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A case study of qualitative change in system dynamics
JAVIER ARACILY and MIGUEL TOROY

The application of dynamical systems qualitative analysis techniques to the study
of models of socio-economical systems showing abrupt changes in its qualitative
behaviour is proposed. The approach is based on the multiple time-scale properties
of a class of non-linear perturbed systems. The change of qualitative behaviour
produced in the system can be explained through the singularities of a properly
defined surface. The proposed technique is applied to a system dynamics model
which describes the collapse of the Maya civilization. The relatively complex model
constitutes an excellent illustration of the possibilities of the proposed method. In
addition, the example studied in this paper shows the essential role of the non-linearities
in modelling the qualitative change, thus pointing out the inherent limitations of the
linear models (traditionally used in econometries) in this sort of problem.

1. Introduction

In this paper the possibilities of applying dynamical systems with multiple
time-scales to study qualitative change in a social system are explored. 1t is
agsumed that the time behaviour of the social system can be modelled by a
dynamiecal system, represented by ordinary differential equations. The study
is developed through the application of the proposed methodology to the
analysis of a system dynamics model (in the sense of Forrester) of the collapse
of the Maya civilization (Hosler et al. 1977).

The model MAY A3 was built by some expert archeologists and was intended
to model the time evolution of the main socio-economic variables relevant to
describe the Maya society. The computer simulation of the model produces
plots of the time evolution of the main variables, showing that a collapse
oceurs in the middle of the eighth century (Fig. 1 (a)). The model also enables
us to study, by computer simulation, how to change parameter values, rep-
resenting policy options, to avoid the collapse (Fig. 1 (b)). However these
studies are made on a trial and error basis without any global perspective
guiding the analysis.

In order to attain such a global perspective the use of analysis techniques
related to qualitative methods of analysis of dynamical systems is proposed
in this paper (Chillingworth 1976). The qualitative methods deal with the
attractor structure of a dynamical system, i.e. with its asymptotic behaviour.
The methodology proposed is based on the decomposition of the dynamics of the
system in two (or more) time-scales using singular perturbation methods
(Sastry and Desoer 1981, Kokotovic et al. 1976). This method allows decom-
position of the original system’s behaviour into two parts, each of them related
to two different time-scales, a fast and a slow one. This allows us to consider
the slow motion that takes place on a properly defined hypersurface. It is
essential to study the geometry of this surface to see if a collapse can possibly
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Figure 1. Population evolution in the MAYA3 model. (a) Collapse is produced.
(b) The collapse is avoided (according to Hosler ef al. (1977), Figs. 13 and 14).

occur. Singularities on this surface are associated with the appearance of
qualitative changes in the system. They are also known as bifurcation or
catastrophe points. If the slow motion reaches such a singularity the collapse
will occur.  In this way the appearance of the collapse is analysed geometrically
giving to it a global, and relatively intuitive, insight.
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The application of this technique allows us to reach a wide perspective of
the system behaviour modes thus permitting us to discover the mechanism
which produces the collapse and, therefore, suggesting policies to avoid it.
This gives a guide for studying these policies by simulation, keeping in mind a
global perspective on them and not trying to find an adequate policy by trial
and error, as was done by the previous modellers. 1In this sense the method-
ology proposed here represents a step towards overcoming the inherent limita-
tions of the blind usage of numerical simulation techniques, without a global
view of the behaviour modes for the system studied.

This paper can also be considered as an illustration of some possibilities of
catastrophe theory in the social systems modelling context (Thom 197 7).
Catastrophe theory has been applied both to hard and soft sciences (Poston and
Steward 1978). In its applications to the soft sciences, most of the published
works, especially the ones of Zeeman (1978), do not study the mechanism that
generates the behaviour under study, but fits it into the archetypes given by the
theory. One starts from the canonical forms given by catastrophe theory in
order to fit the data of the system studied into them. Here, on the contrary,
the catastrophe appears because of the system’s mechanism, that has been
postulated without any reference to such theory. This points to a possible
convergence between catastrophe theory and system dynamics. The latter
allows us to postulate the system mechanism, while the former supplies con-
ceptual tools to analyse the model. In this way, the application of catastrophe
theory to social systems proposed here is nearer to the type of applications found
in hard sciences than to those usually found in soft sciences.

