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Abstract: This work presents a new standard in the model, identification, and control of monitoring
purposes over anaerobic reactors. One requirement that guarantees a normal controller operation
is for the faculty to measure the data needed periodically. Due to its inability to easily obtain the
concentrations of acidogenic bacteria and methanogenic archaea periodically using reliable and com-
mercial sensors, this paper presents an algorithm composed of an asymptotic observer (considering
the reaction rates are unknown), aiming to estimate these concentrations. This method represents
a significant advantage because it is possible to perform a resource-saving strategy using standard
measurements, such as pH or alkalinity, to calculate them analytically in natural environments.
Additionally, two yield parameters were included in the original anaerobic model two (AM2) to
unlock implementations for a wide range of organic substrates. The static parameter identification
was improved using a new method called step-ahead optimization. It demonstrates significant
improvements fitting the mathematical model to data until a 78.7% increase in efficiency (compared
with the traditional optimization method genetic algorithm). After the period of convergence, the
state observer evidences a small error with a maximum 2% deviation. Finally, numerical simulations
demonstrate the structure’s strengths, which constitutes a significant step in paving the way further
to implement feasible, cost-effective controls and monitoring systems in the industry.

Keywords: anaerobic digestion; asymptotically observer; homogeneous reaction systems; step-ahead;
volatile fatty acids

1. Introduction

Anaerobic digestion (AD) is a complex biological process wherein anaerobic microor-
ganisms break down the biodegradable fraction of the biomass into biogas (a mixture of
gases, mainly 50–80% CH4 and 30–50% CO2), which can be used as a valuable energy
source (5.5–7 kWh/m3 of biogas) [1]. In the EU, the development of the biogas industry was
prompted by the introduction of various support schemes (feed-in-tariff, green certificates,
and fiscal incentives/subsidies) and changes in energy and climate policies [2]. Nowadays,
the EU is the world leader in biogas electricity production, with 10 GW installed capacity
and a number of 17.667 biogas plants running on energy crops (39%), animal manures
(39%), sewage sludge (5%), food and beverage (4%), municipal waste (4%), and others
(9%) [3]. Despite the widespread application of AD technology, full-scale biogas plants are
mainly operated manually [4]. Consequently, plant operators struggle to achieve efficient
operations while striving with intrinsic difficulties of the AD process, such as: (i) highly
nonlinear behavior; (ii) high sensitivity to uncontrollable input perturbations; (iii) limited
online measurement of state variables [5–7]. This is why the control and online monitoring
of the anaerobic digestion process is a hot area of research and development [8].

Energies 2022, 15, 7685. https://doi.org/10.3390/en15207685 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15207685
https://doi.org/10.3390/en15207685
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0002-9132-6158
https://orcid.org/0000-0002-4309-6028
https://orcid.org/0000-0003-0912-7713
https://orcid.org/0000-0002-7411-5236
https://doi.org/10.3390/en15207685
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15207685?type=check_update&version=1


Energies 2022, 15, 7685 2 of 17

In the last decade, several control methodologies for a closed-loop feed control of
AD have been proposed to achieve process stabilization and/or maximization of methane
production. It is well-known that classical control methods (e.g., proportional-integral-
derivative (PID) controllers and PID controller cascades) yield unsatisfactory performances
when the plant is subjected to significant set-point changes, as they cannot cope with
the nonlinearities of the AD process. Gaida et al. [4], García-Diéguez et al. [6], and
Méndez-Acosta et al. [8] have reported summaries of the advantages and drawbacks of
several control schemes, pointing out that adaptive control strategies and rule-based expert
approaches (e.g., fuzzy controls, artificial neural networks) account for nonlinearities of
the AD process. However, these control strategies cannot be applied to full-scale plants
because large amounts of data are needed to train the neural network, and very often, it is
not possible to obtain data covering a broad range of operating conditions [9].

In recent years, non-linear model predictive control (NMPC) has become the prin-
cipal advanced control methodology to describe the behavior of a highly non-linear
bioprocess [10]. NMPC stems from the idea of employing a representative model of the
process, which is used to predict the future behavior of the plant. This prediction capability
allows optimal control problems to be solved online, where tracking errors (namely the
differences between the predicted output and the desired reference) are minimized over
a future horizon [11]. To date, few studies are available where NMPC has been used to
control the AD process. For instance, Mauky et al., 2016 [12] proposed an NMPC to adapt
biogas production according to a fluctuating timetable of energy demand. Briefly, the set
point (reference) of the system output (in this case, biogas flow) varies concerning the
requested energy from the power grid. Thus, the control input (feeding rate) was computed
by the NMPC so that the system output follows the reference scenario. This controller
was validated by full-scale experiments and showed promising results [13]. Nevertheless,
the accuracy of NMPC depends on the capacity of the phenomenological-based model to
represent reality, which derives from the accuracy of the model parameters [14].

