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ABSTRACT Differential Fault Analysis (DFA) and Power Analysis (PA) attacks, have become the main
methods for exploiting the vulnerabilities of physical implementations of block ciphers, currently used in
a multitude of applications, such as the Advanced Encryption Standard (AES). In order to minimize these
types of vulnerabilities, several mechanisms have been proposed to detect fault attacks. However, these
mechanisms can have a significant cost, not fully covering the implementations against fault attacks or not
taking into account the leakage of the information exploitable by the power analysis attacks. In this paper,
four different approaches are proposed with the aim of protecting the AES block cipher against DFA. The
proposed solutions are based on Hamming code and parity bits as signature generators for the internal state of
the AES cipher. These allow to detect DFA exploitable faults, from bit to byte level. The proposed solutions
have been applied to a T-box based AES block cipher implemented on Field Programmable Gate Array
(FPGA). Experimental results suggest a fault coverage of 98.5% and 99.99% with an area penalty of 9%
and 36% respectively, for the parity bit signature generators and a fault coverage of 100% with an area
penalty of 18% and 42% respectively when Hamming code signature generator is used. In addition, none
of the proposed countermeasures impose a frequency degradation, in respect to the unprotected cipher. The
proposed work goes further in the evaluation of the proposed DFA countermeasures by evaluating the impact
of these structures in terms of power side-channel. The obtained results suggest that no extra information
leakage is produced that can be exploited by PA. Overall, the proposed DFA countermeasures provide a
high fault coverage protection with a low cost in terms of area and power consumption and no PA security
degradation.

INDEX TERMS Countermeasure, FPGA implementation, Hamming code, parity, AES, DFA, fault attack,
power analysis.

I. INTRODUCTION
Nowadays, the algorithms used to ensure the privacy of user
data have proven to be mathematically secure due to the fact
that compromising their security would be extremely time
and resource consuming. Taking into account recent research
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work on the different stages of Internet of Things (IoT) secu-
rity solutions, it is possible to observe the importance of IoT
security analysis [1]. One of the proposals in [2], [3] is the use
of so-called lightweight cryptography to avoid the security
problems and the use of solutions whose cost has the lowest
possible impact on implementations. Finally, [4] discusses
the risks that exist if attacks on embedded applications used
in this field are not taken into account. Because of this, the
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development of new cryptographic algorithms and solutions
to protect information and comply with the strong restrictions
imposed by the applications is constant. However, trying to
compromise the security of such algorithms through their
physical implementations has become a serious problem.
To this end, attacks on the physical implementations of
these devices are increasing in number. These attacks include
Side Channel Analysis (SCAs) and Active Faults Analysis
Attacks (FA).

In the first case, the attacker tries to obtain information
from the cryptographic algorithm during encryption passively
(measuring its timing [5], power consumption [6] or elec-
tromagnetic emissions [7] among others). The most known
SCA are the Power Analysis attacks [6], [8], being powerful
attacks due to their effectiveness and low cost. In a Power
Analysis (PA) attack, the power consumption of the cryp-
tographic device is measured during the normal encryption
process. Then, the measured power consumption and the data
(plaintext, ciphertext, or available data in the specific applica-
tion) are mathematically processed to statistically obtain the
secret key and thus the secret information.

In the second case, the attacker tries to manipulate the cir-
cuit with the possibility of using different degrees of invasion,
being more or less aggressive with the device [9]–[21]. The
most popular type of attack, because it is cheap and allows the
device to be manipulated without leaving a trace and without
causing permanent damage, is the active non-invasive one.
In this case, the attacker is able to generate transient operating
errors (faults) and thus obtain the secret information con-
tained in the device. These types of faults combined with the
mathematical formulation used to retrieve secret information
are known as Differential Fault Analysis (DFA) attacks.

DFA has become one of the main methods for compro-
mising the security of block ciphers widely used in a mul-
titude of environments and applications. Due to their great
effectiveness and the real threat they pose to the security
of cryptographic devices and therefore to the integrity of
user data, the scientific community has turned to propos-
ing different mechanisms for detecting this type of attack.
Each of these mechanisms has a significant cost or does not
adequately protect cipher implementations against numerous
DFA models. The so-called countermeasures or detection
schemes try to minimize the vulnerabilities of cryptocir-
cuits against different attack techniques. There are therefore
numerous proposals for detection schemes reported in the
literature, such as hardware redundancy [26], temporal redun-
dancy [27], information redundancy [28] or the combination
between them [29]. Within the different schemes, in this
paper, we will focus on information redundancy scheme
group.

However, despite protecting systems against DFA attacks,
there are combined attacks where both vulnerabilities against
fault injection and power leakages are exploited [22], [23].
This also makes the evaluation of the interaction of DFA
countermeasures against PA attacks indispensable, since
the extra operations for DFA countermeasures can poten-

tially increase the leaked information exploitable by PA
attacks [25]. In this sense, it is mandatory to evaluate the
impact of the added DFA countermeasures in the robustness
against power analysis attacks.

Towards this, this paper proposes four methodologies for
designing fault detection while accessing the side-channel
attack resistance impact, targeting main standard encryp-
tion algorithm used to ensure the privacy of user data, the
Advanced Encryption Standard (AES) [30]. The main contri-
bution of this work are the four methodologies for designing
fault detection solutions using Hamming codes and parity bits
as signature generators.