It should be noted that qualitative techniques suit especially well the system
dynamics shortcomings. As far as the system dynamics models are built on
expert opinions, the models should be strongly robust and this robustness can
only be soundly grounded on the basis of the qualitative theory of dynamical
systems (Aracil 1981 a, b).

Furthermore, qualitative conclusions should be expected mainly from a
system dynamics model. The type of analysis carried out in this paper
illustrates what could be this kind of conclusion.

The example analysed in this paper clearly shows that qualitative change
is deeply associated with non-linear mechanisms. Tt seems plausible to
postulate that only non-linear models can show qualitative change. This
means that the extrapolative tendencies of a linear nature cannot represent the
possible qualitative changes that occur in reality.

The analysis of the model MAYA3 has been carried out without changing
it, although the analysis results give rise to some questions whose answers
could have justified modifications in the model. However, we have preferred
not to change the original model. It should not be forgotten that the analysis
techniques in system dynamics are applied both during the model building
stage, giving ideas to the modeller to improve it, and once it has been built to
reach conclusions from it. We have restricted ourselves to the second of these
uses.

The paper is structured in three sections. In the first a survey of some
concepts of the qualitative theory of differential equations with small parameters
is presented. This gives the mathematical background for the analysis
according to the methodology proposed here for the MAYA3 model, which is

2a2
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given in § 3. 'This section includes, not only the analysis itself, but also some
comments on the policies suggested by the analysis. The paper ends with a
section of conclusions.

2. Differential equations with small parameters

In this section a summary of the results of the qualitative theory of
differential equations with small parameters in the higher derivatives (singularly
perturbed systems) relevant to the global study of the behaviour of a dynamical
system is presented. This will be applied to the study of the qualitative
change in a social system in the following section. For a more complete
study of the results presented here consult Zeeman (1977, p. 81) and Sastry
and Desoer (1981).

Dynamical systems of the form

x =f(x,y) (1.1)

y=g(xy) (1.2)

where ¢ is a small parameter, arises frequently in applications. Here

xeRe, yeRm, f: R*x R"—R" and g: Rrx Rm—Rm™, f and g being smooth

functions. The state vector of the system is [x:y]*. Dynamical systems of
the form (1) are said to be singularly perturbed.

In studying the solutions of (1) it is convenient to make use of two systems

which are associated with (1). The first associated system, called the degenerate
or reduced system, is obtained by formally setting e=01in (1). This gives

x=f(x,y) (2.1)
0=g(x,y) (2.2)

The second associated system is obtained by making the ‘ stretching ’
transformation of the time variable r=t/e in (1) and then getting ¢=0 in the
result. This gives

dx o

dr

; (3)
Y

Faiad

Since the only solution of this system is x =x, = constant, it can be written
d
L —gx0,) @)

where x, is treated as a parameter. The system (4) is called the boundary
layer or fast motion system, y is called the fast variable, and the time-scale =
is called fast time

The standard results of singular-perturbation theory are concerned with
establishing the relation between the solution of (1) and the associated systems,
(2) and (4). This theory may be made intuitive by means of the following
heuristic explanation. System (2) can be interpreted as describing a dynamical
system on the m-dimensional configuration hypersurface S defined by

S={(x,y): g(x,y)=0}= R
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The vector field X(x,y), which defines the dynamic behaviour on the
surface S, is such that its projection on the x-axis is the dynamic system (2.1).
Denoting 7 : K" x R™m— R", as the projection map (x, Y)—x, it can be written

X (x, y)—f(x, y) (5)

Figure 2 graphically illustrates the case in which  and y have dimension one.
In this case, the surface S is reduced to a curve on the phase plane (x, y).
The vector X(z,y) is completely determined from fle,y). In this case the
point (z, y) is called non-singular.

xy) x

Figure 2. Graphical determination of X(x, y) from f(z,y) at a non-singular point.

