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Abstract

The stability of topological solitary waves and pulses in one-dimensional nonlinear Klein-
Gordon systems is revisited. The linearized equation describing small deviations around the
static solution leads to a Sturm-Liouville problem, which is solved in a systematic way for the
−l (l + 1) sech2(x)-potential, showing the orthogonality and completeness relations fulfilled
by the set of its solutions for all values l ∈ N. This approach enables the linear stability of
kinks and pulses of certain nonlinear Klein-Gordon equations to be determined. The inverse
problem, which starts from Sturm-Liouville problem and obtains nonlinear Klein-Gordon
potentials, is also revisited and solved in a direct way. The exact solutions (kinks and
pulses) for these potentials are calculated, even when the nonlinear potential is not explicitly
known. The kinks are found to be stable, whereas the pulses are unstable. The stability of
the pulses is achieved by introducing certain spatial inhomogeneities.

1 Introduction

Nonlinear Klein-Gordon equations model a plethora of phenomena such as the existence of bound
oscillatory states and resonance windows in the kink-antikink interaction [1, 2, 3, 4, 5] in the
presence and in the absence of internal modes [6, 7, 8, 9], the fading of the kink’s wobbling
due to the second-harmonic radiation [10, 11], the phase transitions in the Ginzburg-Landau
theory [12, 13, 14], the motion of domain walls [15], and the existence of kinks with power-law
tail asymptotics that give rise to long-range interactions in the even-higher-order field theories
[16, 17].

In a one-dimensional system, the Hamiltonian corresponding to the nonlinear Klein-Gordon
equation is a functional of the field ϕ(x, t), defined in the following way:

H[ϕ(x, t)] =

∫
R
dx

{
ϕ2
t (x, t)

2
+
ϕ2
x(x, t)

2
+ U [ϕ(x, t)]

}
, (1.1)

where U [ϕ(x, t)] is the nonlinear Klein-Gordon potential, the integral is performed across the
whole space x ∈ R, and t and x subscripts henceforth denote the partial derivative with respect
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to time and position, respectively. Since the energy of the system must be finite, the spatial
derivative of the field, ϕx(x, t), should be a bounded function for all x ∈ R and t ≥ 0.

From the Hamiltonian field equations [18], the one-dimensional nonlinear Klein-Gordon system
is given by

ϕtt(x, t)− ϕxx(x, t) = −dU
dϕ

[ϕ(x, t)], (1.2)

where the function ϕ(x, t) ∈ C2
∞(R × [0,+∞)). Here, C2

∞(Ω) denotes the space of functions
f : Ω 7→ C that are two times differentiable with continuous second order partial derivatives in
Ω, and such that f and their first partial derivatives are bounded in Ω. Throughout this study
it is assumed that the nonlinear Klein-Gordon potential U [ϕ(x, t)] has at least two extrema to
guarantee the existence of kink or pulse-like solutions.

In particular, a pulse may emerge when the nonlinear potential U [ϕ(x)] has a minimum and a
maximum as two consecutive extrema, while the appearance of a topological wave called kink
requires that U [ϕ(x)] has two consecutive minima sharing the same value. Hereafter the function
φstp (x) represents the static pulses and ϕst(x), the kinks at rest.

The dynamics and stability of the sech-shape solution of certain cubic potential were investigated
in Ref. [19], where the pulse was found to be unstable. Moreover, kink solutions ϕst(x) have
been derived for the sine-Gordon potential [20], the double sine-Gordon potential [21], and the ϕn

(n = 4, 6, 8) potentials [22, 23] (see also the recent reviews [24, 25, 9, 17] wherein developments of
higher-order field theories are discussed). Since Eq. (1.2) is Lorentz invariant, traveling solutions
can be obtained from the static solutions by a boost transformation.

At the boundaries, the topological waves verify

lim
x→+∞

ϕ(x, t) = lim
x→−∞

ϕ(x, t)±Q, (1.3)

where the signs ± refer to the kink and antikink solution, respectively, and the constant Q > 0
is the so-called topological charge. The pulses also satisfy Eq. (1.3) setting Q = 0.

As a matter of fact, the equations that govern physical systems, such as the propagation of
magnetic flux along the Josephson junctions [26], the dynamics of the azimuthal angle of the unit
vector of magnetization of ferromagnetic materials [27], the resonant soliton-impurity interactions
[28], the unidirectional motion of kinks due to zero-average forces [29, 30, 31, 32], the stabilization
of wobbling kinks [11], and the traveling of dislocations along the colloids [33], are modeled by
nonlinear Klein-Gordon equations with external and parametric forces and damping. Therefore,
the observation of these waves in nature and in experiments depends on their stability [34]. From
the study of stability it can be determined whether the perturbed solution of Eq. (1.2) does not
deviate too far from the exact solution when the perturbations are small enough, that is, whether
the exact solution would be detected in a real system.

The stability of the sine-Gordon waves was studied by Scott more than 50 years ago, first by
means of an average Lagrange method [20], and second by employing a more accurate technique,
namely the eigenfunction expansion [35], introduced by Parmentier to study the stability of
a nonlinear transmission line [36]. As a result of the second methodology, a Sturm-Liouville
problem was obtained and discussed, although not completely solved. Its spectrum has both a
discrete and a continuous part [37]. Indeed, since Eq. (1.2) is translationally invariant, there is
always a zero mode associated to the zero eigenvalue (zero frequency) and to an eigenfunction
proportional to the spatial derivative of the field [38, 35]. The continuous spectrum exists due
to the infinite domain [39].
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The exact analytical solution of the Sturm-Liouville problem was found for the sine-Gordon kink,
the ϕ4 kink, the ϕ6 kink, and also for the pulse of certain cubic potential [37, 22, 19, 23], among
others. However, in some cases, only numerical solutions of this problem have been found either
because the solution of Eq. (1.2) is implicit, as in the ϕ8 equation [23], or because it has been
impossible to analytically solve the corresponding Sturm-Liouville problem, as in the double
sine-Gordon system [6].

The main goal of the current investigation is to revise the Sturm-Liouville problem equiva-
lent to the one-dimensional Schrödinger equation with the Pöschl-Teller potential [40], −l (l +
1) sech2(x), l ∈ N, which is associated to the stability of nonlinear waves of several aforemen-
tioned nonlinear Klein-Gordon potentials. This potential is one of the most useful potentials in
mathematical physics. It appears in Optics [41], in Quantum Mechanics [42] (see also page 768
in Ref. [43], page 94 in Ref. [44], and page 73 in Ref. [45]), in the N -soliton solution of the
Korteweg and de-Vries equation [46], and in the stability study of certain static solutions [47].
The above potential, belongs to the special class of potentials for which the one-dimensional
Schrödinger equation can be exactly solved in terms of special functions (see page 768 in Ref.
[43]).