These solutions allow detecting fault injections at both bit
and byte level, both odd and even faults. Four protection
schemes have been designed, which allow to protect the
cipher partially or completely. Partial protection is carried
out on the T-boxes, while full protection is carried out on
the operations, intermediate state matrix and KeyAddition.
With the use of Hamming codes and parity bits as signa-
ture generators, it is possible to protect the data being pro-
cessed in a more comprehensive way at a lower cost. The
proposed approaches are particularly targeted at AES block
ciphers based on T-box implementation, taking advantage
of memory blocks for data transformation. Nevertheless, the
proposed solutions are extensible to other block ciphers with
memory-based implementations, which while vulnerable to
timing attacks on software are secure and particularly effi-
cient in hardware-based implementations. The resulting pro-
posals are then evaluated in terms of side-channel attack
resistance, more concretely against PA attacks, evaluating
the potential leaked information through Test Vector Leakage
Assessment (TVLA) [31]. The obtained results, suggest fault
coverages between 98.5 to 100%, with no particular degra-
dation in terms of exploitable information leakage by PA
attacks.

The rest of the paper is organized as follows. Section II
introduces the T-box based AES block cipher implementa-
tions, presents a description of DFA attacks reported in the
literature, and also describes the type of faults against which
implementations should be protected. Section III describes
the proposed detection approaches and their application to
theAES algorithm. Section IV introduces the setup validation
schemes used. Section V presents the experimental results
obtained, discussing the fault coverage both by simulation
and experimentally. In Section VI presents the performance
evaluation and comparison with other schemes considering
area and performance cost. Section VII presents the explo-
ration of power consumption leakages exploitable in PA
attacks. Finally, in Section VIII the conclusions of this work
are depicted.

II. STATE OF THE ART
The AES [30] cipher is the National Institute of Standards
and Technology (NIST) standard, selected to replace Data
Encryption Standard (DES) cipher, using the Rijndael algo-
rithm. Depending on the key size (128, 192, or 256 bits)
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FIGURE 1. Schematic representation of AES: a) Standard, b) T-box based.

AES performs the input transformation over multiple rounds
(10, 12, or 14, respectively). The round process consists of
processing the 128 bit input block (16 byte), called state
S, through the operations SubBytes(), ShiftRows(), Mix-
Colums(), and AddRoundKey(). Figure 1a) depicts the data
transformation when a 128-bit AES key is used.

AddRoundKey()- Performs the Exclusive-OR (XOR)
operation between the state matrix and the expanded key
of each round. SubBytes()- In this function the transfor-
mation of the state matrix with the Sbox8 of the AES
byte by byte is applied. ShiftRows()- This function rotates
each row of the state matrix. MixColumns()- Multiplies
the internal state by a fixed data matrix defined by the
algorithm.

In the case of T-box based AES implementations, depicted
in Figure 1b), it can be seen that the SubBytes() and Mix-
Columns() operations are implemented by the T-box() oper-
ation and the ShiftRows() operation is performed at the
beginning of the round. In the last round, since there is no
MixColumn() operation, the T-box() operation and an oper-
ation called Mult Elimination() must be performed, which
consists of eliminating the part corresponding to the Mix-
Column() operation from the T-box(). These types of imple-
mentations are oriented to the use of Field Programable Gate
Array (FPGA) memories where the T-box() operation are
mapped.

A. DFA ON AES
Within the field of cryptanalysis, DFA is one of the most pop-
ular techniques for compromising the security of encryption
algorithms. An example of this is its continued application to
most proposed encryption algorithms [32]–[35]. Its principle
of operation is based on combining fault injection with math-
ematical analysis of the effect produced by these faults on the
operation of the ciphers. In a DFA, the objective is to capture
the encrypted data when the cipher works correctly, correct
ciphertext, and then, using the same secret key, to inject
faults and capture the encrypted data when the cipher works
incorrectly, called faulty ciphertext. This process of obtaining

a faulty ciphertexts is repeated several times (depending on
the type of DFA), injecting the fault in the same clock cycle
for the same encryption/decryption process (identical key
and plaintext), which allows to obtain multiple faulty cipher
outputs. Following this, by mathematically comparing the
correct and faulty samples, it is possible to extract enough
information to be able to calculate the internal secret of the
cryptographic device. To inject the faults exploitable by DFA,
all analyses establish a set of assumptions by which attacks
must be carried out, for example, the need to inject a fault in
a given bit, in a given operation and at a specific time. Due
to the specific assumptions needed for different DFA attacks,
the mathematical formulations required to establish the rela-
tionship between the faulty ciphertexts and the correct data
are diverse. In order to minimize this vulnerability, numerous
solutions have been proposed to protect the circuits, as sum-
marized below.

Since the active fault attack presented by Bonet et al [36],
targeting the Rivest-Shamir-Adleman (RSA) cryptosystem,
several DFAs have been widely used in many cryptographic
algorithms. One typical target is theAES algorithm, due to the
fact that it is a NIST standard and is widely used. It has been
subjected to numerous differential analyses and attacks with
the aim of compromising its security [9]–[21]. These works
have shown the possibilities of compromising the security of
the AES cipher using fault attacks. This cipher vulnerabilities
can be classified according to the point of attack, namely
the state matrix, the S-box() and the KeySchedule(). Note
that, when the point of attack refers to the state matrix,
it means that the fault is introduced in the matrix when it is
modified between each of the processes carried out by the
cipher, namely SubBytes(), ShiftRow(), MixColumns(), and
AddRoundKey(). Another important concept is the moment
in the computationwhere the fault is introduced, i.e. the round
in which the cipher operates. Table 1 lists the different types
of attacks reported in the literature where the DFA on the AES
cipher is carried out. This table classifies theDFAs reported in
the literature according to the operation on which the attack is
carried out, the type of attack and the round where the attack
is performed.