The situation illustrated in Fig. I is the most common one. However,
points on the surface S do exist where the vector field X (x, y) is not determined
univocally. This occurs when the tangent to S is orthogonal to the x-axis,
such as is illustrated at the point (., y.) in Fig. 3. These points are called
singular points, and they are of special interest in the study of the qualitative
behaviour, since they cause the appearance of jumps in this behaviour.
Geometrically the singular points correspond, in this simplest case, to folds in
the surface S and will be denoted by (x., 7.) from now on.

flcye)

x
A

X

Figure 3. Tmpossibility in obtaining X(x, y) from f(z, y) at a singular point (z,, ¥.).
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(Consider again system (1). In the study of the solutions of this system,
two motions can be distinguished ; one fast and the other slow. The fast
motion take place when a trajectory starts, if the initial conditions (xy, y,) are
not found on the surface S (which is the general case). During the fast
motion the evolution of y is given by the boundary layer equation. The
equilibria of this motion are obtained when g(z,, ) =0, i.e. when the configura-
tion surface S is reached. These equilibria will be denoted by (%, ¥,). The
motion of ¥ on the phase plane takes place along x =1, in such a way that the
equilibrium is obtained for the intersection of =z, and g(z, y)=0. This fact
is graphically illustrated in Fig. 4.

\ s

y 4

--._-__-_‘-“

—

Xo X

Figure4. The equilibria of the fast motion are at the intersection of the configuration
surface § with x=ux,.

The stability of the equilibria is determined by the sign of the eigenvalues
of the matrix D,g(x,,y,). If all of the eigenvalues of the matrix D g(x,, ¥,)
have a negative real part, then it can be said the point (z,, y,) is a stable
equilibrium (also called attractor) ; in the case that at least one of the eigen-
values has a positive real part, then the equilibrium is unstable. Once the
stable or unstable character of the different equilibria has been determined, it
is possible to state the direction of the fast motion, as indicated in Fig. 4.

Figure 5. Stable S, and unstable S, regions of the configuration surface S.
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Figure 10.  Qualitative shape of the time trajectory of Fig. 9.

The figures which have illustrated the concepts studied in this section take
into account only the case in which @ and y are of dimension one. It has been
shown how the appearance of a jump in this case is associated with what is
called a fold in catastrophe theory. Also, the assumption is implicit that the
equilibria are the only steady-state forms of behaviour that the system can
take, disregarding other more complex behaviours such as the oscillatory or
strange attractors.

Assuming that this last assumption is satistied catastrophe theory provides
the canonical forms which can be adopted by the surface S if certain constraints
related to the dimensions of x and y are fulfilled. Nevertheless, this question
will not be dealt with here, since the concepts previously reviewed will suffice
for the analysis of the MAY A3 model which is the subject of this paper.

Before finishing this section, it is convenient to note that the study of a
system with small parameters of the type (1), through a degenerate system of
the form (2), is an approximation valid only if e—0. The interest in this
approximation, from a practical point of view, lies in the fact that it allows the
system order to be decreased from dimension n+m to dimension .
Furthermore, the geometry of the configuration surface S (specifically, the
presence of folds) enables the study of certain qualitative properties (the appear-
ance of jumps) in the original system.

3. Qualitative analysis of the MAYA3 model
3.1. Description of the M AY A3 model

The MAYA3 model due to Hosler, Sabloff and Runge is a system dynamics
model which attempts to study the collapse of the Maya civilization, which took
place in the eighth century, as a result of certain internal contradictions within
the Maya society of that period. The model studies the evolution of the Maya
population (commoners), their food resources, and the construction of monu-
ments which, according to the assumption of the model builders, had a signifi-
cant importance in the collapse of the Maya. The model is described in detail
in Hosler et al. (1977).
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The equations of the model according to Hosler ef al. (1977) can be written

h=% (%‘W) =gy(X, ) (6.1)
. ’;“ff; ) g =% Y) (6.2)
Ei( (wfi;;)*)*ﬁ;ﬁ”} =
t=g (92 xz) 7 1o Y) (6.5)

where the dot ( - ) denotes the derivative with respect to time ¢, and where

1, = C = commoners(persons)
1/, =M = monuments (monuments)

z,=RCMC =ratio of commoners in monument construction
(dimensionless)

= AMPC(C = average monuments per commoners (monuments/persons)
Furthermore, the auxiliary variable y, is introduced

FPC food per commoner (kg crops/person-year)

(7)

Y3~ NFPC normal food per commoner (kg crops/person-year)

The parameters that appear in the model and their normal values are

NCBR =n,=10-041 normal commoners birth rate (fraction/year)
NALC=n,=25 normal average lifetime of commoners (years)
NFPC=mny=230 normal food per commoners

(kg crops/person-year)
NFP =n,=920x 10¢ normal food production (kg crops/year)

NMPC =n;=25x10-% normal monuments per commoner
(monuments/person)

NCOPC=ny=25x 10" normal construction per commoner
(monuments/person-year)

NCFP =ny=32x 10° normal commoners in food production (persons).