The inverse problem, proposed by Christ and Lee in Ref. [48] for the specific case of the kink
solutions, investigates the existence of other nonlinear Klein-Gordon kinks or pulses whose sta-
bility is associated with the Pöschl-Teller potential? They started from the translational mode
corresponding to the Pöschl-Teller potential, and partially, although not explicitly, constructed
the sine-Gordon (l = 1) and ϕ4 (l = 2) potentials. The explicit construction of the potential
U(ϕ) by solving the resulting differential equation for U(ϕ) is due to Trullinger and Flesch [49].
They obtained two solutions for U(ϕ), one for the odd values of l and the other for the even
values of l, and they found that these potentials can be expressed in terms of the Student’s
t-distribution of probability theory.

Despite all these studies, to the best of our knowledge, there is no rigorous analysis of the cor-
responding Sturm-Liouville problem, nor a detailed proof of the orthogonality and completeness
of its eigenfunctions for all values of l ∈ N, nor a solution of the inverse problem in a direct way.
It is the aim of the current study to complete the aforementioned studies.

Section 2 provides the outline of the linear stability analysis of the static solution, either ϕst(x)
or φstp (x), of Eq. (1.2), and derives the associated Sturm-Liouville problem. This Section ends
with a precise definition of the stability, which requires the positiveness of all the eigenvalues
(squared eigenfrequencies). This definition is a consequence of the ansatz employed, in order to
solve the Sturm-Liouville problem. The subsequent Section 3 solves the Sturm-Liouville problem
with the potential, −l (l + 1) sech2(x), l ∈ N, in a systematic way, including a detailed proof
of the orthogonality and completeness relations. This is a very crucial result, since in practical
applications the spatial component of the solution of certain perturbed nonlinear Klein-Gordon
equations is written as an expansion in the set of eigenfunctions (see e.g. §5.2 on page 144 in
Ref. [24]). Specifying the values of l = 1 and l = 2, it is shown that the sine-Gordon and ϕ4

kinks, respectively, are stable. The values of l = 3 and l = 2 are related with the unstable pulses
of the cubic and quartic potentials, respectively.

Section 4 addresses this issue and reconstructs the theory in a similar way to that in Ref. [49];
however, the problem is solved in a more direct way, without using the Student’s t-distribution.
Our procedure has two advantages with respect to the previous analyses of Refs. [48, 49]. First,
our analysis is valid for all values of l and the solution of the second-order differential equation
for U(ϕ) is represented in a closed form in terms of the hypergeometric function, where l is a pa-
rameter. Second, all kink solutions can be obtained by a recurrence relation, where the sequence
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of kinks depends on the value of l. Section 4 obtains two families of nonlinear Klein-Gordon
potentials such that the Pöschl-Teller potential appears in their corresponding Sturm-Liouville
problems. For the first family, the exact analytical kinks are obtained. It is demonstrated that
all kinks are stable. For the second family, the pulses are derived. Although all the pulses found
are unstable, Section 5 provides guidelines for their stabilization through inhomogeneous forces.
Finally, Section 6 discusses our main results and draws general conclusions.

2 The nonlinear Klein-Gordon equation and its corresponding
Sturm-Liouville problem

Due to the Lorentz invariance of Eq. (1.2), it is sufficient to investigate the stability of the static
kink [24], ϕ(x, t) = ϕst(x), which satisfies the following equation

ϕst
xx(x) =

dU

dϕ
[ϕst(x)], (2.1)

where the nonlinear Klein-Gordon potential U has at least two local minima, which are reached
by U [ϕst(x)] as x→ ±∞. Notice that, Eq. (2.1) resembles the second Newton law for a particle in
a potential −U [ϕst(x)] [48]. This is the reason why −U is called a pseudo-potential [50]. Within
this framework, the variables x and ϕst(x) play the role of time and position, respectively.

By integrating Eq. (2.1), the first integral of motion reads

E =
(ϕst

x )2

2
− U [ϕst(x)], (2.2)

where E denotes the total energy of the Newtonian particle, and (ϕst
x )2/2 its kinetic energy.

Three different cases are distinguished according to the value of E. When the energy E > M ,
where M is the maximum of the pseudo-potential, the particle is always moving, similar to the
rotatory motion of the simple pendulum, see Fig. 1. If m ≤ E < M , where m is the minimum
of the pseudo-potential, the particle oscillates except for E = m when the particle remains
at rest. The separatrix at E = M separates oscillatory and rotatory motions, see the phase
portrait in Fig. 1. The kink (antikink), ϕst(x), is represented precisely by the separatrix of the
dynamical system (2.1), which connects two maxima of the pseudo-potential −U [ϕst(x)], that
is, two minima of the potential U [ϕst(x)], when x→ ±∞. As a consequence,

lim
x→±∞

dU

dϕ
[ϕst(x)] = 0, (2.3)

lim
x→±∞

d2U

dϕ2
[ϕst(x)] ≥ 0. (2.4)

Without any loss of generality, it is assumed that the minimum of the potential is reached at
zero, that is,

lim
x→±∞

U [ϕst(x)] = 0. (2.5)

This implies that U [ϕst(x)] ≥ 0 between the two minima. Furthermore, it sets E = 0 in (2.2).
Notice that these conditions on the potential and its derivatives are also satisfied by a static
pulse, solution of Eq. (2.1). Indeed, a pulse lies on the separatrix that begins and ends at the
same equilibrium point, which is a minimum of the potential.

From Eq. (2.2), it follows that the static kink, or static pulse, can be calculated by performing
the following integral ∫

dϕ√
2U(ϕ)

= x+ C, (2.6)
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Figure 1: Left-hand panel: the pseudo-potential −U(ϕ) is shown (solid black line), and four
values of energy related with different types of motions (see the text): E = m and E > M
(dotted blue lines), m < E < M (dashed blue line), and E = M (dot-dashed red line). Right-
hand panel: the separatrix, represented with a dot-dashed red line (E = M), it separates the
region where the motion is unbounded (dotted blue line, E > M) from the region where the
oscillatory motion takes place (dashed blue line, m < E < M). The particle is at rest at the
origin.

where the constant C is set to zero due to the translational invariance. By considering the
sine-Gordon potential

U(ϕ) = 1− cos(ϕ) (2.7)

in Eq. (2.6), and by integration, the static kink has the form

ϕst(x) = 4 arctan[exp(x)]. (2.8)

By applying a similar procedure with the ϕ4 potential

U(ϕ) =
(1− ϕ2)2

2
, (2.9)

we obtain the static kink
ϕst(x) = tanh(x). (2.10)

By integrating Eq. (2.6) with the cubic and quartic potentials shown in the first column of Table
1, the static pulses are calculated (second column of Table 1). The second-order differential
equation (2.1) with the cubic and quartic potentials also appears when we find soliton solutions
in the KdV equation [51, 46] and in the nonlinear Schrödinger (NLS) equation [52, 34, 53],
respectively. The KdV soliton is non-topological and has the same shape as the pulse of the
cubic potential, whereas the envelope part of the NLS soliton and the pulse of the quartic
potential have the same shape.