When getting the state matrix as a point of attack ([10]–
[13], [16], [20], [21]), single-bit, multi-bit, single-byte, and
multi-byte faults can be considered. In this case, the attacks
must be carried out after the seventh round, and in the case
of [13] the authors state that it can be carried out in any
of them. According to, if a single-bit or single-byte fault is
inserted in the state matrix, before the SubBytes() operation
of the ninth round, only 50 faulty ciphertext are needed to
recover the key. This vulnerability was experimentally shown
by inserting glitches into the cipher clock signal [9]. In this
case, the attacker must be able to repeat the fault in three dif-
ferent positionswithin the same byte using the same plaintext.
It is also possible to attack the MixColumn() operation in the
seventh, eighth and ninth rounds [11]. For the attack made on
the MixColumn() operation in the eighth round, 20 pairs of
correct/faulty ciphertext are necessary. For the attack on the
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TABLE 1. DFA on AES classification.

MixColumn() operation in the ninth round, 40 to 50 different
pairs of correct/faulty ciphertext are needed.

When the SubByte() operation is targeted, the DFA pre-
sented in [12] could compromise the security, while the DFAs
presented in [11], [13] the authors do not test the analysis
but claim that it would also be applicable. In these cases, the
faults needed by the DFAs are multi-bit or single-byte. As in
the case of the state matrix, the attack should be performed
from the seventh round onward.

If the attack is performed over KeySchedule(), it is possible
to consider the DFAs presented in [10], [14]–[19]. In these
cases, the faults types needed by the DFAs are single-bit,
multi-bit, single-byte, or multi-byte from the seventh round
onwards.

These vulnerabilities can also be extended to the T-box
implementations, since the T-boxes implement the Mix-
Columns() and SubBytes() operations in lookup memories.
As such, it also need to be considered and protected.

B. FAULT DETECTION SOLUTIONS IN THE LITERATURE
In order to minimize the vulnerability introduced by DFA,
different fault detection solutions have been proposed in
the literature, presenting different protection levels. These
countermeasures can be classified in three main groups,
namely hardware redundancy, temporal redundancy, infor-
mation redundancy, or a combination between them. To eval-
uate the effectiveness of each specific countermeasure, fault
coverage is used as a metric to determine its level of protec-
tion. Fault coverage is the number of faults detected based on
the type and number of attacks performed. It should be noted
that attacks can be of different types, depending on the type
of fault to be achieved, e.g., single bit, multiple bits, single
byte, etc.

Hardware redundancy consist on duplicating the whole
hardware or part of it in order to implement a double pro-
cess of encryption or decryption for error detection. This
approach typical offers the highest fault coverage, being able
to detect all type of faults (unless the same fault is introduced
at the same point of the computation in both implementa-

tions). However, these solutions tend to have very high area
and energy consumption costs, potential reaching a 100%
increase. For example, the solution proposed in [26] is able
to detect all types of faults but imposes an area overhead of
86%.

Temporal redundancy consists of repeating the whole or
part of the encryption or decryption process to check if any
fault was injected. This approach presents the lowest area
degradation, but at the cost of more processing time, resulting
in high-throughput degradation. In [27] a more efficient solu-
tion is presented with an additional 7% resource usage and a
throughput degradation of only 17%, but the fault coverage
only considers single bit faults.

Information redundancy works by providing additional
information to the data during the encryption or decryption
process. This extra information, such as parity bits, allows
to identify if faults were injected during the process. These
approaches tend to provide the lowest overhead on the area
and the lowest performance degradation. However, this lower
impact often results in a lower level of fault coverage. In [28]
the proposed solution implies an area overhead of only 8%but
it is only able to detect odd faulty bits. The solutions proposed
by [37] only protects against odd faulty bits. On the other
hand, the solutions presented in [28], [38], [43], only protect
against odd faulty bits, while the countermeasure proposed
in [39], [40] are able to detect all type of faults (even/odd-
bit and single/multi-byte faults, but their fault coverage per-
centages do not reach 100%, being 90% in the first case and
98% in the second. Furthermore, both solutions do not protect
against possible faults in the KeyAddition operation, leaving
the system exposed to DFA attacks that exploit this.

III. PROPOSED FAULT DETECTION SOLUTIONS
The following describes the three proposed fault detection
solutions. As described above, multiple types of faults can
be used to target the security of the AES cipher, from the bit
level to the byte level. Therefore, the proposed solutions aim
to detect as many faults as possible, based on the idea that
the more information is known about the processed data, the

VOLUME 10, 2022 65551



F. E. Potestad-Ordóñez et al.: Design and Evaluation of Countermeasures

greater the possibility of detecting whether a fault has been
injected or not. Note that, the solutions herein proposed focus
on the encryption process, in particular, on round transfor-
mations. However, these proposed solutions can be equally
applied to the decryption process and KeySchedule().

A. HAMMING CODE AS A SIGNATURE GENERATOR
This approach is based on the use of Hamming code as a sig-
nature generator for the data being ciphered. The Hamming
codes are well known as a family of linear error-correcting
codes invented by Richard W. Hamming in 1950 [41]. The
main use of these codes is to detect faults in the data trans-
mission and correct them.

Within the fault detection context, it is possible to use these
codes to obtain as much information as possible about the
data being processed. Hamming codes add additional bits to
the original data that are able to detect/correct errors. With
these codes, it is possible to protect d bits by adding m bit
to the original message, resulting in a total of n bits. k is the
maximum number of bits that could be encoded. Equations
(1) to (4) illustrate the characteristics of the Hamming code.

Hamming Code (n, k) (1)

d ≤ k (2)

k = 2m − m− 1 (3)

n = 2m − 1 (4)

For example, to protect 8 bits of information using 4 addi-
tional bits, it has d = 8 and m = 4. Therefore, k = 11,
and thus 11 bits of information are encoded, resulting in a
total data length of n = 15. Then d ≤ k and therefore with
m = 4 extra bits is enough to protect the data.