TCR=p,=20 time to change ratio (years)
TAMPC=8,=175 time to average monuments per commoner
(years)
ALM=£;=1000 average life of monuments (years)

The tables that appear in the model are found in Fig. 11.
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Figure 11.  Table functions of the MAYA3 model.

In the standard run of the model, the following initial values are adopted for
the state variables

Yro=4x108
Yae=1000
Zy=0-25

g9 =25 x 10~

The value of y,, is given by the eqn. (7).
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3.2. Canonical for of the M AY A3 model
Substituting for €, = 1/p; and e, = 1/B, into eqn. (6) yields

Y1=0:(y, %) (8.1)
Ya=9alY, X) (8.2)
0=ga(y, ) (8.3)
&y = e1f4 (¥, %) (8.4)
By = eof o(Y, X) (8.5)

In the time-scale 7= et the previous equations can be written

e’y =g,(¥: X)

€y s =¢s(Y, X)
0=g5(y, x)

x'y = (e, /e)f1(x, ¥)

t'y = (egf€)fa(x, ¥)

where the prime (') denotes the derivative with respect to time 7. These
equations represent the MAYA3 model in the canonical form with small
parameters (1.1) and (1.2), introduced in § 2.

If €0, and assuming that e~e¢, ~e,, the previous system equations take
the form of a system of constraint differential equations of the form (2) dealt
with in §2. The equations of the surface S on which the slow motion takes
place result

0 = gl(Y: x)
0 =gy(y, X) (9)
0 =gs(y, x)

According to the conclusions stated in § 2, the catastrophe points will be
defined by the condition det 1), g(x,y)=0. In this case, the matrix D, g(x, y)

becomes
[ - 1 0 71(¥3)
N7 (Ys) = na713(Ys)
ngxy71(Ys) éi neZ1¥17 1(Ys)
D g(x, y)= 2 +1 Ba @+ 1
2
— Ny % ( Y1 )+ ny7 g\ Ng(®y + 1) 0 1
_n3y12 ng(y + 1) nglfy Mgy + 1) ]

where the derivative of a table 7, with respect to its argument is denoted by

the apostrophe ('). Let
W= L
Tig(ey + 1)
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and taking into account that the surface S is defined by the eqn. (9), it is obtained
that for values (x,, y,)eS

7,7 1(Ys) |
( 0 0 y 17 13
! 71(¥a)
1y, 1 Ya7'1(Ys)
Do (xm a): v -0 B 7.
e 4 Ba Y1 By BsT1(ys)
n '
——2 [ra(w) —wr'sw)] 0 =
L T3t i

therefore

det D,g(x,, y,) = -~ T2 |y et )]

- nafayy T1(Ya)

As a consequence, a catastrophe point will be obtained when

To(w) —wr’y(w) =0
whence
7' o(w) = To(w)[w (10)

Therefore, the existence of a catastrophe point is associated exclusively
with the table 7,, Moreover, the existence of a catastrophe point is susceptible
to a simple geometric interpretation in the graph of the table 7,. In effect,
expression (10) establishes the condition that a tangent to the curve that
represents table 7,, passing through the origin, does exist. This condition
is fulfilled for the table 7, of Fig. 11, if w takes any value in the interval [0, 1-5].

It is interesting to write condition (10) in terms of the variables x and y,
and not w. Keeping in mind eqn. (6.1), it is possible to write that g, =0 is
equivalent to

1
Ny = ——
: Na71(Y3a)
which can be written
1
— 11
Yo =T (nl’nz) (11)

This expression shows that in the slow dynamics y, are constant, that is,
Y3=Ysa="Yze- At the same time, from g,=0 and eqn. (6.2) it can be written
U

gl 1a

This expression allows us to relate y,, to 7,(«) on the configuration surface.
The points on this surface where a jump (catastrophe) is produced will be those
which meet the additional condition

Ysa = 7y(w) (12)

Yic ’

, =7 (ww=—""
Ty(w) ' g(w)w n7(“’10+])f2

Keeping in mind this last expression and (12), it can be written
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From this last expression and (11) the value x,, corresponding to a jump point
can be deduced, yielding

o N7’y
1 ngngm =1 nyns)

It should be noted in Fig. 11 that 7'y=1 if we[0, 1-5], thereby the above
expression can be simplified to

= nit
1 ngngry M (1 ngny)

Note that table 7, of Fig. 11 has such a form that the term ‘ catastrophe
point * is not strictly correct. To have what is technically known as a catas-
trophe point, the table v, must take the form shown in Fig. 12, in which the value
of w, necessary to produce the catastrophe is indicated.