A practical model for control is the named anaerobic model two (AM2) proposed by
Bernald et al. [15], which consists only of two reaction dynamics (the acidogenesis step and
the methanogenesis step) and six state variables: acidogenic bacteria (X1), methanogenic ar-
chaea (X2), organic substrate concentration (S1) expressed as total chemical oxygen demand
(COD), volatile fatty acids (VFA) (S2), inorganic carbon (C), and total alkalinity (Z). The
growth of acidogens is assumed to follow Monod kinetics and the growth of methanogens
to follow Haldane kinetics [15]. The model can be tailored to include relevant AD phe-
nomena, such as ammonia inhibition owing to the hydrolysis of proteins while preserving
a simple structure [16]. Although AM2 has already proved its usefulness for nonlinear
control schemes of AD process in several works [17,18], it often exhibits operational dif-
ficulties that must be addressed to achieve the effectiveness for NMPC. The parameter
identification procedure followed by Bernard et al. [15] is based on determining main val-
ues from steady-state variables and is then correlated by equations coming from the model
assumptions. However, reliable steady states are challenging for full-scale plants due to
inevitable inlet flow disturbances and substrate composition fluctuations [10]. Additionally,
X1 and X2 are state variables unable to be measured in a real-time fashion. In practice,
the measurements of each microbial-population concentration are costly, and usually, only
qualitative information can be drawn from existing techniques [19]. The drawbacks above
trigger identification problems when linear methods are applied, as well as inaccurate
model predictions (since some kinetic parameters cannot be determined independently).

The phenomenology is frequently poorly comprehended because the anaerobic di-
gestion processes are related to the existence of microorganisms. Then, mathematically
replicating the same operating conditions is not regularly possible due to the uncertainty
and variation in yield parameters because of changes in metabolism. This paper provides a
novel software beyond traditional methods, where performance depends on measured data
and new software sensor strategies that capture reality with high reliability. To perform a
long-term plan to achieve feasible control schemes for industrial purposes, the first step is to
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ensure the existence of a measurable layer that provides continued data to the mathematical
model [16]. Although these observer strategies have been widely used on different types of
microorganisms inside a reactor, there are still obstacles in trying to define a method that
guarantees full knowledge of the data inside a reaction [20].

Asymptotic observers (the desirable alternative used in the literature) estimate the state
variables that cannot be measured directly over systems. Depending on the information
available, the design of the observer mainly depends on two conditions: the information
regarding the reaction kinetics and the yield parameters. This paper uses the mathematical
model AM2 with additional terms to consider a wide range of organic matter modeled at
the inlet. Using this model, it is still not possible to obtain information on the state variables
concentrations of acidogens and methanogens using feasible online sensors. Additionally,
there is no complete knowledge of the process kinetics. Therefore, based on the preliminary
information, this paper focuses on developing an asymptotic observer conditioned by
the following characteristics: the state variables X1 and X2 are unknown, the reaction
rates are unknown, and the yield parameters are known and calculated using a parameter
identification procedure based on optimization. The main challenge resides in using real
data from an industrial process that evaluates the proposed methodology in a wide range
of possibilities [21,22].

In order to demonstrate the performance indicators in the online model parameter
identification strategy, the following sections are proposed in this paper. Section 2 presents
a reduced model AM2 with additional terms for control purposes. Then, in Section 3,
experimental results are used as a basis for setting the experimental conditions to test
the methods proposed. Section 4 presents the parameter identification algorithm, where
an optimization problem is solved to find the values that better fit the dynamics of the
mathematical model and the experimental data. Section 5 proposes an asymptotic observer,
considering the information from reaction rates is unknown. This algorithm aims to
estimate the concentrations of acidogenic and methanogenic microorganisms. Finally,
in the conclusions, some remarks are discussed from evaluating the performance of the
proposed strategy.

2. The Anaerobic Digestion Mass-Balance Model

The AM2 reduced model that was initially selected, as described by Bernard et al. [15],
considers biological phase reactions, as mentioned above, dividing the consortium into two
homogeneous groups, acidogens, and methanogens, which represent the destabilization
phenomenon [23]; Equations (1) to (6) described this model.

dX1

dt
= X1(µ1 − αD) (1)

dX2

dt
= X2(µ2 − αD) (2)

dS1

dt
= D(S1in − S1)− k1ψ1

(
S1

KS1 + S1

)
(3)

dS2

dt
= D(S2in − S2) + k2ψ1

(
S1

KS1 + S1

)
− k3ψ2

(
S2

KS2 + S2

)
(4)

dZ
dt

= D(Zin − Z) (5)

dC
dt

= D(Cin − C)− qC + k4µ1X1 + k5µ2X2 (6)

where X1 represents the concentration of acidogenic bacteria, X2 represents the concen-
tration of methanogenic archaea, S1 represents the concentration of organic substrate
characterized by its COD (kg/m3), S2 represents the concentration of volatile fatty acids
(VFA) (kg acetic acid/m3), Z represents the total alkalinity (mol/m3), C represents the
total inorganic carbon concentration (mol/m3). The variables S1in, S2in, Cin, and Zin are,
respectively, the influent concentrations of S1, S2, C, and Z. The variable α is the fraction of