The use of Hamming codes to protect the AES cipher is
not new. In [42], it is used to correct errors in the state matrix
when a parity bit detects an error.

Herein, we propose the Hamming codes to generate a
signature of the data being processed throughout the entire
round, by applying a Hamming code as a signature generator
for the fault detection in the T-box based AES.

Using the signatures depicted in (5), it is possible to obtain
a signature composed of 4 additional bits (M0−3) to protect
8 bits of data (D0−7).M0−3 denotes the 4 bit signature added
to the 8 bit of processed data.

M0 = D0 ⊕ D1 ⊕ D3 ⊕ D4 ⊕ D6

M1 = D0 ⊕ D2 ⊕ D3 ⊕ D5 ⊕ D6

M2 = D1 ⊕ D2 ⊕ D3 ⊕ D7

M3 = D4 ⊕ D5 ⊕ D6 ⊕ D7 (5)

By applying the signature generation on the input data of
a cryptographic operation (I .Signature) and on the output of
this same cryptographic operation (O.Signature), it is possi-
ble to merge and check the join signature (F .Signature) using
an XOR operation, as depicted by (6):

F .Signature = I .Signature⊕ O.Signature (6)

FIGURE 2. Representation of hamming code signature generator.

Figure 2 shows a schematic representation of the signature
generator based on Hamming code, where the 4-bit signature
is obtained from 8 input bits. With this approach, one only
needs to store and test a single 4 bit value of final signature,
which relates the information of the input and output of the
encryption process for each byte to be protected. This is the
only additional value that must be stored to check if the value
was corrupted by a fault injection during the cryptographic
operation. Note that this approach is only able to detect a fault,
not correct them.

B. PARITY BITS AS A SIGNATURE GENERATOR
This approach is based on the use of parity bits as a signature
generator for the data used during the cipher. The parity
bit methodology has been widely used in a multitude of
applications for error detection [46], [48], [49]. Its use as
fault injection countermeasures applied to the AES cipher can
be found in the works [28], [47]. The parity bit adds extra
bits to the data in order to determine how many ones are
present in the data. Depending on the number of extra bits
that are added, it is possible to implement one type of parity or
another. For example, if only one parity bit is added, odd type
errors can be detected. If a larger number of parity bits are
added, it is possible to detect even type faults. The limitation
of the parity bit schemes is that if only one parity bit is used
and, for example, two bits change at the same time, the parity
bit generated by the corrupted data will be the same as the
one produced by the uncorrupted data, and therefore the fault
is filtered.

Herein, the use of parity bits is proposed in order to gen-
erate a signature of the input and the output of the processed
data by the T-box(). Note that, rather than implementing a
traditional parity bit, a specific method to generate a signa-
ture is used. Moreover, by using memories to implement the
T-boxes, the addition of the signature is much less expensive.
In the proposed solution, the generated signatures are com-
pressed into four bits and embedded in the memory. As in
the Hamming-code approach, the aim is to know all possible
information from the processed data and store bits. Using
four extra bits, two for encoding the input data and two for
encoding the output data, it is possible to generate a signature
that allows to know if the data has been modified during the
encryption processes. If the eight bits of the input data of the
T-box() are denoted by D0−7 and the eight bits of the output
data are denoted by S0−7, it is possible to generate a signature
using (7) denoted by M0−3. The four bits of the signature
are added to the T-box memory. Figure 3 shows a schematic
representation of the signature generator based on parity bits,
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FIGURE 3. Representation of parity bit signature generator.

FIGURE 4. Schematic representation of the intermediate states
protection. ShiftRow application.

where the 4-bit signature is obtained from 8 input bits and
8 output bits of the memory.

M0 = D0 ⊕ D1 ⊕ D2 ⊕ D3

M1 = D4 ⊕ D5 ⊕ D6 ⊕ D7

M2 = S0 ⊕ S1 ⊕ S2 ⊕ S3
M3 = S4 ⊕ S5 ⊕ S6 ⊕ S7 (7)

Unlike the Hamming code approach, this solution does not
require the generation of a final signature from the input data
signature and the output data signature, since the four bits of
the final signature are obtained directly fromM .

C. INTERMEDIATE STATES AND KEY ADDITION
PROTECTION
Given that the two previous approaches only protect the
T-box() operation, additional work is needed to protect the
complete round computation, by protecting the intermediate
states and the key addition. To do this, a protection scheme
has been designed to detect faults in the remaining stages of
the cipher process. This is achieved by combining the use of
intermediate registers and adding parity bits.

To protect the intermediate matrix states, intermediate reg-
isters have been used that allow, using a comparator, to know
if there has been a fault injection. If the value of the state
matrix is changed during the round operations, it will be
detected. As an example, in Figure 4 it is possible to see
how this approach is applied to the state matrix when the
ShiftRow() operation is performed.

FIGURE 5. Schematic representation of the key addition protection.

On the other hand, to know if the key addition operation
is attacked, parity bit checkers have been added to know if
the key or the state matrix has been modified. With this, it is
possible to determine if faults have been inserted, since the
parity of thematrix and the parity of the round keymust be the
same as the parity of the round output. The proposed solution
is depicted in Figure 5.

D. APPLICATION ON A T-BOX BASED AES
The solutions proposed above are well suited to T-box
based implementations, in particular when targeting FPGA
devices with embedded memories. These embedded memo-
ries blocks (BRAMs) output from 18 up to 36 bits, depending
on the selected device and technology.