In order to discuss the stability of the static kink, ϕst(x), Eq. (1.2) is linearized around ϕst(x),
that is, the function [36, 35]

ϕ(x, t) = ϕst(x) + Ψ(x, t), (2.11)

is introduced in Eq. (1.2). This implies that the function Ψ(x, t) satisfies the following linear
wave equation with a source term

Ψtt(x, t)−Ψxx(x, t) = −U ′′[ϕst(x)]Ψ(x, t), (2.12)
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U(φ) φstp (x) ψst(x) V (x) ωph

2φ2 (1− φ) 1
cosh2(x)

−2 tanh(x)
cosh2(x)

− 12
cosh2(x)

2

φ2

2 (1− φ2) 1
cosh(x)

− tanh(x)
cosh(x) − 6

cosh2(x)
1

Table 1: For the cubic and quartic potentials, U(φ), the unstable solitary waves (pulses) φstp (x),
the eigenfunction ψst(x) = dφstp /dx associated to the zero frequency, the potential V (x) (3.4),
and the lowest frequency of the continuous spectrum, ωph are shown.

where the prime denotes the derivative of U [ϕ(x)] with respect to ϕ(x). It is important to
bear in mind that in the above relation (2.11), the second term should be small in comparison
with ϕst(x). This can be achieved if the L∞-norm of Ψ(x, t) is finite for all t ≥ t0, where t0 is
the initial time, that is, supx∈R,t≥t0 |Ψ(x, t)| < +∞, and sufficiently small in comparison with
supx∈R |ϕst(x)|. We recall that, since the energy of the system must be finite, ϕx(x, t) should be
a bounded function in x ∈ R, then so should Ψx(x, t).

The solution of Eq. (2.12) is represented by the following ansatz [36, 35, 17]

Ψ(x, t) = (c1e
iωt + c2e

−iωt)ψ(x), (2.13)

where ψ(x) is a complex function and the complex constants c1 and c2 are chosen such that
Ψ(x, t) ∈ R. By inserting Eq. (2.13) into Eq. (2.12), it is straightforwardly deduced that ψ(x)
verifies the following Sturm-Liouville problem

ψxx(x) +
(
ω2 − U ′′[ϕst(x)]

)
ψ(x) = 0, (2.14)

where ω2 (squared eigenfrequencies) are the eigenvalues and it is required that ψ(x) as well as its
first derivative ψx(x) are bounded and continuous functions on R (recall that the energy of the
system must be finite). Notice that Eq. (2.14) can be written as Lψ = ω2ψ, where the operator
L = −d2/dx2 + U ′′ is self-adjoint, therefore all their eigenvalues ω2 are real [54].

The Sturm-Liouville problem (2.14) is solved when the set of infinite (for infinite domain) eigen-
functions {ψ(x)} with their corresponding real eigenvalues {λ = ω2} are found. The spectrum
contains a set of discrete eigenvalues and the so-called continuous spectrum. Useful features
that satisfy the real eigenvalues of Eq. (2.14) include: (i) the N + 1 discrete eigenvalues form a
continuously increasing sequence of real numbers bounded from below λ0 < λ1 < λ2 < · · · , λN ,
such that λi+1 > λi, i = 0, 1, · · · , N − 1; (ii) If ψi+1(x) and ψi(x) are the eigenfunctions associ-
ated to the discrete eigenvalues λi+1 and λi, respectively, then ψi+1(x) has one more zero than
does ψi(x). As a consequence, the eigenfunction ψ0(x) corresponding to λ0 has the least possible
number of zeros [43]; (iii) The proof of statement (ii), given in Ref. [43], can be generalized to
the continuous spectrum and it can be shown that, in general, given two eigenvalues λa < λb, if
ψa(x) and ψb(x) are their corresponding eigenfunctions, then ψa(x) has no more zeros than does
ψb(x). In fact, this is also true for any two eigenvalues, independently of whether they belong to
the continuous or discrete spectra. Therefore, if an eigenfunction has no zeros, its corresponding
eigenvalue is the lowest.

Another useful property of the Sturm-Liouville problem (2.14) is related with the zero mode,
that is, the eigenfunction associated to ω = 0. Since the function ϕst(x) is the solution of Eq.
(2.1), its derivative satisfies (ϕst

x )xx − U ′′[ϕst(x)]ϕst
x = 0. Therefore, the discrete eigenfunction

corresponding to ω = 0, is given by

ψst(x) = ϕst
x (x) =

√
2U [ϕst(x)]. (2.15)
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This result is a consequence of the translational invariance of Eq. (1.2) [38, 35]. The study of the
stability of pulses φstp (x) also leads to Eqs. (2.11)-(2.15) changing ϕst(x) to φstp (x). The relation
ϕst
x (x) =

√
2U [ϕst(x)] is usually known as the Bogomolnyi equation [55, 56], although it appears

earlier in this context (see, for instance, Eq. (2.4) of Ref. [57]).

Since ϕst(x) represents a kink, its derivative ϕst
x (x) has no zero as it is shown, for instance,

Eqs. (2.8) and (2.10) for the sine-Gordon and ϕ4 kinks. This means that ω2 = 0 is the lowest
eigenvalue, and therefore all other eigenvalues are positive. For the pulses, however, ψst(x) =
dφstp /dx has at least one zero (see the third column of Table 1) and, since there could be a
negative eigenvalue, the positiveness of all the eigenvalues cannot be guaranteed.

Given that ω2 is real, ω can be either an imaginary number or a real number. The former
case implies that Ψ(x, t) in (2.13) is unbounded when t→ +∞ (the static solution is unstable),
while the latter case leads to a bounded function Ψ(x, t) in t. Is the boundedness of Ψ(x, t) a
sufficient condition for a static kink or pulse to be stable? To answer this question, it is necessary
to define what stability means. Here we generalize the concept of linear stability of nonlinear
equations carried out in Ref. [58] for the Sturm-Liouville problem with only a denumerable set
of eigenvalues.

To be precise, the static solution of Eq. (1.2) is defined to be linearly stable if all the solutions
{ω2, ψ(x)} of the associated Sturm-Liouville problem (2.14) which belong to C2

∞(R) have real
ω. From this definition, it follows that the static solution is stable if all eigenvalues ω2 are
non-negative [57], that is, ω is real, on the condition that ψ(x) ∈ C2

∞(R).

3 Solving the Sturm-Liouville problem

In the previous section, we restricted ourselves to discussing the time-dependent part of the
solution (2.13), and showed that, for sine-Gordon and ϕ4 potentials, it is bounded. In addition,
it is convenient to establish whether the eigenfunctions of the Sturm-Liouville problem (2.14)
form an orthogonal and complete set. It is worth mentioning the importance of the completeness
condition since, in practical applications, the function Ψ(x, t) in Eq. (2.11) is expanded in the
set {ω2, ψ(x)} [58, 24].