Energies 2022, 15, 7685 4 of 17

biomass which remains in the liquid phase; D is the dilution rate (d−1) and is inverse to
the solid retention time (SRT). ψ1 is the maximum acidogenic bacteria growth rate (d−1),
ψ2 is the maximum methanogenic archaea growth rate (d−1), KS1 is the half-saturation
constant of S1 (kg/m3), and KS2 is the half-saturation constant of S2 (kg acetic acid/m3).
The yield parameters k1 is a constant for substrate degradation, k2 is a constant for VFA
production (mol/kg), k3 is a constant for VFA consumption (mol/kg), k4 is a constant
for CO2 production (mol/kg), k5 is a constant for CO2 production (mol/kg), and k6 is a
constant for CH4 production (mol/kg). qC is represented by the Equation (7).

qC = kLa[C + S2 − Z− KH PC] (7)

where PC and Φ condense some variables, explained elsewhere (Bernard et al. [15]),

PC =
Φ−

√
Φ2 − 4KH PT(C + S2 − Z)

2KH
(8)

with:
Φ = C + S2 − Z + KH PT +

k6

kLa
µ2X2 (9)

Regarding Equations (7)–(9), the variable kLa is the liquid–gas transfer constant (d−1),
KH Henry’s constant (mol/m3 atm), and PT is the total pressure (atm). Bernard et al. [15] not
considers the influence of ammonium (a usual compound generated during the fermenta-
tion and microbial growth metabolism) on alkalinity. During the development of our model
proposal, we considered important to add a term taking ammonium into account, to apply
the model to a broader spectrum of usable organic matter. Thus, two yield parameters
were added to represent this effect, KZ,1 and KZ,2, respectively. Based on the considerations
by Kil et al. [11] and the Equation (5), a new term was added to the dynamic of the total
alkalinity equation proposed by Bernard et al. [15], as the Equation (5’).

dZ′

dt
= D(Zin − Z) + kZ,1ψ1

(
S1

KS1 + S1

)
+ kZ,2ψ2

(
S2

KS2 + S2

)
, (5’)

The Monod-type Equations (10) and (11) characterize the dynamics of the two reaction
rates considered.

µ1 = ψ1
S1

KS1 + S1
(10)

µ2 = ψ2
S2

KS2 + S2
. (11)

Monod-type kinetics describe the growth of acidogenic bacteria ψ1 and methanogenic
archaea ψ2 because, in the fermentation process, the biomass does not register possible VFA
accumulation and consequently inhibition. Finally, the methane flow rate produced qM is
proportional to the reaction rate of methanogenesis, as shown in Equation (12).

qM = k6ψ2

(
S2

KS2 + S2

)
(12)

The AM2 extended model assumes that the parameters temperature and enthalpy
of formation, considered initially on the mass balance equation model for homogeneous
reaction systems, are constant. It can be done assuming the total mass inside the reactor is
constant (m(t) = m) in all the experiments. On the other hand, the effect of toxins is not
considered inside the homogeneous system due to the reactor operating with high values
in SRT (making all material inside the reactor diluted). Additionally, there is no evidence of
inhibitions. Therefore, the influence of these parameters is discarded [10,14].
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3. Experimental Results and Characteristics of the Reactor

Real data from a continuously stirred tank reactor (CSTR) of 150 L of work volume
(pilot plant digester) operating on the AD of sewage sludge (thickened combined primary
and secondary waste sludge from the Guadalete Wastewater Treatment Plant (Jerez de
la Frontera, Spain) were used. The temperature, held at 55 ºC (thermophilic range), was
regulated via an internal coil (heat unit) using a PID 140 controller linked by a temperature
sensor. The feedstock was added from once to thrice a day, including the weekend, to
determine the effect of solid retention time (SRT) on the reactor performance. More details
of the reactor setup can be found elsewhere at de la Rubia et al. [24].

Chemical oxygen demand (COD), total solids (TS), and volatile solids (VS) were de-
termined on influent and effluent, while pH, individual VFA, alkalinity, and ammoniacal
nitrogen were measured on effluent. Analytical determination of COD, TS, VS, pH, alkalin-
ity, and ammoniacal nitrogen were performed according to APHA [25]. The concentration
of VFA was determined by gas chromatography (Shimadzu GC-17 A) [24]. The volume
of biogas produced in the reactor was directly measured with a mass flow sensor. While,
biogas composition (methane and carbon dioxide) was analyzed by gas chromatography
separation (Shimadzu GC-14 B) [24].