The T-box() has an 8-bit input and outputs 32 bits. This
32-bit output is the result of the Galois multiplication of
the constant values with the value obtained after the Sbox()
operation, as depicted in Figure 1b. In the case of encryption,
the 4 constant values are {1, 1, 2, 3} and {9, e, b, d} for the
decryption. For simplicity sake, the following discussion only
focuses on the implementation for the fault detection for the
encryption process. However, the following solution can be
applied directly for decryption. In the following discussion,
the output of the T-box(), depicting the constant multiplica-
tion of the output of the S-box(), is represented by {1S, 1S,
2S, 3S}.

In the case of the Hamming approach, instead of generating
a Hamming code to protect 32 bits, which would require a
high number of protection bits, only an 8-bit value needs to
be considered, namely 1S. As described in [50], the 4 bytes
of each AES T-box() output can be combined to derive the
S-box() output (both for encryption and decryption), has:

9S ⊕ eS ⊕ bS ⊕ dS = 1S

1S ⊕ 1S ⊕ 2S ⊕ 3S = 1S (8)

Knowing the value of the input of the T-box(), it is possible
to generate the signature of the input and Xored with the
1S signature, thus obtaining the final signature using (6).
This final signature is added to each data value stored in the
BRAM.

In the case of the parity signature scheme, instead of cal-
culating the parity for the entire 32 bits, only the 8 bits of
the T-box() input and the 1S output combination need to be
considered. Using (7), it is possible to generate the signatures
composed of four bits that are added to the data contained by
the BRAM.
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In both cases, this means that only 4 extra bits of infor-
mation are needed for each byte of the State. Given that the
available BRAMs already outputs 18 or 36 bits, rather than
the needed 32 (or 2 × 16 bits), this additional redundant
information can be stored for free. The only additional area
cost comes from the signature or parity generation and com-
parison logic.

With these approaches, it is possible to cover the entire
computation of the T-box(), i.e. any fault produced during the
memory access/read (denoted by e) and in the input/output of
the T-box() process.

IV. EXPERIMENTAL SETUPS
The fault detection solutions have been applied to an T-box
based AES design [50]. The resulting implementations have
been tested against fault injection attacks both in simulation
and experimentally. Furthermore, to evaluate whether the
inclusion of the proposed fault attack countermeasures result
in additional information leakage, power sice-channel analy-
sis attacks were also performed.

In order to carry out each test, different experimental mea-
surement setups were used. Each of the setups allows to
independently evaluate the fault coverage (by simulation and
experimentally), to analyse the performance of each of the
implementations, and finally to evaluate the negative impact
with regard to power side-channel attacks. To carry out each
test, different experimental setups were used, as described
below. Each setup allows to independently evaluate the fault
coverage (by simulation and experimentally), to analyse the
performance of each of the implementations, and finally to
evaluate the negative impact regarding power side-channel
attacks. Notice that two different FPGAs are used in setups
(2) and (3,4), since the evaluation platforms use different
boards, optimized for each type of analysis. This evaluation,
described in more detail in the following sections, was per-
formed using:

1) The fault coverage by simulation has been performed
using fault injection simulations with Xilinx ISE
14.7 ISim and Matlab.

2) The experimental fault coverage evaluation setup,
depicted in Figure 6, is composed of a NewAE
CW1173 ChipWhisperer-Lite, the target board NewAE
CW305 with a Xilinx Artix 7 XC7A100T FPGA,
a PicoScope 3205D oscilloscope, and a personal com-
puter with a Core-i5 processor with 8 GB of RAM and
Matlab software.

3) The frequency and area costs evaluation have been
obtained using a Xilinx Spartan 6 XC6SLX75 FPGA
under Xilinx ISE 14.7.

4) The evaluation of the power side-channel analysis was
performed using the Sakura-G board with a Xilinx
Spartan 6 XC6SLX75 FPGA, a PicoScope 3205D
oscilloscope, and a personal computer with a Core-i5
processor with 8 GB of RAM, depicted in Figure 7.

FIGURE 6. Attack setup with the capturer, cryptotarget, PicoScope and
control PC.

FIGURE 7. Experimental setup for TVLA analysis: SAKURA-G board,
PicoScope and control PC.

The proposed solutions were used to derive four different
protected AES implementations. The first protection struc-
ture consists of the protection offered by the Hamming code
signature generator covering only the T-box. The second
protection structure consists of the parity bit signature gen-
erator that also targets only the T-box. The third structure is
composed of the combination of the Hamming code signa-
ture generator and the protection of the intermediate states
along with the key addition (complete AES). Finally, the
fourth structure consists of the parity bit signature generator
together with the intermediate states protection and the key
addition (complete AES). For simplicity sake, these struc-
tures are denoted as: Hamming, Par_sig, Hamming_Total and
Par_sig_Total, respectively.

All the tests carried out have been performed using random
keys and plain texts, to ensure that the obtained results do not
depend on these inputs.

V. FAULT COVERAGE
A. SIMULATION-BASED ANALYSIS
In order to test the fault coverage of the proposed solutions,
different fault injection simulations have been performed,
testing different types of fault, from single-bit, single-byte,
multi-bit, multi-byte, and random. On the one hand, fault
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detection was performed using Xilinx ISE 14.7 ISim software
with functional and post-routed simulations.

The simulation of fault injections was performed using
Matlab, considering the four protection structures described
above, where the faults are injected during cipher operations.
These tests take into account the fault injections on the inter-
mediate state matrix, cipher round operations, and KeyAddi-
tion() process. Since the space of possible faults is 2256 (128
bits of the state matrix and 128 bits of the keyAddition())
and their analysis would be very time consuming, we have
reduced the possible faults to useful and exploitable faults for
DFA. These are all possible faults of the single/multiple bit
type in the same byte and in different bytes, both even and
odd, and single/multiple byte.

