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Resumen

Los equipos de veh́ıculos aéreos no tripulados (UAV) son sistemas prometedores para

grabar eventos cinematográficos, en escenarios exteriores de grandes dimensiones

dif́ıciles de cubrir o para tomar vistas complementarias de diferentes puntos de

acción. La generación de trayectorias para este tipo de veh́ıculos desempeña un

papel fundamental, ya que debe garantizarse que se cumplan requisitos dinámicos, de

suavidad y de seguridad.

Los enfoques basados en la optimización para la planificación de trayectorias de

múltiples UAVs se pueden ver beneficiados por el auge de los métodos numéricos

para la resolución de problemas de optimización no lineales. En particular, estos

métodos son bastante prometedores para las aplicaciones de grabación de v́ıdeo, ya

que permiten formular múltiples restricciones y objetivos, como la suavidad de la

trayectoria, el cumplimiento de la dinámica del UAV y de la cámara, la evitación de

obstáculos y de conflictos entre UAVs, y la visibilidad mutua. El objetivo principal de

esta tesis es planificar trayectorias para equipos multi-UAV en aplicaciones de v́ıdeo,

formulando novedosos problemas de optimización y resolviéndolos en tiempo real.

La tesis comienza presentando un marco de trabajo para la realización de misiones

cinematográficas autónomas con un equipo de UAVs. Este marco permite a los

directores de medios de comunicación diseñar misiones que incluyan diferentes tipos

de tomas con una o varias cámaras, ejecutadas de forma secuencial o concurrente.

En segundo lugar, la tesis propone una novedosa formulación no lineal para el dif́ıcil

problema de calcular las trayectorias óptimas de los veh́ıculos aéreos no tripulados en

cinematograf́ıa, integrando en el problema la dinámica de los UAVs y las restricciones

para evitar colisiones, junto con aspectos cinematográficos como la suavidad, los
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ĺımites mecánicos del cardán y la visibilidad mutua de las cámaras. Por último, la

tesis describe un método de grabación aérea autónoma con iluminación distribuida

por un equipo de UAVs. El problema de optimización de trayectorias se desacopla

en dos pasos para abordar los aspectos cinematográficos no lineales y la evitación de

obstáculos en etapas separadas. Esto permite al planificador de trayectorias actuar en

tiempo real y reaccionar en ĺınea a los cambios en los entornos dinámicos.

Es importante señalar que todos los métodos de la tesis han sido validados mediante

extensas simulaciones y experimentos de campo. Además, todos los componentes del

software se han desarrollado como código abierto.



Abstract

Teams of multiple Unmanned Aerial Vehicles (UAVs) can be used to record large-scale

outdoor scenarios and complementary views of several action points as a promising

system for cinematic video recording. Generating the trajectories of the UAVs plays

a key role, as it should be ensured that they comply with requirements for system

dynamics, smoothness, and safety. The rise of numerical methods for nonlinear

optimization is finding a flourishing field in optimization-based approaches to multi-

UAV trajectory planning. In particular, these methods are rather promising for

video recording applications, as they enable multiple constraints and objectives to

be formulated, such as trajectory smoothness, compliance with UAV and camera

dynamics, avoidance of obstacles and inter-UAV conflicts, and mutual UAV visibility.

The main objective of this thesis is to plan online trajectories for multi-UAV teams in

video applications, formulating novel optimization problems and solving them in real

time.

The thesis begins by presenting a framework for carrying out autonomous cine-

matography missions with a team of UAVs. This framework enables media directors

to design missions involving different types of shots with one or multiple cameras,

running sequentially or concurrently. Second, the thesis proposes a novel non-linear

formulation for the challenging problem of computing optimal multi-UAV trajectories

for cinematography, integrating UAV dynamics and collision avoidance constraints,

together with cinematographic aspects such as smoothness, gimbal mechanical limits,

and mutual camera visibility. Lastly, the thesis describes a method for autonomous

aerial recording with distributed lighting by a team of UAVs. The multi-UAV trajec-

tory optimization problem is decoupled into two steps in order to tackle non-linear
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cinematographic aspects and obstacle avoidance at separate stages. This allows the

trajectory planner to perform in real time and to react online to changes in dynamic

environments.

It is important to note that all the methods in the thesis have been validated

by means of extensive simulations and field experiments. Moreover, all the software

components have been developed as open source.
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Chapter 1

Introduction

This chapter introduces the motivation, main objectives, and scope of this thesis. The

main contributions are then outlined, as well as the research framework in which it

was developed.

1.1 Motivation

The use of teams of multiple unmanned aerial vehicles (UAVs) that cooperate to

perform autonomous tasks is becoming mainstream (Real et al., 2021b; Spurný et al.,

2019). These multi-UAV teams are possible due to recent advancements in UAV-

and communication-related technologies, and they hold remarkable advantages over

single-vehicle systems; increased efficiency, reduced mission time, robustness to UAV

failures, and scalability for larger scenarios among others. For instance, multi-UAV

systems have recently been used for a wide spectrum of applications including package

delivery (Dorling et al., 2017), search and rescue (Alotaibi et al., 2019; Real et al.,

2021a), exploration (Cesare et al., 2015), and surveillance (Scherer and Rinner, 2020).

In these tasks, the use of multiple UAVs is key to reducing operational time, which

increases performance efficiency. Efficacy is also improved since, for example, the

failure of one UAV would not necessarily imply mission termination.

Particularly in filming applications, teams of multiple UAVs can also broaden the

range of possibilities, as they could film several action points concurrently, or obtain

19
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(a) (b)

Figure 1.1: Different views of our field experiments with multiple UAVs filming sports
activities.

alternative perspectives of the same subject (Nägeli et al., 2017b; Galvane et al.,

2018). This becomes especially interesting in outdoor settings (see Figure 1.1), where

UAVs may need to cover large-scale scenarios with multiple action points. The use

of UAVs as flying cameras presents not only a remarkable potential for recreational

cinematography but also for surveillance and monitoring in inspection operations.

Even if the footage is not to be used for entertainment purposes; for example, for

monitoring inspection operations, high-quality videos could speed up the assessment

by human operators on the ground. For instance, the recent commercial platform

Skydio (Skydio, 2019) integrates a novel data capturing system with a UAV that flies

around large structures for better inspection. Multi-UAV teams can expand upon these

possibilities, as they may provide alternative points of view or even supplementary

illumination (Krátký et al., 2020).

However, autonomous multi-UAV systems also present some additional complexities.

One of them is inter-vehicle collision avoidance: with several vehicles operating in

the same airspace, they must coordinate to resolve potential conflicts and stay a safe

distance apart. Further planning is also needed in complex missions in order to, for

example, schedule different tasks that may happen sequentially or in parallel, predict

and anticipate the temporal evolution of the scenario, or address possible failures

and contingencies. On the one hand, if these coordination and planning approaches

are centralized, they could suffer from scalability issues, mainly in highly dynamic
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scenarios with real-time restrictions. On the other hand, if decentralized strategies are

used, inter-UAV communication plays a crucial role, with UAVs sharing information

to perform their tasks more efficiently. Due to these issues, despite recent advances,

there is still room for new multi-UAV autonomous systems that are intelligent enough

to execute tasks cooperatively in real-time.

In addition to the aforementioned problems, multi-UAV systems for filming appli-

cations have specific constraints: UAVs with cameras need to navigate smoothly to

produce aesthetic footage, take into account certain cinematographic principles, and

not occlude the camera field of view of others, to name a few. Therefore, planning UAV

trajectories becomes even more complex in this context. Traditional path planning

techniques are not sufficient to satisfy these application requirements, since the paths

generated rely only on spatial information, and they may not be dynamically feasible

nor consider smoothness constraints for camera motion. Instead, trajectories are used;

a trajectory is a time-parameterized function of UAV states containing both spatial and

temporal information. Trajectory planning is usually required to ensure compliance

with system dynamics, smoothness, and safety. Of course, trajectory planning is more

complicated than just computing paths, especially in multi-UAV settings. This thesis

aims to find solutions for optimal trajectory planning in filming applications with

multiple UAVs. Our methods enable UAVs to cooperate in a distributed manner to

autonomously film a common target, either for recreational (e.g., cinematography) or

industrial purposes (e.g., filming inspection operations).

Many authors have used optimization-based techniques for UAV trajectory plan-

ning; e.g., using search-based methods or numerical optimization. This thesis focuses

on optimization problems which could be non-linear and non-convex, in order to

comply with diverse constraints such as trajectory smoothness, UAV and camera

dynamics, obstacle avoidance, inter-UAV collisions, or mutual UAV visibility. The

main challenge is to balance these constraints while considering computational require-

ments, in order to achieve the real-time performance required by filming applications

in dynamic environments.
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1.2 Thesis objectives

The main objective of this thesis is to plan online optimal trajectories for multi-UAV

teams, formulating novel optimization problems related to filming applications. For

this purpose, we have defined the following goals:

� Building a framework for task scheduling and execution of cinemato-

graphic missions with cooperative teams of UAVs. Within this frame-

work, a human operator or director would provide cinematography missions

to be executed by the autonomous multi-UAV team. The framework should

be able to deal with parallel and sequential shots, and with different types of

camera motion. In addition, once the shots are assigned to each UAV, the system

should be able to execute them in a distributed manner, having the ability to

accommodate certain mission delays or uncertainties. For instance, models for

target motion prediction should be used, and the system should be able to react

to possible UAV failures (e.g., a UAV running out of battery or losing GPS

coverage).

� Planning optimal trajectories for aerial filming with a cooperative

team of UAVs. In order to produce aesthetically pleasing footage, these UAV

trajectories should take into account specific cinematographic aspects such as

UAV dynamics, trajectory smoothness, gimbal mechanical limits, and mutual

camera visibility.

� Planning trajectories that are safe, even in dynamic scenarios. This

implies collision avoidance both with other UAVs and with obstacles in the

environment. Considering collision avoidance for optimal trajectory planning

is challenging, since the presence of multiple and possibly dynamic obstacles

can lead to more complex problem formulations, which are usually non-convex

and hard to solve in real time. The objective is to integrate obstacle avoidance

into the problem formulation in a scalable manner, so that UAVs can plan safe

trajectories for cluttered scenarios in real time.
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� Planning UAV trajectories online. Since we target dynamic scenarios, we

pursue methods that can solve optimization problems in real time, adapting to

varying conditions during flight. For this, we will favor methods that are scalable

with the number of UAVs and in terms of the planning time. In particular, our

approach is to achieve real-time performance by applying distributed multi-UAV

trajectory planning and receding horizon optimization. Thus, UAV trajectories

could be recalculated online at a suitable frequency to cope with external

uncertainties and disturbances.

� Validating the methods in realistic conditions. New methods that work

well in simulation may break when they are applied to real systems. A key

objective in this thesis is to evaluate all methods, apart from simulation, in

field experiments where the multi-UAV system needs to cope with imperfect

communication, onboard computational resources, less controlled dynamic actors,

and so on.

1.3 Thesis contributions

This thesis makes several contributions in the field of optimal trajectory planning

for multi-UAV aerial filming. First, in Chapter 2, we include a thorough review of

related work, to introduce the state of the art on trajectory planning. This chapter also

gives background information on optimal trajectory computation, providing insight

into the mathematical formulation, analyzing the problem complexity, and introducing

some numerical tools to solve non-linear optimization.

Chapter 3 presents a complete architecture for autonomous scheduling and

execution of cinematography missions with a team of UAVs. The architecture integrates

components for target tracking, UAV motion planning, and gimbal control. Even

though we implement a representative set of canonical shots, we also generalize to

describe parametric shots, making the system easily extensible. We propose distributed

schedulers that trigger the execution of the different shots, based on starting events

that may be generated manually or autonomously (e.g., a certain actor reaching an
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action point). This procedure works as a synchronizing mechanism for multi-UAV

shots but also makes the system robust to uncertainties in the planning phase (e.g., if

the planned starting time of some action is delayed). This chapter includes the results

of extensive field experiments to assess the performance of our framework in aerial

filming of outdoor sport activities. The results of this chapter produced the following

publications:

� Alcántara, A., Capitán, J., Torres-González, A., Cunha, R., and Ollero, A. (2020).

Autonomous execution of cinematographic shots with multiple drones. IEEE

Access, 8:201300–201316

� Torres-Gonzalez, A., Alcantara, A., Sampaio, V., Capitan, J., Guerreiro, B.,

Cunha, R., and Ollero, A. (2019). Distributed Mission Execution for Aerial

Cinematography with Multiple Drones. In EUSIPCO. Satellite Workshop on

Signal Processing, Computer Vision and Deep Learning for Autonomous Systems,

La Coruña, Spain

Chapter 4 presents an optimal trajectory planning method for UAV cinematog-

raphy with multi-UAV coordination. We derive a non-linear, optimization-based

problem formulation for trajectory planning. Trajectories are planned and executed by

a team of UAVs in a distributed manner using a receding horizon scheme, providing

multiple views of the same scene. The method considers UAV dynamic constraints,

and it imposes constraints on UAVs such that they avoid predefined no-fly zones and

collisions with others. In addition, cinematographic aspects are addressed, such as shot

definition, mutual camera visibility, physical gimbal bounds, trajectory smoothness,

and gimbal motion. The method is integrated within the architecture explained

in Chapter 3, to run complete cinematography missions with aesthetically pleasing

footage. This chapter includes outdoor experiments to validate our optimal trajec-

tory planning method for cinematography. The results of this chapter produced the

following publications:

� Alcántara, A., Capitán, J., Cunha, R., and Ollero, A. (2021). Optimal trajectory

planning for cinematography with multiple unmanned aerial vehicles. Robotics

and Autonomous Systems, 140:103778
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� Sabetghadam, B., Alcántara, A., Capitán, J., Cunha, R., Ollero, A., and Pascoal,

A. (2019). Optimal trajectory planning for autonomous drone cinematography.

In European Conference on Mobile Robots (ECMR), pages 1–7

Chapter 5 formulates a novel optimization problem for trajectory planning in

aerial filming with distributed lighting. Using a leader–follower scheme, our system

computes smooth trajectories with pleasing footage for UAV filming (the leader),

which takes shots of a dynamic target indicated by an external user. The followers

compute their trajectories to maintain a formation with predefined lighting angles on

the target. In addition, we propose a new method to tackle non-convex trajectory

optimization with obstacle avoidance in real time by decomposing the problem into two

parts: non-linear cinematographic aspects are formulated without obstacle avoidance

to generate reference trajectories, and then these are used to generate collision-free

regions that are convex and transform the problem into a QP (quadratic programming)

optimization task. This obstacle avoidance method meets our objective of integrating

collision avoidance with UAV trajectory planning in a scalable way. This chapter

presents experimental results for aerial filming to monitor inspection activities, both

in simulated and real scenarios. These results produced the following joint publication,

where the main contribution of the author of this thesis is to the leader UAV problem

formulation and trajectory planning:

� Krátký, V., Alcántara, A., Capitán, J., Štěpán, P., Saska, M., and Ollero,

A. (2021). Autonomous aerial filming with distributed lighting by a team of

unmanned aerial vehicles. IEEE Robotics and Automation Letters, 6(4):7580–

7587

Chapter 6 summarizes the conclusions of this thesis, and also discusses directions

for future research. Additionally, this thesis makes an extensive contribution in terms

of open-source software. All the methods developed here have been implemented as

open-source and are available online. Appendix A compiles all these code repositories

and gives an overview of the software generated throughout the thesis. The overall

software architecture, as well as the functionalities implemented by each module and

their relations, are detailed.
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Finally, apart from the aforementioned contributions, throughout this thesis the

author participated in some collaborations that led to the following additional publi-

cations. Even though these are not part of the thesis core, they are worth mentioning

as secondary contributions in (i) UAV autonomous navigation for inspection, and (ii)

multi-UAV reactive conflict resolution.

� Benjumea, D., Alcántara, A., Ramos, A., Torres-Gonzalez, A., Sánchez-Cuevas,

P., Capitan, J., Heredia, G., and Ollero, A. (2021). Localization system for

lightweight unmanned aerial vehicles in inspection tasks. Sensors, 21(17)

� Ferrera, E., Alcántara, A., Capitán, J., Castaño, A. R., Marrón, P. J., and Ollero,

A. (2018). Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor

Environments. Sensors, 18(12)

1.4 Thesis framework

This thesis was developed within the framework of several research projects. The

main part of the thesis was carried out within the framework of the MultiDrone

project 1 (Multiple drone platform for media production). This project was funded

by the European Commission (H2020-EU.2.1.1-731667), and its main objective was

to develop a multi-UAV system for media production of outdoor sport events. Most

of the work in this thesis was developed within Workpackage 3 of MultiDrone. This

workpackage was devoted to multi-UAV planning and control techniques for aerial

cinematography, in order to achieve enhanced levels of autonomy, safety and robustness

in the system, which would allow the production crew to focus on the creative part of

their work. The specific objectives of Workpackage 3 were:

1. Development of tools for high-level mission planning in aerial cinematography

applications.

2. Multi-UAV formation control and online planning during mission execution.

1https://multidrone.eu.

https://multidrone.eu
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3. Producing a multi-UAV system in which safety, robustness and autonomy are

ensured.

4. Development of an autonomous and reliable multi-UAV communication infras-

tructure.

More specifically, the work in Chapter 3 and Chapter 4 of this thesis was carried

out to comply with objectives 2 and 3 of Workpackage 3 in the MultiDrone project.

Additionally, the work in this thesis was applied to aerial filming for inspection

activities in large infrastructures. These research activities were carried out within the

framework of the following projects funded by the European Commission: AERIAL-

CORE 2 (H2020-EU.2.1.1-871479), DURABLE 3 (Interreg-EAPA-986/2018), and

PILOTING 4 (H2020-EU.2.1.1-871542). One of the objectives of AERIAL-CORE

(Aerial cognitive integrated multi-task robotic system with extended operation range and

safety) is to develop a multi-UAV system for monitoring inspection activities performed

by human operators working on high-voltage electric power lines. Having a fleet of

UAVs offering complementary views for the inspection of wind turbines is one of the

objectives of DURABLE (Maintenance drones and robots to enhance renewable energy

systems in the Atlantic area), and a similar multi-UAV system is being developed to

inspect large viaducts in PILOTING (Pilots for robotic inspection and maintenance

grounded on advanced intelligent platforms and prototype applications).

Finally, this thesis was also partially supported by the regional project MULTICOP

(Autonomous multi-aerial systems for cooperative maneuvers with physical interaction),

funded by the Andalusian regional government in Spain (FEDER-US-1265072).

2https://aerial-core.eu.
3https://www.durableproject.eu.
4https://piloting-project.eu.

https://aerial-core.eu
https://www.durableproject.eu
https://piloting-project.eu
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Chapter 2

Background

In recent years, there has been a trend toward using receding horizon optimization

approaches to generate trajectories for UAVS online. This increasing interest is

mainly due to the development of new tools including efficient and reliable algorithms

for non-linear programming, enhanced computational resources, and more flexible

optimal control frameworks to encode diverse constraints, among others. This chapter

introduces the main theoretical concepts for trajectory optimization, describing the

problem formulation, the main approaches and algorithms to find optimal solutions,

and some widely available software tools to implement these solvers. A summary of

the state of the art in UAV optimal trajectory generation is then presented.

2.1 Optimal trajectory planning

The use of optimization frameworks for trajectory planning requires an analysis of the

characteristics of the formulated problem, since the nature of the optimization function

or the problem constraints can generate different types of optimization problems, with

different solving complexities that should guide the selection of the proper algorithms

to find optimal solutions.

29
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2.1.1 Problem formulation

Optimal UAV trajectory planning can be seen as an optimal control problem (OCP),

which deals with finding a control law for a given system to achieve a specific opti-

mization criterion. OCPs include a cost function to be minimized, defined over a

set of state and control variables that are subject to constraints. A generic problem

formulation can be written as follows 1:

minimize
x,u

T∫
0

l(x(t),u(t))dt+m(x(T )) (2.1)

subject to ẋ = f(x,u), (2.2)

g(x(t),u(t)) ≤ 0, (2.3)

x(0) = x0. (2.4)

In this notation, x denotes the state variables of the system and u the control inputs.

The Lagrange term or running cost is defined by l, whilst the Mayer term or terminal

cost is m. System dynamics are modeled with a set of differential equations (2.2), g

represents the inequality constraints (2.3), and x0 the initial state value (2.4). The

horizon time T is assumed to be fixed.

A major issue when modeling motion planning problems as OCPs is that the re-

sulting problem may become a challenging non-convex optimization problem. Because

of this, it is crucial to analyze the different parts of the problem. A critical part is the

dynamics (2.2), which is a set of differential equations that represents the dynamic

behavior of the vehicle. Non-linear models usually lead to more computationally costly

problems, so, depending on the application, simplified linear versions are sometimes

more appropriate. On the one hand, kinematic models that do not consider vehicle

dynamics can yield problems that are easier to solve, and are often used for trajectory

planning. On the other hand, non-linear dynamic models are also interesting in certain

1Throughout the thesis, matrices are denoted by bold uppercase symbols, vectors by bold lowercase
symbols and scalars by plain symbols.
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applications, such as trajectory tracking, where disturbances and forces on the vehicle

should be taken into account.

Another part relevant to determining the difficulty of the problem is the inequality

constraints (2.3), which may be hard or soft. Constraints that are allowed to be violated

are called soft constraints, while constraints that always must hold are called hard

constraints. In general, soft constraints imply a problem relaxation in order to alleviate

complexity, and they usually have associated slack variables and a penalty function

that is added to the objective function. Thus, the effect of minimizing the cost function

will be a trade-off between minimizing the original objective and minimizing these slack

variables associated with the soft constraints. Under a sufficiently high penalization

of (a linear norm of) the slack variables, the solution to the hard-constrained problem

is recovered when it exists; otherwise, a soft solution with minimum deviation will

be computed by the optimizer. This approach has been widely used in trajectory

planning methods (Castillo-Lopez et al., 2018; Nägeli et al., 2017b,a).

OCPs are formulated for a given time horizon T ; i.e., the planning horizon. The

solution of an OCP will provide a trajectory of the control and state variables from

the current state to a final state at the end of the horizon. Due to inaccuracies in the

system model, there may be discrepancies between the state values in the solution and

the actual ones followed by the system. In order to avoid the drawbacks associated

with applying the computed solution in an open-loop fashion, a receding horizon

approach is usually applied. This means that only the first time steps of the solution

are applied to the vehicle, and then the optimization problem is solved again, starting

from the new current state. This technique obtains a closed-loop effect in the system

and provides a certain degree of robustness against external perturbances or model

inaccuracies due to, for instance, wind gusts or localization errors.

However, an issue with this receding horizon approach is that the OCP needs to

be solved quickly, requiring high-frequency replanning. In general, the computational

cost can be regulated by tuning the time horizon and the number of discrete time

steps in each solution trajectory.



32 Background

Optimal Control Methods

Dynamic programming Indirect methods Direct methods 

Single Shooting Multiple Shooting Collocation 

Figure 2.1: OCPs can be addressed using dynamic programming, indirect methods,
and direct methods. In particular, the software frameworks used in this thesis for
trajectory optimization apply direct methods to discretize and solve OCPs.

2.1.2 Solving approaches

A generic OCP involves differential equations in a continuous space, so numerical

methods are typically used to address the problem. Figure 2.1 shows a scheme with

the main approaches to tackling OCPs (Diehl et al., 2006). Dynamic programming has

been used since OCPs emerged, solving Hamilton-Jacobi-Bellman equations over the

entire state space. There are numerical methods to compute approximate solutions to

these equations, and hence dynamic programming is an excellent choice for solving

OCPs in unconstrained low-dimensional systems. However, this approach does not

scale well to high-dimensional systems, so it is limited to simple OCPs. Indirect

methods determine the necessary conditions of optimality of the infinite problem

to transform the OCP into a boundary-value problem (BVP). Then this BVP must

be numerically solved; i.e., the idea is to “first optimize, then discretize”. Indirect

methods also include the well-known calculus of variations and the Euler-Lagrange

differential equations. The main problem with indirect methods is that they tend to

be numerically unstable, hard to implement and initialize, and have difficulty dealing

with inequality constraints. Thus, direct methods have become the most popular

option to address OCPs (Bianco et al., 2018).

Direct methods transform the initial infinite OCP into a finite non-linear pro-

gramming (NLP) problem, which is the process of solving optimization problems

where some of the constraints or the objective function are non-linear. First, the
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control and state variables are discretized over a time grid to form a finite-dimensional

problem. Then, the differential equations (2.2) are converted into a finite set of

equality constraints (Bazaraa, 2013), which results in a problem with a scalar algebraic

function and an algebraic vector of constraints. Moreover, the remaining trajectory

constraints (2.3) are transformed into inequality constraints (Zhou and Yan, 2014).

Last, the resulting NLP is solved with any numerical optimization method, following

a scheme of “first discretize, then optimize”. In this thesis, direct methods are used

to solve non-linear trajectory optimization problems.