The study was conducted for 338 days, starting up with a SRT of 75 days (maintained
45 days), which gradually decreased to check the behavior of the system at SRT of 40 days
(maintained 40 days), 27 days (maintained 85 days), 20 days (maintained 73 days), and
finally 15 days (maintained 85 days). Only a specific range of data was used to discard
unstable scenarios, such as a start-up (SRT of 75 days) and the last period (SRT of 15 days)
when the reactor operated closer to boundaries. These data are unfavorable for modeling
purposes due to deviations related to reactions [24]. Therefore, we selected the data
obtained during 207 days of the experiment, starting on day 46, when the reactor operated
at 40 days of SRT with an organic loading rate (OLR) of 1.5 kg COD/m3d, and moved
forward until the end of the stage of SRT 20 days, aiming to work with standard patterns of
microorganisms as much as possible.

The reactor was fed with raw sludge. The concentration of COD (see Figure 1a)
remained relatively constant at the first stage, which kept the values around 60 kg/m3. In
the subsequent stages, the values oscillated at around 70 kg/m3. Due to the use of real
sewage sludge and the daily changing conditions, exceptionally, some values remained
scattered from the mean value. Figure 1b,c shows the values of COD and VFA in the
effluent. The value of COD remained constant during SRT 40 days, at 18 kg/m3. The
SRT diminishing (to 27 days and 20 days) was related to an OLR increase, decreased COD
removal, and showed a growing irregular tendency. The degree of dispersion was much
larger than in the previous period. On the other hand, the values of VFA varied widely,
except on SRT at 40 days (see Figure 1b), when remained constant at around 3 g/L.

Figure 2 shows the consequences of the microbial dynamics derived from the current
state of the reactor. The pH level during the period selected, as can be seen, was above 7.5,
enough for the proper development of the anaerobic microorganisms. The volume of CH4,
shown in Figure 2b, has a specific behavior at each stage. At SRT 40 days, the production
was around 0.035 m3 CH4/d, showing a slow linear progression in the volume of CH4
produced related to the growth of methanogens [26]. After an increase was observed when
the SRT decreased (until 27 days), the volume remained with no substantial variations over
the mean until day 210, when the reactor had been operated at 20 days of SRT (since some
weeks ago). A moderate stationary tendency was observed beyond the middle of the stage
SRT 27 until day 200. Going beyond the data used for modeling purposes, the volume of
CH4 on stage SRT 15 days showed a nonstationary tendency, maybe because it was closer
to the operational limits.
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(a) (b)

(c)
Figure 1. Time-course of (a) chemical oxygen demand concentration on the influent (kg/m3);
(b) chemical oxygen demand concentration on the effluent (kg/m3). (c) total volatile fatty acids on
the effluent (kg acetic acid/m3).

(a) (b)
Figure 2. Time-course of. (a) pH in the effluent; (b) methane volume rate production (m3 CH4/d).

The reduction of the SRT from 40 to 20 days was related to an increase in the methane
volume production.

4. An Adaptive Modeling Identification Strategy for Anaerobic Reactors

The most common methods used for modeling identification on bioprocess are linear
regressions and other strategies based on optimization [23,27]. The linear regression
strategy proposed by Bernard et al. [15] uses the extended mathematical model AM2 as the
core (being the best option for control and monitoring purposes found in the literature so far.
Consequently, the deal is to calculate (calibrate) the parameters to assist the mathematical
model in closely tracking the experimental data when it runs over steady states. The
validation procedure is supported, based on the premise that it has to be tuned on steady-
state and evaluated during the process of convergence over transients [28].

The transient was tested step-by-step once the inlet conditions changed. However,
despite the numerous advantages, such as the guarantee of identifiability of parameters, a
rigorous identification procedure that covers a wide range of operational conditions, and
the ability to validate the performance during transients, especially over unstable phases,
this method exhibited several disadvantages. The most important being: the supposition
of linearity using independent and dependent variables, the sensitivity to noise, and the
presence of outliers and overfitting [14]. As the optimal parameter identification has
shown better results [13,29], in the following section, a well-known parameter optimization
method is presented [14,30]; however, further on, the alternative presented in the literature,
a new parameter optimization method is proposed, aiming to increase considerably the
performance in comparison with traditional methods.
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4.1. Parameter Identification Based on Optimization

Considering the mathematical model for AD over reactors on Equations (1)–(6). The
parameters to be identified were p(k) ε {µ1max, µ2max, KS1 , KS2 , k1, k2, k3, k4, k5, k6, KZ1 ,
KZ2 , Zin}, and were calculated from an algorithm that used specific information measured
from the reactor, see Figure 3a. This method solves an optimization problem to find the
values of parameters aiming to minimize the difference between the measured data and
the dynamics from the mathematical model AM2 [10,31]. Figure 3a shows all the details
that explain the architecture proposed for the algorithm optimization. The data used from
the reactor are Fout= {CH4}, the volume of methane produced as a consequence of the
metabolism of methanogenic archaea, nm = {S1, S2, Z}, the measured states considered by
the mathematical model AM2, the organic substrate concentration COD, VFA concentration,
and total alkalinity; uin = { CODin, VFAin, D} are the COD, the VFA, and the dilution
rate at inlet; uout = {nnm, nm, pH} are the non-measured data, the measured data, and pH,
respectively [32,33].