In addition, random type faults were also considered,
although it should be noted that this type of fault does not
fall within those exploitable by DFA, since there must be
some control in the fault injection process in order to take
advantage of the fault. For example, a random fault can range
from a single bit to the change of the whole state matrix or a
large part of it; the latest case is not useful since they cannot
be exploited by DFA. Algorithm 1 represents the code used
to inject the faults over the T-box(). The code requires two
inputs, the attack position, in the example the T − box and
the type of the attack, single-bit, single-byte, multi-bit, multi-
byte, or random.

Algorithm 1 Attack to the AES T-Box Based
Require: Attack_Position = {T − box}
Require: Attack_Type

return Cipher_Text = {Final_state}
M0−127 = State, B0−127 = Input_Text, K0−127 = Key
AddRoundKey (B,K)
for i = {1} to {9} do
ShiftRow(M)
if Attack_Position != 0 then
T-box(M)

⊕
Attack_Type

else
T-box(M)

end if
AddRoundKey(M)

end for
ShiftRow(M)
T-Box(M)
MultElimination(M)
AddRoundKey(M)
Final_State = M

1.5 million tests have been carried out for each coun-
termeasure, in a total of 6 million tests, using Matlab. For
the Hamming_Total, Par_sig, and Par_sig_Total countermea-
sures all faults were detected, both odd and even, bit and byte
type and random faults. Among all the random faults, we have
been able to see that the faults where, in their majority, bits in
the state matrix that were changed but not detected. Among
all random faults, it should be noted that the possible space

for a random fault ranges from a single bit to all 128 bits
of the matrix. Therefore, there are cases where faults occur
where the vast majority or all bits of the state matrix change.
It should be noted that these types of fault are not exploitable
by DFA and are not useful for cryptanalysis). While these
cases are not detected by the proposed countermeasures, they
are not useful in a real case and can therefore be discarded.
Nevertheless, out of 1.5 million tests, these cases occur only
a very few times. Regarding the Hamming countermeasure,
out of the 1.5 million tests, only one fault was not detected.
This fault, of odd type (specifically the fault 14680064 - in
decimal), injected during the T-box() operation, generates
the same signature at the output of the T-box() as the cor-
rect data, and thus cannot be detected. It should be noted
that the Hamming_Total countermeasure, which extends the
Hamming countermeasure, is able to detect this fault.

From these data, it can be estimated that the fault cov-
erage of the Hamming_Total, Par_sig and Par_sig_Total
approaches is 100%while the Hamming approach is 99.99%,
given the particular case mentioned above.

B. EXPERIMENTAL ANALYSIS
To better evaluate the effectiveness of fault coverage of the
proposed approaches and to further validate them, an experi-
mental attack setup was used to obtain experimental data for
each solution. This set-up consists of a capture unit and a
target FPGA board from NewAE. In this case, the fault injec-
tion system has been designed using Python. The considered
fault injection attack is based on clock signal modification.
This technique has been widely used since it was introduced
in [51] and consists of injecting a small pulse into the main
clock signal, and therefore it is possible to violate the setup
and the hold times of the cipher components allowing to flip
the internal values of the cipher or to obtain different cipher
wrong operations. The setup used for the fault injection is
depicted in Figure 6, where the capture unit generates the
short pulse, selects the round of the encryption process where
the pulse is injected, and captures the correct and faulty
cipher text at the output. The PicoScope allows to sample the
error signal and the cipher busy signal with enough accuracy.
It should be noted that such attacks must be performed with
precision, since a too short period in the small pulse can
be filtered out; conversely, a period that is too big will not
produce any error injection. In the tests performed, a clock
period of 76.92 ns (13 MHz) was used as the main clock,
with a short pulse of 3.33% of the main clock period. Since
this setup implements a realistic attacks, the possibilities to
control the type of faults are limited. Therefore, we cannot
be sure what kind of faults are in fact injected into the cipher,
since we only have access to the clock signals, control signals
and data output signals.

Note that, numerous tests were performed to ensure that
the fault is not a data sampling error. The test validation
consist of performing the cipher operations numerous times
with the same key and plaintext, capturing the result, and
comparing them with each other. In these tests, the small
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FIGURE 8. Experimental capture form PicoScope. Blue, busy cipher signal,
red, clock cipher signal with short pulse injection.

FIGURE 9. Experimental capture of the cipher busy signal (top) and
scheme error signal (bottom).

TABLE 2. Fault coverage by experimental attacks.

pulse (using larger and smaller pulse weight) is injected into
an intermediate round and the output data is sampled at the
end of the encryption operation using a sufficiently slow
frequency to avoid sampling errors.

In Figure 8 depicts the short pulse injection into the clock
signal as well as the cipher busy signal, while Figure 9 depicts
the cipher busy signal and the error signal triggering when the
fault is detected. As it can be seen in the Figure 9, there are
three different falling edges in the busy signal. These three
edges are due to the fact that three small pulses have been
injected into the main clock signal to cause a fault in the
cipher computation. Since it is necessary to inject very small
pulses to cause faults in the cipher, it is possible that such a
small pulse is filtered out and does not produce any timing
violations, and therefore no faults are injected. Therefore,
three small pulses are injected consecutively (from 0.3 ms to
0.6 ms) to increase the probability that faults are injected into
the cipher.

To evaluate fault detection, each solution was subjected to
10000 fault injection attacks. The fault detection obtained
is summarized in Table 2. Unlike the simulated results,
only the Hamming and Hamming_Total countermeasures
have demonstrated a 100% fault detection. The Par_sig_total
countermeasure detected all but one fault out of 10000,
resulting in a fault coverage of 99.99%. The Par_sig coun-
termeasure resulted in the lowest fault coverage, since out
of 10000 attacks did not detect 150, resulting in an average
fault coverage of 98.50%. In the last two cases, it is unclear
which type of faults were not detected. Overall, these results
suggest that the proposed solutions provide highly effective
approaches to faults detention when implemented and in real
attack scenarios.

