[Las instrucciones de este documento se encuentran entre corchetes y se incluye el nivel de obligatoriedad de cada apartado.] [Cuando haya completado este documento, elimine todas las instrucciones y borre los apartados que no haya rellenado por no ser aplicables en su conjunto de datos.] [Rellene el máximo de apartados posibles para facilitar la reutilización de su conjunto de datos.] [Este plantilla está creada en base a la elaborada por el Grupo de trabajo de Apoyo a la Investigación del CSUC.] [Para cualquier información sobre este documento contacte con .] [Esta plantilla está publicada con una licencia CC0.] Este archivo ha sido creado el 22-12-2022 por Alfonso Moriana GENERAL INFORMATION ------------------ 1. Dataset title: Dataset. Endocarp development study in full irrigated olive orchards and impact on fruit features at harvest P20-00492 2. Authorship: Name:Sanchez-Piñero, Marta Institution: Universidad de Sevilla Email: martasanchezpinero@yahoo.es ORCID: Name: Martín-Palomo, María José Institution: Universidad de Sevilla Email:mjpalomo@us.es ORCID:0000-0002-0314-4363 Name: Moriana, Alfonso Institution:Universidad de Sevilla Email:amoriana@us.es ORCID:0000-0002-5237-6937 Name:Corell, Mireia Institution:Universidad de Sevilla Email:mcorell@us.es ORCID:0000-0001-5955-0048 Name:Pérez-López, David Institution:Universidad Politecnica de Madrid Email:david.perezl@upm.es ORCID:0000-0002-2835-5896 DESCRIPTION ---------- 1. Dataset language: English 2. Abstract: Data are organised in two excel files. Data are of sevral locations, seasons and cultivars. The first one (thermal p20-0492) included (per treee and year) : the date of flowering estimation of degree days with several models Lenght of pri hardening The second one (pit breaking pressure p20-00492) included all data of the seasonal curve of maximum pit breaking pressure 3. Keywords: Olive; Endocarp development; Fruit features; Full irrigation; Degree days 4. Date of data collection (fecha única o rango de fechas): Dataset includes several seasonal form 2006 to 2022 5. Publication Date: 22/12/2022 6. Grant information: Grant Agency [Organismo financiador]:Juanta de Andalucía Grant Number [Código del proyecto]:P20-00492 7. Geographical location/s of data collection: Ciudad Real (39ºN, 3º56'W; altitude 640 m), Farm "El Morillo" farm near Seville (37.5ºN, 5.7ºW; 102 m altitude), "La Hampa" experimental farm near Se-ville (37º 17' N, 6º 3'W, 30 m altitude) ACCESS INFORMATION ------------------------ 1. Creative Commons License of the dataset: CC-BY 2. Dataset DOI: 10.3390/plants11243541 3. Related publication: 1. Gucci, R., Fereres, E., Godhamer, D.A. 2012. Olive, in: Steduto, P., Hsiao, T.C., Fereres, E., Raes, D. (Eds), Crop yield response to water, FAO Irrigations and drainage paper 66, FAO, Rome, pp 300-315. 2. Goldhamer, D.A. 1999. Regulated deficit irrigation for California canning olives. Acta Horticulturae, 474, 369-372. 3. Rapoport, H.F., Pérez-López, D., Hammami, S.B.M., Aguera, J., Moriana, A. 2013. Fruit pit hardening: physical measure-ments during olive growth. Annals Appl. Biol. 163, 200-208. https://dx.doi.org/10.1111/aab.12046. 4. Fernandez-Escobar, R., Benlloch, M., Navarro, C., Martin, G.C. 1992. The time of floral induction in the olive. J. Amer. Soc. Hort. Sci. 117,304-307. https://doi.org/10.21273/JASHS.117.2.304 5. Gomez del Campo, M, Perez-Exposito, MA, Hammami, SBM, Centeno, A, Rapoporrt, HF. 2014. Effect of varied summer deficit irrigation on components of olive fruit growth and development. Agric. Water Manage. 137, 84-91. https://doi.org/10.1016/j.agwat.2014.02.009 6. Gucci, R., Caruso, G., Gennai, C., Esposto, S., Urbani, S., Servili, M. 2019. Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development. Agric. Water Manage. 212, 88-98. https://doi.org/10.1016/j.agwat.2018.08.022. 7. Lavee, S., Hanoch, E., Wodner, M, Abramowitch, H. 2007. The effect of predetermined deficit irrigation on the performance of cv Muhasan olives (Olea europaea L) in the eastern coastal plain of Israel. Sci. Hortic. 