To this end, we rearrange the terms of Eq. (2.14) as (see Eq. (2.1) of Ref. [54])

− d2ψ(x)

dx2
+ V (x)ψ(x) = k2ψ(x), (3.1)

where k2 = ω2 − ω2
ph, the potential V (x) is given by

V (x) = U ′′[ϕst(x)]− ω2
ph, (3.2)

and
ω2
ph = lim

x→−∞
U ′′[ϕst(x)] (3.3)

is a non-negative constant since kinks and pulses depart from one minimum (at x→ −∞) of the
potential U [ϕst(x)]. The advantage of writing the Sturm-Liouville problem in the form (3.1) is
that the potential V (x) approaches zero when x→ −∞. It is precisely the asymptotic behavior
of the Pöschl-Teller potential [41, 42]

V (x) = − l (l + 1)

cosh2(x)
, l ∈ N, (3.4)
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which is straightforwardly obtained for the sine-Gordon kink (l = 1), the ϕ4 kink (l = 2), and
for the pulses corresponding to the cubic (l = 3) and quartic (l = 2) potentials, see Table
1. For other nonlinear Klein-Gordon potentials, the function V (x) is more complicated (see,
for instance, V (x) associated with the ϕ6 and with the double sine-Gordon equations in Refs.
[23, 6], respectively). Moreover, the function (3.4) belongs to the class of potentials that satisfy
the condition ∫ +∞

−∞
(1 + |x|) |V (x)|dx <∞, (3.5)

that is, |xV (x)| → 0 when x → ±∞. Equation (3.1) is an instance of the one-dimensional
Schrödinger equation and has been studied extensively (see Chapter 3, §2 of Ref. [54] and
references therein for example). Here we will explicitly solve Eq. (3.1) where V (x) is given by
Eq. (3.4) in terms of the Jacobi polynomials, and we will show that our set of solutions are, in
fact, an orthogonal and complete set in L2(R) (the square integrable functions on R).

At the boundaries, the solution of Eq. (3.1) behaves in the same way as exp(ikx). Without any
loss of generality, the solution of Eq. (3.1) can be written as

ψ(x) = eikx F (x). (3.6)

By substitution of Eq. (3.6) into Eq. (3.1), we obtain

d2F (x)

dx2
+ 2 i k

dF (x)

dx
− V (x)F (x) = 0. (3.7)

Consequent to the change of variable s = tanh(x), the domain of the function F (s) reduces to
s ∈ (−1, 1), and Eq. (3.7) with the potential (3.4), for l ∈ N, can be rewritten as

(1− s2) d
2F (s)

ds2
− 2(s− i k)

dF (s)

ds
+ l(l + 1)F (s) = 0, (3.8)

which is the Jacobi differential equation, see Eq. (4.2.1) on page 60 in Ref. [59] with α = −i k
and β = i k. Equation (3.8) has two linearly independent solutions. Its only bounded solution
is the Jacobi polynomial P (−ik,ik)

l (s), see §4.2 on page 60-62 in Ref. [59], where l represents
the degree of the polynomial. For more details on Eq. (3.8) and on the Jacobi polynomials, the
reader is referred to the books [59, 60], as well as the handbook [61].

Hence, a solution of Eq. (3.1) is

ψ(x) = eikx P
(−ik,ik)
l (tanhx). (3.9)

The parameter k can be either real or imaginary (recall that k2 is real). We consider these two
cases separately.

3.1 k ∈ R and the continuous spectrum

By assuming, first, that k ∈ R+\{0} in Eq. (3.1), then the frequencies of the continuous spectrum
ω = ω(k) =

√
ω2
ph + k2 are obtained. Two bounded solutions of Eq. (3.1) are given by

ψ(x, k) = eikxP
(−ik,ik)
l (tanhx), (3.10)

and its complex conjugate ψ(x, k) = ψ(x,−k), where A represents the complex conjugate of A.
Direct calculations show that ψx(x, k) and ψx(x,−k) are also bounded.
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We now show that ψ(x, k) and ψ(x,−k) are two independent solutions of Eq. (3.1). Indeed, by
calculating the Wronskian

W [ψ(x, k), ψ(x,−k)] = det

∣∣∣∣ ψ(x, k) ψ(x,−k)
ψx(x, k) ψx(x,−k)

∣∣∣∣ , (3.11)

it is straightforward to show that

W [ψ(s, k), ψ(s,−k)] = −2ikP
(−ik,ik)
l (s)P

(ik,−ik)
l (s)

+(1− s2)W [P
(−ik,ik)
l (s), P

(ik,−ik)
l (s)], (3.12)

where, for simplicity, the Wronskian is written in the variable s = tanhx. Taking the limit s→ 1
(x→ +∞) in Eq. (3.12), and using

P
(ν,−ν)
l (1) =

(ν + 1)(ν + 2) · · · (ν + l)

l!
, (3.13)

it is determined that,

lim
x→+∞

W [ψ(x, k), ψ(x,−k)] = −2ikA2
l,k 6= 0, (3.14)

since k 6= 0, and

A2
l,k :=

1

l!2

l∏
m=1

(k2 +m2) (3.15)

is always a positive constant. Recall that, by Liouville’s formula, see §27.6 in Ref. [62], the
Wronskian (3.11) is independent of x, and, therefore, takes the value given by Eq. (3.14) for all
x ∈ R.

It suffices to consider k > 0 since ψ(x, k) transforms into ψ(x,−k) if k → −k. From the well-
known result from the Sturm-Liouville theory (see §15 in Ref. [63]), it follows that the general
solution of Eq. (3.1) is, therefore, a linear combination of ψ(x, k) and ψ(x,−k).

For the specific value of k = 0, the only bounded solution, ψ(x, 0) = P
(0,0)
l (tanhx), is the

Legendre polynomial of degree l (see Theorem 4.2.2 on page 61 and the subsequent discussion in
Ref. [59]). This eigenfunction corresponds to the lowest frequency of the continuous spectrum,
ω(0) = ωph.

Therefore, the continuous spectrum k ∈ [0,∞) of Eq. (3.1) is characterized, up to constant
factors, by the functions ψ(x,±k), k ≥ 0, where

ψ(x, k) = eikxP
(−ik,ik)
l (tanhx), ω(k) =

√
ω2
ph + k2. (3.16)

3.2 k = i κ, κ ∈ R+\{0}, and the discrete spectrum

Let us consider the second case in which k = i κ is a pure imaginary number, where κ ∈ R+\{0}.
From Eq. (3.9), one solution of the Sturm-Liouville problem (3.1) has the form

ψκ(x) = e−κxP
(κ,−κ)
l (tanhx), (3.17)

where P (κ,−κ)
l (tanhx) is a bounded function in R. When x → +∞, ψκ(x) and d

dxψκ(x) go to
zero. However, when x→ −∞, the exponential function e−κx goes to infinity. Therefore, ψκ(x)
is bounded if the following condition is satisfied

lim
x→−∞

P
(κ,−κ)
l (tanhx) = 0. (3.18)
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Using the value

P
(ν,−ν)
l (−1) =

(ν − 1)(ν − 2) · · · (ν − l)
l!

, (3.19)

it can be shown that Eq. (3.18) holds if and only if κ = 1, 2, . . . , l. Given that κ takes on l
discrete values, this case leads to the discrete spectrum. Hence, if the condition

lim
x→−∞

e−κxP
(κ,−κ)
l (tanhx) = 0, κ = 1, 2, . . . , l, (3.20)

holds, then ψκ(x) is bounded.