There are three different direct methods commonly used: single shooting, multiple

shooting, and collocation. The specific details for each of these techniques can be

consulted in multiple books in the literature (Diehl et al., 2006; Betts, 2009; Topputo

and Zhang, 2014). Most commercial software frameworks for OCPs offer the possibility

of choosing among multiple algorithms, depending on the problem formulation. All

these direct methods can be considered robust, even if high non-linearities are present.

Multiple shooting results in a higher dimensional non-linear program, but it is sparse

and more linear than the program produced by single shooting methods. The advantage

of collocation methods over multiple shooting approaches is that the former manage

the discontinuities of the control functions better. However, collocation methods have

a higher number of variables (Diehl et al., 2006).

Numerical integration is an essential part of implementing both direct single and

multiple shooting methods for trajectory optimization. It consists of computing

numerical simulations and partial derivatives for the non-linear system of differential-

algebraic equations that represent the vehicle’s dynamic model. Explicit and implicit

schemes are used in numerical analysis for obtaining numerical approximations to

the solutions of time-dependent differential equations (Hairer et al., 1993). Explicit

methods calculate the state of a system at a later time from the state of the system at

the current time; Runge-Kutta methods are well-known examples, such as the explicit

Euler or the Runge-Kutta method of order 4 (RK4). Implicit methods find a solution

by solving an equation involving both the current state of the system and a later

one (Ascher et al., 1997). Implicit integration schemes are more difficult to implement,

as they usually need to be solved numerically using an iterative procedure, such as a
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Newton-type method. On the other hand, they offer better numerical stability and a

higher order of accuracy (Verschueren et al., 2022). In the case of differential-algebraic

equations, implicit integration methods can fit better (Hairer et al., 1993). In any

case, whether one should use an explicit or implicit method depends on the problem

at hand, and most optimization software frameworks allow users to choose among

several options.

2.1.3 Solvers for specific types of problems

Depending on the shape of the objective function and the constraints involved,

optimization problems can be divided into several categories, which are solved with

different approaches. If the objective function is linear and the constrained space is a

polytope, the problem becomes a linear programming problem, which can be solved

using well-known linear programming techniques such as the simplex method (Karloff,

1991). For non-linear programs, there are different solving methods depending on the

problem structure.

A function is called convex if the line segment between any two points on the

graph of the function lies above the graph between those two points. If the objective

function is convex and the constraints define a convex set (i.e., given any two points

in the set, the set contains the whole line segment that joins them), the program is

called convex (Bubeck, 2015). A convex optimization problem can only have a globally

optimal solution, which greatly facilitates its resolution. Several methods can be used

to solve these problems, and they will either find the globally optimal solution or

prove that there is no feasible solution to the problem (Bubeck, 2015).

Quadratic programming (QP) is a special case of non-linear optimization that

consists of optimizing a quadratic objective function of several variables subject to

linear constraints on these variables. A QP problem has the following structure:

minimize
x

1

2
xTQx + cTx

subject to Aix ≤ bi, i = 1, . . . ,m.
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QP problems are convex if the matrix Q is positive definite. Moreover, if there are

only equality constraints, the QP becomes particularly simple, as the solution process

is linear.

When the objective function or some of the constraints are non-convex, we have a

non-convex program. For non-convex programs, sequential convex programming (SCP),

sequential quadratic programming (SQP), and the interior-point method are frequently

used. SCP is a local optimization method for non-convex problems that leverages

convex optimization by solving a sequence of convex subproblems (Schittkowski

and Zillober, 1995). SQP methods also iteratively solve a sequence of optimization

subproblems, each of which optimizes a quadratic version of the objective function

subject to a linearization of the constraints (Boggs and Tolle, 1995). Interior-point

methods are a certain class of algorithms to solve linear and non-linear optimization

problems (Potra and Wright, 2000). They pursue the optimal solution by traversing

the interior of the feasible region; i.e., the region whose points fulfill the problem

constraints.

The implementation of efficient software packages plays a significant role in bringing

non-linear optimization problems into real-time applications. In Moulard et al. (2014),

they review the most common non-linear optimization suites used in robotics. In the

following, we summarize some of these frameworks for non-linear programming, which

implement some of the solving methods explained in this chapter.

CVXGEN (Mattingley and Boyd, 2012) is a tool for embedded convex optimization

created by Stanford University. It works for problems which can be transformed into

QP, generating fast custom C code for small quadratic convex optimization problems

using an online interface requiring no software installation. CVXGEN is available

under commercial license and has been used for UAV trajectory generation (Tallamraju

et al., 2018; Baca et al., 2018; Saska et al., 2017). OOQP is another software package

designed for QP problems. It is an object-oriented C++ package based on a primal-

dual interior-point method (Vanderbei and Shanno, 1999). Its design allows easy

substitution of the linear algebra modules, enabling the use of different standard linear

algebra packages. Thus, OOQP can also be used as a framework to design efficient
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solvers for new classes of structured QPs. It has also been used for UAV trajectory

planning (Luis and Schoellig, 2019).

SNOPT (Gill et al., 2005) (Sparse Nonlinear OPTimizer) is a software package

provided by Stanford University for solving large-scale optimization problems. It

employs a sparse SQP algorithm with limited-memory quasi-Newton approximations to

the Lagrangian Hessian. Although it is not open-source, they have evaluation versions

with an academic license. SNOPT has been used for UAV trajectory planning (Alonso-

Mora et al., 2015a; Joubert et al., 2016). ACADO (Houska et al., 2011) is another

widespread solver for UAV trajectory planning and Model Predictive Control (Kamel

et al., 2017; Kostadinov and Scaramuzza, 2020). ACADO is an open-source software

environment that offers friendly interfaces to a collection of algorithms for non-linear

optimization. In particular, ACADO includes single and multiple shooting methods for

discretization, as well as SQP and SCP solvers for NLPs. FORCES PRO (Zanelli et al.,

2017) is another software package for non-convex finite-time NLPs. FORCES PRO

requires external functions to evaluate the cost function terms and their gradients,

the system dynamics and their Jacobians, and the inequality constraints and their

Jacobians. These external functions can be supplied by either the CASADI library

or hand-coded C-functions. The academic license is available for free but it can only

be used on one machine. FORCES PRO has also been used by the UAV trajectory

planning community (Nägeli et al., 2017b; Zhu and Alonso-Mora, 2019; Cheng et al.,

2017). NLopt is an open-source library for non-linear optimization, providing a

common interface for a number of different free optimization routines available online,

and original implementations of various other algorithms. It is callable from C, C++,

Fortran, Matlab, GNU Octave, Python, GNU Guile, Julia, GNU R, Lua, OCaml

and Rust. NLopt has been recently used for UAV trajectory optimization (Krishnan

et al., 2020). Acados (Verschueren et al., 2022) is a software package with a collection

of solvers for fast embedded optimization. Its interfaces to higher-level languages

make it useful for quick design of optimization-based control algorithms by integrating

different algorithmic components that can be readily connected and interchanged.

Acados is open-source and has been applied to UAV trajectory generation (Torrente

et al., 2021; Carlos et al., 2020). Finally, OpEn (Optimization Engine) is a framework
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for fast and accurate embedded non-convex optimization. It is free, open-source and

well documented with abundant examples. Problems are formulated with Rust and

the generated code can also be called from C/C++. OpEn has been used to solve

non-convex NMPC (non-linear model predictive control) problems for UAV obstacle

avoidance and control (Lindqvist et al., 2020).

2.2 Related work on UAV trajectory planning

The objective of this section is to provide a general overview of the state of the

art for UAV optimal trajectory planning. We survey recent works that formulate

the trajectory generation problem as variants of (2.1), considering UAV dynamics

and collision avoidance as core constraints, and then use the solvers described in

Section 2.1. We place special emphasis on multi-UAV settings for trajectory planning,

where inter-UAV constraints need to be integrated into the formulation.

In the literature, there is a distinction between trajectory and path planning:

while the former results in time-indexed trajectories for UAV states (e.g., positions,

veloctities, accelerations, etc.) that minimize a cost function typically related with

energy consumption or flight time, the latter merely consists of finding a collision-free

path from an initial UAV configuration to a goal which is a target configuration,

given a workspace with obstacles. Although different, path and trajectory planning

are closely related problems. Some methods for trajectory planning initiate their

optimization procedure by using a piecewise path previously computed by a path

planner (Tordesillas et al., 2021; Zhou et al., 2021; Liu et al., 2017; Oleynikova et al.,

2020). Others also carry out a similar initialization process by means of precomputed

paths that fulfill application requirements. For instance, this has been commonly done

in UAV cinematography (Nägeli et al., 2017a; Joubert et al., 2016; Gebhardt et al.,

2016), where initial paths can be calculated using well-established visual composition

principles for cameras, and these can then be used to feed a trajectory optimization

algorithm. As path planning is interconnected with trajectory optimization in many

cases, we first overview the main approaches for UAV path planning in the next

section.
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2.2.1 Path planning

Most approaches for UAV path planning can be categorized into search-based or

sampling-based methods. Search-based algorithms model the workspace as a graph

and define a cost function over each vertex, in order to search for minimum-cost paths

connecting the starting and goal vertices. A classic search-based algorithm such as

Dijkstra can ensure that a solution is found, if one exists, but its computation time

may not be short enough for real-time performance, mainly in 3D path planning

scenarios. Therefore, heuristic algorithms such as A∗ (Hart et al., 1968) are typically

used, as they can find nearly optimal solutions more efficiently. A drawback imposed

by A∗ and other discrete search algorithms is that they constrain paths to a grid,

so their solutions are indirect paths that sometimes poorly approximate the actual

shortest path in continuous space. This issue is addressed by any-angle path planners,

which allow any angle in the turns of the path, yielding paths with fewer turns that

head toward the goal more directly. This is the case of the Theta∗ planner (Nash et al.,

2007), built upon A∗. Unfortunately, the number of line-of-sight checks that Theta∗

performs in 3D space is still rather high, increasing computational requirements and

making it invalid for some real-time UAV applications. Lazy Theta∗ (Nash et al.,

2010) was introduced as a simple improvement of the Theta∗ algorithm, reducing the

number of line-of-sight checks. Thus, it finds paths faster than the original algorithm

and enables search-based algorithms in real-time UAV applications (Faria et al., 2019;

Wu et al., 2020). Perez-Grau et al. (2018) proposed a variant called Weighted Lazy

Theta∗, which can reduce the planning time by weighting the heuristic distance to

the goal and avoiding the symmetric 3D expansion of vertices while searching for the

solution path. Jump Point Search (JPS) (Harabor and Grastien, 2011) is another

variant of A∗ that provides the same completeness and optimality guarantees as A∗.

Under the assumption of a uniform cost grid, JPS significantly speeds up the running

time in 3D planning scenarios, which makes it suitable to be combined with trajectory

optimization methods in receding horizon (Liu et al., 2017; Tordesillas et al., 2021).

Ding et al. (2019) have also recently used a search-based algorithm to generate paths

that are later combined with a UAV trajectory planner. Their Efficient B-spline-based
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Kinodynamic (EBK) search algorithm finds B-spline control points on a spatial grid,

then generates lowest-cost dynamically feasible trajectories in real time.

Sampling-based approaches have also become popular for path planning, as they

work quite efficiently in high-dimensional configuration spaces. The most famous

sampling-based algorithms are the Rapidly exploring Random Tree (RRT) and the

Probabilistic Road-Map (PRM). Karaman and Frazzoli (2011) analyze these sampling-

based algorithms more deeply to study the asymptotic behavior of their solution

cost as the number of samples increases. RRT (LaValle and Kuffner, 2000) samples

random points in the planning space and iteratively builds a tree connecting the

samples with collision-free segments. Due to their efficiency in complex planning

problems, RRT-like algorithms are even popular for kinodynamic planning, where

trajectories holding to dynamic constraints are generated (Gammell et al., 2015;

Karaman and Frazzoli, 2011; Janson et al., 2015). Richter et al. (2016) use the RRT*

algorithm (Karaman and Frazzoli, 2011) to find a collision-free path through the

environment, initially considering only the kinematics of the vehicle and ignoring

the dynamics. The resulting path is then optimized to join its waypoints through

a smooth minimum-snap trajectory. If a particular trajectory segment is found to

intersect an obstacle after optimization, some works also use RRT algorithms to add

additional waypoints between the two segment ends (Mellinger and Kumar, 2011;

Richter et al., 2016; Loianno et al., 2017). Nonetheless, an issue with RRT algorithms

is that they usually suffer when applied to complex kinodynamic systems, as they

typically require solving a computationally expensive non-linear two-point boundary

value problem (BVP) (Xie et al., 2015).

2.2.2 Trajectory planning

Due to the increase of computational resources for onboard computers and recent

advances in efficient numerical methods, constrained optimization approaches are be-

coming commonplace for UAV trajectory planning. Some methods solve the trajectory

planning problem using a two-stage pipeline (Ding et al., 2019), generating initial

reference paths that later turn into optimized trajectories. The most common options
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are to calculate these initial references running a global path planning algorithm, or

referring to specific requirements of the application at hand. For instance, Nägeli

et al. (2017b) present a UAV cinematography system that generates reference paths

as “virtual rails” in analogy to physical camera cranes and dollies. And Galvane et al.

(2018) calculate the reference curve to be fit into a spherical space that ensures cine-

matographic properties. Once a reference is computed, the final optimized trajectory

is usually obtained through a quadratic problem, simpler to solve than the original

trajectory planning problem. Regarding this posterior optimization process, most

state-of-the-art methods exploit the differential flatness of multirotor vehicles and,

using an integrator model, minimize the squared norm of a derivative of the UAV

position in order to obtain a dynamically feasible and smooth trajectory from the

initial reference path (Mellinger and Kumar, 2011; Richter et al., 2016).

Other methods formulate the trajectory optimization problem without calculating

a reference path, using cost functions and constraints that are specific for each

application. For instance, cost terms to prevent UAV collisions are commonly defined

using the distance to obstacles. Smoothness is usually achieved by penalizing jerky

motions (i.e., accelerations and higher derivatives) that may lead to unstable flight.

Some approaches maintain a formation between UAVs, formulating costs that, e.g.,

maximize the angular distance between multiple UAVs to cover the whole scene (Ho

et al., 2021). In applications with cameras, occlusions can be handled by defining costs

that measure the actor’s environmental occlusion (Bucker et al., 2021; Bonatti et al.,

2020). Others include costs of following cinematographic guidelines, such as Huang

et al. (2019), where they formulate a cost to increase the camera-to-subject distance

if the subject moves fast and vice-versa, ensuring smooth displacement of the subject.

Vehicle dynamics and bounds on the control and state variables are common

problem constraints. Connectivity constraints are also typical in the case of multi-

UAV formations (Mondal et al., 2018). Moreover, obstacle avoidance is of uppermost

importance in UAV trajectory planning. Some approaches deal with this after solving

the optimization problem (Mellinger and Kumar, 2011; Richter et al., 2016; Loianno

et al., 2017), but many others integrate it into the problem formulation. In the
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following, we describe various options to address collision avoidance in UAV trajectory

optimization problems.

A common approach is a cost function that penalizes distance to the obsta-

cles (Oleynikova et al., 2016, 2018), usually requiring computationally expensive

distance field representations. Bonatti et al. (2020) obtain the truncated signed

distance transform (TSDT) map function, which linearly penalizes intersections with

obstacles and decays quadratically with distance. Another option is to add obstacles as

constraints in the optimization problem. Liu et al. (2017) does a convex decomposition

of the known free space as a series of overlapping polyhedrons. They include the safe

corridor, created as a set of linear inequality constraints in the QP problem. The

drawback of this approach is that it can sometimes be very conservative, since the

solver can only place the two end points of each interval in the overlapping area of two

consecutive polyhedrons. A possible way to solve this problem, but usually with higher

computation requirements, is to use binary variables (Landry et al., 2016; Deits and

Tedrake, 2015) to allow the solver to choose the specific interval allocation. Tordesillas

et al. (2021) propose a MIQP (mixed-integer quadratic programming) formulation

that allows the solver to choose the trajectory interval allocation. Moreover, they solve

the problem at high frequency in real time. Another approach is to encode the shape

of the obstacles in the constraints using successive convexification (Augugliaro et al.,

2012). However, successive convexification depends heavily on the initial guess and is

usually unsuitable for real-time planning in unknown cluttered environments. In Luis

and Schoellig (2019), collision avoidance constraints are linearized using a Taylor series

expansion to transform the problem into a convex optimization. Zhu and Alonso-Mora

(2019) transform collision constraints into deterministic constraints on the mean and

covariance of the robot’s state, and then linearize those deterministic constraints.

Alonso-Mora et al. (2015b) linearize non-convex constraints leading to a convex opti-

mization with quadratic cost and linear and quadratic constraints. Each non-convex

constraint is approximated by five linear constraints, representing avoidance to the

right, to the left, over and under the obstacle, and a head-on maneuver.

Most of the above methods try to transform non-convex constraints into a convex

problem to facilitate their resolution. However, some authors have also addressed
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non-convex problems directly, using the frameworks mentioned in Section 2.1.3, which

apply SQP, SCP, or interior-point methods. For example, (Nägeli et al., 2017a)

formulate a non-convex problem to not enter zones with obstacles and use FORCES

PRO to solve it. They use slack variables to relax the constraints guaranteeing feasible

solutions in tight situations. It can be shown that under sufficiently high penalization

of (a linear norm of) the slack variables, the solution of the hard-constrained problem

is found when it exists; otherwise, a plan with minimum deviation is computed by the

optimizer. This approach is also used in Castillo-Lopez et al. (2018). Joubert et al.

(2016) formulate a non-convex problem to capture well-composed images and solve it

using SNOPT. Alonso-Mora et al. (2015a) also use SNOPT to navigate a multi-UAV

formation using SCP. Lindqvist et al. (2020) solve a non-convex NMPC using OpEn,

for multi-UAV control with dynamic obstacles.

2.2.3 Multi-UAV trajectory planning

Multi-UAV trajectory planning consists of simultaneously computing trajectories for

multiple vehicles that should be coordinated. Apart from the costs and constraints

considered in conventional trajectory planning, multi-UAV settings impose additional

requirements to enable team operation. On the one hand, inter-UAV distances need

to be ensured, for safety or connectivity reasons. On the other hand, cooperative or

formation behaviors (e.g., keeping a certain shape) are often required, depending on

the application. Liu and Bucknall (2018) provide a survey on multi-UAV trajectory

planning and formation control.

Methods for formation control strategies can be classified into leader–follower

formations, virtual formations, or behavior-based formations (Liu and Bucknall, 2018).

In the leader–follower approach, one vehicle functions as the leader, and the others act

as followers, adapting their motion to the leader. Krátký et al. (2020) propose a multi-

UAV formation with a leader that is filming a scene while the others provide proper

lighting. They solve a special optimization problem for the leader, and use a different

formulation for the followers, so that they can illuminate adequately from different

angles. Virtual formations aim to keep a geometric shape with respect to a moving
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reference frame which is virtual; i.e., they use a virtual leader. The idea is to maintain

a formation by minimizing position errors between the virtual structure and the actual

UAV positions. Tanner and Kumar (2005) present a decentralized cooperative control

scheme that allows a team of UAVs to asymptotically converge to the desired formation

of a particular shape and orientation from almost any initial conditions. Also, many

multi-UAV MPC-based methods minimize the distance to a reference path, making it

possible to maintain precomputed virtual formations (Tallamraju et al., 2018; Price

et al., 2018). Instead of a rigid geometric shape, behavior-based formations follow a

more flexible approach, generating control commands that are based on various aspects

of the mission. For instance, in applications with cameras, multi-UAV teams could

maintain a formation to film a scene from multiple perspectives, without entering each

other’s camera fields of view and minimizing other costs related to the smoothness of

the camera motion (Bucker et al., 2021).

In terms of distribution of the computation, methods can be classified as cen-

tralized or decentralized. Centralized methods solve a single problem for the whole

team, concentrating all computation on a single computer. A central node accesses

information from all vehicles and computes the multi-UAV plan (Maza et al., 2015).

In decentralized methods, computation is distributed among the computers of each

UAV in the team. Some decentralized approaches require that some global information

is available for all UAVs, whereas in others, UAVs are only required to access local

information. Centralized methods are usually better for stability and could reach

better solutions in terms of efficacy, as they consider global information, but they

scale poorly with the number of UAVs. On the other hand, decentralized methods

alleviate computational and communication bandwidth requirements (Maza et al.,

2015), but they are only possible when local information is good enough to achieve

coherent and cooperative behaviors.

Mellinger and Kumar (2011) solve the trajectory generation problem in a centralized

manner, formulating a MIQP. However, they do not achieve real-time performance

due to their high computational cost. Sequential convex programming has been used

in Augugliaro et al. (2012), leading to faster computation but still not in real time.

In order to improve computational efficiency, decoupled planning methods have been
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proposed (Čáp et al., 2015; Yu et al., 2016; Robinson et al., 2018). These methods

solve a centralized problem sequentially by avoiding the previously planned robots

in a prioritized manner, improving computational efficiency. MPC-based approaches

have also been used for trajectory computation in centralized multi-UAV architectures,

taking advantage of receding horizon approaches to solve the problem in real time. For

instance, Erunsal et al. (2019) present a centralized leader–follower scheme, where the

leader executes a centralized NMPC approach and communicates with the followers

to obtain their local sensor information and deliver velocity commands to them.

Another centralized method is proposed in Alonso-Mora et al. (2015a). They compute

the largest collision-free convex polytope in a neighborhood of the UAVs, followed

by a constrained optimization via SCP. Li et al. (2021) first apply a graph-based

multi-agent path planner to find an initial discrete solution, and then this solution is

transformed into smooth trajectories using non-linear optimization. Although they

compute trajectories in a centralized way, they divide the robot team into small

sub-groups and propose a prioritized trajectory optimization method to improve the

algorithm scalability. Ho et al. (2021) also develop a two-stage approach with long

planning time horizons and real-time performance. They use a centralized planner for

formation control, but also a decentralized trajectory optimizer that runs on board

each UAV.

Optimization methods to tackle multi-UAV trajectory planning in a decentralized

fashion also exist. Many of these attempt to avoid non-convex constraints in order to

enable real-time performance and scale with the number of UAVs. For instance, the

authors in Tallamraju et al. (2018); Price et al. (2018) present a method where each

UAV executes a local motion planning algorithm based on MPC, and use repulsive

potential field functions for obstacle avoidance. They propose a novel mechanism to

convexify these non-linear potential field functions, embedding them in the optimization

framework. Mondal et al. (2018) also use potential fields to ensure inter-agent collision

avoidance and connectivity, and a consensus strategy to keep a desired formation

via velocity agreement among the agents. The main problem of these methods is

that due to the use of constraints based on potential fields, they are prone to getting

trapped in local minima. In Alonso-Mora et al. (2016), they extend their previous
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centralized approach (Alonso-Mora et al., 2015a) to achieve a decentralized version. Via

distributed consensus, UAVs compute the convex hull of their positions and the largest

convex region within free space. Then they apply SCP to compute locally optimal

formation parameters within this convex neighborhood. Alonso-Mora et al. (2018)

consider a set of motion primitives for the robots and solve a multi-robot optimization

problem in the space of control velocities with additional convex constraints. Park and

Kim (2021) formulate another distributed convex optimization problem constructing

relative safe flight corridors. Kamel et al. (2017) consider non-convex constraints for

collision avoidance, incorporating them into an NMPC decentralized problem. Still,

they only activate them if a potential field algorithm cannot maintain a minimum

distance. In Nägeli et al. (2017b), they formulate non-convex constraints with slack

variables to maintain the formation, since the performance is enough for a few UAVs

in the team. Luis and Schoellig (2019) introduce on-demand collision avoidance in a

decentralized MPC framework, where they detect and resolve only the first collision

within a finite prediction horizon using SCP, modeling each collision as an ellipsoid

and implementing soft constraints.

Even though they might not be considered trajectory planning, it is worth men-

tioning that there are many distributed approaches based on reactive methods, where

UAVs use only local information to continuously react to possible collisions. Many of

these reactive approaches are based on the concept of velocity obstacles. For example,

optimal reciprocal collision avoidance (ORCA) has been used to guarantee collision-free

trajectories for non-holonomic agents (Alonso-Mora et al., 2013). Gopalakrishnan

et al. (2017) propose the concept of chance constraints to derive PRVO, a probabilis-

tic variant of RVO (reciprocal velocity obstacle) (van den Berg et al., 2008). They

take into account the uncertainty associated with both the state estimation and the

actuation of each robot. Reactive planning methods are computationally efficient, but

they have no guarantees about deadlock avoidance and are poorly suited to problems

in maze-like environments.
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Chapter 3

Scheduling and execution of

cinematography missions with

multiple UAVs

This chapter presents a framework for autonomous scheduling and execution of

cinematography missions with multiple UAVs. We devise a methodology for parametric

description of generic aerial shots, so that a human operator or director can design the

cinematography missions to be executed by the autonomous multi-UAV team. Our

framework integrates components to plan and schedule the shots, and to execute them

in parallel or sequentially with multiple UAVs. Even though there are also components

for target tracking, UAV motion planning, and gimbal control, the chapter focuses on

those related to multi-UAV shot execution. For this, we propose a distributed scheduler

that runs on board each UAV and activates different shot controllers depending on the

shot type. These controllers are in charge of both UAV and gimbal motion. Then, an

event-based system is used to synchronize shot execution among the UAVs and ensure

proper coordination. Furthermore, we increase the system robustness by considering

contingency plans. In particular, our system is able to react to possible UAV failures

(e.g., lack of battery or GPS signal), re-planning the remaining shots with the available

UAVs, and leaving the failed ones to perform emergency maneuvers.