(a) (b)
Figure 3. Optimal-based schematics procedures. (a) identification parametric diagram; (b) identifica-
tion parametric algorithm.

Qin is the energy used to maintain the reactor within a thermophilic range (not con-
sidered by the mathematical model). Figure 3b shows the rules used by the parametric
identification algorithm to calculate the optimal values of p(k). As shown, the parameters
p(k) are considered constant during the experiment. Equation (13) shows the optimization
problem proposed to be solved [34].

min
p(k),...,p(k+NF)

J(u(k), p(k), x(k))

s.t.

x(k + 1) = f (x(k), p(k)),

y(k) = g(x(k), u(k)), (13)

ymin 6 y(k) 6 ymax, ∀k = 1, . . . , Np,

pmin,6 u(k) 6 pmax, ∀k = 1, . . . , Nu

The equation J(u(k), p(k), x(k)) is the functional cost that contains the criteria to
minimize. It depends on the inputs u(k), the parameters p(k), and the state variables of the
mathematical model x(k); g(·) represents the controlled input; ymin and ymax are the lower
and upper operational constraints. Finally, pmin and pmax are the lower and upper limits of
the parameters to be calculated p(k) [34].

J(u(k), p(k), x(k)) = norm
(
(xmod(k)− xe)

2
)

(14)

Equation (14) shows the cost function: the norm of the squared difference between
the mathematical model dynamics and variables xmod(k), and the correspondent data xe
obtained from the experiment. Finally, Equation (15) represents the mean square error
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between the experimental data (ne
m(k), pHe(k) y qe

M(k)) and the correspondent data ob-
tained by the mathematical model (nmod

m (k), pHmod(k) y qmod
M (k)). On nmod

m (k) and ne
m(k),

the subscript m represents the known dynamics of the experiment.

J(nm(k), u(k)) =norm
((

nmod
m (k)− ne

m(k)
)2

+(
pHmod(k)− pHe(k)

)2
+
(

qmod
M (k)− qe

M(k)
)2
)

(15)

The identifiability of these parameters is conditioned by isolated structures conformed
into subsystems that depend on their natural interactions. Equations (1) and (3) can be
grouped in one subsystem because the state variables S1 and X1 are not influenced by
others, and so, by the correspondent parameters. Equation (5’) is independent and can be
run separately. Then, the subsystems composed by Equations (1)–(4) can be considered
independently. Under normal operational scenarios, the reactor has three equilibrium
operational points. The first occurs when the reactor operates under a stable region over
operational constraints. The second is when the system operates under instability scenarios,
and the third is when the reactor experiments a washout, so that X1

∼= 0 and S1 = S1in.
When the subsystem composed by Equations (1) and (3) converges, Equations (2) and (4)
will do the same toward a stability region. In the same way, Equations (5’) and (6) will
converge at the same time [19,35].

4.1.1. Static Parameter Identification Procedure: Genetic Algorithms

Genetic algorithms evolve inspired by the ability of nature to adapt and evolve con-
ditioned by the environment and the genetic characteristics of their predecessors. The
algorithm is based on a random rough search around the solution space area, thus, the
convergence depends on the number of iterations until the optimal solution is encountered.
This option is used as a reference because it is considered one of the best alternatives found
in the literature [36].

4.1.2. Static Parameter Identification Procedure: Step-Ahead

Figure 4a shows the algorithm’s structure and the step-by-step designing process that
aims to estimate the parameters of the experiment. The technique, called step-ahead, places
a mathematical model as the core (AM2 in our case) to predict the evolution of the system
dynamics over each time step, considering X(0) as the starting point (represented by a
black circle •). At this time, the algorithm uses the mathematical model to calculate one
feasible step forward, aiming to discover the system’s evolution in advance (represented
by a black triangle N). Now, on X1, the new measured value (the •) is compared with the
previous prediction (the N). Step-by-step, this procedure measures the differences between
the values of • and N (errorstep # = •step # − Nstep #), which means the errors encountered
step-by-step aim to be minimized throughout the experiment. To calculate the prediction
of the system in advance, X(0) requires the information of the initial conditions, the inputs
us(0), and the value of the parameters to be calculated p(0).

E = [error1, error2, . . . , errorn] (16)

In the next step, aiming to perform a new prediction (on X(1)), the algorithm updates
the initial conditions (replacing the value of the previous prediction N with the new initial
condition, or the values measured, •). This strategy allows adjusting the deviation (or error)
at each step. At the end of the simulation, the result is a vector that stores all the errors
encountered over each step [37].
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(a) (b)
Figure 4. The proposed structures in the anaerobic digestion process. (a) step-ahead algorithm;
(b) asymptotic observer structure.