VI. PERFORMANCE EVALUATION AND COMPARISON
WITH OTHER APPROACHES
In order to evaluate the cost of the proposed solutions and
compare them with the existing state of the art, the resulting
area and performance overhead results have been obtained
with respect to the unprotected design on an Xilinx Spar-
tan 6 XC6SLX75 FPGA. The obtained results suggest an area
cost of:

1) Unprotected: 966 Slices and 1225 LUTs.
2) Hamming: 1229 Slices and 1454 LUTs.
3) Hamming_Total: 1453 Slices and 1750 LUTs.
4) Par_sig: 997 Slices and 1343 LUTs.
5) Par_sig_Total: 1425 Slices and 1673 LUTs.

From this it can be concluded that a total resource usage
increase of 27%, 50%, 3%, and 47% Slice registers and 18%,
42%, 9% and 36%Look-up-Tables (LUTs), and no additional
BRAM usage for the Hamming, Hamming_Total, Par_sig,
and Par_sig_Total, respectively.

While the amount of registers increases more than the
LUTs, LUTs are the ones imposing the overall device occupa-
tion (since more LUTs than registers are required). As such,
the LUT usage increase is the one used for the area cost
metric, depicted at the bottom of Table 3.
In terms of performance, different post-route runs were

performed and the results show that the proposed structures
are able to work up to the maximum frequency of the unpro-
tected one. Therefore, it can be concluded that the proposed
solutions do not have a performance impact. These results
suggest that it is possible to detect all types of faults exploited
by DFAs, without impacting the performance of the crypto-
graphic operations.

To better compare the proposed solution with the exist-
ing state of the art, Table 3 summarizes the area overhead,
frequency degradation, type of faults detected, fault cover-
age, and type of protection for the AES implementations of
these solutions. The frequency degradation is herein used
to determine whether the increased security makes the data
encryption too slow to operate under similar conditions to
the unprotected cipher. The values presented in Table 3 are
those provided by the authors of each referenced paper and
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TABLE 3. Comparison with different detection schemes.

are taken directly from them. Note that, the values are for
different devices since each author uses their own setups.
Given this, the values depict the area overhead and frequency
degradation, rather than absolute values. The results obtained
for the herein proposed structures have been obtained with no
area or frequency optimizations.

This comparisonmainly considers information redundancy
solutions. For completeness, hardware [26], temporal [27],
and combined redundancy solutions [29], [45] are also pre-
sented. The type of faults detected by each solution is divided
into Odd/Even Bit and Single/Multi Byte. The ability to
detect each type of fault is represented by a check or cross
mark, respectively. The solutions with four check marks are
those that offer the greater fault coverage. The percentages
of fault coverage was obtained from the papers in which
the solutions are presented and related to the types of faults
that can be detected by the solution. Regarding the type
of protection, two types can be distinguished; partial and
complete. Complete protection is considered when it is capa-
ble of detecting faults injected into any process during the
encryption operation, considering intermediate operations
and KeyAddition. A partial protection is when complete pro-
tection is not provided.

Compared with the proposed solutions, the most relevant
state of the art solutions are [26]–[29], [37], [39], [40].

The solution proposed in [28] provides one of the detec-
tion approaches with the lowest area overhead. However,
it reduced the performance to 70% in regard to the unpro-
tected version and is only able to detect odd faulty bits.
Moreover, its fault coverage is only 75.6% and does not
protect the KeyAddition.

On the other hand, the solution in [39] is able to detect
even/odd-bit and single/multi-byte faults and its frequency
degradation is 14% but its area overhead reaches 77%, which
is very high, its failure coverage does not exceed 90%, and
only provides partial protection, not protecting the keyAddi-
tion as well as [28].

The solution proposed in [40] is also able to detect
even/odd-bit and single/multi-byte faults and its frequency
degradation is 12%, but with an area overhead higher than the
herein proposed Hamming and Par_sig approaches. It should
also be noted that its type of protection is partial (only protects
the S-box()).

When considering the solutions with a higher percentage
of fault coverage such as [26], [27], [29], [37], it can be seen
that all of them only present a partial protection. In the case
of [37], the solution protects the S-box and the KeyAddition,
but it does not take into account the intermediate states of
the state matrix. Moreover, its area cost is higher than all
the herein proposed solutions. It does not present frequency
penalty data. The solution in [26] has no frequency penalty
and can protect against all types of faults. However, its area
cost is significantly higher, its protection type is only partial,
only covering the state matrix. The solution in [27] provides
a fault coverage of 100% and its area overhead is only 7%,
however, it cannot protect the KeyAddition, its frequency
penalty is of 17%, and is only capable of detecting odd bit
type faults. Finally, the solution in [29] is able to detect all
the faults considered and has a lower area penalty than the
Hamming_Total solution (although Hamming_total offers a
complete protection type). However, the frequency penalty
of [29] is 22% higher than the solutions herein presented.
If we compare it with the Hamming and Par_sig solutions
(which offer a partial coverage type), we can see that the cost
in area is 20% higher than the presented solutions.

VII. POWER ANALYSIS EVALUATION
One of the most important aspects to take into account when
designing countermeasures is to consider not only the secu-
rity levels achieved by the countermeasure and the overall
performance degradation, but also the effect it has on the
security levels against other types of attacks.