It is convenient to render the change of variable x → −x in Eq. (3.20), and then to use the
symmetry property

P
(κ,−κ)
l (−s) = (−1)lP

(−κ,κ)
l (s), (3.21)

in order to obtain the following equivalent condition of Eq. (3.20)

lim
x→+∞

eκxP
(−κ,κ)
l (tanhx) = 0, κ = 1, 2, . . . , l. (3.22)

We prove the condition (3.22) in two steps. First, by the changing of variable t = e2x in the
l.h.s. of Eq. (3.22), and second, by using the explicit expression of the Jacobi polynomial, see
Eq. (4.22.2) on page 64 [59], for κ = 1, 2, . . . , l

P
(−κ,κ)
l (s) =

(
l

κ

)−1(l + κ

κ

)(
s− 1

2

)κ
P

(κ,κ)
l−κ (s) , (3.23)

we find

lim
t→+∞

tκ/2P
(−κ,κ)
l

(
t− 1

t+ 1

)
= (3.24)

lim
t→+∞

(−1)κ
(
l

κ

)−1(l + κ

κ

)
P

(κ,κ)
l−κ

(
t− 1

t+ 1

)
tκ/2

(1 + t)κ
,

which is equal to zero, taking into account that P (κ,κ)
l−κ (1) =

(
l
κ

)
. Here,

(
l
κ

)
= l!

κ!(l−κ)! is the

binomial coefficient. The same procedure can be employed to show that limx→−∞
dψκ

dx (x) = 0.
Therefore, ψκ(x) and its derivative are bounded provided that κ = 1, 2, . . . , l. Even though
the function ψ−κ(x) = eκx P

(−κ,κ)
l (tanhx) is also a bounded solution of Eq. (3.1) when κ =

1, 2, . . . , l, we do not take it into account owing to the fact that ψκ(x) and ψ−κ(x) are linearly
dependent since the Wronskian satisfies limx→+∞W [ψκ(x), ψ−κ(x)] = 0.

Let us now show that the second linearly independent solution of (3.1), here denoted by χ(x), is
disregarded because either it is unbounded or its first derivative is unbounded. Since ψκ(x) and
χ(x) are two linearly independent solutions of (3.1), its Wronskian

W [ψκ(x), χ(x)] = ψκ(x)
dχ

dx
(x)− χ(x)

dψκ
dx

(x) (3.25)

must be different from zero for all x ∈ R. Under the hypothesis that χ(x) and d
dxχ(x) are

bounded, and taking into account that limx→−∞ ψκ(x) = limx→−∞
dψκ

dx (x) = 0, it follows that
limx→−∞W [ψκ(x), χ(x)] = 0, which is a contradiction. Therefore, the hypothesis on χ(x) and
d
dxχ(x) is false, and at least one of these functions must be unbounded.

With the help of Eq. (3.23), the discrete eigenfunctions (3.17) can be rewritten, for κ = 1, 2, . . . , l,
as

ψκ(x) = Nκe
−κx(1 + tanhx)κP

(κ,κ)
l−κ (tanhx) , (3.26)

where ωκ =
√
ω2
ph − κ2, and l represents the number of discrete modes. The normalizing con-

stants, Nκ, are determined such that the L2-norm ‖ψκ‖2 :=
∫
R |ψκ|

2dx = 1.
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3.3 Completeness of the set of orthogonal eigenfunctions for all l ∈ N

After the Sturm-Liouville problem is completely solved, it is necessary to study the orthogonality
and completeness of its set of eigenfunctions (3.16) and (3.26). In fact, in Ref. [54] it is shown: (i)
that the eigenvalue problem (3.1), where V (x) satisfies the condition (3.5), has a real spectrum
(and hence k2 ∈ R, which agrees with our ansatz (2.13)); and (ii) that there is a complete set of
eigenfunctions in L2(R). Since the Pöschl-Teller potential fulfills (3.5), we can use the results in
Ref. [54] to construct this complete set.

In fact, the functions

ψ̂(x, k) =
eikx√
2π Al,k

P
(−ik,ik)
l (tanhx), k ∈ R, (3.27)

together with the set given in Eq. (3.26), satisfy the following completeness relation valid for all
Φ(x) ∈ L2(R)

Φ(x) =

∫
R

[(∫
R
ψ̂(y, k)Φ(y)dy

)
ψ̂(x, k)

]
dk

+
l∑

κ=1

(∫
R
ψκ(y)Φ(y)dy

)
ψκ(x), (3.28)

or, equivalently, ∫
R
ψ̂(y, k)ψ̂(x, k)dk +

l∑
κ=1

ψκ(x)ψκ(y) = δ(x− y). (3.29)

Furthermore, the following the orthogonality relations hold:∫
R
ψκ(x)ψν(x)dx = δκ,ν ,

∫
R
ψκ(x)ψ̂(x, k)dx = 0, (3.30)

∫
R
ψ̂(x, k)ψ̂(x,m)dx = δ(k −m), (3.31)

where k,m ∈ R and ν, κ = 1, 2 . . . , l. The detailed proof can be found in Appendix A.

3.4 Some examples

The sine-Gordon equation (l = 1).

Equation (1.2) with potential (2.7) is known in the literature as the sine-Gordon equation.
Equation (2.8) represents its static kink solution. In the study of the linear stability of this
topological wave, it is necessary to solve Eq. (3.1) with the potential (3.4) with l = 1 and
ωph = 1. Setting κ = 1 in Eq. (3.26), and taking into account that P (1,1)

0 (s) = 1, the only
discrete mode reads

ψ1(x) =
1√

2 cosh(x)
, ω1 = 0, (3.32)

and corresponds to the aforementioned zero mode [37].

The eigenfunctions associated to the continuous spectrum are given by Eq. (3.27) with l = 1:

ψ(x, k) =
eikx [tanh(x)− i k]√

2πω(k)
, ω(k) =

√
1 + k2, (3.33)

where the value P (−ν,ν)
1 (s) = s− ν has been employed.

11



From the relations (3.29)-(3.30), the orthogonality and completeness relations are deduced:∫
R
ψ(x, k)ψ1(x)dx = 0,

∫
R
ψ(x, k)ψ(x,m)dx = δ(k −m),

and
ψ1(x)ψ1(y) +

∫
R
ψ(x, k)ψ(y, k)dk = δ(x− y),

respectively, where k,m ∈ R. These relations are mentioned in Ref. [37]. The expansion of the
approximated solution of the perturbed sine-Gordon equation in terms of this set of functions
[64, 24] is now well-justified.

The ϕ4 equation (l = 2).

