APPENDIX

Metabolomics Insights in Early Childhood Caries

Heimisdottir LH,¹ Lin BM,² Cho H,² Orlenko A,³ Ribeiro AA,⁴ Simon-Soro A,⁵⁻⁷ Roach J,⁸ Shungin D,^{9,10} Ginnis J,¹ Simancas-Pallares MA,¹ Spangler HD,¹ Ferreira Zandona AG,¹¹ Wright JT,¹ Ramamoorthy P,¹² Moore JH,³ Koo H,^{5,6} Wu D,^{2,13} Divaris K.^{1,14}

¹Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, United States, ²Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC, United States, ³Department of Biostatistics, Epidemiology and Informatics, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, PA, United States, ⁴Division of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, United States, ⁵Biofilm Research Labs, Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States, ⁶Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States, ⁷Department of Stomatology, School of Dentistry, University of Sevilla, Sevilla, Spain, ⁸Research Computing, University of North Carolina at Chapel Hill, NC, United States, ⁹Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, United States, ¹⁰Department of Odontology, Umeå University, Umeå, Sweden, ¹¹Department of Comprehensive Care, School of Dental Medicine, Tufts University, Boston, MA, United States, ¹²Metabolon, Inc., Durham, NC, United States, ¹³Division of Oral &

Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, NC, United States, ¹⁴Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, NC, United States.

*Correspondence to Dr. Kimon Divaris, 228 Brauer Hall, Pediatric Dentistry, CB#7450, Adams School of Dentistry, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States. E: Kimon_Divaris@unc.edu, T: 919-537-3556, F: 919-537-3950

APPENDIX FIGURES

Appendix Figure 1. Distribution of participant-level metabolite missingness in the study sample (panel A). Individuals with >30% missingness (n=10, marked red; 3 early childhood caries 'cases' and 7 'controls') were excluded from analyses (panel B).

Appendix Figure 2. Distribution of participants' demographic characteristics (age, gender, and race/ethnicity) and the two ECC localized experience traits (localized dmfs₃ index, defined at the ICDAS \geq 1 threshold) and prevalence (localized dmfs₃>0 vs. dmfs₃=0, defined at the ICDAS \geq 1 threshold), and the person-level ECC trait (person-level dmfs>0, defined at the ICDAS \geq 3 threshold) that demonstrated statistically significant associations with metabolites.

Appendix Figure 3. Distribution of metabolites found to be statistically significantly altered after FDR correction (q<0.05) in 2 ECC experience trait analyses: catechin, epicatechin, fucose and N-acetylneuraminate abundances are presented over participants' demographic characteristics.

Appendix Figure 4. Distribution of metabolites found to be statistically significantly altered after FDR correction (q<0.05) in 2 localized ECC experience trait analyses: catechin, epicatechin, fucose and N-acetylneuraminate abundances are presented over ECC experience (localized dmfs₃ index, defined at the ICDAS \geq 1 threshold) and prevalence (localized dmfs₃>0 vs. dmfs₃=0, defined at the ICDAS \geq 1 threshold).

Appendix Figure 5. Distribution of metabolites found to be statistically significantly altered after FDR correction (q<0.05) in 1 ECC localized experience trait analysis: imidazole propionate, 9,10-DiHOME, inosine, 3-(4-hydroxyphenyl) lactate (HPLA), and 1-stearoyl-GPG abundances are presented over participants' demographic characteristics.

Appendix Figure 6. Distribution of metabolites found to be statistically significantly altered after FDR correction (q<0.05) in 1 ECC localized experience trait analysis: imidazole propionate, 9,10-DiHOME, inosine, 3-(4-hydroxyphenyl) lactate (HPLA), and 1-stearoyl-GPG abundances are presented over ECC experience (localized dmfs₃ index, defined at the ICDAS \geq 1 threshold) and prevalence (localized dmfs₃>0 vs. dmfs₃=0, defined at the ICDAS \geq 1 threshold).

Appendix Figure 7. Distribution of metabolites found to be statistically significantly altered after FDR correction (q<0.05) in 1 ECC localized experience trait analysis: 12,13-DiHOME, xanthine, raffinose, stachyose, sedoheptulose-7-phosphate abundances are presented over participants' demographic characteristics.

Appendix Figure 8. Distribution of metabolites found to be statistically significantly altered after FDR correction (q<0.05) in 1 ECC localized experience trait analysis: 12,13-DiHOME, xanthine, raffinose, stachyose, sedoheptulose-7-phosphate abundances are presented over ECC experience (localized dmfs₃ index, defined at the ICDAS \geq 1 threshold) and prevalence (localized dmfs₃=0, defined at the ICDAS \geq 1 threshold).

Appendix Figure 9. Distribution of the two metabolites (creatine and creatinine) that were found to be statistically significantly associated with the person-level ECC trait (person-level dmfs>0, defined at the ICDAS \geq 3 threshold) after FDR correction (q<0.05).