47
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3.1 Introduction

The interest in multi-UAV cinematography is growing rapidly due to the capacity of a

multi-UAV mission to film several action points at the same time, different perspectives

of the same target, or to cover large-scale scenarios. However, there is still a need

for autonomous systems that are intelligent enough to execute cinematography shots

with multiple action points and multiple UAVs. This implies, for instance, predicting

how the scene will evolve and being able to schedule shots that may be happening

sequentially or in parallel, as well as coping with possible failures and contingencies.

In this chapter, we focus on the high-level assignment and execution of the aerial

shots belonging to a multi-UAV cinematography mission. In Section 3.2, we review

similar systems to design and execute cinematography missions with one or multiple

UAVs. The main contributions of this chapter are the following:

� We present a complete architecture for autonomous execution of cinematography

missions with a team of UAVs (Section 3.3). We formulate the problem of

autonomous cinematography as two steps: mission planning and execution. In

particular, this chapter describes our novel solution for mission execution. Even

though we implement a representative set of canonical shots, we also generalize

the way to describe parametric shots, making the system easily extendible. In

this way, we allow for different camera motion modes, including actual target

tracking and predefined virtual rails.

� We describe our method for cinematography mission execution (Section 3.4),

which is agnostic to the planner used to schedule and assign shots to the

available UAVs. We propose distributed schedulers that trigger the execution of

the different shots based on starting events that may be generated manually or

autonomously (e.g., a certain actor reaching an action point). This works as a

synchronizing mechanism for multi-UAV shots but also makes the system robust

to uncertainties in the planning phase (e.g., the planned starting time of some

action becoming delayed). Moreover, our onboard controllers implement shots

autonomously decoupling gimbal and UAV motion, which improves robustness

to noisy actor measurements (compensating through gimbal control).
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� We provide an open-source implementation of our system 1 using off-the-shelf

hardware, and validate it for outdoor media production with multiple UAVs

(Section 3.5). In particular, we show our field experiments filming several sport

activities (including a real regatta), with the system running all components

on board in real time. We also report on lessons learnt after our experimental

campaigns within the framework of the MultiDrone project, which are supported

by feedback provided by the media experts involved in the project.

3.2 Related work

There are multiple commercial products for UAV cinematography in outdoor settings.

On the one hand, aerial platforms such as DJI Mavic (DJI, 2018), Skydio (Skydio,

2019), 3DR SOLO (3DR, 2015) or Yuneec Typhoon (Yuneec International, 2018)

offer good performance, including some semi-autonomous functionalities for tracking

moving targets visually or by GPS, as well as simplistic collision avoidance. However,

the set of shots is predefined and not easily extensible, as their software suites are

not open-source. Besides, they do not consider multi-UAV systems nor multi-shot

scheduling. On the other hand, there are commercial applications to enhance the user

experience. Skywand (Garage, 2019) is a virtual reality system that allows the user

to explore the scene and select desired key-frames within the virtual environment.

Then the system computes a UAV trajectory for a smooth shot containing these

key-frames. Freeskies CoPilot (FreeSkies, 2019) is a mobile software suite that offers

similar functionality but with a simple 3D map instead of a virtual reality interface.

In both cases, the resulting UAV autonomy and environment perception are minimal;

the cinematography plans consist of example key-frames and they cannot be adjusted

online.

A complete system for UAV cinematography in unstructured environments is

presented in Bonatti et al. (2020). They combine vision-based target tracking with a

real-time motion planner that avoids collisions and fulfills artistic guidelines. They

show impressive field experiments, but their focus is mainly on mapping and obstacle

1https://github.com/grvcTeam/multidrone_planning

https://github.com/grvcTeam/multidrone_planning
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avoidance rather than multi-shot scheduling. Moreover, only a single UAV is considered,

as well as a simplified set of shots: left, right, front, back. The same authors also

extended their work to multi-UAV systems (Bucker et al., 2021), focusing on filming

in unstructured cluttered environments.

An approach for cinematography with multiple UAVs is described in Nägeli et al.

(2017b). They resolve a non-linear optimization problem to generate 3D trajectories

for the UAVs. Aesthetic objectives and collision avoidance between the UAVs and

with the filmed actors are considered. The problem is solved on each UAV in a

distributed fashion, after exchanging planned trajectories. The authors extend their

own previous work (Nägeli et al., 2017a) by including multiple UAVs and preference

trajectories from the user as virtual trails. Although the approach is quite promising

for autonomous cinematography, it is only tested in indoor settings and does not

consider the scheduling of multiple shots as we do. The work in Galvane et al. (2018) is

closer to ours, as the authors also propose a complete architecture for cinematography

with multiple UAVs. The motion of the multiple UAVs around dynamic targets is

coordinated by means of a master–slave approach that resolves conflicts: only one

master UAV is supposed to be shooting the scene at a time, while the slaves offer

alternative viewpoints or act as replacements. Moreover, the user can only select

among different framing types. In contrast, our system adds more flexibility, as we

define framing and shot types, as well as introducing multi-view shots more explicitly,

allowing different types of shots to take place concurrently. In addition, the system

in Galvane et al. (2018) is only tested in indoor settings, with a Vicon motion capture

system that provides accurate positioning for all targets and UAVs.

Recently, the MultiDrone project, of which this work is part, has concluded

successfully, producing an integrated system for autonomous cinematography with

multi-UAV teams for outdoor sport events. In the MultiDrone project, a new taxonomy

for cinematographic shots with UAVs was proposed (Mademlis et al., 2019; Mademlis

et al., 2019a), and with the support of experts from the media production companies

involved in the project, a set of representative shots was selected to be implemented

autonomously by the system. These shots can be defined by the media director

through a high-level graphical interface with a novel language that was created for
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cinematography mission description (Montes-Romero et al., 2020). The director

indicates the desired shot types, starting times/positions and durations; but does not

assign specific UAV cinematographers to them. Instead, the system autonomously

computes feasible plans for the UAVs (Caraballo et al., 2020), considering constraints

such as their remaining battery, no-fly zones, collision avoidance, and more. Each

UAV is scheduled to take one or several shots, together with the events that will

trigger each shot. These shots may be sequential, filming different action points

along time (or the same point with different views); or they may be concurrent shots

with multiple UAVs filming one or several action points. The focus of this chapter

is on mission execution, so we assume these planned schedules for each UAV as a

starting point. Various different planning techniques may be used to compute those

schedules (Torres-González et al., 2017; Caraballo et al., 2020). Based on those plans,

we propose a general architecture to execute the scheduled shots in a cooperative

manner with the multi-UAV team.

3.3 System architecture

In this section, we present the complete architecture of our autonomous system for

multi-UAV cinematography. We assume that there is a media director in charge of

designing the mission by describing multiple shots from a high-level and artistic point

of view. This director is then supported by autonomous components that are able to

compute plans to execute the designed shots and carry out the mission with a team of

UAV cinematographers. Our system separates the whole cinematography problem

into two sub-tasks: mission planning and mission execution.

Mission planning: Given an input cinematography mission, this sub-task consists

of deciding which UAV should execute each of the shots. For each shot, the director

specifies (among other parameters) a starting position and time for the action to be

filmed, and the desired duration and type. Taking into account the initial position and

remaining flight time of the UAVs, a schedule with the shots assigned to each UAV

must be computed.
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This problem can be solved with scheduling and task allocation algorithms. Each

shot represents a task with a duration and an estimated starting time and position, and

it must be ensured that each UAV has enough flight time to cover all its assigned shots.

After every shot, a path to reach the starting position of the next shot is necessary. For

this, an estimation of the ending position of the UAV after the shot is required. For

certain sports events such as those in our work (e.g., rowing or cycling races), this can

be assumed, as the targets move along a predefined route with an approximate known

speed. We integrated an algorithm for optimal mission planning with time constraints

and avoiding inter-UAV conflicts (Caraballo et al., 2020), although our architecture

is more general and could accommodate alternative methods (Natalizio et al., 2019).

The integrated planning algorithm maximizes the percentage of shots covered by the

multi-UAV team and it provides as output a list of actions for each UAV in the team.

We consider two types of actions: Navigation Actions (without filming); taking off,

landing, and navigating from one shot to the next; and Shooting Actions ; executing a

specific shot. Shooting Actions involve concurrent UAV and gimbal control, and they

can have an associated starting Event which triggers execution. The planner computes

the plan in a centralized fashion, with all available information from the UAV’s states

and shots designed by the director. It considers as constraints the remaining battery

(i.e., flight time) of each UAV, and the fact that they need to cross (when navigating

between shots) at no less than a certain minimum distance from each other in order

to prevent them from colliding. Also, it avoids flying UAVs above predefined no-fly

areas which are specified by the director (buildings, the audience of a sports event,

etc). Thus, due to all these constraints, the algorithm may not find a valid plan, or

it may return a plan where the original shots are only partially covered. We leave

mission planning out of the scope of this thesis and concentrate on the problem of

mission execution.

Mission execution: Given a plan for a cinematography mission; i.e., the list

of Shooting and Navigation Actions assigned to each UAV, this sub-task consists of

executing the shots in a synchronized manner with a multi-UAV team. This means

triggering gimbal and UAV controllers depending on the shot type, avoiding UAV

collisions, and performing target tracking.
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Figure 3.1: System architecture for multi-UAV cinematography. Mission design and
planning components run on a Ground Station, but components for mission execution
run on board the UAVs.

We solve this problem by means of a set of distributed shot schedulers and executors

that run on board the UAVs. For mission planning, we assume that the director can

estimate the occurrence time for the Events triggering Shooting Actions. We also

assume that target trajectories can be predicted approximately. However, the system

tolerates errors in these estimations to a certain extent, since it reacts online during

mission execution in two ways: (i) UAVs can wait at shot starting positions until

the shot execution is triggered, to account for delays in the action to be filmed; and

(ii) UAVs can track actual target trajectories instead of planned ones during shot

execution, to account for possible deviations.

3.3.1 System overview

Figure 3.1 shows the complete architecture of our system. Components related to

mission planning are executed on a Ground Station that interfaces with the director,

while components related to mission execution run mainly on board the UAVs. The

Dashboard is a graphical tool for human-computer interaction between media end-users

and the rest of the system. Figure 3.2 shows snapshots of the most representative

windows. Further details about the Dashboard and mission design can be seen

in Montes-Romero et al. (2020). In summary, this component enables the director to

design cinematography missions, including all shot descriptions and their triggering

Events, when needed. For instance, a director could design a mission to film a rowing
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Figure 3.2: Snapshots of the Dashboard graphical interface. Upper: several events
with different associated missions. Lower: an example of the window to design a
specific Shooting Action within a mission, indicating the Reference Target trajectory.

race, specifying a lateral shot from the START RACE Event to the end of the race,

and an orbital shot starting with the FINISH LINE Event; i.e., when the boats reach

the finish line. A novel cinematography language (Montes-Romero et al., 2020) was

proposed in MultiDrone so that the director’s input is written with a specific syntax

that is later understandable for our planning components.

At the Ground Station, there is another central component called Mission Con-

troller, which manages the whole planning and execution process for a mission. This

module receives the director’s input through the Dashboard and it uses the Planner

component to compute feasible plans in order to execute the mission. Then the
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Mission Controller sends each UAV its plan, which basically consists of a list of

Shooting Actions to execute the assigned shots, with interleaved Navigation Actions

to fly between shots. During the mission execution, the Mission Controller monitors

the UAV status for possible contingencies and sends out the triggering Events as

they actually occur. Depending on the Event, this occurrence may be automatically

detected by the Mission Controller or manually indicated by the director.

Components on board the UAVs manage mission execution. Communication with

the Ground Station is done by means of an LTE (Long Term Evolution) link (Mademlis

et al., 2019b) through the Scheduler components, which are the ones receiving plans

and Events from the Mission Controller. They are in charge of executing shots in

a distributed manner with multiple UAVs. Each Scheduler listens to Events and

starts/stops the execution of Shooting Actions as required. These Events act as a

synchronizing mechanism for multi-camera shots, since all the involved UAVs wait for

the same Event to start. Shooting Actions are carried out by calling the Shot Executor

component, which implements UAV and gimbal controllers. Depending on the shot

parameters, the Shot Executor adapts its controllers to execute the corresponding shot.

A Target Tracker module is necessary to provide positioning of the target, which is used

by the Shot Executor to point the gimbal and move the UAV accordingly. Navigation

Actions are also managed by the Shot Executor, but with different controllers that do

not consider gimbal motion or cinematographic constraints.

Our system is flexible enough to adapt to upcoming situations during execution.

In particular, we allow for mission re-planning due to a director’s choice or in case of

unexpected situations. The former is manually triggered, but the latter is autonomously

managed as follows. Schedulers report back the status of the mission execution to the

Mission Controller; i.e., which action each UAV is executing or waiting for. In the

event of an emergency in a UAV; e.g., low battery or loss of GPS, the corresponding

Scheduler is able to trigger an emergency maneuver (landing safely), but at the same

time, it informs the Ground Station about the situation. Then the Mission Controller

starts a re-planning procedure through the Planner component, involving only the

available UAVs and the remaining shots to be executed. Once those new plans are

sent to the UAVs, each of them will finish its current ongoing action, and will append
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the new list of actions behind the current one. The other safety mechanism that is

considered in our architecture is collision avoidance. This is integrated at planning level

within the Planner, and at execution level within the Shot Executor. First, our Planner

uses a high-level map of the environment (including no-fly zones due to obstacles,

audience, etc.) to provide collision-free paths. It also resolves inter-UAV conflicts

when their paths become too close. Second, our Shot Executor runs collision avoidance

online to react to unexpected situations and maintain safe inter-UAV distances.

3.3.2 Shot description

Our multi-UAV system autonomously takes a series of shots that are represented by

Shooting Actions. All the properties for each shot are encoded through the attributes

of its corresponding Shooting Action. Table 3.1 gives the definitions of a shot, with

the multiple properties that can be specified when designing the shot.

Attribute Data type Description

Shot type Discrete value Chase, lateral, orbit, etc.
Framing
type

Discrete value Long shot, medium shot, close-up shot, etc.

Start Event String Event that triggers this action
Duration Time Duration of the shot
RT
path

List of global po-
sitions

Estimated path of the RT

RT speed Float Speed along the RT path
RT mode Discrete value virtual-traj, virtual-path

or actual-target
RT ID String Identifier of the RT to follow
ST type Discrete value Virtual, real, or none
ST ID String Identifier of the ST to follow
Shooting
parameters

Set of
parameters

E.g., relative distance to RT, angular veloc-
ity in an orbit, etc.

Table 3.1: Attributes of a Shooting Action for shot definition.

The shot type describes the kind of movement of the camera with respect to the

action; i.e., chasing, orbiting around, etc. We will define all shot types in Section 3.3.3,
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together with the shooting parameters defining their geometry. Apart from the shot

type, we need to specify the framing type (this indicates how close the action will

appear in the image; i.e., the zoom level), the duration, and the starting Event. This

latter is optional; if not specified, the shot would start right after the previous one. In

addition, we create two relevant concepts to describe shots: the Reference Target (RT)

and the Shooting Target (ST). The RT is used to guide UAV motion, as the UAV

should follow this target describing its corresponding type of shot. The ST is used to

guide gimbal motion, as the camera should point at this target when filming. The

two targets could coincide, but not necessarily. For instance, we may want a camera

moving along a lateral rail but filming a static scene or an actor moving in a different

direction.

We specify the RT path as a list of waypoints expressed in global coordinates, and

depending on the RT mode, we define three different kinds of motion for the UAV:

� Mode virtual-traj : A virtual UAV trajectory is specified. The UAV should move

along the rail indicated by the RT path and at the velocity specified by the RT

speed.

� Mode virtual-path: A virtual UAV path is specified but no speed is provided.

The UAV should move along the rail indicated by the RT path but at the speed

of an actual target, which would be indicated by the RT ID.

� Mode actual-target : No virtual path is indicated for the UAV, which should

move following an actual target specified by the ST.

The above modes widen the spectrum of possibilities for the director and were

actually recommended by media experts from our end-user partners in the MultiDrone

project. On top of that, we can track different targets with the UAV and on the image;

i.e., having non-coincident RT and ST. We consider three types of ST: (i) virtual, if

the target is specified as a virtual point or path; i.e., through the RT path; (ii) real, if

it is an actual physical target (e.g., a cyclist, a runner, etc.) whose position can be

estimated, for instance through visual detection or with a mounted GPS; and (iii)

none, if the camera is simply fixed or following a predefined motion. In the case of a
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real ST, an ST ID can be indicated to identify the specific target to track visually or

the corresponding GPS transmitter. The RT ID plays a similar role when we use the

virtual-path RT mode to track an actual target with the UAV.

Finally, notice that our shot description only requires a starting Event for particular

shots. The director may want to take a series of sequential shots after a given Event,

to take several views along the line of action. For that, she/he would only need to

specify the starting Event for the first shot, and the others would happen consecutively.

Furthermore, it is important to highlight how multi-UAV shots are addressed within

this framework. The director could design multi-camera shots to be done by a

formation of multiple UAVs simultaneously. For that, she/he could assign the same

starting Event and RT to several Shooting Actions. Thus, all the UAVs involved would

track a common reference trajectory together, implementing complementary shots of

the same or different types. The shooting parameters for each Shooting Action would

determine the geometry of the formation, and the starting Event would synchronize

the motion so that they all start shooting simultaneously.

3.3.3 Canonical shots

In this section, we describe the set of shots that have been implemented for our system.

In the cinematography literature there is a lot of information about cinematographic

rules and canonical types of shots (Smith, 2016). Within the context of the MultiDrone

project, a wide spectrum of shots was studied (Mademlis et al., 2019; Mademlis et al.,

2019a). Following the recommendations of the media experts in the project, we

selected our canonical list of representative shots for the autonomous system. In the

following, we describe the shot types and the specific shooting parameters considered

for each of them. Table 3.2 summarizes all the parameters, and Figure 3.3 depicts the

shot geometry. Note that the parameters indicating the shot geometry are coordinates

expressed in the RT frame. Moreover, unless the stated otherwise, the UAV yaw is

such that it points forward toward the direction of movement.

Static: The UAV remains stationary above a fixed RT location at a height indicated

by the parameter z0. Since the RT represents a static position, the only RT mode that
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Shot type Shooting parameters

Static pans, tilts, pane, tilte, z0
Fly-through pans, tilts, pane, tilte, z0
Elevator zs, ze
Chase/lead xs, xe, z0
Flyby xs, xe, y0, z0
Lateral y0, z0
Establish xs, xe, zs, ze
Orbit r0, azimuths, angular speed, z0

Table 3.2: Shooting parameters for each shot type.

makes sense is virtual-traj. Depending on what the gimbal tracks, the ST type can be

real or virtual. The ST type “none” can be used to implement scene-centered shots,

in which the gimbal moves independently. In this case, the parameters pans, pane,

tilts and tilte indicate the pan/tilt starting and ending angles, respectively. Note that

in this shot type, the UAV yaw will be such that it coincides with the camera pan

angle, which is specified in the global reference frame. Tilt angles are specified in the

UAV reference frame for convenience.

Fly-through: The UAV flies through the scene following a predefined path with

no specific target to track. As in the previous shot, the only possible RT mode is

virtual-traj, as there is no actual target. The flight altitude over the RT path is

indicated by the parameter z0. The ST type is always “none” and there are extra

parameters to describe gimbal movement along the shot duration; pan/tilt starting

and ending angles (pans, pane, tilts, and tilte). In this case, the UAV yaw follows the

general rule to point in the direction of the movement, and both pan and tilt angles

are specified in the UAV reference frame.

Elevator: The UAV moves vertically straight up or down tracking an actual target

or a static position. The UAV starts the shot above a given position (defined as

the initial RT location) at altitude zs and ends at ze. Therefore, the RT mode is

virtual-traj, but the ST type could be real or virtual. The UAV yaw points to the ST.

Chase/lead: The UAV chases a target from behind with constant or decreasing

distance, or moves ahead of it with decreasing or constant distance. All RT modes are
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Figure 3.3: Scheme describing the shot geometry for the different shot types. Shot
parameters refer to the RT frame. Lighter figures represent the start of the shot, and
solid figures the shot end.

possible, depending on whether a virtual or an actual target is followed; for ST, only

the “real” type makes sense. Regarding parameters, z0 determines the UAV height

over the RT, and xs and xe the starting and ending distances on the X axis (pointing

forwards) with respect to the RT.

Flyby: The UAV flies past a target, normally overtaking it as the camera tracks it.

The RT could be virtual or real, so all RT modes are possible; for ST only the “real”

type makes sense. For parameters, it needs distances with respect to the RT; z0 for

the altitude, xs and xe for the starting and ending distances on the X axis, and the

constant lateral distance y0.

Lateral: The UAV flies beside a target with constant distance as the camera tracks

it. The RT could be virtual or real, so all RT modes are possible; for ST, only the

“real” type makes sense. For parameters, it needs z0, the altitude with respect to the

RT, and the constant lateral distance y0.

Establish: The UAV moves closer to a target from the front, typically with

decreasing altitude. The RT could be virtual or real, so all RT modes are possible.

The ST type could be real or virtual (the latter could be for example to descend to

a monument or static scene). Both altitude and displacement on the X axis with

respect to the RT change during this shot, so it needs as parameters zs, ze, xs and xe.
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Orbit: The UAV moves around a target describing a full or partial orbit. The

RT could be virtual or real, so all RT modes are possible. The ST type could be

real or virtual (the latter, for example, to orbit around a monument or static scene).

The parameters in this case include the altitude above the RT (z0), the radius of the

circle (r0), the starting azimuth angle for the orbit (azimuths), and the angular speed

(angular speed).

Finally, it is important to notice the following issue. As the shooting parameters

describing the shot geometry are expressed in the RT frame, in the event of this

being an actual target, there may be situations where the target is turning at a

high rate, causing the UAV to make abrupt maneuvers to relocate itself accordingly.

For such a situation, as will be explained in the following sections, we estimate the

target position and velocity by means of a stochastic filter implemented in the Target

Tracker module, which smooths noisy target direction changes. The controller for shot

execution follows a trailer-like approach with respect to the target to produce smooth

reference trajectories. For safety reasons, we limited the maximum linear and angular

speeds of the UAVs, forbidding them from performing these risky maneuvers in any

situation.

3.4 Distributed mission execution

In this section, we describe our autonomous components for cinematography mission

execution. More specifically, this is the part of our system architecture that runs on

board each of the UAVs.

3.4.1 Scheduler

The execution of UAV shots is carried out by means of a distributed scheduling

procedure. Each UAV runs a Scheduler component onboard that receives the plan for

that UAV and coordinates the execution of the assigned shots, taking into account

the other UAVs involved and the actual evolution of the scene. In particular, the

Scheduler receives a list of sequential Navigation and Shooting Actions. Navigation
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Actions only imply UAV movement through the scenario, without filming. This is

mainly to get to the starting position of an upcoming shot or to go for the landing, so

we only consider three types: take-off, land, and go to a waypoint. In the last case,

either a single waypoint or a list of waypoints to navigate through can be provided.

Shooting Actions are those involving some filming of the scene. They require a special

controller to simultaneously take care of UAV and gimbal motion while the particular

shot is being executed. Thus, the set of available Shooting Actions coincides with the

shots described in Section 3.3.3.

The Scheduler controls the start and end of each action, handling the Shot Executor

accordingly. For each Shooting Action, the UAV is sent to its corresponding starting

position through a sequence of Navigation Actions that were computed by the Planner.

Then it hovers at that starting position waiting for the Event associated with the

Shooting Action. Once the Event arrives from the Mission Controller, the Scheduler

activates the Shot Executor to start the Shooting Action. These Events represent

actual action points of the scene being filmed, such as the start of a race, the runners

reaching a particular point of interest or the finish line. Typically, the director may

want to assign pre-designed sequences of shots for these moments. Moreover, if the

Shooting Action has a specified duration, the Scheduler is in charge of waiting for

that time before calling off the shot and continuing with the next action. In the case

of Navigation Actions, the Scheduler just waits for notification of completion, and

then it goes on with the next action in the sequence.