112, 156-163. https://doi.org/10.1016/j.scienta.2006.12.017. 8. Ahumada-Orellana, L.E., Ortega-Farias, S., Searles, P.S., Retamanes, J.B., 2017. Yield and water productivity responses to irrigation cut-off strategies after fruit set using stem water potential thresholds in a super intensive olive orchard. Front. Plant Sci., p. 2715. https://doi.org/10.3389/fpls.2017.01280. 9. Moriana, A., Corell, M., Girón, I.F., Conejero, W., Morales, D., Torrecillas, A., Moreno, F. 2013. Regulated deficit irrigation based on threshold values of trunk diameter fluctuation indicators in table olive trees. Sci. Hortic. 164, 102-111. http://dx.doi.org/10.1016/j.scienta.2013.09.029. 10. Girón, I.F., Corell, M., Martín-Palomo, M.J., Galindo, A., Torrecillas, A., Moreno, F., Moriana, A. 2015a. Feasibility of trunk diameter fluctuations in the scheduling of regulated deficit irrigation for table olive trees without reference trees, Agric. Water Manage. 161, 114-126. http://dx.doi.org/10.1016/j.agwat.2015.07.014 11. Corell, M., Martín-Palomo, M.J., Girón I., Andreu. L., Galindo, A., Centeno, A., Pérez-López, D., Moriana, A. 2020. Stem water potential-based regulated deficit irrigation scheduling for olive table trees. Agric. Water Manage. 242 https://doi.org/10.1016/j.agwat.2020.106418 12. Corell, M, Pérez-López, D, Andreu, L, Recena, R, Centeno, A, Galindo, A, Moriana, A, Martín-Palomo, MJ 2022. Yield re-sponse of a mature hedgerow oil olive orchard to different levels of water stress during pit hardening. Agricultural Water Manage. 261 https://doi.org/10.1016/j.agwat.2021.107374 13. Hammani, S.B.M., Costagli, G., Rapoport, H.F. 2013. Cell and tissue dynamics of olive endocarp sclerification vary accord-ing to water availability. Physiol. Plant. 149,571-582. https://doi.org/10.1111/ppl.12097. 14. Hammami, S.B.M., Manrique, T., Rapoport, H.F. 2011. Cultivar based fruit size in olive depends on different tissue and cellular processes throughout growth. Sci. Hortic. 130, 445-451. https://doi.org/10.1016/j.scienta.2011.07.018 15. Rosati, A., Caporali, S., Hammani, S.B.M., Moreno-Alías, I., Rapoport, H. 2020. Fruit growth and sink strength in olive (Olea europea) are related to cell number, not to tissue size. Funct. Plant Biol. 47,1098-1104. https://dx.doi.org/10.1071/FP20076. 16. Pérez-López, D., Ribas, F., Moriana, A., Rapoport, H., de Juan, A. 2008. Influence of temperature on the growth and devel-opment of olive (Olea europaea L) trees. J. Hort. Sci. Biotech. 83, 171-176. 17. Trentacoste, E.R., Puertas, C.M., Sadras, V.O. 2012. Modelling the intraspecific variation in the dinamics of fruit growth, oil and water concentration in olive (Olea europaea L.). Europ. J. Agron. 38: 83-93. https://doi.org/10.1016/j.eja.2012.01.001 17.18. Martin-Palomo, M.J., Corell, M., Girón, I., Andreu, L., Galindo, A., Centeno, A., Pérez-López, D., Moriana, A. 2020. Absence of yield reduction after controlled water stress during preharvest period in table olive trees. Agronomy 10, doi:103390/agronomy10020258. 18.19. Rapoport, H.F., Costagli, G., Gucci, R. 2004. The effect of water deficit during early fruit development on olive fruit morphogenesis. J. Amer. Soc. Hort. Sci. 129:121-127. https://doi.org/10.1016/j.agwat.2007.01.015 19.20. Rosati, A., Zipancic, M., Caporali, S., Padula, G. (2009). Fruit weight is related to ovary weight in olive (Olea euro-paea L.). Sci. Hortic. 122, 399-403. https://dx.doi.org/10.1016/j.scientia.2009.05.034. 20.21. Benlloch-González, M., Quintero, J.M., Suárez, M.P., Sánchez-Lucas, R., Fernández-Escobar, R., Benlloch, M. 2016. Effect of moderate high temperature on the vegetative growth and potassium allocation in olive plants. J. Plant Physiol. 207, 22-29. http://dx.doi.org/10.1016/j.jplph.2016.10.001 22. Benlloch-González, M., Sánchez-Lucas, R., Bejaoui, M. A., Benlloch, M., Fernández-Escobar, R. 2019. Global warning effect on yield and fruit maturation of olive tres growing under field conditions. Sci. Hortic. 