-

.

w

ng LS e R M > -

Figure 12. Perturbation of table function r, giving rise to a catastrophe point w,.

On the other hand, it is also useful to analyse what happens when the
shape of the table 7, is changed, due to its importance to the qualitative
behaviour of the model. One possible change in the shape of Fig. 11 is that
shown in Fig. 12, which has just been explained in the previous paragraph.
Another possible distortion is presented in Fig. 13, in which it will be observed

Y |

w

Figure 13. Perturbation of table function 7, that does not give rise to a catastrophe
point.
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that the catastrophe is no longer produced in the technical sense, since the
only value of w for which the condition (10) is fulfilled is zero. Nevertheless,
it is interesting to note here that, as we will see further on, even in this case
the collapse of the Maya civilization is produced, though what is technically
understood as a catastrophe is not produced.

Arriving at this point and by way of summarizing, it is useful to consider
that until now only the configuration surface 8 of the MAY A3 model has been
examined. Thissurface is defined by the equations g, =g, = g; = 0, remembering
that ¢,, g, and g, are given by the expressions (6.1). (6.2) and (6.3). It has
been observed that on § we have that y,, = constant. Later it will be seen that
in the equilibria (x,, y,.), 2,,=constant results as well. This leads us to con-
sider the advantage of representing the configuration surface in the three-
dimensional space (x,, ¥y, y¥,) Where it is possible to obtain a geometrical view
of its form. This graphical representation of the configuration surface in a
three-dimensional space is shown in Figs. 14 (a), (b). It should be noted

X

%(10%) 10 5 T 2 3 % 00%)

/
7
N‘{

()

Figure 14. Three-dimensional representation of the configuration surface of the

MAY A3 model.
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nevertheless, that this surface represents a section of a hypersurface in a space
of dimension five by hyperplanes x, = ¢, and y, =¢,, where ¢, and ¢, are constants
given by the equilibrium conditions (c, is in expression (11)).

Let us now proceed to examine the stable region S, and the unstable one
S, with the goal of studying the slow motions and, based on this, the equilibria
of the global model. 1In the first place, the value of w such that D, g(x, y) has
all its eigenvalues with a negative real part should be analysed. The character-
istic polynomial of this last matrix can be written

N, N+ agA—ay=0
where

1
a,=———1
3

1
g = o= — PBally

Bs
. Tty '1(Ys)
Bangyr® T1(ys)

[n order that the eigenvalues of this equation have negative real part, it is
required, as it is well known, that

g =

[o(w) —w'y(w)]

a,>0, ay,>0, az>0, ad,>ay
It is easy to see that these conditions are fulfilled if
To(w) —wr'y(w) >0
whence

To(w)

y

> 7'y (w) (13)

This condition has a clear graphical interpretation, as shown in Fig. 15.
If the line that connects the equilibria to the origin is such that its slope is
greater than the slope of the table at this point, the equilibrium is stable ;
whereas, if the opposite is true, it is unstable. For these reasons, if the table =,

S W

Figure 15. Graphical interpretation of stability condition (13). Point S is a stable
equilibrium and point U/ an unstable one.
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adopts the normal form of Fig. 11, the equilibrium will always be stable when
w>1-5, which amounts to x; <.