This event-based mechanism allows us to account for inaccuracies in the planning

phase and for required adjustments during the actual filming of the scene. We assume

that the Planner can estimate the occurrence time for the Events and an approximate

target trajectory, which permits computation of a plan. However, the system does

not rely on estimated times for mission execution, but on the actual occurrence of

the Events. Thus, we plan so that UAVs arrive earlier than expected at their starting

positions, and then wait for Events, to allow for possible delays in the actual scene

being filmed. These Events could be detected online by the system automatically. For

instance, in rowing races, the launch signal could be communicated to the Mission

Controller, and the race reaching specific points of the route could be detected by
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Figure 3.4: Example of the event-based procedure for a distributed execution of a
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monitoring GPS trackers on board some of the boats. We also allow the director to

send out Events manually to decide on shot triggering. For multi-camera shots, the

Events also act as multi-UAV synchronizing signals. All the involved UAVs will be

waiting at their starting positions and the Event will ensure that they all start at

the right time simultaneously. Figure 3.4 shows an example of how the distributed

scheduling works. In the example, two UAVs take an orbit shot in a synchronous

manner, being triggered by a certain Event A in the scene. Then, immediately after

the orbit, UAV 1 takes an establishing shot and goes back to its station to land, while

UAV 2 goes to a new starting location to wait for Event B, which triggers an elevator

shot that ends its mission.

Additionally, the Scheduler component integrates functionality for emergency

management, which is crucial for safety. Each Scheduler monitors the UAV status

for hardware issues. In particular, we implemented low battery alerts, loss of GPS

signal and loss of communication with the Ground Station, but any other kind of
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contingency could be monitored. In the event of failure, the Scheduler reports that

event to the Mission Controller on the Ground Station. Then the Mission Controller

may decide to launch a re-planning procedure without the affected UAV, reassigning

its pending tasks to others. Simultaneously, the Scheduler carries out an emergency

maneuver: it cancels the action being executed and commands the UAV to navigate

to the closest base station for landing. For this, the Scheduler can plan safe paths that

avoid no-fly zones. We implemented an off-the-shelf A∗ heuristic planner (Hart et al.,

1968) on a KML-based map that includes information about the positions of the base

stations and the no-fly zones (areas with known obstacles or people gathered as an

audience). In the particular case of losing communication with the Ground Station,

the UAV continues with the mission as long as possible, and it returns home when

some critical information, for example about the target, is required.

3.4.2 Shot executor

This component is in charge of executing Navigation and Shooting Actions. In order

to execute a Shooting Action, we need to generate the desired trajectory, which is

derived using the shot type, the shooting parameters and the target position. Given

the target, which may be real or virtual depending on the RT mode, we make the

UAV behave like a trailer attached to that target (Pereira et al., 2017). This method

provides smooth reference trajectories to be tracked by the UAV. This is particularly

important when the target trajectory is very noisy (e.g., when following a real target)

or defined by waypoints (e.g., as a virtual RT path). At the same time, by generating

a trailer trajectory, a reference frame tangent to the path is obtained, which can be

directly used to define the relative displacements encoded in the shooting parameters

of each shot type, as well as the desired heading for the UAV. For example, a chase shot

would have the following parameters relative to this trailer reference frame; constant

altitude z0, and starting and ending distances to the target on the X axis xs and xe.

Having the desired trajectory and an estimation of the current UAV state, the

errors between the current and the desired position and yaw angle are used to

generate velocity commands, applying a simple saturated proportional controller with
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Figure 3.5: Flow diagram for gimbal control. Vision-based or GPS-based measurements
can be used to feed a attitude controller.

a feedforward velocity term. These velocity commands are sent to the UAV autopilot

by means of our software library UAL (UAV Abstraction Layer) (Real et al., 2020).

This is a middleware abstraction layer that we developed to abstract UAV navigation

algorithms from the specific hardware details and interfaces of each autopilot. Thus,

UAL provides a common interface to receive UAV state, including positioning and

battery level information. It also allows us to send velocity and position commands,

as well as take-off and landing maneuvers. The Shot Executor performs Navigation

Actions using our UAL interface directly, as no smooth trajectories are required for

those actions.

Apart from UAV control, the Shot Executor is also in charge of controlling the

gimbal to point the camera to the specified ST. If the ST type is “none”, the controller

executes a predefined pan and tilt movement; if the ST type is real or virtual, the

controller tracks that target. Figure 3.5 depicts the flow of the gimbal control system.

Overall, the gimbal control system is based on an inner–outer loop architecture. A

low-level inner-loop controller from BaseCam Electronics is configured to receive

angular rate reference commands at a frequency of 30 Hz. This low-level controller

relies on an IMU directly attached to the gimbal to obtain estimates of the gimbal

orientation, not with respect to the UAV but with respect to an inertial frame. The

outer-loop controller, which may be either vision-based or GPS-based, interacts with

the inner-loop controller at a frequency of 30 Hz. For the vision-based controller, no



66 Scheduling and execution of cinematography missions with multiple UAVs

information about the 3D target position is required, and the commands are computed

directly from 2D target positions on the image and the angular deviation from the

horizontal plane, provided by the orientation estimate. The video bandwidth and

range to and from the Ground Station did not turn out to be critical issues, because

the 2D detection and tracking of the target on the image plane is performed onboard,

achieving a rate of 30 fps. For the GPS-based controller, an RTK GPS was used, which

provides position updates with a frequency of 5 Hz. As expected, some degradation

in tracking performance was observed, due not only to the reduced frequency and

reduced accuracy of the position measurements but also to the presence of bias in the

orientation estimates. To obtain position estimates at a higher rate and provide some

degree of anticipation, the GPS position estimates were fed into a Kalman filter, under

the assumption that the UAV motion approximates a constant velocity trajectory

in the most immediate time horizon. More specific details about this mathematical

formulation can be seen in Cunha et al. (2019). In addition to UAV and gimbal control,

we also implemented some camera commands in the Shot Executor. In particular, the

component is able to start and stop recording, autofocus, and modify some camera

parameters, such as zoom, ISO and white balance.

The Shot Executor requires an estimation of the target position that is provided

by the Target Tracker component, which also runs on board the UAV. This target

positioning is needed whenever the UAV is tracking an actual target, whether RT

or ST. We implemented the two aforementioned options for the Target Tracker in

our system: (i) we used a GPS receiver on board the target together with a Kalman

filter to estimate 3D target positions that were then sent to the UAVs; and (ii)

we used a vision-based algorithm for target tracking that provided 2D positions on

the image. The methods we applied for visual target tracking are based on light

convolutional neural networks that can run on embedded computers in real time. This

image processing part is out of the scope of this thesis and further details can be

seen in Nousi et al. (2019); Nousi et al. (2020). In summary, the authors present

performance results in well-known benchmarks to demonstrate that the proposed

visual tracker is particularly suitable for long-term tracking scenarios, as its success
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lies behind the ability to efficiently handle severe occlusions, viewpoint changes and

scale variations.

Additionally, the Shot Executor needs to take care of collision avoidance for safety

reasons. For this, we used a reactive algorithm for collision avoidance in multi-UAV

teams (Ferrera et al., 2018). The algorithm resolves UAV conflicts (i.e., possible

collisions) with other teammates or external obstacles in a decentralized manner,

applying roundabout maneuvers so that they will avoid each other. We integrated this

algorithm with our Shot Executor by running it as a reactive layer in parallel. This

reactive layer sends warnings to the Shot Executor whenever a conflict is detected,

together with velocity commands to resolve the conflict. Thus, the Shot Executor

always prioritizes commands coming from the reactive layer over shot execution, in

order to avoid collisions. Once the conflict warning disappears, shot execution resumes

normally.

Finally, it is important to highlight that our architecture is generic and allows

cinematographers to integrate alternative control components, as long as they address

UAV and gimbal control and implement the RT and ST concepts that we defined.

Along this line, we also tested our system architecture, integrating an algorithm

within the Shot Executor that we developed for optimal trajectory planning with

multiple UAVs performing cinematography shots. This algorithm, which is described

in Chapter 4, plans optimal trajectories to execute multi-UAV shots, dealing with

UAV dynamics and collision avoidance constraints, as well as cinematography aspects

such as trajectory smoothness and avoidance of mutual visibility between UAVs. The

method was tested with this architecture, and was able to compute optimal trajectories

on board the UAVs in real time. All the details of the algorithm and its related

experiments are shown in Chapter 4.

3.5 Field experiments

We conducted extensive field tests to assess the performance of our complete system

filming different outdoor activities. Since the system was developed for the MultiDrone

project, our focus was on the sports use cases selected in the project; i.e., cycling/rowing
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races and parkour runners. The whole consortium devoted much effort to integrating

all software components into the team of aerial platforms developed in the project.

In particular, we dedicated 9 weeks to physical integration throughout the project’s

lastyear, as well as 4 weeks for field tests with more than 40 hours of flight, split into

two different campaigns in Germany and Spain. We set up several mock-up scenarios

to recreate the aforementioned activities with amateur sportsmen, and we even filmed

a real regatta event. In Germany, we used a field facility around a farm and next to a

lake. The place is located in a village called Bothkamp in the north of Germany, and

it has permits to fly UAVs for amateur purposes. In Spain, we used another outdoor

site on a farm 30 km from Seville.

3.5.1 System integration

We used a simulation environment for early integration, and also so that the media

director could double-check all missions before the actual shooting. Our simulation

tool was based on Gazebo (Koenig and Howard, 2004) and the PX4 SITL (Software

In The Loop) functionality 2 for UAV autopilots. We added a camera on a gimbal to

the UAVs and interfaced them with our open-source 3 UAL library (Real et al., 2020),

which abstracts users from the protocol details of each autopilot.

The same software architecture ran in simulation and on our real UAV platforms.

We developed all software components as open-source in C++ 4 using ROS Kinetic.

We also mounted and integrated several UAVs like the one shown in Figure 3.6 for the

experiments. They had the X6 frame from Tarot and were equipped with a PixHawk 2

autopilot running PX4 for flight control, a RTK-GPS for precise localization, a 3-axis

gimbal controlled by a BaseCam (AlexMos) controller receiving angle rate commands,

a Blackmagic Micro Cinema camera, an Intel NUC i7 computer to run our software for

UAV execution, an NVIDIA TX2 computer dedicated to video streaming and image

processing for target tracking, and a Thales LTE module to communicate with the

2https://github.com/PX4/sitl_gazebo
3https://github.com/grvcTeam/grvc-ual
4https://github.com/grvcTeam/multidrone_planning

https://github.com/PX4/sitl_gazebo
https://github.com/grvcTeam/grvc-ual
https://github.com/grvcTeam/multidrone_planning
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Figure 3.6: One of the UAVs used during our field experiments, with the cinemato-
graphic camera mounted on the gimbal.

Ground Station. We selected LTE to achieve better security and performance than

WiFi in long-range distances.

We devised a GPS target to be carried by selected human actors in some of the

experiments. The device weighed around 400 grams and consisted of an RTK-GPS

receiver with a Pixhawk controller, a radio link and a small battery. This target

transmitted target 3D measurements to the Target Tracker on board the UAVs in

real time (with a delay below 100 ms). The final 3D target estimation, after being

filtered by the Target Tracker, was able to achieve centimeter level. These errors were

compensated by our gimbal controller for tracking shooting targets on the video.

3.5.2 Results

In this section, we show example cinematography missions that followed the whole

procedure through our architecture for autonomous filming. They were designed by a

media expert with the Dashboard facility, then planned and executed autonomously

by the UAVs. Our main objectives are to demonstrate: (i) the integration of all

the components working together; (ii) the feasibility of our system for autonomous
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(a) Top view of the scene with the virtual target
and the UAV trajectories for each Shooting Action.
In green, the parkour area.

Drone 1 Goto Fly Through Fly by

Drone 2 Goto Static Lateral Orbit

Time (s) 20 40 60

Virtual Target

(b) UAV actions over a timeline. Both sequences of consecu-
tive shots are executed in parallel triggered by the START RACE

Event at time 20 s. A virtual target is tracked.

Figure 3.7: Parkour mission with two UAVs and five different shots. Blue indicates
UAV 1 and red UAV 2.

cinematography with multiple UAVs outdoors; and (iii) the use of different shot types

and RT/ST modes.

First, we illustrate parkour filming. Parkour is a sport activity where runners

move freely over and through any terrain using only the abilities of their bodies,

principally through running, jumping and climbing. In our mock-up, we set up a

specific longitudinal course with a variety of obstacles and convened a group of amateur

parkourists to perform free-style maneuvers there. Figure 3.7(a) depicts the scheme

of a mission designed by our media director. Runners moved in the parkour zone
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(a) Camera on board UAV 1 (b) Camera on board UAV 2

(c) Top view of the experiment. Both UAVs and one of the runners
can be seen.

UAV 1

UAV 2

Target

Figure 3.8: Images from a mission with two UAVs filming a parkour activity.

from left to right and the director designed a mission with 5 different shots. First,

a sequence of a fly-through shot followed by a flyby, triggered by the START RACE

Event. Second, a sequence of a static shot, a lateral and an orbit, also triggered by the

same START RACE Event. Since the runners were moving freely in the scene, instead

of tracking a particular one, the virtual-traj RT mode was used to specify a virtual

trajectory for the RT in the parkour area. This RT path was used by the lateral, the

flyby and the orbital shot, while the others had their own RT paths independent of

the runners. The ST was “none” for the static and fly-through shots, and configured

as virtual for the rest.
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This mission was run with two UAVs and the Planner assigned one of the sequences

to each UAV. Figure 3.7(b) depicts a timeline of the schedules for the two UAVs. The

UAVs navigate to the starting positions of their first Shooting Actions and wait for

the START RACE Event, which triggers both shooting sequences in parallel (only the

first Shooting Action of each UAV has a starting Event associated with it; the rest

are consecutive). UAV 1 approaches the action scene with a fly-through shot, then

performs a flyby in the opposite direction to the runners’ movement. UAV 2 starts

with a static shot taking an overview of the parkour area. Then it does a lateral shot

along the scene, which coincides with the runners coming across a complex obstacle.

It finishes with a quarter of an orbit around the final part of the scene. Some images

from the experiment can be seen in Figure 3.8; a complete video is accessible at:

https://youtu.be/P_n_PfuEC2A.

We also demonstrate our system with a mission filming a rowing race. We prepared

a mock-up in a lake with four amateur rowing boats recreating a race. Figure 3.9(a)

shows a scheme of the mission designed by the director. It consists of three shots

to film the rowers from the lake shore as they pass by. There is a sequence with a

fly-through shot followed by a static shot, and a lateral shot running in parallel; both

tracks triggered by the START RACE Event. One of the boats carried a GPS target,

which was used as both RT and ST for the lateral shot. The fly-through and static

shots had a ST of type “none”. The area with trees on the lakeshore was manually

set as a predefined no-fly zone, so that the Planner would not send the UAVs into the

trees. Only a narrow corridor without trees was left out of the no-fly zone, so that the

UAVs could fly through it to reach the lake.

This mission was run with two UAVs, and the Planner assigned the lateral shot

to one UAV and the fly-through and the static shots to the other. Figure 3.9(b)

shows a timeline of the schedules for the two UAVs. The UAVs navigate to the

starting positions of their first Shooting Actions and wait for the START RACE Event,

which triggers both shooting sequences in parallel (only the first Shooting Action of

UAV 1 has an associated starting Event; the following one happens consecutively).

UAV 1 approaches the rowers, taking a fly-through shot from the lakeshore out over

the water. Then it takes a static shot rising up 10 meters and panning to the left

https://youtu.be/P_n_PfuEC2A
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(a) Top view of the scene with the RT and the
UAV trajectories for each Shooting Action.

Drone 1

Drone 2

Goto Fly Through Static

Goto Lateral

Time (s) 20 40 60 80

GPS Target

(b) UAV actions over a timeline. The two sequences of
consecutive shots are executed in parallel triggered by the
START RACE Event at time 20 s. A GPS target is tracked.

Figure 3.9: Rowing race mission with two UAVs and three different shots. Blue
indicates UAV 1 and red UAV 2.

to target the boats. UAV 2 performs a lateral shot over a green area beside the

lakeshore, tracking the boats at a 50-meter distance and a 3-meter height. Some

images from the experiment can be seen in Figure 3.10; a complete video is accessible

at: https://youtu.be/COay0hZsMzk.

We also ran multiple missions in simulation to test further some functionalities

of our system; for instance, re-planning capabilities. As an illustration, we showcase

in Figure 3.11 a simulated mission where we simulated a battery alarm in one of

the UAVs. The mission starts with an initial plan for 3 UAVs, but UAV 1 runs out

https://youtu.be/COay0hZsMzk
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(a) Camera on board UAV 1 during
the static shot.

(b) Camera on board UAV 2 during
the lateral shot.

(c) View of UAV 1 taking the static shot as the rowers pass by.

Figure 3.10: Images from a mission with two UAVs filming a rowing race.

of battery during the mission execution. UAV 1 is then commanded to land and

a re-planning procedure is triggered for the remaining UAVs. In this case, UAV 2

partially covers the lateral shot missed by UAV 1.

Finally, we demonstrated the system in a real regatta event in Wannsee in Berlin

(Germany). We deployed the system in a strategic spot prior to actual race, earlier

in the day. Then two of our UAVs waited for a manually triggered Event to run

a short mission designed beforehand, consisting of static and fly-through shots in

parallel, followed by a flyby. The two first shots used ST of type “none”, but we

employed a visual ST for the last shot to track the boats as they passed by. Visual

tracking worked at a frame rate of 30 fps, which enabled real-time tracking achieving
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Establish

INITIAL PLAN

Drone 1 LateralOrbit

Drone 2 Land

Drone 3 Chase Land

Land

Drone 1
low battery
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Figure 3.11: Timeline of a simulated mission where re-planning is carried out. The
UAVs were executing their initial plans when the battery alarm of UAV 1 went off.
A new plan was computed assigning the missing shot from UAV 1 to others. UAV 2
covered part of the lateral shot initially assigned to UAV 1.

a 96% true positives. The main objective was just to showcase to media end-users

the possibilities of our system and its fast deployment for covering a real sporting

event. A feature video with the main results of our field campaigns can be seen at

https://www.youtube.com/watch?v=iLs6Xo87j78.

3.5.3 System usability evaluation

Within the framework of the MultiDrone project, we carried out a study based on

questionnaires to assess the usability of our system. The evaluation method consisted of

one-to-one interviews with various members of the MultiDrone media production crew.

During the interviews, the users were asked to rate their agreement or disagreement

with a set of statements describing the performance of different functionalities of the

system, on a scale of 1 (fully agree) to 4 (totally disagree). The full questionnaire

https://www.youtube.com/watch?v=iLs6Xo87j78


76 Scheduling and execution of cinematography missions with multiple UAVs

and evaluation study can be found in MultiDrone-Consortium (2019). For the sake of

brevity, we do not include all details here but give a summary of the most important

conclusions:

� The Planner component was clearly regarded as useful for planning cinematog-

raphy missions in pre-production.

� The performance of GPS-based target tracking was mostly evaluated positively.

However, the users were less convinced that the smoothness of the camera

movements and the video quality were sufficient for media production.

� Those interviewed agreed that the UAV flights were stable enough and followed

the patterns defined by the director without much deviation.

� Emergency handling was also assessed positively, the system being regarded as

safe.

� Most of the interviewees confirmed that the system and its main functionalities

were easy to understand and to use. Even though some users pointed out that

current methods and current tools (normal camera equipment or consumer

UAVs) are still at least as efficient, they also highlighted that a finished and

fully functional multi-UAV system would make video production much easier

and interesting.

The evaluation, although altogether positive, showed a certain discrepancy regard-

ing the robotics-related and media production-related requirements. On the one hand,

the functionalities of the UAV itself such as tracking, autonomous flight and emergency

management were mostly highly rated. On the other hand, functionalities that are

crucial for high quality media production performed slightly less satisfactorily. We

believe that these issues are related to the fact that we tested a system at prototype

level to showcase its potential, but more professional or consumer equipment should

improve the overall performance in terms of media production quality.
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3.5.4 Lessons learned

In this section, we discuss the main lessons that we learnt during our field and

integration tests about our system and autonomous cinematography with UAVs in

general.

One UAV to rule them all: Due to the ambition of the application, the hardware

design of the aerial platform was complex. On the one hand, the UAVs were conceived

to fulfill safety and usability concerns. This entails the integration of heavy payload,

including a high-performance cinematographic camera, several processing units, an

LTE module, and enough batteries to cover a reasonable flight time (20 minutes). On

the other hand, more “commercial” products are usually aimed at smaller platforms,

mainly due to logistic and cost constraints. From feedback by media end-users, we

learned that our UAVs were appropriate to test and demonstrate system functionalities,

but a final product should trade off capabilities with payload and size, in order to be

more secure and practical for media production.

Camera and gimbal integration: The selection of the camera was quite im-

portant for the system. A high-performance camera was a requirement from the

media end-users, and our choice fulfilled all the media specifications. However, we

discovered throughout our experimentation that this kind of camera is not designed

to be integrated in autonomous platforms. First, gimbal calibration was difficult,

as off-the-shelf gimbals are designed for lighter cameras. A custom product with

an integrated camera would havebeen more appropriate to obtain steadier images.

Second, we experienced many issues with drivers for video streaming on the NVIDIA

TX2, as the selected carrier board (AUVIDEA) did not have official drivers for HDMI

input with TX2. Lastly, we found problems in focusing the camera remotely, which

was another requirement from the end-users. The camera offered an expansion port

to send commands to be configured, but this port did not send back any feedback

from the camera about its properties (e.g., focus, ISO, white balance, etc). Therefore,

it was difficult to implement specific controllers, so we opted for interfacing with

the built-in autofocus of the camera, which was not perfect when flying far from the

target. In general, all these details of integrating commercial cameras and gimbals for
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high-performance media production on UAVs are not negligible, and they should be

considered carefully when designing a final system.

Middleware and communication: We found our choice for ROS and UAL

as system middleware quite helpful, as they offered us a good solution to enable

abstraction from low-level UAV control and communication, speeding up software

development. UAL also allowed us to design the system transparently, regardless

of the final selection of the UAV autopilot. In terms of communication, the LTE

module provided high-quality video transmission and multi-UAV communication,

which was critical for the application. However, the ROS configuration (we used the

multimaster-fkie package) to operate with multiple UAVs in a distributed fashion was

troublesome. We believe that the establishment of ROS 2 will be key for multi-robot

applications, as its communication is decentralized and professional middleware can

be easily integrated.

Simulation is key in cinematographic applications: We used SITL simula-

tions in Gazebo to integrate and test our system, which was tremendously useful

for speeding up the development process. Nonetheless, simulation turned out to be

a helpful tool for media production as well. The media director always found it

interesting to see a 3D recreation of the mission before the real scene happened. For

security, we also used the simulator to graphically show the safety pilots the behavior

of the UAVs before every field test. Even though Gazebo was enough for our purposes,

the use of simulators with more realistic graphics engines such as AirSim 5 would be

more appealing for media users, enhancing their experience.

Media end-users’ need for alternative types of targets: We followed media

users’ recommendations to implement shots based on both actual and virtual targets.

Our way of describing shots by means of a Reference and a Shooting Target, and our

different RT modes were a success, as they provided the director with the required level

of flexibility. Being able to define virtual rails for camera motion independent of the

actual target is highly desirable for media directors. We also learnt that, although they

appreciate autonomous functionalities, they also feel the need to have the possibility

of operating the gimbal and the focus manually, in order to adapt the shots to their

5https://github.com/microsoft/AirSim

https://github.com/microsoft/AirSim
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artistic wishes at any moment. Regarding shooting targets, we discovered that a

combination of GPS and image processing was the best solution. GPS targets can be

detected at a longer range but visual tracking performs better for closer frames, as it

runs on board the UAVs with local images, alleviating latency issues. GPS was noisy

in locations with adverse conditions, such as nearby high trees or buildings; and a

poor radio link connection for sending measurements could cause latency and low-rate

measurements. However, note that this radio link connection could be replaced by a

higher-performance LTE connection. Thus, a wise trade-off was to use GPS to initially

locate the target on the image, and then visual processing to track it more precisely.

Onboard collision avoidance is a must: Even if the system is to be operated

in open and well-structured environments, autonomous collision avoidance is quite

important, as it provides reassurance to end-users. Thus, the sooner conflicts are

detected, the better. This means that planning components minimizing hypothetical

conflicts for the UAVs are desirable. Nonetheless, onboard mechanisms for reactive

collision avoidance during the mission execution are also necessary to cover dynamic

scenes, as there are always unexpected obstacles and inaccuracies in the plan execution,

mainly in outdoor events. Moreover, relying only on a safety pilot is sometimes

insufficient as their perspective with respect to the UAV is not always ideal.