The stability of the ϕ4 kink (2.10) is determined by solving Eq. (3.1) with the potential (3.4)
with l = 2 and ωph = 2. Therefore, there are two discrete modes since κ = 1, 2. By setting κ = 1

in Eq. (3.26), and P (1,1)
1 (s) = 2s, the so-called internal mode

ψ1(x) =

√
3

2

tanh(x)

cosh(x)
, ω1 =

√
3, (3.34)

is obtained. This is an odd function with only one zero. The existence of an internal mode
explains the inelastic interaction between a kink and antikink of the ϕ4 equation [4, 5], and
therefore prevents the integrability of the system [65, 66, 67].

In the same way, by setting κ = 2 in Eq. (3.26), the translational mode reads

ψ2(x) =

√
3

2 cosh2(x)
, ω2 = 0. (3.35)

The continuous spectrum is above ωph = 2, and can be obtained from (3.27)

ψ(x, k) =
eikx

[
3 tanh2(x)− 3ik tanh(x)− k2 − 1

]√
2π(k2 + 1)ω(k)

, (3.36)

where ω(k) =
√

4 + k2, and where the value P (−ν,ν)
2 (s) = 3

2

(
s2 − νs+ ν2−1

3

)
, for the second-

degree Jacobi polynomial, is used. The set of eigenfunctions given by Eqs. (3.34), (3.35),
and (3.36) agrees with that obtained in Refs. [22, 57, 10]. Moreover, from (3.29)-(3.30), the
orthogonality and the completeness relations are found,∫

R
ψκ(x)ψ(x, k)dx = 0,

∫
R
ψ(x, k)ψ(x,m)dx = δ(k −m),

and
ψ1(x)ψ1(y) + ψ2(x)ψ2(y) +

∫
R
ψ(x, k)ψ(y, k)dk = δ(x− y),

respectively, where κ = 1, 2 and k,m ∈ R (see Ref. [68]).

It is worthwhile to remark that not all the potentials of the form (3.4) lead to linearly stable
solutions of the nonlinear Klein-Gordon equation. Indeed, the pulses of the cubic and quartic
potentials are unstable. For instance, the stability of the former pulse is related with the Pöschl-
Teller potential with l = 3. Since its lowest frequency of the continuous spectrum is ωph = 2 < l,
the lowest eigenvalue ω2

3 = ω2
ph − l2 = −5 is less than cero (see Table 1). This analysis shows
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that, although all eigenfunctions and their first derivatives are bounded (necessary condition for
stability), the pulse is unbounded when t→ +∞, owing to a negative eigenvalue ω2 < 0.

At this point, it is interesting to pose the following question: further to the sine-Gordon and
ϕ4 kinks, and the cubic and quartic pulses, are there other nonlinear Klein-Gordon kinks or
pulses, whose stability is associated with the Sturm-Liouville problem (3.1) with the Pöschl-
Teller potential (3.4)?

4 From the Pöschl-Teller potential to nonlinear Klein-Gordon po-
tentials

In order to answer the above question, let us consider two possibilities related with the lowest
eigenvalue ω2

l : (i) when ωl = 0, that is, it agrees with the zero frequency; and (ii) if ω2
l < 0. The

former case is related with the kinks, whereas the latter is related with the pulses.

Straightforward calculations show that one of the solutions of the Sturm-Liouville problem (3.1)
with the Pöschl-Teller potential (3.4) reads [43]

ψ
(l)
0 (x) =

A

coshl(x)
, ωl =

√
ω2
ph − l2, (4.1)

where A is a constant. The function ψ(l)
0 (x) has no zeros, therefore ω2

l is the value associated to
the lowest eigenvalue.

4.1 The lowest eigenvalue corresponds to the zero mode

This case has been partially analyzed in Ref. [48] for the values l = 1 and l = 2. By setting
ωl = 0 in Eq. (4.1), it is implied that ωph = l. From Eq. (2.15), and taking Eq. (1.3) into
account, it follows that

ψl(x) =
d

dx
ϕst(x) =

Al

coshl(x)
, (4.2)

where

Al =
QΓ( l+1

2 )
√
πΓ( l2)

.

By integrating Eq. (4.2), one obtains the solution of the nonlinear Klein-Gordon Eq. (1.2)
(without even knowing the potential). This fact was already noticed in Ref. [69], where, by
using the Bogomolnyi equation (energy integral), the eigenvalue problem (2.14) was transformed
into the second-order differential equation in the variable ϕ, and was then solved.

Denoting this solution as ϕstl (x) := ϕst(x), it reads

ϕstl (x) = ϕstl−2(x) +
Al
l − 1

sinh(x)

coshl−1(x)
, l ≥ 2, (4.3)

where ϕst0 (x) = 0, ϕst1 (x) = 4 arctan[exp(x)]. This recurrence relation enables all the kink
solutions to be systematically obtained. By rescaling the spatial variable with l, all the kink
solutions for l = 1, . . . , 6 of Table II of Ref. [49] are recovered. Contrary to the kinks represented
by Eq. (4.3), the width of the kinks of Table II of Ref. [49] increases as odd (even) values of l
increase.

In this circumstance, the family of solutions ϕstl (x) is linearly stable, and its energy (1.1)

Hl =
Q2

√
π

Γ(l) Γ2( l+1
2 )

Γ(l + 1
2) Γ2( l2)

, (4.4)
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represents the Bogomolnyi bound [56]. Furthermore, from (2.15) and (4.1), we obtain the po-
tential

U [ϕst(x)] =
A2
l

2 cosh2l(x)
. (4.5)

In the following, for the sake of brevity, henceforth U denotes the potential function U [ϕst(x)],
that is, U := U [ϕst(x)]. By inserting Eq. (3.4) into (3.2), and by using (4.5), it is straightforward
to see that the nonlinear Klein-Gordon potential satisfies the following second-order differential
equation

U ′′ + l (l + 1)α2U1/l = l2, (4.6)

where α2 = (2/A2
l )

(1/l). This equation has been solved by using the Student’s t-distribution in
Ref. [49], where the cases of even and odd values of l were analyzed separately. Here, we provide
a more direct way to solve this equation. Indeed, we write the solution in terms of the Gauss
hypergeometric function 2F1 which is more familiar to a wider audience. In fact, the Student’s
t-distribution is usually expressed in terms of the hypergeometric function , see e.g., Ref. [70].

By multiplying this equation by U ′(ϕst) and integrating the following first-order separable dif-
ferential equation is obtained

U ′2 = 2 l2 U
(

1− α2 U1/l
)
, (4.7)

whose solution, by quadrature, is∫ U

0

dt

t1/2(1− α2t1/l)1/2
= ±
√

2l[C± − ϕst(x)], (4.8)

whereby C± is an integration constant. Making the change of variable t = Uξl in the integral,
and using the Eq. (15.6.1) on page 388 of Ref. [61] it follows that

√
2U2F1

(
l

2
,
1

2
;
l

2
+ 1;α2 U1/l

)
= ±l[C±− ϕst(x)], (4.9)

where 2F1 denotes the hypergeometric function, see Chapter 15 in Ref. [61]. The constants C±
can be chosen arbitrarily, and they set the value limx→±∞ ϕ

st(x) = C±. Notice that C+−C− =
Q. This equation has two branches: one for the positive sign and the other for the negative sign.
From the former, we obtain the part of the kink that extends from the maximum of the potential
to the second minimum (U ′ < 0). From the latter, we calculate the part of the kink that lies
between the first minimum of the potential and the maximum, that is U ′ > 0.