Another possible equilibrium is y =0, which can be proven to be stable for
the values x; > 2,,. In fact, in this equilibrium we have

To(w)=w for w—0
and therefore

L Y _ My
Ngyy gy + 1) ngng(x, +1)

Y3

The three equations (9) can be reduced to the first two by substituting the
value of y,, obtained from the third into the first two, since the third equation
is algebraic. Consequently, the jacobian used to study the equilibrium at the
origin is reduced to a matrix of dimension 2 x 2, which is

1
g — 0

My
= bt Nghq(z; + 1)

gty oy
T ==lE
x4+ 1 ) NgNqa(xy + 1) 2

therefore, the equilibrium y,, =0 will be stable when

1 Ty 1
oy — <0, 7 e |
s My Ny (X1 +1) ) myng
P ngng(@, + 1)
whence
n
£y > 3 —l=x

1
na'n,f‘l (—
Nyty

Therefore, for the value 2, = z,,, a jump can be produced, since a catastrophe
equilibrium point y, =0 exists and, at the same time, there is an attracting
region for the equilibrium y, = 0.

The projection on the plane (x;, y;) of the configuration surface S is shown
in Fig. 16. The form of the fast motion of the system, according to the initial
conditions, is indicated in this figure. Remembering § 2, where it was pointed
out how the initial motion of the trajectory evolves toward the attracting
region of the configuration surface, keeping the variable x (in this case x, and
) constant,

Once the fast motion has reached the surface S, (the curve §, in Fig. 16)
then, in keeping with what was seen in § 2, the slow motion is produced on this
surface §, toward the equilibrium of the system. In this slow motion, the
two cases discussed in § 2 can be found. These are illustrated in Figs. 7 and 8,
and will be studied in the following section.
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He &l

Figure 16. Projection on the plane (x;, y1) of the configuration surface, and fast
motions starting from 4, B and C.

3.3. Equilibria of the M AY A3 model

The equilibria (x,,y,) of the MAYA3 model will be produced at the
intersection of the surface S, defined by g(x, y) =0, with the surface defined by
f(x, y)=0. From the qualitative point of view, it is important to study which
equilibria give rise to a jump in the behaviour of the system.

From the study of Fig. 16, it is inferred that the interesting cases are those
in which the initial conditions are such that z,(t,) <., since if 2(fy) > ¥y
then a rapid collapse is inevitably produced.

e X3 X

Figure 17. Graphical interpretation of avoiding collapse condition.

In order to study the equilibria of the model, different relative values for
€, €; and e must be considered.

(a) First the case of € ~e;~e will be studied. The slow dynamiecs will
evolve in such a way that the trajectory is located on the surface determined by
the equations g, =0, g,=0, g5=0. The dynamic behaviour on this surface will
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be given by the equations

5 Ly _
Ty =a; ‘:ra (nﬁn{%)) l] (14.1)

)
By=22_ g, (14.2)

5
As a matter of fact, the variables are x, and y,, but the subscript a is skipped
for notational ease. Taking into account the expression (11), which is equi-
valent to g, =0, and the expression

Ya 7Py
" _561+ 1 2371 (Y3a)

which is equivalent to g,=0, it happens that eqns. (14.1) and (14.2) can be

written
T
Ty= ['ra (——2—) — l:latl
75Ta(Y3a)

. By,
2 r+1

T1(Y3a) — T2

The equilibria of this system are given by the system of equations

7 <—x2 )—1=0 (15.1)
? N5T4(Y3a)

Byngr _ .
;1__:_511 T1(¥ga) — X2 =0 (15.2)

In order to study the stability of these equations, the jacobian matrix is formed

() ()
s - i
: 574 (Y3a) N5T4(Yaa) ¢ 57 4(Y3a)

Byns7y(Ysq) -
(2 +1)®

which, at the equilibrium point becomes

0 3’31 ’ ( ‘1’2 )
T
1574(Y3a) . N574(Y3a)
.'Qq ==
BaneT1(Ysa) ]
(2, +1)%

The equilibrinm is stable since 7’3 <0, whence, tr Jog <0 and det J,, > 0.
Another possible equilibrium of the system is x;=x,=0. In this case, the
jacobian is
9 0
jeq =
BsneTi(¥za) —1

whose eigenvalues have differing signs and so a saddle point is obtained.
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It is useful to study the projection of the trajectory on the phase plane
(¢, 2,). In order to do this, the curve I, corresponding to the expression
(15.1), and the curve L, corresponding to (15.2), are plotted on a plane. Note
that in the equilibrium x, = constant, according to (15.1), which was previously
mentioned upon justifying the adoption of a three-dimensional space (2y, ¥y, ¥s)
in Fig. 14. The intersection point of L, and L, is the stable equilibrium which
was alluded to previously. The other equilibrium, which is a saddle point, is
given by the intersection of ;=0 with L, ; this saddle point is located at the
origin.