3.6 Conclusions

This chapter presented a system for autonomous execution of cinematography missions

with multiple UAVs. We introduced the complete architecture, including components

for mission design, planning and execution. We then focused on the system for mission

execution. In particular, we described our parametric way of defining shots, which

includes different types of camera motion and target actors in the scene. In addition,

we implemented a series of canonical shots and proposed a distributed scheduling

procedure to execute cinematography missions, which can include sequential and

concurrent shots, as well as single- and multi-camera shots. An event-based mechanism

is used to synchronize shot execution and to increase the system robustness against

potential inaccuracies during the planning phase.
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The system was developed within the framework of the EU-funded MultiDrone

project and it has been released as open-source for the community. Our field ex-

periments filming sport activities showcased the feasibility of the system to address

outdoor cinematography missions involving multiple UAVs and a variety of shot types.

In general, feedback from the media experts in the project was positive, as they found

the combination of virtual and actual targets to guide camera motion helpful, as well

as the flexibility that our concepts of Reference and Shooting Targets provided.

In future work, more specific subjective user studies could be carried out to

better evaluate the artistic possibilities of the system combining multi-camera shots.

Moreover, although we integrated solutions for conflict resolution in the planning

components and also for reactive collision avoidance between UAVs during the mission

execution, we would like to explore mechanisms more oriented to obstacle avoidance

in unstructured environments, using onboard sensors for online mapping.



Chapter 4

Optimal trajectory planning for

cinematography with multi-UAV

coordination

This chapter proposes a method for online trajectory planning with a team of UAVs

taking cinematography shots. While Chapter 3 focused on a general architecture

for multi-UAV cinematography missions by means of a distributed scheduler that

activates different shot controllers depending on the shot type, this chapter presents an

algorithm that takes care of the control of the UAV and gimbal motion, implementing

an optimization-based trajectory planner that runs on the UAVs in a distributed

fashion. Our method is intended to provide smooth trajectories for visually pleasing

video output, integrating cinematographic constraints imposed by the shot types,

physical limits of the gimbal, mutual visibility between cameras, and avoidance of

collisions. This multi-UAV trajectory planner has been integrated within the general

framework presented in Chapter 3, and it has been demonstrated in simulated and

field experiments.

81
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4.1 Introduction

The use of UAVs for aerial photography and cinematography is increasing substantially.

From the application point of view, UAVs present a remarkable potential to produce

unique aerial shots at reduced costs, in contrast with other alternatives such as dollies

or static cameras. However, UAV trajectory planning for aerial cinematography is still

challenging, as multiple aspects need to be considered: flying smooth trajectories to

achieve aesthetic videos, tracking actors to be filmed, avoiding collisions with potential

obstacles, and keeping other cameras out of the field of view, among others.

Figure 4.1: Cinematography application with two UAVs filming a cycling event.
Bottom, aerial view of the experiment with two moving cyclists. Top, images taken
from the cameras on board each UAV.

We propose a novel method to plan optimal online trajectories for a set of UAVs

executing cinematography shots. The optimization is performed in a distributed

manner, and it seeks to produce smooth trajectories that comply with dynamic and

cinematographic constraints. Moreover, we can handle multiple UAVs, integrating
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new constraints for inter-UAV collisions and mutual visibility. We present results to

evaluate the method with different types of shots and we demonstrate the system

in field experiments with multiple UAVs filming dynamic scenes. The main novelty

of our method is the multi-UAV coordination to combine the execution of several

types of shots simultaneously in outdoor scenarios (see Figure 4.1), with the specific

challenges that those environments involve. More particularly, our main contributions

are the following:

� We propose a novel formulation of the trajectory planning problem for UAV

cinematography. We model both UAV and gimbal motion (Section 4.3) but

decouple their control actions.

� We propose a non-linear, optimization-based method for trajectory planning

(Section 4.4). Using a receding horizon scheme, trajectories are planned and

executed in a distributed manner by a team of UAVs providing multiple views

of the same scene. The method takes account of dynamic UAV constraints,

and imposes them to avoid predefined no-fly zones and collisions with others.

Cinematographic aspects imposed by shot definition, camera mutual visibility

and gimbal physical bounds are also addressed. Trajectories smoothing UAV

and gimbal motion are generated to achieve aesthetic video footage.

� We describe the complete system architecture on board each UAV and the

different types of shots that are possible (Section 4.5). The architecture integrates

target tracking with trajectory planning and allows different UAVs to execute

different types of shots simultaneously.

� We present extensive experimental results (Section 4.6) to evaluate the perfor-

mance of our method for different types of shots. We prove that our method

is able to compute smooth trajectories, reducing jerky movements in real time

and complying with cinematographic restrictions. We then demonstrate our

system in field experiments with three UAVs planning trajectories online to film

a moving actor (Section 4.7).
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4.2 Related work

There are several studies related to trajectory planning for virtual camera motion in

the computer animation community (Christie et al., 2008). They typically use offline

optimization to generate smooth trajectories that are visually pleasing and comply

with certain cinematographic aspects, such as the rule of thirds. However, many of

them do not ensure physical feasibility to comply with dynamic UAV constraints

and they assume a full knowledge of the environment map. In terms of optimization

functions, several studies consider similar terms to achieve smoothness. For instance,

the authors in Joubert et al. (2015) model trajectories as polynomial curves whose

coefficients are computed to minimize snap (fourth derivative). They also check

dynamic feasibility along the planned trajectories, and the user is allowed to adjust

the UAV velocity at execution time. A similar application to design UAV trajectories

for outdoor filming is proposed in Joubert et al. (2016). Timed reference trajectories

are generated from 3D positions specified by the user, and the final timing of the

shots is addressed by designing easing curves that drive the UAV along the planned

trajectory (i.e., curves that modify the UAV velocity profile). In Gebhardt et al.

(2016), aesthetically pleasing footage is achieved by penalizing the snap of the UAV

trajectory and the jerk (third derivative) of the camera motion. An iterative quadratic

optimization problem is formulated to compute trajectories for the camera and the

look-at point (the place where the camera is pointing at). They also include collision

avoidance constraints but the method is only tested indoors.

Although these articles on computer graphics approach the problem mainly through

offline optimization, some of them have proposed options to achieve real-time perfor-

mance, such as planning in a toric space (Lino and Christie, 2015) or interpolating

polynomial curves (Galvane et al., 2016; Joubert et al., 2016). In general, these

papers present interesting theoretical properties, but they are restricted to offline

optimization with a fully known map of the scenario and static or close-to-static

guided tour scenesaltitude, without moving actors.

In the robotics literature, there are studies focusing more on filming dynamic

scenes and complying with physical UAV constraints. The authors in Huang et al.
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(2018), for instance, propose to detect limb movement of a human for outdoor filming.

Trajectory planning is carried out online with polynomial curves that minimize the

snap. In Bonatti et al. (2019); Bonatti et al. (2020), they present an integrated system

for outdoor cinematography, combining vision-based target localization with trajectory

planning and collision avoidance. For optimal trajectory planning, they apply gradient

descent with differentiable cost functions. Smoothness is achieved by minimizing the

trajectory jerk, and shot quality by defining objective curves fulfilling cinematographic

constraints associated with relative angles with respect to the actor and shot scale.

Optimal cinematography trajectories have also been computed in real time through

receding horizons with non-linear constraints (Nägeli et al., 2017a). The user inputs

framing objectives for one or several targets on the image, and errors of the image

target projections, sizes, and relative viewing angles are minimized, satisfying collision

avoidance constraints and target visibility. The method behaves well in terms of online

numerical optimization but it is only tested in indoor settings.

Some of the aforementioned robotics authors have also looked at UAV cinematogra-

phy, applying machine learning techniques. In particular, learning from demonstrations

to imitate professional camera operators’ behaviors (Huang et al., 2019) or reinforce-

ment learning to achieve visually pleasing shots (Gschwindt et al., 2019). In general,

most of these cited works on robotics present quite interesting results in terms of

outdoor operation or online trajectory planning, but they are always restricted to a

single UAV.

Regarding methods for multiple UAVs, there is some related work which is worth

mentioning. In Nägeli et al. (2017b), a non-linear optimization problem is solved in a

receding horizon fashion, taking into account collision avoidance constraints with the

filmed actors and between the UAVs. Aesthetic objectives are introduced by the user

as virtual reference trails. Then, UAVs receive current plans from all others at each

planning iteration and compute collision-free trajectories sequentially. A toric UAV

space is proposed in Galvane et al. (2018) to ensure that cinematographic properties

and dynamic constraints are maintained along the trajectories. Non-linear optimization

is applied to generate polynomial curves with minimum curvature variation, accounting

for target visibility and collision avoidance. The motion of multiple UAVs around
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References Online Scene
UAV

Dynamics
Collision

Avoidance
Mutual

Visibility
Outdoors Multiple UAVs

Lino and Christie (2015) No Static No No No No No
Joubert et al. (2015) No Static Yes No No Yes No

Gebhardt et al. (2016) No Static Yes Yes No No No
Joubert et al. (2016) No Static Yes Actor No Yes No
Galvane et al. (2016) No Dynamic No No No No No
Nägeli et al. (2017a) Yes Dynamic Yes Yes No No No
Nägeli et al. (2017b) Yes Dynamic Yes Actor Yes No Yes
Huang et al. (2019) Yes Dynamic Yes Actor No Yes No

Galvane et al. (2018) Yes Dynamic Yes Yes Yes No Yes
Bonatti et al. (2019) Yes Dynamic Yes Yes No Yes No
Bonatti et al. (2020) Yes Dynamic Yes Yes No Yes No
Bucker et al. (2021) Yes Dynamic Yes Yes Yes Yes Yes

Ours Yes Dynamic Yes Yes Yes Yes Yes

Table 4.1: Related works on trajectory planning for UAV cinematography. We indicate
whether computation is online or not, the type of scene and constraints they consider,
and their capacity to handle outdoor applications and multiple UAVs.

dynamic targets is coordinated by means of a centralized master–slave approach to

solve conflicts. These studies present quite valuable contributions for cinematography

with multiple UAVs, but they are evaluated in indoor settings where a Vicon motion

capture system provides accurate positioning for all targets and UAVs. The specifics

of the outdoor scenarios considered in our work are different in several aspects,

as the environment is less controlled: among other factors, UAVs require more

payload to carry onboard cameras with better lenses and equipment for larger range

communication, achieving smooth trajectories is more complex due to external factors

such as wind gusts or communication delays, UAV positioning is less accurate in

general. Bucker et al. (2021) presented a work closer to ours, dealing with outdoor

aerial cinematography with multiple UAVs, focusing more on the execution of shots

in unstructured cluttered environments.

Table 4.1 summarizes the main related works on trajectory planning for UAV

cinematography and their corresponding properties. We indicate whether computation

is online or offline, whether the scene contains dynamic targets to be filmed and

whether UAV dynamics are included as constraints. We also analyze the type of

collision avoidance: none (“No”), with the actor being filmed (“Actor”), or with

external obstacles and other UAVs (“Yes”). Studies that address mutual visibility

constraints between multiple cameras are mentioned specifically. Finally, we indicate
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Figure 4.2: Definition of the reference frames used. The origins of the camera and
multirotor frames coincide. The camera points to the target.

whether each method includes evaluation in outdoor settings and whether it can

handle multiple UAVs.

4.3 Dynamic models

This section presents our dynamic models for UAV cinematographers. We model the

UAV as a multirotor with a camera mounted on a gimbal with two degrees of freedom.

4.3.1 UAV model

Let {W} denote the world reference frame with origin fixed in the environment and

East-North-Up (ENU) orientation. There are three additional reference frames (see

Figure 4.2): the multirotor reference frame {Q} attached to the UAV with origin

at the center of mass, the camera reference frame {C} with z-axis aligned with the

optical axis but with opposite sign, and the target reference frame {T} attached to

the moving target that is being filmed. For simplicity, we assumed that the origins of

{Q} and {C} coincide.

The configuration of {Q} with respect to {W} is denoted by (pQ,RQ) ∈ SE(3),

where pQ ∈ R3 is the position of the origin of {Q} expressed in {W} and RQ ∈ SO(3)
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is the rotation matrix from {Q} to {W}. Similarly, the configurations of {T} and

{C} with respect to {W} are denoted by (pT ,RT ) ∈ SE(3) and (pC ,RC) ∈ SE(3),

respectively.

We model the multirotor dynamics as a linear double integrator model:

ṗQ = vQ

v̇Q = aQ, (4.1)

where vQ = [vx vy vz]
T ∈ R3 is the linear velocity and aQ = [ax ay az]

T ∈ R3 is the

linear acceleration. We assume that the linear acceleration aQ takes the form

aQ = −ge3 + RQ
T

m
e3, (4.2)

where m is the multirotor mass, g the gravitational acceleration, T ∈ R the scalar

thrust, and e3 = [0 0 1]T .

For the sake of simplicity, we use the 3D acceleration aQ as control input, although

the thrust T and rotation matrix RQ could also be recovered from 3D velocities

and accelerations. For this, we first parameterize RQ by the Z-Y -X Euler angles

λQ = [φQ, θQ, ψQ]T , such that

RQ = Rz(ψQ)Ry(θQ)Rx(φQ). (4.3)

If we restrict the yaw angle ψQ to keep the multirotor’s front pointing forward in the

direction of motion such that

ψQ = atan2(vy, vx), (4.4)



4.3 Dynamic models 89

then the thrust T and the Z-Y -X Euler angles λQ = [φQ, θQ, ψQ]T can be obtained

from vQ and aQ according to:

T = m‖aQ + ge3‖

ψQ = atan2(vy, vx)

φQ = − arcsin((ay cos(ψQ)− ax sin(ψQ))/‖aQ + ge3‖)

θQ = atan2(ax cos(ψQ) + ay sin(ψQ), az + g)

(4.5)

4.3.2 Gimbal angles

Let λC = [φC , θC , ψC ]T denote the Z-Y -X Euler angles that parametrize the rotation

matrix RC , such that

RC = Rz(ψC)Ry(θC)Rx(φC). (4.6)

In our system, we decouple gimbal motion with an independent gimbal attitude

controller that ensures that the camera is always pointing towards the target during the

shot, as in Bonatti et al. (2020). This reduces the complexity of the planning problem

and allows us to control the camera based on local perception feedback if available,

accumulating less errors. We also consider that the time-scale separation between the

“faster” gimbal dynamics and the “slower” multirotor dynamics is sufficiently large to

neglect the gimbal dynamics and assume an exact match between the desired and

actual orientations of the gimbal. In order to define RC , let us introduce the relative

position:

q =
[
qx qy qz

]T
= pC − pT , (4.7)

and assume that the UAV is always higher than the target; i.e., qz > 0, but not directly

above the target; i.e., [qx qy] 6= 0. Then the gimbal orientation RC that guarantees

that the camera is aligned with the horizontal plane and pointing towards the target
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is given by:

RC =

[
− q× q× e3

‖q× q× e3‖
q× e3

‖q× e3‖
q

‖q‖

]

=
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 . (4.8)

To recover the Euler angles from the expression for RC in (4.8), note that if the

camera is aligned with the horizontal plane, then there is no roll angle; i.e., φC = 0,

and RC takes the form:

RC =


cos(ψC) cos(θC) − sin(ψC) cos(ψC) sin(θC)

cos(θC) sin(ψC) cos(ψC) sin(ψC) sin(θC)

− sin(θC) 0 cos(θC)

 , (4.9)

so we obtain: 
φC = 0

θC = atan2(−
√
q2x + q2y, qz)

ψC = atan2(−qy,−qx)

(4.10)

Our cinematography system is designed to perform smooth trajectories as the

UAVs are taking their shots, and then to use more aggressive maneuvers only to

fly between shots while not filming. If the UAVs fly smoothly, we can assume that

their accelerations ax and ay are small, and hence, by direct application of (4.5), that

their roll and pitch angles are small and Rx(φQ) ≈ Ry(θQ) ≈ I3. This assumption is

important to alleviate the non-linearity of the model and achieve real-time numerical

optimization. Moreover, it is reasonable during shot execution, as our trajectory

planner will explicitly minimize UAV accelerations, and will limit both UAV velocities

and accelerations.
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Under this assumption, the orientation matrix of the gimbal with respect to the

multirotor QRC can be approximated by:

QRC = (RQ)TRC

≈ Rz(ψC − ψQ)Ry(θC)Rx(φC), (4.11)

and the relative Euler angles QλC (roll, pitch and yaw) of the gimbal with respect to

the multirotor are obtained as:
QφC = φC = 0

QθC = θC = atan2(−
√
q2x + q2y, qz)

QψC = ψC − ψQ = atan2(−qy,−qx)− atan2(vy, vx)

(4.12)

According to(4.5), (4.10) and (4.12), λQ, λC and QλC are completely defined by

the trajectories of the multirotor and the target, as explicit functions of q, vQ, and

aQ.

4.4 Optimal trajectory planning

In this section, we describe our method for optimal trajectory planning. We explain

how the trajectories are computed online in a receding horizon scheme, under dynamic

and cinematographic constraints, and then how coordination between multiple UAVs

is addressed. We then detail how to execute the trajectories and control the gimbal.

Lastly, we include a thorough discussion of some critical aspects of the method.

4.4.1 Trajectory planning

We plan optimal trajectories for a team of n UAVs as they film a moving actor or

target whose position can be measured and predicted. The main objective is to come

up with trajectories that satisfy physical UAV and gimbal restrictions, avoid collisions,

and respect cinematographic concepts. This means that each UAV needs to perform

the kind of motion imposed by its shot type (e.g., stay beside/behind the target in a
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lateral/chase shot) and generate smooth trajectories to minimize jerky movements of

the camera and yield pleasing video footage. Each UAV will have a shot type and

a desired 3D position (pD) and velocity (vD) to be reached. This desired state is

determined by the type of shot and may move along with the receding horizon. For

instance, in a lateral shot, the desired position (pD) moves along with the target, to

place the UAV beside it; in a flyby shot, this position is such that the UAV reaches

a position above the target by the end of the shot. More details about the different

types of shot and how to compute the desired position will be given in Section 4.5.

We plan trajectories for each UAV in a distributed manner, assuming that the plans

from other neighboring UAVs are communicated (we denote this set of neighboring

UAVs as N ). To do so, we solve a constrained optimization problem for each UAV

where the optimization variables are its discrete state with 3D position and velocity

xk = [pQ,k vQ,k]
T , and its 3D acceleration as control input (uk = aQ,k). A non-linear

cost function is minimized for a horizon of N timesteps, using as input at each solving

iteration the current observation of the system state x′. In particular, the following

non-convex optimization problem is formulated for each UAV:

minimize
x0,...,xN
u0,...,uN

N∑
k=0

(w1||uk||2 + w2Jθ + w3Jψ) + w4JN (4.13)

subject to x0 = x′ (4.13.a)

xk+1 = f(xk,uk) k = 0, . . . , N − 1 (4.13.b)

vmin ≤ vQ,k ≤ vmax (4.13.c)

umin ≤ uk ≤ umax (4.13.d)

pQ,k ∈ F (4.13.e)

||pQ,k − pO,k||2 ≥ r2col, ∀O (4.13.f)

θmin ≤Q θC,k ≤ θmax (4.13.g)

ψmin ≤Q ψC,k ≤ ψmax (4.13.h)

cos(βjk) ≤ cos(α), ∀j ∈ N (4.13.i)
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As constraints, we impose the initial UAV state (4.13.a) and the UAV dynamics

(4.13.b), which are obtained by numerically integrating the continuous model in

Section 4.3 with the Runge-Kutta method. We also include bounds on the UAV

velocity (4.13.c) and acceleration (4.13.d), to ensure trajectory feasibility. The UAV

position is restricted in two ways. On the one hand, it must stay within the volume

F ∈ R3 (4.13.e), which is a not necessarily convex space that excludes predefined

no-fly zones. These are static zones provided by the director before the mission to keep

the UAVs away from known hazards such as buildings, high trees, crowds, etc. On

the other hand, the UAV must stay at a minimum distance rcol from any additional

obstacle O detected during flight (4.13.f), in order to avoid collisions. pO,k represents

the obstacle position at timestep k. One of these constraints is added for each other

UAV in the team to model them as dynamic obstacles, using their communicated

trajectories to extract their positions along the planning horizon. Other dynamic

obstacles; e.g., the actor to be filmed, could also be considered. For this, a model to

predict the future position of the obstacle within the time horizon would be required.

Mechanical limitations of the gimbal to rotate around each axis are enforced by means

of bounds on the pitch (4.13.g) and yaw angles (4.13.h) of the camera with respect to

the UAV. Lastly, there are mutual visibility constraints (4.13.i) for each other UAV in

the team, to ensure that they do not get into the field of view of the active camera.

More details about how to compute this constraint are given in Section 4.4.2.

The cost function consists of four weighted terms to be minimized. The terminal

cost JN = ||xN − [pD vD]T ||2 is added to guide the UAV to the desired state imposed

by the shot type. The other three terms are related to the smoothness of the trajectory,

penalizing UAV accelerations and jerky movements of the camera. Specifically, the

terms Jθ = |Qθ̇C,k|2 and Jψ = |Qψ̇C,k|2 minimize the angular velocities to penalize

quick changes in the gimbal angles. Deriving (4.12) analytically, Jθ and Jψ can be

expressed in terms of the optimization variables and the target trajectory. We assume

that the target position at the initial timestep is measurable and we apply a kinematic

model to predict its trajectory for the time horizon N . An appropriate tuning of the

different weights of the terms in the cost function is key to enforcing shot definition

while still maintaining smooth camera motion.
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4.4.2 Multi-UAV coordination

Our method plans trajectories for multiple UAVs as they do cinematography shots.

The cooperation of several UAVs can be used to execute different types of shot

simultaneously or to provide alternative views of the same subject. This is particularly

appealing for outdoor filming; e.g., for sport events, where the director may want to

orchestrate the views from multiple cameras in order to show the surroundings during

the line of action. In this section, we provide further insight into how we coordinate

the motion of several UAVs while filming.

The first point to highlight is that we solve our optimization problem (4.13) on

board each UAV in a distributed manner, but being aware of constraints imposed by

neighboring teammates. This is reflected in (4.13.f) and (4.13.i), where we force UAV

trajectories to keep a safe distance from others and to stay out of each others’ field of

view for aesthetic purposes. For this, we assume that UAVs are operating close together

to film the same scene, which allows them to communicate their computed trajectories

after each planning iteration. However, there are different ways to synchronize the

distributed optimization process so that UAVs act in a coordinated fashion. Let us

discuss other approaches from key related studies and then our proposal.

In the literature there are multiple proposals for multi-UAV optimal trajectory

planning, but as we showed in Section 4.2, only a few of these specifically addressed

cinematography aspects. A master–slave approach is applied in Galvane et al. (2018)

to solve conflicts between multiple UAVs. Only one of the UAVs (the master) is

supposed to be shooting the scene at a time, while the others act as relay slaves that

provide complementary viewpoints when selected. The slave UAVs fly in formation

with the master, avoiding visibility issues by staying out of its field of view. Fully

distributed planning is used in Nägeli et al. (2017b) by means of a sequential consensus

approach. Each UAV receives the current planned trajectories from all the others,

and computes a new collision-free trajectory taking into account the whole set of

future positions from the teammates and the rest of the restrictions. In addition, it is

ensured that the trajectories for each UAV are planned sequentially and communicated

after each planning iteration. In the first iteration, this is equivalent to establishing a

priority plan, but not in subsequent iterations, yielding more cooperative trajectories.
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βjk α

djk = pQ,k − pjQ,k

qkpT,k

Action point

UAV j

Figure 4.3: Mutual visibility constraint for two UAVs. The UAV on the right (blue)
is filming an action point at the same time that it keeps the UAV on top (red) out of
its angle of view α.

We follow a hierarchical approach in between these two approaches. In contrast

to Galvane et al. (2018), all UAVs can film the scene simultaneously with no preferences,

but there is a scheme of priorities to solve multi-UAV conflicts, as in Nägeli et al.

(2017b). Thus, the UAV with top priority plans its trajectory ignoring the others; the

second UAV generates an optimal trajectory applying collision avoidance and mutual

visibility constraints given the planned trajectory from the first UAV, the third UAV

avoids the two previous ones, and so on. This scheme helps coordinate UAVs without

deadlocks and reduces computational cost as UAV priority increases. Moreover, we

do not recompute and communicate the trajectories after each control timestep as

in Nägeli et al. (2017b), but instead, replanning is done at a lower frequency, and

meanwhile, the UAVs execute their previous trajectories as we will describe in the

next section.

In terms of multi-UAV coordination, constraint (4.13.f) copes with collisions

between teammates and (4.13.i) with mutual visibility. We consider all neighboring

UAVs as dynamic obstacles whose trajectories are known (plans are communicated),



96 Optimal trajectory planning for cinematography with multi-UAV coordination

and we enforce a safe inter-UAV distance rcol along the entire planning horizon N .