Equation (4.9) defines the potential, at least implicitly, for all l ∈ N. With the help of the
following recurrence relation

2F1

(
l

2
,
1

2
;
l

2
+ 1;α2 U1/l

)
=

l

l − 1

1

α2U1/l
×[

2F1

(
l

2
− 1,

1

2
;
l

2
;α2 U1/l

)
−
√

1− α2U1/l

]
(4.10)

satisfied for l ≥ 2, Eq. (4.9) can be solved for different values of l. This relation is obtained from
the contiguous relation given by Eq. (15.5.16) on page 388 in Ref. [61], where a = l/2, b = 1/2,
c = l/2, z = α2U1/l, and by using the identity 2F1(a, 1/2; a; z) = (1− z)−1/2 (see Eq. (15.4.6) in
Ref. [61]).

By setting l = 1 in Eq. (4.9) and using the identity (see Eq. (15.4.4) on page 386 in Ref. [61]),

2F1

(
1

2
,
1

2
;
3

2
; z

)
=

arcsin(
√
z)√

z
, (4.11)
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it follows that

U [ϕst(x)] =
1

α2
sin2

(
α(ϕst(x)− C±)√

2

)
.

By assuming C− = 0 and the topological charge Q = 2π, then α = 1/
√

2, and the sine-Gordon
potential (2.7) is obtained, see Fig. 2.

Let us consider l = 2. In this case the function 2F1 in Eq. (4.9) reads 2F1 (1, 1/2; 2; z), z = α2
√
U .

Using Eq. (4.10) and taking into account that 2F1 (0, b; c; z) = 1, it follows that

2F1

(
1,

1

2
; 2; z

)
=

2

z

(
1−
√

1− z
)
. (4.12)

Therefore, Eq. (4.9) gives
√

2

α2

(
1−

√
1− α2

√
U

)
= ±[C± − ϕst(x)].

Assuming C− = −1, and Q = 2, it follows that α2 =
√

2 and C+ = 1, and we recover the ϕ4

potential (2.9), see Fig. 2.

Setting l = 3 in Eq. (4.9), and using Eqs. (4.10)-(4.11), we obtain

arcsin
(
αU1/6

)
− αU1/6

√
1− α2U1/3 =

±
√

2α3[C± − ϕst(x)], (4.13)

which has no explicit solution, see Fig. 2. However, from Eq. (4.3), the kink solution (see Fig.
3) has the form

ϕst(x) = 4 arctan[exp(x)] + 2
tanh(x)

cosh(x)
, (4.14)

where we set Q = 2π. Moreover, we assume C− = 0, which implies C+ = 2π, and α = 1/
√

2.
Interestingly, this kink (solid black line of Fig. 3) is a linear superposition of the sine-Gordon
kink (dashed blue line of Fig. 3) and an odd localized function in space (dot-dashed red line of
Fig. 3). Since l = 3, the lower phonon frequency is equal ωph = l = 3, and the 3 discrete modes
have frequencies ωκ =

√
ω2
ph − κ2, that is ω1 = 2

√
2, ω2 =

√
5, and ω3 = 0. According to the

results of the previous section, this kink is stable.

Finally, let us consider the case of l = 4. We set Q = 2, and C− = −1, which imply α = 23/8/31/4,
and C+ = 1. Equation (4.9), using Eqs. (4.10) and (4.12), can be solved explicitly, and the
potential, for |ϕst(x)| ≤ 1, has the form (see Fig. 2)

U [ϕst(x)] =
9

8

[
1− 2 cos

(
2

3
arcsinϕst(x)

)]4
. (4.15)

From Eq. (4.3), its kink solution

ϕst(x) = tanh(x) +
1

2

tanh(x)

cosh2(x)
(4.16)

is a linear superposition of two functions, the first one is the ϕ4 kink, and the second one is
a localized function (see right-hand panel of Fig. 3). Since l = 4, the lower phonon frequency
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Figure 2: The nonlinear Klein-Gordon potentials are shown. Left-hand panel: l = 1 (solid black
line), l = 3 (numerical results, dashed red line), and l = 5 (numerical results, dotted blue line).
Right-hand panel: l = 2 (solid black line), l = 4 (dashed red line), and l = 6 (numerical results,
dotted blue line).
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Figure 3: Left-hand and right-hand panels show the kinks (solid black line), represented by Eq.
(4.3) for l = 3 and l = 4, respectively. This solution is a linear superposition of a kink (dashed
blue line) and a localized function (dot-dashed red line).

equals ωph = l = 4, and the 4 discrete modes are related with the frequencies ωκ =
√
ω2
ph − κ2,

that is, ω1 =
√

15, ω2 =
√

12, ω3 =
√

7, and ω4 = 0. Moreover, according to the results of the
previous section, this kink is also stable.

Notice that the formula (4.9) defines the Klein-Gordon potentials U(ϕ), which can be explicitly
expressed for a few particular cases. From (4.9) and (4.10), it can be shown that, for all odd
values l ≥ 3, it is impossible to find an explicit expression for U since the functions arcsin z and√

1− z, where z = α2U1/l, appear in different terms of the same equation. A similar situation
happens when l is an even number greater than 4, since, in this case, the explicit solution is
involved with the roots of a polynomial in U of degree equal to or greater than 5, which are,
in general, impossible to obtain analytically. Therefore, for l ≥ 6, the stable kink solution is
represented by Eq. (4.3), whereas its corresponding Klein-Gordon potential can be numerically
obtained by solving Eq. (4.9), and specifying the topological charge Q and the constant C−.

As a final remark it is important to point out the fact that Eq. (4.7) was obtained in Ref. [71] by
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differentiation of the positive branch of Eq. (4.8). Since the authors analyzed the first correction
to the masses of a family of nonlinear Klein-Gordon kinks, rather than provide the solution of
the differential equation for the potential, they calculated the kink’s mass (1.1) by using the
Bogomolnyi equation. They obtained Ml = 24l−1Γ2(l)/Γ(2 l), which differs from the expression
(4.4) due to a different choice of the normalization constant Al in Eq. (4.2). Here, Al is given by
Eq. (4.2) such that Q = 2 for even values of l, whereas in Ref. [71], Al equals 1 for all values of l.

