The discrete matrices (A,B,C) of the nominal system using
a sample time ts = 30 s are:

A =


0.6654 0 0.1919 0

0 0.5971 0 0.2250
0 0 0.7643 0
0 0 0 0.7077

 , B =


0.0684 0.0179
0.0254 0.0868

0 0.1461
0.1644 0

 ,

and C = I , which is the unit matrix of appropriate dimension.
Regarding constraints, the system is subject to the following

operational state and input constraints:

0.2 m ≤ {h1, h2, h3, h4} ≤ 1.2 m,

0 m/h
3 ≤ {qa, qb} ≤ 3 m/h

3
.

A. Control parameters

We aim to achieve the reference levels of the two lower
tanks (h0

1, h
0
2) by minimizing an N -horizon cost function

while satisfying some constraints. We consider a prediction
horizon of N = 5, weighting matrices Q = I and R = 0.01·I ,
and a simulation length of Nend = 2000 s. The feedback
gain K is calculated by solving (16):

K(A,B) =

[
−0.8572 −0.6449 0.29360 −3.1792
−0.7400 −1.0007 −3.4503 0.07570

]
,

and the RPI set R is computed with the MPT toolbox of
MATLAB taking into account K and the uncertainty polytopic
set Ω for all system realizations.

B. Database and system realizations

The database is composed of a set To = {1, . . . , To} with
To = 100 trajectories, which have been obtained from the
nominal plant (A,B) using PID controllers. These trajectories
start at different points and steer the system to the operating
point {h0, q0}, which becomes the origin in (18). We consider
the most restrictive case where there is no information in the
database about other system realizations. Each trajectory has
7000-second information of the plant operation. Hence, there
are To · 7000/ts candidate trajectories at each time step, but
only m = 1000 are considered to compute the control input.

C. Simulation results

We perform simulations for three system realizations:
(A1, B1), (A2, B2), and (A3, B3), which are obtained by
slightly changing the cross section of the outlet pipes of
the nominal system (A,B), as detailed in Table II. Note
that, for a practical application of the control method, the
difference between systems should be small to apply robust
arguments. As illustration, Figs. 3 and 4 display the results
corresponding to the first and second system realizations and
show trajectories of the tank levels (m) and the flow rates
(m3/h) considering four initial states: (h0

1, h
0
2)± (0.05, 0.05)

with their corresponding h0
3 and h0

4, and the saturated flow
rates qsat

a , qsat
b . As shown, our proposed robust data-based

controller take advantages of information from the database,
which only contains trajectories from the nominal system
(A,B), to carry the tanks levels #1 and #2 to their operating
points, i.e., h0

1 and h0
2. Note that the levels h1 and h2 have

steady-state errors because the database does not have offset-
free trajectories. The mean relative error of these tank levels
n = {1, 2} computed as Erel(%) = (E1

rel + E2
rel)/2, with:

En
rel =

En
abs

h0
n

· 100, En
abs =

∑Nend/ts
k=1

∣∣hn(k)− h0
n

∣∣
Nend/ts

,

and the accumulated cost: Jacc =
∑Nend/ts

k=1 ĥ(k)⊤ Q ĥ(k) +

q̂(k)⊤ R q̂(k), with ĥ(k) = [h1(k), h2(k)] − [h0
1, h

0
2] and



TABLE II
NUMERICAL RESULTS OF THE ROBUST DATA-BASED CONTROLLER FOR THE DIFFERENT SYSTEM REALIZATIONS.

System
Realizations

Cross section of outlet pipes (m) Robust data-based controller
a1 · 10−4 a2 · 10−4 a3 · 10−4 a4 · 10−4 Erel(%) Jacc

(A,B) 1.301 1.597 0.8758 1.026 2.1812 0.2465
(A1, B1) 1.341 1.627 0.8961 1.108 4.7457 0.2726
(A2, B2) 1.436 1.588 0.9769 0.9568 8.8432 3.4295
(A3, B3) 1.436 1.588 0.9769 1.226 8.9097 0.5190
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Fig. 3. Results for system realization (A1, B1) with the proposed approach.
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Fig. 4. Results for system realization (A2, B2) with the proposed approach.

q̂(k) = [qa(k), qb(k)] − [q0a , q
0
b ] are shown in Table II. By

combining the data-based and feedback controller, we can
stabilize plant realizations with data from the nominal plant.

VI. CONCLUSIONS

A robust data-based predictive approach that allows a set
of controllers to share information employing a common
database has been proposed. An interesting application is
cloud-based cooperative learning, where multiple controllers
may cooperate and reuse their collective experiences. The
proposed method is related to tube-based model predictive
control that uses a bound on disturbance to drive the system
by using a dual control law in which a data-based controller
steers the nominal system, and the error is dealt with auxiliary
feedback. Our results in the quadruple-tank plant show
promising results and highlight the relevance of exchanging
data between different system realizations in this context.
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model predictive control using tubes,” Automatica, vol. 40, no. 1,
pp. 125–133, 2004.

[15] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix
inequalities in system and control theory. SIAM, 1994.

[16] P. Trodden, “A one-step approach to computing a polytopic robust
positively invariant set,” IEEE Trans. Automat. Contr., vol. 61, no. 12,
pp. 4100–4105, 2016.

[17] K. H. Johansson, “The quadruple-tank process: A multivariable
laboratory process with an adjustable zero,” IEEE Trans. on Control
Systems Technology, vol. 8, no. 3, pp. 456–465, 2000.