If the step-ahead algorithm is used, the objective of the optimization problem changes
drastically, the algorithm will work on minimizing the errors encountered on each step.
Compared with Equation (13), the operational and physical boundaries are the same. The
new optimization problem is shown in the following Equation (17).

min
u(k)

E

s.t.

nm(k + 1) = f (nm(k), u(k)), (17)

nnm(k + 1) = f (nnm(k), u(k)),

0 6 u(k) 6 pmax, ∀k = 1, ..., t f

In the following Section 4.2, a specific algorithm is proposed to complete the informa-
tion needed to establish the minimal data condition measurements from the reactor. The ob-
server will focus on estimating the concentration of acidogenic bacteria and methanogenic
archaea, which is not possible to obtain using reliable commercial transductors or protocols
over analytical procedures in situ.

4.2. An Asymptotic Observer for State Estimation When Reaction Rates Are Unknown

We need all measurements available to control and monitoring an anaerobic digester.
The absence of information due to the lack of reliable sensors, and the inadequate strategies
to constantly test all measurements from laboratory analyses, opens up an opportunity to
substitute the uncertainty by using online software sensors [13,29].

The online software state sensors or the so-called state observers [19] estimate the
state variables over homogeneous reaction systems using other information relatively
easy to obtain and tied to the system. Based on the previously existing data (the reaction
kinetics and static parameters), different state observers are proposed in the literature [38].
Additionally, there is a substantial restriction, the data from the reaction kinetics are
unknown; therefore, this observer is a consequence of the strictly challenging requirement
that the information from kinetics needs to be known [38]. All previous conditions result in
a particular category of observers named asymptotically because they estimate the non-
existing measurable states based on two conditions: the system is still not exponentially
observable, and the reaction kinetics are unknown. In order to adapt the design of the state
observer, we consider the general homogeneous reaction systems described by the general
nonlinear state space model, i.e., [38].

dξ

dt
= Kφ(ξ, t)− Dξ −Q(ξ) + F (18)
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where K is the matrix of yield coefficients, φ is the matrix of reaction rates, ξ has the states
of the process, Q is the total rate of mass gas outflow for each component ξ, and F are
the homogeneous reaction system mixture components for each component ξ. The design
of the algorithm has to fulfill the following conditions: the information of matrix φ is
unknown, the yield coefficients from K are fully known, and finally, the number of qstate,
the number of measured state variables is the same or higher than the rank of the matrix
K, i.e., qstate = dim(ξ1) ≥= rank(K). In Equation (18), dim(ξ) = dim(F) = dim(Q) = N,
dim(φ) = M, and dim(K) = N ×M. Finally, due to the circumstances, we suppose that
there exists at least one partition, ξa, and ξb, of the state vector ξ. Thus, the general nonlinear
model Equation (18) can be divided as:

dξa

dt
= Kaφ(ξa, ξb)− Dξa −Qa + Fa, (19)

dξb
dt

= Kbφ(ξa, ξb)− Dξb −Qb + Fb (20)

where the rank of K is p. The submatrix Ka comes from K and the dimensions are p×M.
Thus, the submatrix Kb has the remaining information of K. Finally, the matrices (ξa,ξb), (Qa,
Qb), and (Fa, Fb) are the corresponding parts of ξ, Q, and F caused by the influence of Ka
and Kb. The previous formulation has the following feature. There exists a transformation
that considers Zob as a linear combination of ξa and ξb, thus.

Zob = A0ξa + ξb (21)

derived from Equation (21), the dynamic is represented as follows:

Żob = A0ξ̇a + ξ̇b (22)

then, using Equation (19) on Equation (22) results in:

Żob = A0(Kaφ− DXa −Qa + Fa) + Kbφ− DXb −Qb + Fb (23)

solving the last equation:

Żob = A0Kaφ− A0DXa − A0Qa + A0Fa + Kbφ− DXb −Qb + Fb (24)

and then grouping the following expressions:

Żob = −D(A0Xa + Xb) + A0(Fa −Qa) + Fb −Qb + A0Kaφ + Kbφ (25)

finally, using Equation (22) on Equation (25) results in:

Żob = −DZob + A0(Fa −Qa) + Fb −Qb + φ(A0Ka + Kb)︸ ︷︷ ︸
eliminate

(26)

In order to maintain the mass balance structure using the partitioned system, there is a
condition that has to be solved, the last term on Equation (26) must be eliminated because
the basic structure of Equation (26) has to be maintained [38]. According to Equation (26),
there are two conditions, φ 6= 0, thus:

A0Ka + Kb = 0 (27)

Finally, according to the previous equations, the state space model is equivalent to:

dξa

dt
= Kaφ(ξa, ξb)− Dξa −Qa + Fa (28)

dZob
dt

= −DZob + A0(Fa −Qa) + (Fb −Qb) (29)
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If the expression Fa −Qa = 0, then it means that the partition made by Equations (19)
and (20) are appropriate due to the new dynamics on Zob being independent of K and φ.
Equation (28) shows the values of ξ̇a that are independent of φ (the information on the
reaction kinetics).