Countermeasures against fault attacks typically use hard-
ware redundancy, information redundancy or temporal
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FIGURE 10. T-test results: a) all implementations, b) unprotected, c) Hamming, d) Hamming_Total, e) Par_sig and f) Par_sig_Total.

redundancy. This involves adding extra operations with sensi-
tive data within the cryptographic algorithm. These additional
operations can result in an increased information leakage
(extra power consumption, electromagnetic radiation, exe-
cution time among others) that can be exploited by other
attacks, known as Side-Channel Attacks [5]–[7]. One of the
most usual and effective SCA are those exploiting the key
correlated power consumption, in particular DPA attack [6],
[8]. The main advantages of DPAs are that the attacker does
not need to have a significant information about the imple-
mentation of the algorithm. Moreover, since it is a passive
non-invasive attack, the normal operation of the device is not

altered and the circuit is not physically modified, no evidence
of the attack is left behind, so it is not possible to detect
whether the cryptographic device has been attacked.

This section focus on assessing if the proposed DFA coun-
termeasures cause any additional leakage of relevant informa-
tion that may be exploited by SCA, given the extra operations
with sensitive data. Towards this, a SCA analysis regarding
power consumption has been carried out. To this end, among
the several vehicles to evaluate the vulnerability of crypto-
graphic hardware implementations against DPA attacks (such
as Mutual Information Analysis (MIA) [52], Measurements
To Disclose the Key (MTD) through practical attacks [53],
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among others), we have selected the Test Vector Leakage
Assessment (TVLA) [31]. TVLA methodology is a reliable,
quick and easy test allowing to detect potential side-channel
problems with device and in which orders.

To carry out the TVLA analysis, the setup shown in Fig-
ure 7 was used. Both the control of the experiment and the
data processingwas performed using a PC runingMatlab. The
power traces were measured with the oscilloscope PicoScope
3205D. The used evaluation board is the SAKURA-G with a
Spartan6 Xilinx FPGA where the cryptographic modules are
deployed. In the TVLA analysis, the fixed vs random test has
been carried out, showing in Figure 10 the +/− 4.5 t-value
threshold with a green line, which implies a 99.99% confi-
dence to reject the null hypothesis. This means that all the
implementations with t-values above 4.5 have a potential
leakage that may be exploitable against DPA attacks.

The TVLA results obtained for each implementation are
shown in Figure 10, where the sampled points vs t-values are
shown for: a) all implementations, b) unprotected, c) Ham-
ming, d) Hamming_Total, e) Par_sig and f) Par_sig_Total.
From this analysis (see Figure 10-a), it can be seen that all
implementations have potential vulnerabilities against power
analysis attacks, as all implementations have t-values over the
+/−4.5 value. However, the information leakages are of the
same order and there is no significant variation in the security
levels achieved.

It is important to notice that not all the values above the
+/− 4.5 are potentially exploitable in a DPA attack. In the
case of the AES algorithm, the attacks are normally focused
in the first and the last round [8]. The available known data,
used by the power model to estimate the hypothetical power
consumption values, is the plaintext, provided in the first
round, or the ciphertext, available in the last round. In this
sense, a designer can focus specially in these points in the
t-test results to see if there are high leakages in this critical
rounds. In Figure 10, the points related to the first round are
located between points 500-1000 approximately, and the last
round between points 2500-3000.

However, it is important to keep in mind that to be sure
that the implementation is not vulnerable, it has to have all
values below the+/− 4.5 range. This is the case, for example,
for combined DPA and DFA attacks [22]–[24], were both
side channel leakages and faulty responses are analysed at
the same time. Notice that some DFA attacks exploit not
only the information of the first and the last round, but also
the 7, 8 and 9th rounds [11], [16]. The additional operations to
increase the security against DFA, are applied in all rounds.
For this reason, they can increase the leakage in all encryption
rounds. Given this, side-channel leakage needs to be analysed
in the whole encryption process. In some points the added
logic may even be contributing with added noise, leading for
a higher SCA resistance. This is why, as pointed in [25],
the SCA resistance must be evaluated in all the particular
implementations of cryptographic circuits, as they can affect
both positively or negatively to the security. To the best of
the authors knowledge, the related DFA state of the art do

not evaluate the impact of there solutions to the SCA data
leakage, and thus cannot herein properly compared.

In case of detecting an increment in power leakage infor-
mation, combined DFA and DPA countermeasures can be
implemented. In this sense, in the literature a wide range
of DPA countermeasures have been proposed that could be
compatible with the DFA countermeasures proposed in this
paper, as for example the ones focused at gate-level [54].

VIII. CONCLUSION
In this paper an extensive analysis of the vulnerabilities of
AES block ciphers against differential fault analysis and the
main blocks to protect it have been presented. The design
of four fault injection countermeasures based on signature
generation using Hamming and Par_sig schemes has been
presented. These schemes have been tested by simulation
using ISE and Matlab software, showing that the protection
schemes are able to detect exploitable faults by DFAs.

An experimental attack setup has been designed to evaluate
the fault coverage of each scheme and it has been shown
that the Hamming and Hamming_total schemes offer 100%
protection, while the Par_sig and Par_sig_total schemes offer
98.5% and 99.99% respectively.

Regarding the trade-off between resource consumption and
frequency degradation, the results show that all the counter-
measures have a resource overhead of less than 42%, reaching
9% in the case of the Parity scheme. In addition, it has been
experimentally proven that none of the countermeasures has
a frequency penalty with respect to the unprotected cipher.
Finally, it has been shown that the proposed schemes are
capable of detecting all the faults exploitable by the DFA,
presenting a balance between area and fault coverage that
significantly improves the schemes reported in the literature.

On the other hand, the information leakage exploitable by
DPA attacks of each scheme has been evaluated. Results show
that none of the countermeasures degrades the security levels
against DPA attacks. Furthermore, some of the countermea-
sures such as Par_sig, slightly improve the security levels
against DPA showing smaller t-values.
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