It is easy to see that the stable manifold of the saddle point located at the
origin is precisely the axis x, and the unstable manifold is found very near the
axis x,, therefore

for xz,=0, # >0 and *,<zy

for x; =0, #<0 and =0

Lastly, the curve L, which corresponds to z;=; is shown in Fig. 18,
since, according to what was previously indicated while studying the geometry
of the configuration surface, if x, > x,. a jump of an irreversible kind is produced.
The curve L, is very important for the study of the qualitative behaviour of
the system, since if the trajectories which tend toward the stable equilibrium
intersect with L,, then they will produce a jump of such a type that equilibrium
will not be reached. Therefore, a boundary trajectory Ly, exists, such that the
trajectories located below it cut L, and produce a jump, while the trajectories
located above L, reach the stable equilibrium, without producing the collapse.
Tt should be noted that the area of the zone below L, depends on the value of «.
As e grows from 0, L, modifies as illustrated in Fig. 18.

() Now consider the case €, <e,, that is ;=€ and e, =ee’. The behaviour
of the system can be given by

dx
E;l:e’fl(x= Y)
(16)
dz,
"g_ (Sl’:, !/)

A singularly perturbed system is then obtained, to which the considerations
developed in §2 can be applied. In the initial instants after reaching the
surface, the behaviour of the system will be such that x,=x,,=constant;
the variable 2, will evolve according to the second of eqns. (16), in such a way
that it tends toward the equilibrium given by f,=0, that is

B3nﬁwlﬂ.

—x,=0
gt 1 T1(Y30) — T2

This equilibrium is stable. This motion corresponds to the fast dynamics of
the system (16). It should be clear that it corresponds to the initial instants
of the slow dynamic on the configuration surface S of the dynamic system (6).

The slow motion of the system (16) is identified with the system (6) and it
is easy to see that the equilibrium reached by this slow motion is the same as
that of the case (a), i.e. the point E of Fig. 18.
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Figure 18. Plane phase portrait of dynamical system (14) ; (a) e=0, (6) e>0.

[t should be noted that three time-scales are being considered ; one very
fast, another fast and the third slow. The last two are shown on the phase

plane in Fig. 19,

(c) Lastly, it is important to examine the case in which e, <€e; €1, where
e=¢, e=ce’. Keeping in mind (8.4) and (8.5), it can be written

dx
d—:=.f](x’ !/)
dxy,
To=<hale, y)
T

Applying the same considerations as in case (b), it is found that the slow motion
of this system will be such that x, =x,,, and the evolution of x, will be given by

da, ( Ty ) j,
—_—=T T ———— - ]
dr ! [ ¢ 1574 (Y30)
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Figure 19. Plane phase portrait of dynamical system (16).

This motion has an equilibrium at 2, =0, which is an attractor point for

Loy, )
i | e Y]
? (n5T4(y3a)

or, likewise, @, > n574(y5,). In the reverse case, that it, if @y, < n574(Ys,), the
equilibrium is a repulsor point, in which case @, increases until it reaches the
value z,, (the line L, on the phase plane) and produces the collapse
(see Fig. 20 (a)).

In the first case, if the equilibrium is an attractor point, x; decreases
tending toward 0, but when it reaches a small enough value a;<¢’, then
&, =4, because it is in the zone below L, in Fig. 18 (a). While &, =2, the
trajectory evolves normally as in the case (a) (e, = ;). However, if ;>0 then
i, <@, and the trajectory goes on with x, =, = constant, producing the collapse.
This case is illustrated on the phase plane (z;, ;) in Fig. 20 (b).

Note that in all the cases in which the region a; >z, is attained, the collapse
is produced. In such a case the configuration surface is left, and the system
evolves toward the attractor point defined by y,=y,=0. Therefore, the
system has a certain  irreversibility * which precludes its return towards the
equilibrium A located on the configuration surface (Fig. 20).

Summarizing the above, it is sufficient to say that in order to produce
jumps, one of the following two circumstances should occur :

(@) z,(0)<x, and e;<€e; €1 ;
(b) €, = e, <1 and z,(0) located in the zone below L, of Ilig. 18.

The condition e, ¢, should be fulfilled in order to avoid the jump in any
circumstance.