The procedure to formulate the mutual visibility constraint is illustrated in Figure 4.3.

The objective is to ensure that each UAV’s camera does not have any other UAVs

within its field of view (the angle of view is denoted as α). We approximate the actual

field of view of the camera with a circular shape, and α is the semi-cone angle of the

cone surrounding the real field of view. We think this is a good approximation for

long-range shots and it simplifies the formulation of the mutual visibility constraints,

which alleviates the problem of non-linearity and helps in computing a solution.

Geometrically, we model UAVs as points that need to stay out of the field of view, but

select α large enough to account for the dimensions of the UAVs. If we consider the

UAV that is planning its trajectory at position pQ,k and another neighboring UAV

j at position pjQ,k, then βjk refers to the angle between vectors qk = pQ,k − pT,k and

djk = pQ,k − pjQ,k:

cos(βjk) =
qk · djk

||qk|| · ||djk||
, (4.14)

where cos(βjk) ≤ cos(α) is the condition to keep UAV j out of the field of view.

Finally, it is important to note that there may be certain situations where our

priority scheme to apply mutual visibility constraints could fail. If we plan a trajectory

for the UAV with priority 1, and then another one for the UAV with lower priority 2,

then ensuring that UAV 1 is not within the field of view of UAV 2 does not imply the

reverse; i.e., UAV 2 could still appear on UAV 1’s video. However, these situations

are rare in our cinematography application, as there are not many cameras pointing

in random directions, but only a few and all of them filming a target typically on the

ground. Moreover, since we favor smooth trajectories, we experienced in our tests

that our solver tends to avoid crossings between different UAVs’ trajectories, as that

would result in more curves. Therefore, establishing UAV priorities in a smart way,

based on their height or distance to the target, was enough to prevent these issues

related to mutual visibility.
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4.4.3 Trajectory execution

Our trajectory planners produce optimal trajectories containing UAV positions and

velocities sampled at the control timestep, denoted as ∆t. As we do not recompute

trajectories at each control timestep for computational reasons, we use another

independent module for trajectory following, whose task is flying the UAV along its

current planned trajectory. This module is executed at a rate of 1/∆t Hz and keeps

track of the last computed trajectory, which is replaced after each planning iteration.

Each trajectory follower computes 3D velocity references for the velocity controller

on board the UAV. For this purpose, we take the closest point in the trajectory to

the current UAV position, and then select another point in the trajectory at least

L meters ahead. The 3D velocity reference is a vector pointing to that look-ahead

waypoint and with the required speed to reach the point within the specified time in

the planned trajectory.

At the same time that the UAVs are following their trajectories, a gimbal controller

is executed at a rate of 1/∆tG Hz to point the camera toward the target being

filmed. We assume that each gimbal has an IMU and a low-level controller receiving

angular rate commands defined with respect to the world reference frame {W}. Using

feedback about the target position, we generate references for the gimbal angles to

track the target, and compensate for the UAV motion and possible errors in trajectory

planning. These references are sent to an attitude controller that computes angular

velocity commands based on the error between the current and desired orientation

in the form of a rotation matrix Re = (RC)TR∗C , where the desired rotation matrix

R∗C is given by (4.9). Recall that we assumed that RC instantaneously takes the

value of R∗C . To design the angular velocity controller, we use a standard first-order

controller for stabilization on the special orthogonal group SO(3), which is given

by ω = kω(Re −RT
e )∨, where the vee operator ∨ transforms 3× 3 skew-symmetric

matrices into vectors in R3 (Lee, 2013). More specific details about the mathematical

formulation of the gimbal controller can be seen in Cunha et al. (2019).
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4.4.4 Discussion

In this section, we discuss some critical aspects of our method for trajectory planning.

In particular, its optimality and convergence time, as well as how it deals with issues

such as delays in computing solutions, external disturbances due to bad weather, and

obstacle representation.

Optimality: We apply numerical methods to solve the optimization problem

described in Section 4.4.1, thus converging to an optimal solution for a single UAV.

Even though there are no theoretical guarantees of achieving the global optimum

when solving a non-linear and non-convex optimization problem, we experienced good

results with the numerical solver that we used, both in terms of local optimality and

computation time. A proper solver initialization is essential for fast convergence, so we

use the last computed trajectory to initialize the solution search. In any case, as we are

considering a formulation with multiple UAVs acting simultaneously, our method does

not achieve the optimal solution for the complete team. This is because we impose a

priority scheme and solve each UAV trajectory assuming the other trajectories fixed

for the given time horizon. Even though it would be more optimal to recompute

and exchange solutions after each execution time step for all UAVs (Nägeli et al.,

2017b), the quality of our solutions was sufficient for the purpose of the application.

Moreover, the UAV priorities were fixed in our experiments, but the method could

easily be adapted to consider priorities that vary during the mission depending on

certain circumstances, to be more efficient. We leave as future work a further analysis

to establish bounds on the quality degradation of our solution compared with the

complete multi-UAV optimum.

Convergence time: Our trajectory planning problem is a non-linear and non-

convex optimization that is complex to solve; even if the team of UAVs does not

encounter external obstacles, they need to consider inter-UAV collision avoidance

and mutual visibility. Therefore, the time to converge to a solution is not negligible.

We tackle this by limiting the time horizon for trajectory planning (which reduces

computation time) and using different rates for trajectory planning and execution.

Trajectory planning is performed at lower rates to reduce computation (between 0.5

and 2 Hz in our experiments). In addition, we limit the computation time for the
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solver and keep tracking the last computed trajectory until it converges to a new

solution. If the maximum computation time is reached without convergence, there

are no guarantees regarding the quality of the computed solution, so we recalculate it

initializing the search with the current UAV state, which is usually enough to converge

to a new solution. In the unlikely case of reaching the end of the previous computed

trajectory without a new solution, the UAV would keep hovering and recomputing

trajectories with different initial solutions until convergence.

In addition, we do not assume that solutions are generated instantly and we

deal with delays when planning trajectories. The generated trajectories have times-

tamps associated with each waypoint. The trajectory follower component described in

Section 4.4.3 receives these trajectories with a certain delay (due to the solution compu-

tation time) and synchronizes them by discarding the initial waypoints corresponding

to time instants already gone by.

Performance under external perturbations: Keeping flight stability and

smooth trajectories even under external disturbances, such as bad weather conditions,

is critical in our method. In the presence of bad weather, the trajectory planning

components (Section 4.4.1) would still generate smooth trajectories; however, windy

conditions could result in inaccurate following of the trajectory due to external

perturbations. Therefore, the key to improving stability under bad weather conditions

would be implementing more robust UAV controllers. In our case, we implemented a

trajectory follower based on a pure pursuit algorithm with a look-ahead parameter and

a velocity controller. Nonetheless, alternative control techniques (Kamel et al., 2017;

Kostadinov and Scaramuzza, 2020) that take external perturbations and uncertainties

into account, or integrate non-linear models for the UAV, could be applied to increase

flight stability in case of wind gusts. In terms of trajectory planning, we could also

adapt the weights of the cost function in the event of bad weather, penalizing these

costs more based on UAV accelerations and gimbal angular velocities, and relaxing

the cost associated with the desired final state. Thus the generated trajectories would

be more conservative from the smoothness point of view, which would help following

trajectories in these adverse conditions.
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Obstacle representation: In our problem formulation, we include predefined

no-fly zones and additional dynamic obstacles. The former are used to indicate static

hazards with known positions, such as buildings or treed areas. Dynamic obstacles

are other UAVs in the team or external obstacles; e.g., the target being filmed or

other actors in the scene, among others. As explained in Section 4.4.1, we represent

these dynamic obstacles by means of spherical objects of radius rcol, since the included

constraint is to keep that safe distance between the 3D obstacle position and the

corresponding UAV. We also explained that we need a prediction model to estimate

object trajectories within the planning horizon time. We use a constant velocity model

to compute these future predictions, although more complex models could be used,

too. Moreover, alternative geometrical representations could be used for the obstacles

if more information about their shape were known. For instance, 3D ellipsoids with

three different axis lengths are used in Nägeli et al. (2017b). In our context, we do not

foresee UAVs getting so close to targets that their geometrical shape really matters,

and hence, we preferred to use spherical shapes, which ease mathematical formulation.

Obstacle detection is out of the scope of this thesis, so we assume that there is

a perception module providing estimates of 3D positions and velocities (for motion

prediction) of obstacles. In practice, in our experiments we used dynamic obstacles

whose positions could be measured with a GPS and communicated; i.e., other UAV

teammates and the filmed target. Nonetheless, this information could be obtained

by algorithms processing measurements from pointcloud-based sensors on board the

UAVs, such as 3D LIDARs or RGB-D cameras. In this case, alternative obstacle

representations based on distance to the points (e.g., to the centroid or to the closest

point) within the corresponding pointclouds could be used, as in Chapter 5.

4.5 System architecture

In this section, we present our system architecture, describing the different software

components required for trajectory planning, and their interconnection. In particular,

the trajectory planning method in this chapter has been integrated into the overall

architecture for multi-UAV cinematography presented in Chapter 3.
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Figure 4.4: System architecture on board each UAV. A Scheduler initiates the shot
and continuously updates the desired state for trajectory planning. The Shot Executor
plans optimal trajectories to carry out the shot. UAVs exchange their plans for
coordination.

Figure 4.4 shows the components running on board each UAV, which are those

devoted to shot execution. Recall that each UAV has a Scheduler module that receives

shot assignments from the Ground Station and indicates when a new shot should be

started. Thee Shot Executor is then in charge of planning and executing optimal

trajectories to do each shot, implementing the method described in Section 4.4. As

input, the Shot Executor receives the future desired 3D position pD and velocity vD

for the UAV, which is updated continuously by the Scheduler depending on the shot

parameters and the target position. For instance, in a lateral shot, the dynamic model

of the target is used to predict its position by the end of the horizon time, and to then

place the desired position of the UAV at the lateral distance indicated by the shot

parameters. Additionally, the target positioning provided by the Target Tracker is

required by the Shot Executor to point the gimbal and place the UAV properly.

The Shot Executor, as explained in Section 4.4, consists of three submodules:

the Trajectory Planner, the Trajectory Follower, and the Gimbal Controller. The

Trajectory Planner computes optimal trajectories for the UAV solving the problem

in (4.13) in a receding fashion, trying to reach the desired state indicated by the

Scheduler. The Trajectory Follower calculates 3D velocity commands at a higher rate

so that the UAV follows the optimal reference trajectory, which is updated any time

the Planner generates a new solution. The Gimbal Controller generates commands for

the gimbal motors in the form of angular rates in order to keep the camera pointing

towards the target. UAL (Real et al., 2020) is used to interface with the position
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and velocity controllers of the UAV autopilot. Finally, recall that each UAV has a

communication link with its teammates in order to share their current computed

trajectories, which are used for multi-UAV coordination by the Trajectory Planner.

4.5.1 Cinematography shots

In Chapter 3, we described in detail all the types of shots implemented by our multi-

UAV cinematography framework. Each shot has a type, a time duration, and a set

of geometric parameters that are used by the system to compute the desired camera

position with respect to the target. From all the shots, we take a set of the most

representative ones for evaluating trajectory planning in this chapter. For the sake of

clarity, let us recall the main features of those selected:

� Chase/lead: The UAV chases a target from behind or leads from in front at a

certain distance and with a constant altitude.

� Lateral: The UAV flies beside a target with constant distance and altitude as

the camera tracks it.

� Flyby: The UAV overtakes a target with a constant altitude as the camera tracks

it. The initial distance behind the target and final distance in front of it are also

shot parameters.

� Orbit: The UAV flies with a constant altitude orbiting around the target from a

certain distance, as the camera tracks it.

Even though our complete system implements additional shots, such as static,

elevator, among others., the other shots follow similar behaviors or are not relevant

for the evaluation of trajectory planning. In particular, we distinguish between two

groups of shots for assessing the performance of the trajectory planner: (i) shots

where the relative distance between the UAV and the target is constant (e.g., chase,

lead, lateral), denoted as Type I shots; and (ii) shots where this relative distance

varies throughout the shot (e.g., flyby, orbit), denoted as Type II shots. Note that an

orbit shot can be built with two consecutive flyby shots. In Type I shots, the relative
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motion of the gimbal with respect to the UAV is quite limited, and the desired camera

position does not vary with the shot phase; i.e., it is always at the same distance from

the target. In Type II shots though, there is a significant relative motion of the gimbal

with respect to the UAV, and the desired camera position depends on the shot phase;

e.g., during a flyby shot, it transitions from behind to in front. These two kinds of

patterns will result in different behaviors of our trajectory planner, so for a proper

evaluation, we test it with shots from both groups.

4.6 Performance evaluation

In this section, we present the results of experiments used to assess the performance

of our method for trajectory planning in cinematography. We evaluate the behavior

of the resulting trajectories for the two categories of shots, demonstrating that our

method achieves smooth, less jerky camera movements. We also show the effect of

considering physical limits for gimbal motion, as well as multi-UAV constraints due to

collision avoidance and mutual visibility.

We implemented our trajectory planner described in Section 4.4 by means of Forces

Pro (Zanelli et al., 2017), which is software that creates domain-specific solvers in C

language for non-linear optimization. Forces Pro uses direct multiple shooting (Bock

and Plitt, 1984) for problem discretization, approximating the state trajectories to

achieve a finite-dimensional optimization problem. Then an algorithm based on the

interior-point method is used to solve this non-linear optimization. Table 4.2 depicts

common values for some parameters of our method used in all the experiments, where

physical constraints correspond to our actual UAV prototypes. All the experiments in

this section were performed with a MATLAB-based simulation environment integrating

the C libraries from Forces Pro, on a computer with an Intel Core i7 CPU @ 3.20 GHz

and 8 GB RAM.
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Parameter Value

umin,umax ±5 m/s2

vmin,vmax ±10 m/s
θmin, θmax −π/2,−π/4 rad
ψmin, ψmax −3π/4, 3π/4 rad

α π/6 rad
∆t, ∆tG 0.1 s

L 1 m

Table 4.2: Values of the method parameters for the experiments.

4.6.1 Cinematographic aspects

First, we evaluate the effect of imposing cinematography constraints in UAV trajec-

tories. To do so, we selected a shot of Type II, since their relative motion between

the target and the camera makes them richer for analyzing cinematographic effects.

We did a flyby shot with a single UAV, filming a target moving on the ground with a

constant velocity (1.5 m/s) along a straight line (this constant motion model is used

to predict the target movement). The UAV had to take a 10-second shot at a constant

altitude of 3 m, starting 20 m behind the target and overtaking it to end up 15 m

ahead of it. We placed a circular no-fly zone at the starting position of the target,

simulating the existence of a tree.

We evaluated the quality of the trajectories computed by our method, setting the

planning horizon to N = 100 (10 s), in order to calculate the complete trajectory for

the whole duration of the shot in a single step, instead of using a receding horizon 1. We

tested different configurations for comparison: no-cinematography, uses w2 = w3 = 0;

low-pitch, medium-pitch, and high-pitch, use w3 = 0 and w2 = 100, w2 = 1 000, and

w2 = 10 000, respectively; low-yaw and high-yaw, use w2 = 0 and w3 = 0.5, and

w3 = 1, respectively; and full-cinematography, uses w2 = 10 000 and w3 = 0.5. For all

configurations, we set w1 = w4 = 1. These values were selected empirically to analyze

the planner behavior under a wide spectrum of weighting options in the cost function.

Figure 4.5 (top) shows the trajectory followed by the target and the UAV trajectories

generated with the different options. Even though trajectory planning was done in

1The average time to compute each trajectory was ∼ 100 ms, which allows for online computation.
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Figure 4.5: At the top, top view of the resulting trajectories for different solver
configurations of the cost weights. High-yaw is not shown as it was too similar to
low-yaw. The target follows a straight path and the UAV has to execute a flyby shot
(10 s) starting 20 m behind and ending up 15 m ahead of the target. The predefined
no-fly zone simulates the existence of a tree. At the bottom, temporal evolution of
the jerk of the camera angles and the norm of its 3D acceleration. We compare the
full-cinematography configuration against no-cinematography.
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Dist (m) Acc (m/s2) Yaw jerk (rad/s3) Pitch jerk (rad/s3)

No-cinematography 0.00 0.86 0.61 0.31

Low-pitch 1.81 1.13 0.35 0.15

Medium-pitch 6.38 1.25 0.19 0.07

High-pitch 6.13 1.42 0.10 0.03

Low-yaw 0.00 0.81 0.52 0.25

High-yaw 0.00 1.00 0.50 0.23

Full-cinematography 4.44 1.27 0.10 0.03

Full-cinematography (receding) 4.19 1.45 0.08 0.03

Table 4.3: Resulting metrics for a flyby shot. Dist is the minimum distance to the
no-fly zone. Acc, Yaw jerk and Pitch jerk are the average norms along the trajectory
of the 3D acceleration and the jerk of the camera yaw and pitch, respectively.

3D, the altitude did not vary much, as the objective was to perform a shot with a

constant altitude. Therefore, a top view is depicted to better evaluate the effect of

the weights.

Table 4.3 shows a quantitative comparison of the different configurations. For this

comparison, we define the following metrics. First, we measure the minimum distance

to any obstacle or no-fly zone in order to check the collision avoidance constraints. We

then measure the average norm of the 3D acceleration along the trajectory, and of the

jerk (third derivative) of the camera angles θC and ψC . These three metrics provide

an idea of whether the trajectory is smooth and whether it implies jerky movement

for the camera. Note that jerky motion has been identified in the literature on aerial

cinematography (Bonatti et al., 2020; Gebhardt et al., 2016) as an important cause of

low video quality. Figure 4.5 (bottom) depicts the temporal evolution of jerk of the

camera angles and the norm of its 3D acceleration.

Our experiment allows us to derive several conclusions. The no-cinematography

configuration produces a trajectory that gets as close as possible to the no-fly zone and

minimizes 3D accelerations (curved trajectory). However, when increasing the weight

on the pitch rate, the trajectories get further from the target and their accelerations

increase slightly (as longer distances need to be covered in the same shot duration), but

the jerk in the camera angles is reduced.In contrast, activating the weight on the yaw
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rate brings the trajectories closer to the target again. With the full-cinematography

configuration, we achieve the lowest values in angle jerks and a medium value in 3D

acceleration, which seems to be a fairly reasonable trade-off. It can also be seen in

Figure 4.5 (bottom) how this configuration reduces camera acceleration and angle

jerks compared to no-cinematography, obtaining smoother trajectories.

Finally, we also tested the full-cinematography configuration in a receding horizon

manner. In that case, the solver was run at 1 Hz with a time horizon of 5 s (N = 50).

The resulting metrics are included in Table 4.3. Using a receding horizon with a horizon

shorter than the shot’s duration is suboptimal, and the average acceleration increases

slightly. However, we achieve similar values for the angle jerk, plus a reduction in the

computation time 2. Moreover, this option of recomputing trajectories online would

allow us to correct possible deviations on predictions for the target motion in the event

of more random movements (in these simulations, the target moved with a constant

velocity).

4.6.2 Time horizon

We also performed an experiment to evaluate the performance of shots of Type I.

We selected a lateral shot to show our results, but the behavior of other shots such

as a chase or lead shot was similar, as they all do the same movement but with a

different relative position with respect to the target. We executed a lateral shot with

a duration of 20 s to film a target from a lateral distance of 8 m and a constant

altitude of 3 m. As in the previous experiment, the target moved on the ground

with a constant velocity (1.5 m/s) along a straight line, and we used that motion

model to predict its movement. In normal circumstances, the type of trajectories

followed to film the target are not so interesting, as the planner only needs to track it

laterally at a constant distance. Therefore, we used this experiment to analyze the

effects of modifying the time horizon, which is a critical parameter in terms of both

computational load and capacity for anticipation. We used our solver in receding

horizon recomputing trajectories at 2 Hz, and we placed a static no-fly zone in the

2The average time to compute each trajectory was ∼ 7 ms.



108 Optimal trajectory planning for cinematography with multi-UAV coordination

0 5 10 15 20 25 30

6

8

10

12
)

m( y

Target
No fly zone
N = 5 (0.5 s)
N = 20 (2 s)
N = 40 (4 s)
N = 80 (8 s)

Final UAV Pose

Start Target Pose

8m

Start UAV Pose

Figure 4.6: Receding horizon comparison for a lateral shot. Top view of the trajectories
resulting from different time horizons. The target follows a straight path and the UAV
has to execute a lateral shot (10 s) at a distance of 8 m.

Time horizon (s) Acc. (m/s2) Yaw jerk (rad/s3) Pitch jerk (rad/s3) Solution time (s)

0.5 0.15 10.68 1.35 0.004

2 0.08 5.12 0.32 0.016

4 0.05 5.06 0.32 0.029

8 0.04 4.8 0.29 0.101

Table 4.4: Metrics for the lateral shot. Solution time is the average time to compute
each trajectory.

middle of the UAV trajectory to check its avoidance during the lateral shot under

several values of the time horizon N . The top view of the resulting trajectories (the

altitude did not vary significantly) can be seen in Figure 4.6. Table 4.4 shows also the

performance metrics for the different trajectories.

We can conclude that the trajectories with a longer time horizon were able to

predict the potential collision farther in advance and react more smoothly, while

shorter horizons resulted in more reactive behaviors. In general, for the kind of

outdoor shots that we did in all our experiments, we realized that time horizons on

the order of several seconds (consistent with Bonatti et al. (2020)) were enough, as the

dynamics of the scenes were not extremely high. We also tested that the computation

time for our solver was short enough to calculate these trajectories online.
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Figure 4.7: Top view of different time instants of an experiment with three UAVs
filming a target in a coordinated manner. The target (black) follows an 8-shaped path.
UAV 1 (blue) performs a chase shot 2 m behind the target, UAV 2 (green) a lateral
shot 2 m aside the target, and UAV 3 (magenta) an orbit shot with a 4 m radius.
A no-fly zone (red) is placed in the middle of the target trajectory for multi-UAV
avoidance. Each UAV is represented with a 2 m circle around to show the collision
avoidance constraint.
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Figure 4.8: Temporal evolution of the UAV altitudes during the multi-UAV coordina-
tion experiment. The vertical lines mark the time instants of the snapshots depicted
in Figure 4.7.

4.6.3 Multi-UAV coordination

In order to test multi-UAV coordination, we performed another experiment with three

UAVs filming a target that followed a figure 8–shaped path at a speed of 1 m/s. We

combine heterogeneous shots of Types I and II, with a duration of 40 seconds each:

UAV 1 performs a chase shot at a 3.5 m altitude and 2 m behind the target; UAV 2 a

lateral shot at a 3 m altitude and a 2 m lateral distance from the target; and UAV

3 is commanded to make an orbit of radius 4 m at an altitude of 6 m. Each UAV

ran our method with a receding horizon of N = 40 (4 s), recomputing trajectories at

0.5 Hz. We set rcol = 2 m as the distance for collision avoidance and the low-pitch

configuration for the cost function weights, as we saw this was working better for

this experiment. The purpose of this experiment is twofold. First, we show how the

method works with a non-rectilinear target motion. We assume the course of the

road followed by the target is known, and so we use a model that constrains the

target motion to that path. Second, we show the main features related to multi-UAV
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coordination. A no-fly zone is used to test obstacle avoidance in a coordinated manner,

including inter-UAV collision avoidance and mutual visibility avoidance.

Figure 4.7 shows several snapshots of the experiment 3. We set UAV 1 as the one

with top priority in the trajectory planner, then UAV 2, and least priority for UAV 3.

Between t = 15 s and t = 19 s, UAV 1 comes across the no-fly zone in its trajectory

and deviates to avoid it. Consequently, UAV 2 also deviates in a coordinated manner

so as not to collide with UAV 1. Although UAV 1 and 2 are close together throughout

the whole experiment, they keep a safe distance of at least 2 m apart. UAV 3 is

assigned an orbit of 4 m, but between t = 19 s and t = 27 s, it moves incrementally

further from the target as it begins the orbit. This makes sense in order to minimize

the variation in the camera angles, since UAV 3 increases its altitude slightly during

this period. Figure 4.8 shows the temporal evolution of the UAV altitudes during

the experiment. UAV 3 starts the experiment at an altitude 1.5 m and its assigned

altitude for the orbit is 6 m. We provided that desired altitude for the shot to enforce

coordination, as we detected that at that altitude the other two UAVs were appearing

within the field of view of UAV 3. UAVs 1 and 2 start at their assigned altitudes and

maintain them throughout the entire experiment, as they have no issues of mutual

visibility. However, UAV 3 starts ascending to reach its assigned altitude, which is

never reached, to comply with the mutual visibility constraint. As UAV 3 has less

priority, it is the one changing its altitude during the experiment to avoid getting

UAVs 1 and 2 within its field of view. We also included in Figure 4.8 the altitude

trajectory of UAV 3 when the mutual visibility constraint is disabled in the planner.