Observer Design Using the AM2 Extended Model

Using Equations (28) and (29) for designing the state space observers, and employing
the nonlinear general dynamical model from Equations (1)–(6), the design is stated as
follows on Equations (30) and (31). The new process describes the decoupled subsystem
conducted by the state variables X1, X2, S1, and S2, then:

ξ =


X1
X2
S1
S2

, F =


0
0

DS1in
DS2in

, Q =


0
0
0
0

, K =


1 0
0 1
−k1 0
k2 −k3

, φ =

[
µ1X1
µ2X2

]
(30)

Considering the previous subsystem, the subsequent state equations are structured
as follows:

d
dt


X1
X2
S1
S2

 =


1 0
0 1
−k1 0
k2 −k3

[φ1
φ2

]
− D


X1
X2
S1
S2

+


0
0

DS1in
DS2in

 (31)

Then, comparing the previous subsystem on Equation (31) with the equivalent generic
Equations (28) and (29) result in the following specifications:

• The original nonlinear state space system is decoupled into two parts: the subsys-
tem equation in (31), and the other part that includes the remaining state variables,
inorganic carbon C, and total alkalinity Z.

• The information usually contained on matrices Qa and Qb is located in the state
dynamic variable C.

• The matrices Q1 and Q2 are the reaction rates r1 and r2.

Based on the previous requisites, ξa and ξb represent the information of measurable
and non-measurable states, thus:

ξa =

[
S1
S2

]
, ξb =

[
X1
X2

]
(32)

therefore:

Zob =

[
Zob1
Zob2

]
=
[
A0ξa + ξb

]
=

[
1
k1

0
k2

k1k3
1
k3

][
S1
S2

]
+

[
X1
X2

]
(33)

using Z = A1ξ1 + A2ξ2 to compare with the previous structure in Equation (33) results in:

A2 = I (34)

as a consequence, in order to find A0:

A0 = −KbK−1
a (35)

Using Equation (35) and employing the previous information leads to the following
matrices of Equation (36).

Kb =

[
1 0
0 1

]
, Ka =

[
−k1 0
k2 −k3

]
(36)
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The next step is to separate the non-measurable states in order to estimate the variables
Zob1 and Zob2 , and the measurable states S1 and S2. Using Equation (21) and solving for ξb:

ξb = Zob − A0ξa (37)

At this point, we have the matrices of ξa, A0, and Zob.

ξb =

[
X1
X2

]
, Zob =

[
Zob1
Zob2

]
, A0 =

[
1
k1

0
k2

k1k3
1
k3

]
, ξb =

[
S1
S2

]
(38)

The state variables X1 and X2 are unknown. The variables Zob1 and Zob2 represent
the new dynamics independent from the reaction kinetics contained on φ. The matrix A0
has the yield coefficients, and the state variables S1 and S2 are the estimation spaces. The
values of Fa and Fb are:

Fa =

[
DS1in
DS2in

]
, Fb =

[
0
0

]
(39)

Finally, using the Equation (39), the expression of Zob is stated in Equation (40):

dZob
dt

= −DZob + A0(Fa−Qa) + (Fb −Qb) (40)

5. Results

Table 1 shows the data on the dilution rates used to feed the reactor during
the experiment.

Table 1. Dilution rate values of the experiment.

D (d−1)
Time Period (d)

Start End

0.03 1 40
0.04 41 120
0.05 121 207

In Figure 5, the results of both parameter optimization algorithms, (genetic and step-
ahead) are compared to measure the improvements achieved. The discontinuous black
line represents the experimental results. In contrast, the blue line is the result achieved by
the genetic algorithm GA, and the red line is the result obtained using the step-ahead SA
algorithm. Figure 5a shows the results around the adjustment of the AM2 model extended
using the data and the two algorithms from VFA. The red line closely fits the data better
than the blue line.

Figure 5b shows an even better adjustment from the step-ahead algorithm around
data from COD than those obtained for VFA. Figure 5c shows the time course of pH.
The performances of both algorithms are similar, excluding the initial results, where the
starting point from the genetic algorithm is in a lower position than the one-step-ahead.
Figure 5d shows the results of the identification procedure running for total alkalinity Z.
The dynamics of the two algorithms closely follow the discontinuous black line; however,
the algorithm step-ahead actively captures the trajectories from data giving better results.
Figure 5e shows the alkalinity characterization of the inlet parameter. Trying to replicate
the measurements made on-site, it is assumed that the value is virtually-measured every
four days.

Figure 5f shows the parameter identification results over the dynamic CH4 produced
by the anaerobic process. There is a significant difference compared with the previous
results. While the step-ahead algorithm decided to strictly follow the tendency of the
variables VFA, COD, and Z, along CH4 there is a roughly average value of the step-ahead
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algorithm over the data. As seen in the previous results, the performance of the genetic
algorithm shows an average tendency adjustment.

(a) (b)

(c) (d)

(e) (f)
Figure 5. Use of genetic algorithm and step ahead algorithm to fit the mathematical model to
the experimental data. (a) volatile fatty acids (VFA); (b) chemical oxygen demand (COD); (c) pH;
(d) alkalinity (Z); (e) alkalinity at inlet (Zin); (f) CH4.