249,162-167. https://doi.org/10.1016/j.scienta.2019.01.046. 23. Garcia-Inza, G.P., Castro, D.N., Hall, A.J., Rousseaux, M.C. 2016. Opposite oleic acid responses to temperature in oils from the seed and mesocarp of the olive fruit. Eur. J. Agron. 76. 138-147. http://dx.doi.org/10.1016/j.eja.2016.03.003. 21.24. Garcia-Inza, G.P., Castro, D.N., Hall, A.J., Rousseaux, M.C. 2014. Responses to temperature of fruit dry weight, oil concentration, and oil fatty acid composition in olive (Olea europaea L. var. ‘Arauco’). Eur. J. Agron. 54. 107-115. http://dx.doi.org/10.1016/j.eja.2013.12.005. 22.25. Rallo, L. Suarez, M.P. 1989. Seasonal distribution of dry matter within the olive fruit-bearing limb. Adv. Hort. Sci. 3, 55-59 23.26. Scorzal, R., May, L.G., Purnell, B., Upchurch, B. 1991. Differences in number and area of mesocarp cells between small and large fruited peach cultivars. J. Am. Soc. Hortic. Sci. 116, 861-864 https://doi.org/10.13109/10520297309116632 24.27. 24 McGarry, R., Ozga, J.A., Reinecke, D.M. 2001. Differences in fruit development among large and small fruited cultivars of Saskatoon (Amelanchier alnifolia Nutt) J. Am. Soc. Hortic. Sci. 126, 381-385 https://doi.org/10.21273/JASHS.126.4.381. 28. Rosati, A., Zipancic, M., Caporali, S., Paoletti, A. 2010. Fruit set is inversely related to flower and fruit weight in olive (Olea europaea L). Sci. Hortic. 126, 200-2004. https://dx.doi.org/10.1016/j.scientia.2010.07.010. 25.29. McGarry, R., Ozga, J.A., Reinecke, D.M. 2001. Differences in fruit development among large and small fruited culti-vars of Saskatoon (Amelanchier alnifolia Nutt) J. Am. Soc. Hortic. Sci. 126, 381-385 https://doi.org/10.21273/JASHS.126.4.381. 26.30. Girón, I.F., Corell, M., Galindo, A., Torrecillas, E., Morales, D., Dell’Amico, J., Torrecillas, A., Moreno, F., Moriana, A. 2015b. Changes in the physiological response between leaves and fruits during a moderate water stress in table olives. http://dx.doi.org/10.1016/j.agwat.2014.10.024 27.31. Ben-Gal, A., Ron, Y., Yermiyahu, U., Zipori, I., Naoum, S., Dag, A. 2021. Evaluation of regulated deficit irrigation strategies for oil olives: A case study for two modern Israeli cultivars. Agric. Water Manage. 245, doi 10.1016/j.agwat.2020.106577. 28.32. Gucci, R., Lodolini, E, Rapoport, H.F. 2009. Water déficit-induced changes in mesocarp cellular processes and the relationship between mesocarp and endocarp during olive fruit development. Tree physiol. 29, 1575-1585. https://doi.org/10.1093/treephys/tpp 29.33. Barranco, D., 1997. Variedades y Patrones. in: Barranco, D., Fernández Escobar, R., Rallo, L. (Eds.), El cultivo del oli-vo, Mundiprensa, Madrid, pp. 59-79. 30.34. Legave, J.M., Blanke, M., Christen, D., Giovannini, D., Mathieu, V., Oger, R. 2013. A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in Western Europe. Int. J. Biome-teorol. 57,317-331. https://doi.org/10.1007/s00484-012-0551-9. 31.35. Pérez-López, D., Ribas, F., Moriana, A., Olmedilla, N., De Juan, A. 2007. The effect of irrigation schedules on the water relations and growth of a young olive (Olea europaea L.) orchard. Agric. Water Manage. 89, 297-304. https://doi.org/10.1016/j.agwat.2007.01.015 32.36. Sánchez-Piñero, M, Martín-Palomo, MJ, Andreu, L., Moriana, A, Corell, M. 2022. Evaluation of a simplified method-ology to estimate the CWSI in olive orchards. Agric. Water Manage. 269 DOI10.1016/j.agwat.2022.107729 33.37. Hsiao, TC. 1990. Measurements of plant water status. Chap. 9, in:. Steward,B.A., Nielsen, D.R. (Eds), Irrigation of agricultural crops, Agronomy Monograph, 30, American Society of Agronomy, Madison, pp 243-279. 34.38. SIAR 2022. Climatic station data in Spain. http://eportal.mapa.gob.es/websiar/SeleccionParametrosMap.aspx?dst=1 (accessed 18 October 2022) 35.39. Guo, L., Dai, J., Ranjitkar, S., Yu, H., Xu, J., Luedeling, E. 2014. Chilling and heat requirements for flowering in tem-perate fruit trees. Int. J. Biometeorol. 