In that case, it can be seen that the UAV ascends above 6 m, which causes the other

two UAVs to appear within its field of view.

4.7 Field experiments

In this section, we report on field experiments where we test our method with 3

UAVs filming a human actor outdoors. This allows us to verify the feasibility of the

3For the sake of clarity, a video with the temporal evolution of the simulation is available at
https://youtu.be/u5Vi4leni7U.

https://youtu.be/u5Vi4leni7U
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method with actual equipment for UAV cinematography and assess its performance

in a scenario with uncertainties in target motion and detection.

The cinematography UAVs used in our experiments were like those in Chapter 3

(see Figure 4.9). Recall that they were custom-designed 1.80×1.80×0.70 m hexacopters

made of carbon fiber and the following onboard equipment: a PixHawk 2 autopilot

running PX4 for flight control, an RTK-GPS for precise localization, a 3-axis gimbal

controlled by a BaseCam (AlexMos) controller receiving angle rate commands, a

Blackmagic Micro Cinema camera, and an Intel NUC i7 computer to run our software

for shot execution. The UAVs used Wi-Fi technology to share their plans with each

other and communicate with our Ground Station. Our target carried a GPS-based

device during the experiments to provide positioning measures to the Target Tracker

component on board the UAVs. The device weighed around 400 grams and consisted

of an RTK-GPS receiver with a Pixhawk, a radio link, and a small battery. This

target provided 3D measurements with a delay below 100 ms, which were filtered by

the Kalman Filter on the Target Tracker to achieve centimeter accuracy. These errors

were compensated by our gimbal controller to track the target on the image.

Figure 4.9: One of the UAVs used during the field experiments.

We integrated the architecture described in Section 4.5 into our UAVs, using the

ROS framework. We developed our method for trajectory planning (Section 4.4) in
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Figure 4.10: Trajectories followed by the UAVs and the human target during the field
experiment. UAV 1 (blue) does a lateral shot, UAV 2 (green) a flyby, and UAV 3
(red) another lateral.

C++ 4, using Forces Pro (Zanelli et al., 2017) to generate a compiled library for

the non-linear optimization of our specific problem. The parameters used in the

experiments were also those in Table 4.2. For collision avoidance, we used rcol = 5 m,

a value slightly larger than in our simulations for safety reasons. We also limited the

maximum velocity of the UAVs to 1 m/s for safety reasons. All trajectories were

computed on board the UAVs online at 0.5 Hz, with a receding horizon of N = 100

(10 s). Then the Trajectory Follower modules generated 3D velocity commands at

10 Hz to be sent to the autopilot controllers through the UAL component. We assumed

a constant speed model for the target motion. This model was inaccurate, as the actual

4https://github.com/alfalcmar/optimal_navigation

https://github.com/alfalcmar/optimal_navigation
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target speed was unknown, but these uncertainties were addressed by recomputing

the trajectories with a receding horizon.

We designed a field experiment with 3 UAVs simultaneously taking different shots

of a human target walking on the ground. UAV 1 takes a lateral shot following the

target sideways with a lateral distance of 20 m; UAV 2 does a flyby shot starting 15 m

behind the target and finishing 15 m ahead of it in the target motion line; and UAV

3 does another lateral shot, but from the other side and with a lateral distance of

15 m. For safety reasons, we established different altitudes for the UAVs, 3 m, 10 m,

and 7 m, respectively. In our decentralized trajectory planning scheme, UAV 1 had

top priority, followed by UAV 2 and then UAV 3. In order to design the shots of the

mission safely and with good aesthetic outputs, we created a realistic simulation in

Gazebo with all our components integrated and a SITL approach for the UAVs (i.e.,

the actual PX4 software of the autopilots was run in the simulator).

Figure 4.11: Examples of images from the cameras on board the UAVs during the
experiment: top left, UAV 1 (blue); top right, UAV 2 (green); and bottom left, UAV
3 (red). Bottom right, an overall view of the experiment showing the three UAVs and
the target.

The full video of the field experiment can be found at https://youtu.be/

M71gYva-Z6M, and the actual trajectories followed by the UAVs are depicted in

Figure 4.10. Figure 4.11 shows some example images captured by the onboard cameras

https://youtu.be/M71gYva-Z6M
https://youtu.be/M71gYva-Z6M
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UAV Distance traveled (m) Acc. (m/s2) Dist. (m)

1 95 0.125 9.543
2 141.4 0.108 9.543
3 98.6 0.100 14.711

Table 4.5: Metrics of the trajectories followed by the UAVs during the field experiment.
We measure the total distance traveled for each UAV, the average norm of the 3D
accelerations, and the minimum distance (horizontally) to other UAVs.

during the experiment. The experiment demonstrates that our method is able to

generate online trajectories for the UAVs coping with cinematographic constraints

(i.e., no jerky motion, gimbal mechanical limitations, and mutual visibility) and safety

constraints (i.e., inter-UAV collision avoidance); and keeping the target in the cameras’

field of view, even under conditions of noisy target detection and uncertainties in its

motion. We measured some metrics of the resulting trajectories (see Table 4.5) in order

to evaluate the performance of our method. It can be seen that UAV accelerations were

smooth, in line with those produced in our simulations, and the minimum distances

between UAVs were always higher than the collision avoidance constraint limit (5 m).

4.8 Conclusions

In this chapter, we presented a method for planning optimal trajectories with a team

of UAVs in a cinematography application. We proposed a novel formulation for

non-linear trajectory optimization, executed in a decentralized and online fashion. Our

method integrates UAV dynamics and collision avoidance, as well as cinematographic

aspects such as gimbal limits and mutual camera visibility. Our experimental results

demonstrate that our method can produce coordinated multi-UAV trajectories that are

smooth and reduce jerky movements. We also show that our method can be applied to

different types of shots and compute trajectories online for time horizons with lengths

of up to 10 seconds, which seems enough for the outdoor cinematographic scenes that

we considered. Our field experiments proved the applicability of the method with an

actual team of UAV cinematographers filming outdoors.
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As future work, we plan to study alternative schemes for decentralized multi-UAV

coordination instead of our priority-based computation. Our objective is to compute

in multi-UAV approximate solutions a distributed manner that are closer to the

optimum, but without significantly increasing the computation time. We believe that

a comparison with methods based on reinforcement learning could also be of high

interest.



Chapter 5

Aerial filming with distributed

lighting by a team of UAVs

In Chapter 3, we presented a framework for cinematography with multiple UAVs, and

in Chapter 4 we presented a specific algorithm for optimal trajectory planning to

provide aesthetic views. Despite the advantages of using UAVs for outdoor cinematog-

raphy, they face limitations in scenarios with insufficient natural light and without

artificial lighting. This chapter describes a method for autonomous aerial filming with

distributed lighting by a team of UAVs. We formulate a novel optimization problem

for multi-UAV trajectory planning and propose a leader–follower formation to film

a target with one UAV (leader), while the other UAVs (followers) illuminate from

several directions, which is one of the fundamental techniques of traditional filming. In

order to tackle a problem with non-convex optimization due to the obstacle avoidance

constraints, the multi-UAV trajectory planning problem is decomposed into two parts:

non-linear cinematographic aspects are formulated without obstacle avoidance to

generate reference trajectories, then these are used to generate collision-free regions

that are convex and transform the final problem into a QP optimization task. This

decomposition allows us to integrate collision avoidance into trajectory planning in

a more scalable way, yielding a method that can work in dynamic, cluttered envi-

ronments. The chapter presents experimental results for aerial filming to monitor

inspection activities, both in simulated and real scenarios.

117



118 Aerial filming with distributed lighting by a team of UAVs

5.1 Introduction

The use of UAVs as flying cameras presents a remarkable potential not only for

recreational cinematography, but also for monitoring inspection operations in outdoor

infrastructures with complex access. For instance, the EU-funded AERIAL-CORE

project 1 proposes the use of UAVs to monitor the safety of human workers at great

heights during maintenance operations on electrical power lines (see Figure 5.1).

Although the footage is not used for entertainment purpose in this case, a high-quality

video would speed up the assessment by human operators at the ground station.

Teams with multiple UAVs expand upon these possibilities, as they may be able to

provide alternative points of view or even supplementary illumination. Similarly, in

the DRONUMENT project of the NAKI II program, efficient variable illumination

plays a key role in documenting the interiors of historical buildings.

Figure 5.1: UAV filming applications to provide external lighting, to capture smooth
shots outdoors, and to monitor dangerous maintenance operations for power lines.
Pictures were obtained within AERIAL-CORE and DRONUMENT projects, for which
the proposed technology is being developed.

Proper lighting techniques are fundamental for bringing out details in an image

and in creating natural-looking film scenes that more closely represent real life. Thus,

cinematography sets are packed with different lighting sources, since digital sensors

are not as reactive to light as the human eye. This can be especially important in

1https://aerial-core.eu

https://aerial-core.eu
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monitoring maintenance operations scheduled at times of the day with poor illumina-

tion. Although aerial cinematography has been attractive to the scientific community

as of late, lighting techniques have yet to be applied to improve the performance of

filming.

In this context, navigating a team of UAVs for filming tasks with distributed

lighting is complex. Save, smooth trajectories are required to achieve pleasing shots

that do not compromise safety in dynamic scenarios. In this chapter, we propose

a method for online trajectory planning and execution with multiple UAVs. Our

team of UAVs obeys a leader–follower scheme where the formation leader carries an

onboard camera to film a moving target and the followers generate trajectories that

enable distributed lighting of the target while maintaining desired lighting angles.

We formulate a non-linear, optimization-based method that plans trajectories for the

filming UAV that will produce visually pleasing footage and distributes the surrounding

UAVs in a specified formation. At the same time, we focus on safety by including a

systematic framework for obstacle avoidance. Safe flight corridors for the UAVs are

generated by forming sets of convex polyhedrons that model the free space. Optimal

and safe trajectories are thereafter computed within these convex sets. Our main

contributions are summarized as the following:

� We formulate a novel optimization problem for aerial filming with distributed

lighting. Using a leader–follower scheme, we plan and execute trajectories in

a distributed manner. Optimization is run in a receding horizon setting to

compute smooth trajectories with pleasing footage for the UAV that is filming

(the leader), which takes shots of a dynamic target indicated by an external user.

The followers compute their trajectories to maintain a formation with specified

lighting angles on the target.

� We propose a new method to tackle non-convex trajectory optimization with

obstacle avoidance in real time. We decompose the problem into two parts. Non-

linear cinematographic aspects are formulated as a problem without obstacle
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avoidance to generate reference trajectories. These are used to generate collision-

free regions which are convex and to transform the problem into a final QP

optimization task.

� We present experimental results to evaluate the performance of our method for

different types of cinematographic shots. We prove that our method is capable

of computing smooth trajectories that reduce jerky movements in real time and

we show that the distributed formation improves the illumination of the footage.

The system is evaluated in various outdoor scenarios in a realistic simulator,

including the filming of a moving target in a cluttered environment.

5.2 Related work

The modification of lighting angles to improve images is a fundamental topic in cine-

matography (Hall, 2015). An onboard light used together with a camera on a single

UAV can compensate for insufficient lighting, but positioning lights at different angles

with respect to the camera axis would require the use of several UAVs. Despite the

unquestionable importance of lighting for shot quality, its usage for aerial cinematogra-

phy has not been well-studied. Utilizing UAVs to provide supplementary illumination

has been proposed for building documentation tasks (Petracek et al., 2020) and for

tunnel inspection (Petrĺık et al., 2020). A formation of UAVs with one carrying a

camera and others carrying lights was deployed to document the overshadowed parts

of historical buildings (Saska et al., 2017). A similar system has been used to carry out

specialized documentation techniques (Krátký et al., 2020). However, these studies

have proposed lighting for tasks in static scenes, whereas the present thesis deals with

filming moving targets in dynamic and potentially cluttered environments; e.g., to

monitor inspection operations in large outdoor infrastructure.

In order to guarantee safe trajectory planning in multi-UAV cinematography, most

studies (Nägeli et al., 2017b; Galvane et al., 2018; Alcántara et al., 2021) only consider

collision avoidance with actors, other UAVs, or static objects that can be modeled

with previously known no-fly zones. The work in Bonatti et al. (2020) integrates
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Figure 5.2: The architecture of the proposed system. Cs and Cl represent the desired
cinematographic shot type and lighting configuration specified by a human director;
TT is the target estimated trajectory; DL, DF are reference trajectories for the leader
UAV and the follower UAVs, respectively; PL, PF are collision-free paths generated
along the desired trajectories; SL, SF are safe corridors along the collision-free paths;
and TL, TF are optimized trajectories for the camera and lighting UAVs, respectively.
The modules enclosed in the blue rectangle run on both types of UAVs.

local mapping with onboard sensors to penalize proximity to obstacles in the cost

function and solves an unconstrained optimization problem. An alternative approach

to obstacle avoidance applied in standard UAV trajectory planning is to create a convex

representation of the free space by means of a set of linear inequality constraints (Yu

et al., 2016; Mohta et al., 2018; Liu et al., 2017; Tordesillas et al., 2021) in order to

obtain a QP formulation for real-time motion planning. We have been inspired by

these single-UAV studies to develop a fundamental framework for the representation

of obstacles in our non-linear optimization problem for multi-UAV cinematography.

5.3 System overview

Figure 5.2 shows the architecture of the entire system. The leader UAV carries a

camera for filming while the others carry light sources to provide proper illumination.

A human director specifies the cinematographic parameters for the scene. These

parameters include the shot type (i.e., the camera motion relative to the target), the

camera shooting angle for the leader, and the desired lighting angles for the followers.

This information, together with an estimation of the target trajectory, is used to

generate reference trajectories for the UAVs (Section 5.4.2). These initial trajectories

do not consider obstacle avoidance but only cinematographic aspects. The leader
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attempts to execute the commanded shot smoothly, while the followers maintain a

surrounding formation with the desired lighting angles.

Safety is ensured by integrating information from a local map for collision avoidance

(Section 5.4.3). First, a collision-free path is generated for each UAV using the map and

the initial cinematographic trajectories as guidelines. Then a safe corridor along each

of these paths is computed, consisting of a set of obstacle-free polyhedrons generated

by the convex decomposition of the free space (see Figure 5.5). Finally, the UAV

trajectories are obtained as a result of a trajectory optimization process that computes

dynamically feasible trajectories inside each safe corridor (Section 5.4.4). Inter-UAV

collision avoidance is achieved by including the team-mates’ planned trajectories as

obstacles in the map.

The entire pipeline shown in Figure 5.2 (except for the Human director component)

runs on board each UAV in a receding horizon manner. This enables the online

planning module to react properly to changes in the behavior of the target being

filmed, as well as to malfunctioning team-members or previously unseen obstacles.

Note that either the Cinematographic trajectory generator or the Lighting trajectory

generator is activated on each UAV, depending on whether it carries a camera or a

light source. The component for trajectory tracking on each UAV corresponds to the

low-level control pipeline described in Báča et al. (2021).

5.4 Autonomous aerial cinematography

In this section, we begin by detailing the dynamic UAV model (Section 5.4.1). We

then describe our procedure to generate optimal and safe trajectories for each UAV

(Sections 5.4.2, 5.4.3, and 5.4.4). Lastly, we explain how the orientation of each UAV

is controlled (Section 5.4.5).

5.4.1 Multirotor aerial vehicle dynamic model

An independent trajectory tracker (Báča et al., 2021) for UAV attitude control is

used, which allows for planning with a simplified positional dynamic UAV model.
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In addition, the orientation of the camera or light source on board (depending on

the UAV) needs to be modeled. We assume the existence of a gimbal mechanism to

compensate angle deviations due to changes in the UAV’s attitude. Therefore, it is

assumed that camera roll is negligible and we only control pitch and heading. Since

the heading of a multirotor vehicle can be controlled independently of its position,

we fix the relative position between the camera/light and the UAV to always point

forward and control its heading through the UAV heading. We use the same reference

frames and dynamic model as in Chapter 4. The positional part for the vehicle (we

assume that the camera/light and the vehicle position coincide) of the dynamic model

is defined as a linear double integrator:

ṗQ = vQ,

v̇Q = aQ,
(5.1)

where pQ = [px py pz]
T ∈ R3 is the UAV position, vQ = [vx vy vz]

T ∈ R3 the linear

velocity, and aQ = [ax ay az]
T ∈ R3 the linear acceleration. The orientation of the

camera/light may be modelled similarly;

ȯC = ωC ,

ω̇C = θC ,
(5.2)

where oC = [ϕ ξ]T represents an orientation with respect to a global frame given by its

heading and pitch angles, ωC ∈ R2 are the corresponding angular rates, and θC ∈ R2

the angular accelerations. For the description of the proposed method, we define a

full positional state of the UAV xp = [pTQ vTQ]T ∈ R6, a vector of positional control

inputs up = aQ, an orientation state xo = [oTC ω
T
C ]T ∈ R4, and a vector of orientation

control inputs uo = θC .

5.4.2 Generation of reference trajectories

The first step of our method for trajectory planning is to generate a reference trajectory

Dj for each UAV j. The problem complexity is alleviated by removing collision
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avoidance constraints and focusing only on cinematographic aspects. For the filming

UAV, the objective is to reach a position relative to the target as provided by the shot

type Cs, while minimizing changes in the camera angle to produce pleasing images.

A specific camera shooting angle ψd over the target needs to be maintained. The

following non-linear optimization problem is formulated 2 for the filming UAV:

minimize
x0,...,xN−1
u0,...,uN−1

N∑
k=1

(||uk−1||2 + α1Jψ,k) + α2JN , (5.3)

subject to x0 = x′, (5.3.a)

xk+1 = fp(xk,uk) ∀k ∈ {0, . . . , N − 1}, (5.3.b)

vmin ≤ vQ,k ≤ vmax ∀k ∈ {1, . . . , N}, (5.3.c)

umin ≤ uk ≤ umax ∀k ∈ {0, . . . , N − 1}, (5.3.d)

qz,min ≤ qz,k ∀k ∈ {1, . . . , N} (5.3.e)

where fp(·) represents the positional part of the dynamic model defined in Section 5.4.1;

vmin, vmax are velocity limitations; and umin, umax control input limitations.

The first two terms in the cost function aim to produce smooth trajectories by

penalizing UAV accelerations and reducing gimbal movements. The director specifies

an aesthetic objective through the desired camera shooting angle ψd to film the target

(see Figure 5.3). Emphasis is placed on positioning the UAV to keep this angle constant

without moving the gimbal. In doing so, the angular changes in the gimbal are reduced

in order to favor less jerky camera motion and therefore produce pleasing footage. In

order to define Jψ, the relative position between the leader UAV camera (pL) and the

target (pT ) is introduced as:

q =
[
qx qy qz

]T
= pL − pT . (5.4)

2For simplicity of description, x := xp and u := up. We use the Runge-Kutta method for
numerical integration.
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Figure 5.3: The camera shooting angle, the leader UAV position, the target position,
and their relative position.

Then we define Jψ as:

Jψ,k =

tan(ψd)−
qz,k√

q2x,k + q2y,k

2

. (5.5)

By minimizing this cost, we implicitly minimize variations in the camera pitch angle

as the relative pitch with respect to the target is kept constant. The camera heading

corresponds to the UAV heading, whose variations are also smoothed, as explained in

Section 5.4.4. The idea is to generate UAV trajectories where the gimbal only needs

to move slightly to compensate for small disturbances.

The terminal cost JN = ||xxy,d−xxy,N ||2 guides the UAV to a desired state (on the

horizontal XY plane) imposed by the shot type; e.g., at a certain distance beside the

target’s final position in a lateral shot. Note that a final UAV height is not imposed,

as we want the planner to compute the optimal pz to maintain the camera shooting

angle specified by the director. Lastly, the constraint (5.3.e) establishes a minimum

distance above the target for safety purposes.

The reference trajectories for the lighting UAVs are computed to achieve a desired

leader–follower formation around the target. The desired position of the followers is

influenced by the corresponding leader position pL and camera orientation oL, the
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target position pT , the desired lighting angles of the j-th light χj and %j, and the

desired distance of the light to the target dj . The desired position of the j-th follower

pj is then given by the equation:

pj = pT + dj


− cos(ϕj) cos(ξj)

− sin(ϕj) cos(ξj)

sin(ξj)

 , (5.6)

where ϕj = ϕL+χj and ξj = ξL+%j are desired lighting angles relative to the camera’s

optical axis (see Figure 5.4). To avoid quick changes in the desired follower UAV

positions that could be caused by switching to a new target, the concept of a virtual

target placed a certain distance in front of the camera is applied. The position of this

virtual target is given by:

pv = pL + dv


cos(ϕL) cos(ξL)

sin(ϕL) cos(ξL)

sin(ξL)

 , (5.7)

where dv is the desired distance between the virtual target and the center of the

camera, and pv denotes the virtual target position. Substituting position pv for pT in

Equation (5.6), a new leader–follower scheme is acquired, resulting in a fixed shape

formation for constant lighting angles χj, %j and a more compact formation when

these angles vary.

5.4.3 Generation of safe corridors

The initial reference trajectories are computed without considering obstacles. They

are therefore used as seeds to generate a safe corridor Sj for each UAV j where

collision-free trajectories can then be computed. First, we convert each trajectory Dj

into a collision-free path Pj. We iterate over each waypoint in Dj and add it directly

to Pj if it is collision-free. Otherwise, we label the previous collision-free waypoint as

A and keep moving along Dj until we find the next collision-free waypoint B. Then

we try to find an alternative collision-free path from A to B, to be appended to Pj
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Figure 5.4: The leader–follower scheme defined by Equation (5.6).

and continue iterating. For that alternative path, we use the Jump Point Search (JPS)

algorithm introduced in Harabor and Grastien (2011, 2014) and extended to 3D in Liu

et al. (2017). A real-time performance is ensured by introducing a timeout for the

JPS path search.

If the JPS algorithm fails to find a path within the given timeout from A to B, we

run it again to connect A directly to the last waypoint in Dj (let this waypoint be C).

If this is not found either, we append to Pj the path to the node closest to C from all

those expanded during the JPS search. Once completed, Pj is post-processed so that

the waypoints are sampled evenly with a maximum sampling distance, as in the initial

Dj. Since these collision-free paths are used as a guide for trajectory optimization

in subsequent steps, this limitation helps to avoid dynamic infeasibility of the final

trajectories. The process to create a collision-free path Pj and its corresponding safe

corridor Sj is illustrated in Figure 5.5.

Safe corridors are generated around these collision-free paths using a map of the

environment represented by a point cloud Opcl and by using the convex decomposition

method proposed in Liu et al. (2017). This method is based on an iterative procedure

for generating polyhedrons. It begins by inflating an ellipsoid aligned with each path

segment. In the next step, tangent planes are constructed at the contact points

between the ellipsoid and any obstacles. Next, all points lying behind this plane are

removed from Opcl. The next iteration starts by again inflating the ellipsoid up to the

nearest point in Opcl. This procedure is terminated if there are no remaining points in
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Obstacle

Obstacle

Initial trajectory
Final trajectory

Collision free path

Figure 5.5: The safe corridor–generating process. The initial reference trajectory
(dark green) is converted into a collision-free path (purple), and the obstacle-free
polyhedrons are generated along this path. The final optimized trajectory within the
safe corridor is also shown (blue). We inflate the obstacles for safety purposes (light
red).

Opcl. The tangent planes generated define an obstacle-free polyhedron P enclosing

the corresponding path segment, and the set of all the polyhedrons along the path

constitutes the safe corridor.

5.4.4 Trajectory optimization

Given a collision-free path P and its corresponding safe corridor S, a final optimal

trajectory is computed through a QP problem in receding horizon. The particular

optimization task 3 attempts to track a desired trajectory pd corresponding to the

3For simplicity of description, x := xp, and u := up.
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reference trajectory Dj:

minimize
x0,...,xN

u0,...,uN−1

N∑
k=1

(||pd,k − pQ,k||2 + β||uk−1||2), (5.8)

subject to x0 = x′, (5.8.a)

xk+1 = fp(xk,uk) ∀k ∈ {0, . . . , N − 1}, (5.8.b)

vmin ≤ vQ,k ≤ vmax ∀k ∈ {1, . . . , N}, (5.8.c)

umin ≤ uk ≤ umax ∀k ∈ {0, . . . , N − 1}, (5.8.d)

pQ,k ∈ Pk ∀k ∈ {1, . . . , N}, (5.8.e)

where fp(·) represents the positional part of a dynamic model defined in Section 5.4.1;

vmin, vmax are velocity limitations; umin, umax control inputs limitations; and Pk is

a convex polyhedron representing the free space associated with the k-th transition

point. The last constraint ensures a safe resulting trajectory without collisions. Given

that the constraint (5.8.e) can be decoupled in a set of linear constraints, the problem

becomes a quadratic convex program.

The optimization formulation is the same for both the leader and follower UAVs.