Equation (41) was used to calculate the improvements achieved by the step-ahead
algorithm over the genetic algorithm. The variables tested were VFA, COD, Z, pH, and
CH4. The results are shown in Table 2. The best upgrading was obtained by VFA and COD
with improvements of 78.7 and 60.5, respectively.

% Improvement = 100−
100 ∑208

k=1 S1(k)sa − S1(k)exp

∑208
k=1 S1(k)ga − S1(k)exp

(41)

Figure 4b shows the structure proposed by direct measurement (sensors) and the
asymptotic observer that estimates the state variables X1 and X2 with the restriction that
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the reaction kinetics are unknown. This structure seeks to address the lack of measurements
due to the absence of reliable sensors.

Figure 6 shows the results obtained by the algorithm asymptotic observer that re-
constructs the state variables concentration of acidogenic bacteria X1 and methanogenic
archaea X2 using the information of the parameters compiled in Table 3. These parameters
were calculated after running both algorithms several times until the best adjustment was
achieved. To test the observer’s performance, the values estimated were compared with the
dynamics measured directly from the mathematical model. The starting point between the
simulation of the dynamic observer and the mathematical model was different to confirm
the convergence performance.

(a) (b)
Figure 6. Test for asymptotic observers; a comparison between real and observed state variables.
(a) Dynamic of state variable X1; (b) dynamic of state variable X2.

Table 2. Evaluation of the adjustments achieved by the parameter identification strategies: genetic
algorithm and step-ahead.

Variable S1 S2 Z pH CH4

Improvement (%) 78.7 60.5 38.6 25.5 7.7

Finally, after 60 days, both dynamics converged. Once the dynamics of the mathemati-
cal model and the estimator ran together, both reacted simultaneously due to unexpected
changes. On day 50, a change in the operational point occurred: the value of the dilution
rate changed from 0.03 to 0.07. The acidogenic and methanogenic microorganisms drasti-
cally reduced their presence in the reactor. Even when the dynamics were about to achieve
a stabilization point, a new change on day 100 ocurred: the dilution rate changed from
0.07 to 0.05. The mathematical model’s dynamics and the estimation algorithm continued
running together toward their natural behavior. From that moment, the dynamics of the
mathematical model and the observer remained together.

This paper achieved the objective to develop, step-by-step, the layer that supports
the design of control and monitoring strategies. The methodology demonstrates reliability
over the use of mathematical models, as sensitive as possible, which captures the biological
and physical–chemical behaviors of the anaerobic process. In the future, the aim will be
to analyze the performance of merging an optimal control scheme that uses mathematical
models as a basis to represent the AD over reactors.
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Table 3. Parameters calculated by the use of a genetic algorithm and step-ahead.

Parameter
Value

Unit
Genetic Algorithm Step-Ahead

µ1max 0.26 0.06 d−1

µ2max 1.52 0.05 d−1

KS1 213.89 298.03 kg/m3

KS2 168.76 1.08 mol/m3

k1 29.34 1.34 × 10−6 –
k2 31.14 216.80 mol/kg
k3 40.81 14.23 mol/kg
k4 36.61 8.58 × 10−7 mol/kg
k5 43.21 1.14 × 10−6 mol/kg
k6 549.99 550.00 mol/kg
KZ1 0.68 3.21 mol/m3

KZ2 1.28 4.45 mol/m3

Zin VZin 19.66 mol/m3

6. Conclusions

This paper designed a feasible methodology skilled in implementing control and
monitoring schemes for a wide range of substrates in anaerobic reactors. The model AM2
was used extensively in the literature because it is ’insensitive’ (as necessary) due to the lack
of phenomenological knowledge. This model circumvents these difficulties in locating the
biological absence of knowledge on specific terms named reaction rates. The original model
considers that the total alkalinity is not affected by process rates because it is assumed
that some substrates do not contain protein or amino acids. However, it is prevalent
in the industry to find substrates containing proteins or amino acids. Therefore, new
variables have been added to extend the number of substrates susceptible to being modeled.
The next step consisted of conducting the data measured into a parameter identification
algorithm based on optimization. At this point, a novel step-ahead method considerably
improved the efficiency in the level of adjustment achieved between the dynamics of
the mathematical model and the data. Compared with the well known method genetic
algorithm, the variables that tested the performance: S1, S2, Z, pH, and CH4 showed
improvements of 78.7%, 60.5%, 38.6%, 25.5%, and 7.7% respectively. Once the mathematical
model was parameterized to its real characteristics, there was still an inconvenience; it
is not possible to continuously have the information for concentrations of acidogenic
bacteria and methanogenic archaea. Because it is not possible to use analytical methods
in real environments, an asymptotic observer for state estimation, when reaction rates are
unknown, is proposed to fulfill the stream of information required by the mathematical
model. After a period of convergence, the error between the observer and the dynamics
did not exceed the 2%.
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