58, 1195-1206 https://doi.org/10.1007/s00484-013-0714-3 36.40. Anderson, J.L., Richardson, E.A., Kesner, C.D. 1986. Validation of chill unit and flower bud phenology models for "Montmorency" sour cherry. Acta Hort. 184, 71-78. 37.41. Bongi, G., Palliotti, A. 1994. Olive. Chap. 6. in: Schaffer, B., Andersen, P.C. (eds.), Temperate crops. Vol. 1, Handbook of environmental physiology of fruit crops, CRC Press, Boca Raton, USA), pp, 165-187 VERSIONING AND PROVENANCE --------------- 1. Last modification date: 3/11/2022 2. Were data derived from another source?: No, they were not METHODOLOGICAL INFORMATION ----------------------- 1. Description of the methods used to collect and generate the data: [Recomendado | Referenciar, en el estilo estándar de su disciplina, las publicaciones o documentos que contengan el diseño experimental o los protocolos empleados en la recogida de datos..] 2. Data processing methods: [Recomendado | Describir cómo se ha generado el conjunto de datos publicado a partir de los datos primarios recogidos.] 3. Software or instruments needed to interpret the data: Pit-breaking pressure in all fruits was measured according to Rapoport et al (2013) using a device similar to the one described in this latter work. In short, pressure applied by hand to a lever was transformed into the vertical movement of a probe terminating in a 2mm diameter tip. Several capacity load cells of different pressure ranges were used. These load cells at-tached above the tip transformed the force applied to break the pit into an electrical signal. Pressure (MPa) is calculated as the force (N) divided by the area of the tip (m2). The electrical signal was sent to a data acquisition module (Model KUSB 318, Keithley Instru-ments Inc, Cleveland, OH, USA) connected by USB 2.0 to a computer for data processing. We also developed a specific application based on Visual Basic 6.0 to register the acquired data and to indicate on the screen the maximum pressure reached 5. Environmental or experimental conditions: [Obligatorio si es aplicable | Ej .: influencias atmosféricas, entorno computacional, etc.] Data were obtained from three different cultivars: Cornicabra (oil), Arbequina (oil) and Manzanilla (table), throughout several seasons (from 2006 to 2022). Trees were grown in different orchards located in Ciudad Real (central Spain) and Seville (south Spain). Both locations are around 350 km away and have different conditions for olive development (Table 7). Seville is in the main table olive producing area in Spain, and climatic condi-tions are the optimum for olive growing. In this location, maximum temperatures were above 34ºC from May to September as an average for the period 2006-2021. On the contra-ry, Winter was warm with minimum temperature slightly below 0ºC in January, but higher than 6ºC from April to October. The rain pattern was the typical of a Mediterranean climate, with a drought period in Summer (from June to August). The average seasonal rain was 497 mm. On the contrary, climatic conditions in Ciudad Real could be limiting for olive development. Maximum temperatures were similar to Seville, but the period when they were above 34ºC was narrower (from June to September). Winter presented lower minimum temperatures for longer than Seville, with values below -3ºC from No-vember to March. The pattern of rains was similar in both locations, but Ciudad Real pre-sented a lower seasonal rain than Seville, with a total amount of 421 mm. FILE OVERVIEW ---------------------- 1. Explain the file naming conversion, si es aplicable: We used the grant number of the project. "Thermal" are related with the degree estimation and lenght period. Pit breaking are the data of the maximum pit breaking curve 2. File list: File name:Thermal P20-0492.xls Description:Estimation of thermal integral and periods of endocarp development File name:Pit breaking pressure P20-00492.xls Description:Data for seasonal curve of endocarp breaking pressure 4. File format: Excel