However, there are a couple of important differences. First, the desired reference

trajectories are computed in a different way, following either filming or lighting criteria

(see Section 5.4.2). Second, the followers encode mutual-collision avoidance through

constraint (5.8.e). To prevent negative effects on the cinematographic quality of

the performed shot, mutual collision avoidance is left entirely to the followers. A

fixed priority scheme is defined for the UAVs where the occupied space Opcl of each

follower is updated with the current planned trajectories from the leader and other

followers of higher priority. At each waypoint from the trajectories that are to be

avoided, a spherical object is placed with the desired collision avoidance radius. This

mechanism for mutual collision avoidance simplifies the optimization problem and

does not significantly increase computational demands. This is due to the dynamic

nature of the targeted environment where local maps already need to be updated at

each planning iteration.
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Another important issue for applications of multi-UAV cinematography is how to

prevent other UAVs from appearing in the field of view (FoV) of the filming UAV.

However, including this in the optimization task as either a constraint or a cost term

can increase the complexity of the problem considerably. We considered including the

FoV of the leader camera as an obstacle in the local maps of the followers, so that

they could avoid it. Even so, relatively small changes in camera orientation could

result in significant changes in the map representation and hence lead to unstable

planned trajectories. Therefore, the camera’s FoV is avoided by the lighting UAVs only

through penalizing deviations from the desired trajectories pd. Thus, FoV avoidance

is mostly determined by the choice of the lighting parameters that describe the desired

formation.

5.4.5 Orientation control

In this application, both the camera and the light sources need to be always pointing

at the filmed target. Hence, their desired orientation is given by

od =
[
ϕd ξd

]T
=
[
arctan(qy, qx) sin

(
qz
||q||

)]T
. (5.9)

Orientation control is also formulated as a constrained quadratic optimization

problem in receding horizon in order to achieve smoother orientation changes. For

simplicity of description, x := xo and u := uo in the following problem formulation:

minimize
x0,...,xN

u0,...,uN−1

N∑
k=1

(||od,k − oC,k||2 + γ||uk−1||2), (5.10)

subject to x0 = x′, (5.10.a)

xk+1 = fo(xk,uk) ∀k ∈ {0, . . . , N − 1}, (5.10.b)

ωmin ≤ ωC,k ≤ ωmax ∀k ∈ {1, . . . , N}, (5.10.c)

ξmin ≤ ξk ≤ ξmax ∀k ∈ {1, . . . , N}, (5.10.d)

umin ≤ uk ≤ umax ∀k ∈ {0, . . . , N − 1}, (5.10.e)
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where fo(·) represents the orientation aspect of the dynamic model defined in Sec-

tion 5.4.1; ωmin, ωmax are limitations on the angular velocities; umin, umax control

input limitations; and ξmin, ξmax represent gimbal hardware limitations on adjusting

pitch angles. The heading and pitch angles of the camera or light can be controlled

independently. Thus, (5.10) was decoupled into two simpler problems. The optimal

solution for each problem can be found analytically with a standard framework for

linear MPC).

5.5 Experimental evaluation

Figure 5.6: Illustration of the proposed system filming a worker under the required
illumination.

In this section, experimental results are presented to demonstrate the performance

of our method for multi-UAV trajectory planning. Figure 5.6 depicts an illustrative

scene of our simulation with one UAV filming a human worker and two others

providing proper illumination. We have assessed that the proposed method is capable

of computing smooth cinematographic trajectories in real time. Additionally, we have

evaluated that the trajectories of the follower UAVs which provide lighting for the

target are capable of complying with formation constraints to improve the quality of
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the shot. The safety of our method has also been proved through experiments in the

presence of multiple obstacles.

5.5.1 Experimental setup

We implemented our architecture described in Section 5.3 in C++ using the ROS

framework. The ACADO Toolkit (Houska et al., 2011) was used to solve the optimiza-

tion problems. We conducted SITL simulations using Gazebo to simulate the physics

and to equip the UAVs with a camera and lights. To solve the optimization problems,

a horizon length of 8 s and a time step of 0.2 s were chosen. The cinematographic

parameters were set to ψd = 6◦ and qz,min = 0.5 m.

5.5.2 Simulation experiment – cinematography trajectories

The objective of this experiment was twofold: to demonstrate how the method

computes smoother camera trajectories for the leader UAV while complying with

cinematographic aspects, and how the trajectories of the followers maintain the

formation constraints to light the target properly. We simulated a human worker

performing a maintenance operation on a transmission tower while being monitored

by a team of three UAVs (one filming and two lighting the worker). While the worker

approached and climbed the tower, the system was commanded to perform a lateral

shot followed by a sequence of flyby shots.

The flyby shots were selected to film the operation as they impose relative mo-

tion between the camera and the target. This feature is regarded as richer from a

cinematographic point of view. We further demonstrate how our method is able to

execute these relative movements more aesthetically than with a baseline approach

where the specific term to smooth variations in the camera angles has been removed

(i.e., α1 = 0 in 5.3). Figure 5.7 compares the trajectories for the camera-carrying UAV

generated with both our method and the baseline approach. It can be seen that the

baseline approach generates straight trajectories, whereas our method results in orbital

trajectories, which are known to produce more pleasing video footage. Additionally,

our method reduces the camera angular rates (Figure 5.7) and jerk. Note that in
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Figure 5.7: Trajectories for the camera-carrying UAV while monitoring a worker on
a transmission tower. For simplicity, only the lateral shot and the first flyby shot
are shown. We compare the trajectories generated by our method (blue) with those
from a baseline approach without cinematographic costs (green). The upper image
displays a top view of the UAV’s and target’s trajectories. The small white dots on
the trajectories depict transition points sampled every 5 s to give a notion of the speed.
The bottom image depicts the evolution of the camera angular rates.
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Figure 5.8: Illustration of the experiment where an operator is filmed working on a
transmission tower. The trajectories of the camera-carrying leader (orange), both
followers carrying lights (blue and green), and the human worker (red) are shown.
The obstacle map is represented by a point cloud, including the power lines and tower.
The worker is tracked with a lateral shot as he walks to the tower and then with a
sequence of flyby shots while he climbs up. Several onboard images taken during the
experiment are also shown.

aerial cinematography literature, camera motion jerk (third derivative of the angles)

has been identified as a key aspect for shot quality (Bonatti et al., 2020; Gebhardt

et al., 2016). We measured the root mean square of the jerk of ϕ and ξ along the

full trajectories and obtained 0.0161 rad s−3 and 0.0057 rad s−3, respectively, for our

method; and 0.0184 rad s−3 and 0.0104 rad s−3, respectively, for the baseline without

the cinematographic cost term.

Figure 5.8 shows the trajectories followed by the whole UAV formation throughout

the experiment to film the maintenance operation. It can be seen that the formation

is properly maintained to avoid collisions between the UAVs and the tower, and to

provide the required lighting of the filmed object. Moreover, none of the UAVs appear

in the camera’s field of view. A video of the complete simulation can be found at

https://www.youtube.com/watch?v=v4f7kb_fxjA.

https://www.youtube.com/watch?v=v4f7kb_fxjA
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5.5.3 Simulation experiment – cluttered environment

The aim of this experiment was to demonstrate the performance of our method for

trajectory planning in a cluttered environment while assessing its scalability with

numerous obstacles. We simulated a forest-like scenario with multiple trees as obstacles.

As a human target walks through the forest, the filming UAV executes a chase shot

from behind while the lighting UAVs follow the leader side by side. Figure 5.9 depicts

the distribution of the obstacles around the forest and the trajectories generated for

the UAVs. In this figure, it can be seen that the UAVs were able to follow the human

in formation and to simultaneously avoid obstacles.

Lastly, we analyze the scalability of our method in terms of computational demand.

Simulations were run with a 4-core Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz.

Table 5.1 shows the results of our method corresponding to the total planning time

for each iteration that was run on the leader UAV. As expected, most time was spent

in the non-convex optimization step described in Section 5.4.2. The results for the

followers are not included because they skip this non-convex optimization and thus

consume less time. The results are similar for the two experiments, although the

second scenario was significantly more cluttered.

Since the map of the environment is transformed into safe corridors composed of

convex polyhedrons, cluttered environments do not represent a significant increase in

the computational demands of the trajectory optimization method. Therefore, we are

able to plan the leader’s trajectories at a rate of 1 Hz with horizon lengths of 8 s. This

rate is adequate for real-time performance in the dynamic scenarios that we target.

The lower computational complexity required to generate the initial trajectories of

the followers allows us to plan follower trajectories at a higher rate of 2 Hz, enabling

faster reactions to changes in the leader’s behaviour and thus a more efficient mutual

collision avoidance.
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Time (s)
Total (Avg ± std) ITG (%) SCG (%) FTO (%)

Tower 0.70923± 0.10557 70.9982 11.81564 17.18615
Forest 0.71274± 0.05792 72.41338 8.77989 18.80673

Table 5.1: The planning times of our method per iteration. The total average values
are shown for the two experiments, followed by percentage of time consumed at each
step. ITG stands for the procedure indicated in Section 5.4.2, SCG for the procedure
described in Section 5.4.3, and FTO for the trajectory optimization described in
Section 5.4.4.
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Figure 5.9: A top view of the trajectories generated in the cluttered forest scenario.
The trajectories of the target (red), the leader (orange), and the two light-carrying
UAVs (blue and green) are shown. The trees are represented by black dots.
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5.6 Conclusion

This chapter has presented a method for autonomous aerial cinematography with

distributed lighting by a team of UAVs. We have proposed a novel methodology

for multi-UAV trajectory planning, addressing non-linear cinematographic aspects

and obstacle avoidance in separate optimization steps. We have demonstrated that

the method is capable of generating smooth trajectories complying with aesthetic

objectives for the filming UAV, and trajectories for the follower UAVs that allow

them to maintain a formation while lighting the target properly and staying out of

the camera FoV. Our results indicate that we can plan trajectories in a distributed

and online manner, and that the method is suitable for obstacle avoidance even in

cluttered environments. In future work, we plan to address occlusions caused by

obstacles within the camera FoV. Our idea is to compute the regions where these

occlusions would take place and include them in the representation of the occupied

space.
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Chapter 6

Conclusions and future work

This chapter summarizes the main contributions and results of this thesis, drawing

overall conclusions about the work. It then identifies interesting research directions

for future work.

6.1 Conclusions

The use of teams with multiple UAVs is an important promising development for aerial

filming, as a way of covering large outdoor scenarios offering different or supplementary

views concurrently (or sequentially). However, the evolution of autonomous aerial

cinematography is impossible without the development of methods to generate UAV

trajectories that ensure compliance with system dynamics, smoothness requirements,

and safety constraints. Recent advances in optimization-based techniques using

numerical optimization algorithms enable the resolution of complex non-linear problems

in milliseconds. This is the case for multi-UAV filming applications, where UAVs

need to cope in real time with numerous constraints (including non-convex ones) such

as UAV and camera dynamics, obstacle avoidance, inter-UAV collisions, and mutual

UAV visibility.

These reasons motivated the work presented in this thesis. In particular, we have

developed a set of algorithms for optimal trajectory planning in multi-UAV filming

applications, and a complete framework for executing cinematography missions with

139
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multiple UAVs. The published contributions have pushed the frontiers of the current

state of the art in multi-UAV filming applications by introducing the following:

� A parametric way to define aerial shots, accounting for different types of camera

motion and target actors in the scene. We implemented a set of canonical shots

in a multi-UAV system for cinematography mission execution, and proposed

a distributed scheduling procedure to execute those missions, coping robustly

with UAV failures.

� A novel method for optimal trajectory planning with a team of UAVs in cin-

ematography applications. We formulated a new problem incorporating cine-

matography and safety constraints and then used numerical methods to solve

the resulting non-linear optimization in a decentralized and online fashion.

� A new methodology for autonomous filming with distributing lighting by a team

of UAVs. We proposed a method that addresses non-linear cinematographic

aspects and obstacle avoidance in separate optimization steps. The method is

scalable in terms of obstacle avoidance, and hence trajectory planning can be

carried out in real time even in cluttered environments.

We would like to emphasize the experimental part of the thesis, especially complex

in outdoor multi-UAV applications. All the multi-UAV methods included have

been tested in outdoor field experiments, dealing with GPS positioning inaccuracies,

communications delays, and disturbances such as moderate wind. Overall, this thesis

has been a long journey, along which a large variety of aspects that are inherent to

multi-UAV trajectory planning have been tackled. In particular, we would like to

centre the final discussion of our conclusions around the following important issues:

(i) field experimentation, (ii) non-convex numerical optimization methods, and (iii)

obstacle avoidance. We discuss each of these aspects in more detail.

Our diverse field experiments filming multiple activities in dynamic scenes show-

cased the feasibility of the developed framework to address outdoor cinematography

with multiple UAVs. As a general conclusion, the feedback from the media experts

involved in the projects was positive, as they found the number of shots and au-

tonomous features implemented by the system. rich enough In particular, they found
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the possibility of combining virtual and actual targets to guide camera motion quite

helpful. However, the media experts were also critical about the quality of the final

footage produced. Autonomous UAVs are an interesting tool for aerial filming and

cinematography, but the planning of smooth trajectories is not enough on its own

to produce professional videostreams. The aesthetically pleasing views yielded by

our methods needs to be complemented by hardware adequate for filming purposes.

Thus, professional high-resolution cameras and stable gimbals are essential to obtain

high-quality videos. These types of cameras used in media production are heavy

equipment that is not easy to integrate with standard gimbals and UAVs. Onboard

communication devices providing stable long-range links with a broad bandwidth

also turned out to be key for the type of outdoor scenarios addressed. Therefore, we

believe that the methods for trajectory planning in filming applications developed in

this thesis could strongly benefit from their integration with custom-made UAVs for

professional media applications.

Regarding the use of numerical methods for trajectory optimization in non-

convex formulations, our results demonstrate that current software solvers are

efficient enough to plan trajectories on board in real time for multi-UAV settings.

Moreover, we can conclude that our particular formulation was able to produce

trajectories that are smooth and reduce jerky camera motion. However, despite the

computation capabilities of these software tools for non-linear optimization, they are

not always robust enough. The underlying algorithms implemented to tackle non-

convex optimization are quite sensitive to the initial conditions, and small variations

in the contour conditions may lead to different solutions, or to failures and non-

convergence. Therefore, it would be interesting to devise new methods that could

establish certain guarantees for the computed solutions, avoiding significant jumps

between consecutive trajectories obtained in receding horizon and ensuring convergence

under certain conditions.

In terms of obstacle avoidance, the idea of building safe corridors that can

be transformed into convex constraints for trajectory optimization turns out to be

promising. Our results demonstrated that the technique implemented behaved in a

scalable manner and was able to cope with cluttered environments. However, our
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tests were always performed with preloaded maps and not in highly dynamic scenarios.

Therefore, we believe that additional effort and testing is necessary to evaluate this

methodology integrated within a pipeline that includes online mapping and obstacle

detection.

6.2 Future work

The outcome of this thesis suggested future research directions, which could further

advance the state of the art in multi-UAV filming applications. Some of them are

straightforward extensions of the work done in the thesis, while others focus on the

multi-UAV trajectory planning problem from a more general perspective.

Additional evaluation. Our media experts, having evaluated the shots, asked for

the videos to be produced by the UAVs to be more stable. The heavy equipment used

for filming was not easy to integrate with standard gimbals. Thus, additional field

experiments with custom-made UAVs for professional media applications could be

carried out, providing high-quality videos to the media experts and facilitating the

evaluation of shots. Moreover, we encountered difficulties in evaluating the artistic

component of the shots, given the subjectivity evaluating aesthetics. Throughout the

thesis, we applied metrics used in the literature to evaluate the smoothness of the

trajectories and the pleasing qualitites of the shots. However, the artistic principle of

filming has a subjective component that depends on the viewer. Additional subjective

user studies could be carried out to better evaluate the artistic possibilities of the

system combining multi-camera shots.

Actor occlusion. In future work, actor occlusions could be addressed by computing

regions where these occlusions would take place and adding them as no-fly zones. This

would make sense in scenarios where few obstacles might occlude the target, since in

scenarios with many obstacles, either occlusion would be unavoidable or its avoidance

would severely affect the camera trajectories from a cinematographic point of view.
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Uncertainties. We dealt with model and environmental uncertainties by generating

trajectories at a high frequency in a receding horizon scheme. Although we employed

GPS in our experiments, it would be interesting to further investigate how the methods

proposed in this thesis could be adapted to account for more complex sensors and

their uncertainties, such as depth cameras or laser-based sensors. A possible line of

research could be the formulation of a trajectory planning problem that minimizes

a type of cost related to positioning uncertainty; e.g., minimizing the distance to

certain landmarks so that the positioning sensors can perform better. Moreover, in

multi-UAV teams, the uncertainties associated with inter-vehicle communication could

be modeled and integrated into the optimization problem, to pursue UAV formation

shapes that optimize the communication throughput.

Collision avoidance. Our methods for obstacle avoidance can be used in dynamic

scenarios, as our trajectories adapt online thanks to the use of receding horizon

planning. However, our computation of safe corridors may be conservative and

problematic in highly dynamic scenarios, since the convex decomposition of the free

space becomes harder to compute due to the extra time dimension. An alternative

method has been presented in Tordesillas et al. (2021). They deal with dynamic

obstacles by calculating outer polyhedral representations of every interval of the

trajectories, and then including the plane that separates each pair of polyhedrons as

a decision variable in the optimization problem. This method looks promising for

integrations with trajectory planning in filming applications.

New decentralized planning schemes. Alternative schemes for decentralized

multi-UAV coordination could be studied instead of our priority-based planning.

The objective would be to compute in a distributed manner multi-UAV approximate

solutions that are close enough to the optimum, but without significantly increasing the

computation time. Fully decentralized methods based on sequential consensus Nägeli

et al. (2017b) may be worth exploring. We also believe that a comparison with

methods based on reinforcement learning could be of high interest.
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Appendix A

Open-source code repositories

All the methods developed throughout this thesis have been released as open-source

code by means of online GitHub repositories. In this Appendix, we compile a list of

all these repositories with their main content and their relation with the different

thesis chapters. The complete list of repositories with code generated as a result of

the thesis is the following:

� Multidrone Planning.

https://github.com/grvcTeam/multidrone_planning

� Cinematography Trajectory Planner.

https://github.com/alfalcmar/optimal_navigation

� Shot Executor.

https://github.com/grvcTeam/shot_executor

� Safe Corridor Generator.

https://github.com/alfalcmar/safe_corridor_generator

� Trajectory Follower.

https://github.com/alfalcmar/trajectory_follower

In addition, some of the above repositories have dependencies with UAL https:

//github.com/grvcTeam/grvc-ual, a library created by some members of the Group
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Multidrone Planning UAL

Shot Executor Optimal Navigation Trajectory Follower UAL

Shot Executor Optimal Navigation MRS UAV System
Core

Safe Corridor
Generator

Chapter 3

Chapter 4

Chapter 5

Figure A.1: Interconnections between the different repositories. Each module repre-
sents a code repository. Solid lines imply connections based on ROS topics and services,
whereas dashed lines refer to connections made by library headers. In Chapter 3 and
Chapter 4, UAL is used as UAV navigation framework, while the MRS UAV System
is used in Chapter 5.

of Robotics, Vision, and Control (GRVC) of the University of Seville. It consists of an

interface to abstract the user from the hardware specifics of each autopilot, as a way

of easing UAV navigation. Instead, to integrate the work in Chapter 5, the MRS UAV

System https://github.com/ctu-mrs/uav_core is used for trajectory tracking and

UAV navigation. This repository was developed by the Multi-robot Systems Group

at the Czech Technical University in Prague. It should be noted that all the code in

the thesis is ROS compatible, using interfaces based on ROS topics and services for

inter-process communication.

Figure A.1 shows a diagram of the interconnection between the listed repositories

and their relationship to the chapters of this thesis. In the following, we provide more

details about the content of each specific repository.

https://github.com/ctu-mrs/uav_core
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A.1 Multidrone Planning

This repository contains the software implementation of the architecture for multi-

UAV cinematography presented in Chapter 3 and published in Alcántara et al. (2020).

As this work was developed within the framework of the MultiDrone project, the

repository also contains some additional components related to the project, such as

those related with mission planning (Caraballo et al., 2020). The following software

packages are included in this repository:

� Dashboard Interface. A dummy implementation of the Director’s Dash-

board (Montes-Romero et al., 2020) (the graphical tool to design missions in the

MultiDrone project, which was not released as open-source code). It contains

XML files with mission examples to be sent to the Mission Controller.

� Multidrone Planning. Contains the Mission Controller and the High-Level

Planner. The Mission Controller receives cinematography missions from the

Director’s Dashboard in XML format, and computes mission plans using the High-

Level Planner, sending the corresponding tasks to each UAV while monitoring

the overall mission execution.

� Onboard Scheduler. Runs on board each UAV and receives the respective

UAV’s list of actions from the Mission Controller. It is then in charge of executing

them sequentially, synchronizing their start and finish, and calling the Action

Executor for the actual execution of the different navigation or shooting actions.

� Action Executor. Runs on board each UAV and is responsible for executing

the navigation and shooting actions as they are received from the Onboard

Scheduler. It computes reference trajectories for the UAV and takes care of the

camera gimbal motion, taking into account the type of action and the target

position estimation.

� Gimbal Camera Interface. Implements the communication bridge between

the Action Executor and the gimbal hardware.
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� Global Tracker. Provides position estimates for the targets in the scene, fusing

visual and GPS measurements.

� Multidrone Simulator. Contains a set of GAZEBO models to simulate

missions in the context of the MultiDrone project.

� Multidrone Visualizer. Uses a set of RViz plugins to implement a detailed

visualizer for simulating and testing multi-UAV cinematography missions.

All the modules listed above are implemented as ROS nodes. The use of nodes

in ROS provides several benefits to the overall system. There is additional tolerance

to failures, as crashes are isolated to individual nodes. Also, code complexity is

reduced and implementation details are well hidden. A detailed description of the

modules involved, the interfaces, and ROS use can be found in the wiki of the

repository https://github.com/grvcTeam/multidrone_planning/wiki.

A.2 Cinematography Trajectory Planner

This repository implements the UAV trajectory planning methods developed in Chap-

ter 4 and Chapter 5, to calculate optimal cinematography trajectories. The repository

includes two different formulations of the optimization problem. One is the formulation

presented in Alcántara et al. (2021), which was tackled using the Forces Pro solver.

The other is the formulation presented in Krátký et al. (2021), which used the ACADO

solver. The repository also contains the interfaces to connect with the Trajectory

Follower repository and the MRS UAV System Core (used in Chapter 4 and Chapter 5

for trajectory tracking, respectively).

A.3 Shot Executor

This repository contains the implementation of the Shot Executer, which is a specific

version of the Action Executer module included in the Multidrone Planning repository.

This version was created to integrate the methods presented in Chapter 4 and Chapter 5

https://github.com/grvcTeam/multidrone_planning/wiki
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within the Action Executer. The Shot Executer is used in Alcántara et al. (2021);

Krátký et al. (2021) to compute the desired position references for the UAV, so that it

carries out the specified shot. These desired positions are computed using the current

position of the UAV, the shot type, and the target position estimate. They are then

fed to the optimal cinematography trajectory planner. This module is implemented

as a ROS node that offers an interface to be connected to the trajectory planning

modules by means of ROS topics.

A.4 Safe Corridor Generator

This repository contains the implementation of the generator of safe corridors used

for collision avoidance in the method presented in Chapter 5 and published in Krátký

et al. (2021). An example of the use of this safe corridor generator library can be

found in the Cinematography Trajectory Planner repository.

In particular, the repository implements a ROS library that generates a safe

corridor for the input trajectory. We iterate over each waypoint of the input trajectory

and add it directly if it is collision-free. Otherwise, we try to find an alternative

collision-free path to be appended, and continue iterating. For that alternative path,

we use the Jump Point Search (JPS) algorithm presented in Liu et al. (2017). The

JPS code is also available in the third party folder included in the repository.

A.5 Trajectory Follower

This repository contains a package for UAV trajectory following, which is used in

Chapter 4 for the field experiments presented in Alcántara et al. (2021). This

trajectory follower is a simplified version of a ‘Carrot Chasing’ algorihm (Perez-Leon

et al., 2020). The original software package, including additional functionalities

such as trajectory interpolation and path following, can also be found online https:

//github.com/hecperleo/upat_follower.

https://github.com/hecperleo/upat_follower
https://github.com/hecperleo/upat_follower
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The Trajectory Follower consists of an ROS node that receives trajectories in

the trajectory to follow topic. Then it computes and sends the proper velocity

commands to the UAL library, in order to track the instructed trajectory.
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Real, F., Castaño, A. R., Torres-González, A., Capitán, J., Sánchez-Cuevas, P. J.,

Fernández, M. J., Romero, H., and Ollero, A. (2021a). Autonomous fire-fighting

with heterogeneous team of unmanned aerial vehicles. Field Robotics, 1:158–185.
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