In addition to the above analysis, wide experimentation has been
implemented with the model, whose results agree with the forecasts brought
forth in the analysis, even when the values of B, and f, are not too large. It
must be noted, however, that the approximation character of the analysis (due
to the fact that the parameters ¢; and e, are not zero) is manifested in the fuzzy
aspect of the transition zone produced by the abrupt fall of the configuration
surface (Fig. 14).
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Figure 20. Plane phase portrait of dynamical system (17).

3.4. Comments on the different policies

The different policies followed by the elite in the MAY A3 model are reflected
in the value of the parameters 8,, 8, and ;. It should be remembered that

Bi=TCR=time to change the ratio of commoners in monument
construction ; so its inverse is a measure of the speed of the change of
the ratio commoners in monument construction RCMC.

B, =TAMPC =time to average monuments per commoners ; so its inverse
is the measure of the speed with which the monuments per commoners
are constructed.

By =ALM = average life of monuments ; so its inverse is the measure of the
monument decay rate MDR.

The policies depend fundamentally on the parameters g, and g, since the B,
parameter will be marked primarily by the technological development of the
Maya society. In any case, the B, does not affect decisively the qualitative
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behaviour of the model. [ts influence is reduced to vary the number of monu-
ments in the equilibrium. Upon increasing B, the value of y,, increases, as
it is seen in the equilibrium equation g,=0.

With the other two parameters 8, and B,, the following two policies can
be obtained :

(@) Suppose B;=~ B, or likewise ¢;~¢,. In other words, if the speed of
change of the ratio of commoners in monument construction RCMC is
of the same order as the speed with which the population is supplied
with prestige building activities, then the system tends towards a stable
equilibrium, if the initial position is located in the upper zone of Ly
in Fig. 18. On the contrary, if the monuments per commoner MPC or
the ratio of commoners in monument construction RCMC are very small,
the collapse is produced.

(b) If ¢, <e, the case (b) of §3.3 is obtained. In other words, if the
speed of change of the ratio of commoners in monument construction
is much less than the speed of the supply of monuments to the population,
the behaviour leads, for any initial situation, to a stable equilibrium.

(¢) If e, ¢, the case (¢) of § 3.3 is obtained. Then, if the monuments are
supplied to the population at a speed less than the growth of the ratio
of commoners in monument construction the behaviour leads to the
collapse in any case.

It is useful, as a conclusion, to make a remark about the disturbances on the
table 7,, due to the significance of this table for the appearance of catastrophes.
The table 7, connects the variables

; CFP
FP=NFP7, | ===
8 (NCFP)

where FP =food production and CFP =commoners in food production, NFP
and NCFP being two constants. Looking at the shape of 7, in Fig. 11 and
remembering Figs. 12, 13 and 15 it is clear that the catastrophe will be produced
if for small values of variables CFP the food production (FP) decreases faster
than the population devoted to produce it (CFP). That is, the catastrophe
is produced when the fraction of commoners in monument construction
(FCMC) is very large. This is due to the adoption of the policies of the above
mentioned point (¢). This does not occur if for small values of CFP the food
production FP decreases more slowly than CFP.

4. Conclusions

The example developed in this paper illustrates the possibilities of the
qualitative analysis of a system dynamics model. In these models qualitative
analysis can be of greater interest than the purely quantitative one. This is
specially true when studying circumstances under which a qualitative change
can be produced in the behaviour modes, as happens in the example studied
above.
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This example shows some problems in which the comparative advantage of
non-linear system dynamics over the linear projections normally used in
econometrics is clear. The Maya kings could have expected little from their
linear econometric models if they had hoped to detect the forthcoming
collapse,

All of this should be understood keeping in mind the inherent limitations
of the use of mathematical models in the social sciences. In system dynamics,
the causal diagram represents an assumption concerning the structure of the
modelled reality. All the implicit consequences of this assumption should be
thoroughly analysed. The conclusion that should be drawn from the analysis
of the MAY A3 model, is that under the assumptions from which the model has
been built, there can be found circumstances that lead to the collapse.

The interesting results obtained are a challenge to develop specific computer
methods which allow the system dynamics user to implement the qualitative
analysis with maximum ease. In the development of the example graphical
methods that can be implemented on a computer screen have been emphasized.
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