4.2 The lowest eigenvalue is negative

The second case deals with negative values of ω2
l , thus the solitary wave is linearly unstable. Let

us assume that the static pulse solution of the nonlinear Klein-Gordon has the form

φst(x) =
1

coshn(x)
, (4.17)

where the parameter n is determined a posteriori. Using the relationship (2.15), this condition
implies that

U(φ) =
n2

2
φ2
(

1− φ2/n
)
. (4.18)

The envelope part of the NLS soliton with arbitrary power-law nonlinearity |Ψ(x)|2/n is rep-
resented by Eq. (4.17) since it satisfies the nonlinear Klein-Gordon equation (1.2), where the
potential is given by Eq. (4.18) [53]. However, the stability of the NLS soliton is determined by a
more complex eigenvalue problem than that represented by Eq. (3.1), see Chapter 4 of Ref. [53].
The investigation of the stability of the solution (4.17) leads to the Sturm-Lioville problem (3.1),
where U ′′(φ) = n2 − (n+ 1)(n+ 2)φ2/n. By comparing this expression with Eqs. (3.2)-(3.4), we
obtain n = l−1, and ω2

ph = (l−1)2 (l ≥ 2). From the above analysis, the discrete frequencies are
represented by ω2

κ = ω2
ph−κ2, where κ = 1, 2, · · · , l. Clearly, the frequency ω2

l = (l−1)2− l2 < 0
and all pulses (4.17) are unstable. The question therefore arises as to whether there is any way
to stabilize the pulses.

5 Control of stability

The purpose of this section is to obtain stable pulses, associated to the nonlinear Klein-Gordon
potential, with the help of an inhomogeneous force f(x). A similar procedure has been suc-
cessfully considered in Refs. [72, 73] to control the existence of internal modes associated to
topological solitons in the perturbed ϕ4-potential and in the inhomogeneous sine-Gordon equa-
tion. For instance, let’s consider the following nonlinear Klein-Gordon equation with an external
force

φtt − φxx +
dU

dφ
= f(x), (5.1)

where U is the φ3 potential given by Eq. (4.18) by setting n = 2. The unstable static pulse
solution, when f(x) = 0, has the form φst(x) = 1/ cosh2(x). Straightforward calculations show
that the pulse

φ(x) = aφst(b x), (5.2)

with positive constants a and b, is the solution of Eq. (5.1) whenever

f(x) =
2a

cosh4(bx)

[
1− 3 a+ 2b2 + (1− b2) cosh(2bx)

]
. (5.3)

In order to study the stability of the pulse (5.2), the methodology of Section 2 is applied. Hence,
Eq. (5.1) is linearized around the pulse, that is, the expansion (2.11) is inserted in Eq. (5.1). The
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function Ψ(x, t) satisfies Eq. (2.12). Finally, by assuming the ansatz (2.13), the function ψ(x)
satisfies the Sturm-Liouville problem (2.14).

By inserting the pulse (5.2) into the second derivative of the potential, it has the form

U ′′[φ(x)] = 4− 12 a

cosh2(b x)
. (5.4)

By assuming the change of variable X = b x, the Sturm-Liouville problem reads

ψXX +

[
ω2

b2
− 4

b2
+

12 a

b2 cosh2(X)

]
ψ = 0. (5.5)

For certain values of a and b, the sech2(x) potential becomes the Pöschl-Teller potential, that is,

12 a

b2
= l (l + 1). (5.6)

There are two different ways to stabilize the pulse. To start with, the value of b is fixed, for
instance as b = 1. This implies that the lowest phonon frequency is ωph = 2. The discrete set of
frequencies is given by

ω2 = ω2
ph − κ2,

where κ = 1, 2, · · · , l. Demanding stability, all values of ω2 should be non-negative. This implies
that min(ω2) = 4 − l2 ≥ 0, i.e. either l = 1 (a = 1/6) or l = 2 (a = 1/2). In particular, the
discrete mode for the case l = 1 reads

ψ1(x) = e−xP
(1,−1)
1 (tanhx) =

1

cosh(x)
, ω2

1 = 3, (5.7)

while the continuous spectrum is represented by

ψk(x) = eikx [tanh(x)− i k], ω2
k = 4 + k2. (5.8)

For the case l = 2 (a = 1/2), the solution of the Sturm-Liouville problem is represented by the
expressions (3.34), (3.35), and (3.36). Hence, the two pulses considered are stable.

The second method to stabilize the pulse is to set a, for instance a = 1/3, and to change b in
accordance with Eq. (5.6), where now 4/b2 = l (l+ 1). In this case, the lowest phonon frequency
changes with b, that is, ωph = 2/b. By imposing the condition ω2 ≥ 0 for all frequencies, we
obtain that the integer number l2 ≤ 4/b2. This inequality is satisfied by all integer values of l
(b = 2/

√
l (l + 1)). For instance, if l = 1, then the value of b =

√
2. If l = 2, then the value of

b =
√

2/3. As l is increased, the number of discrete modes grows, b decreases, and the stable
pulse becomes broader.

6 Conclusions

The stability of kinks and pulses of the nonlinear Klein-Gordon Eq. (1.2) is investigated by the
following procedure: (i) It is assumed that its general solution (2.11) is the superposition of the
static solution plus a small perturbation, which depends not only on space, but also on time; (ii)
By substituting this ansatz in Eq. (1.2), the partial differential equation (2.12) that governs the
perturbation is obtained; (iii) The solution of this equation leads to a Sturm-Liouville problem
(3.1), which is solved in a systematic way for the Pöschl-Teller potential −l (l + 1) sech2(x),
l ∈ N.
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The detailed resolution of the Sturm-Liouville problem (3.1) shows that its real eigenvalues are
equal to ω2 = ω2

ph + k2 (squared eigenfrequencies), where ωph is the lowest frequency of the
continuous spectrum, and k2 ∈ R. For k ≥ 0, we obtain the frequencies of the continuous
spectrum ω(k) =

√
ω2
ph + k2. Considering k = iκ, with κ ∈ R, we obtain the frequencies of

the discrete spectrum, ωκ =
√
ω2
ph − κ2. The eigenfunctions of the Sturm-Liouville problem,

up to a normalizing constant, are ψ(x) = expikx P
(−ik,ik)
l [tanh(x)], where P (−ik,ik)

l [tanh(x)] are
the Jacobi polynomials. Interestingly, the degree of the polynomial, l, determines the number
of discrete modes, and the parameter κ takes the values from 1 to l so that the solution of the
Sturm-Liouville problem is bounded.

Furthermore, we establish the orthogonality and completeness relations of this set of eigenfunc-
tions for all values of l ∈ N. These results, mentioned in Ref. [37] for l = 1 and in Ref. [68] for
l = 2, rigorously justify that the solutions of perturbed nonlinear Klein-Gordon equations can
be written as an expansion in the set of these eigenfunctions.

Starting from the Pöschl-Teller potential and using the fact that the translational mode is pro-
portional to the spatial derivative of the kink, we obtain a family of nonlinear Klein-Gordon
potentials. Our procedure has two advantages with respect to the previous studies in Refs.
[48, 49]. First, our analysis is valid for all values of l and the solution of the second-order
differential equation for U(ϕ) is represented in a closed form by Eq. (4.9) in terms of the hyper-
geometric function, where l is a parameter. Second, our approach shows that the sine-Gordon
and ϕ4 kinks are at the bottom of the hierarchy of stable kinks associated with a certain class
of nonlinear Klein-Gordon potentials.

For the values of l = 1 and l = 2, the spectrum related to the sine-Gordon and ϕ4 equations,
respectively, are recovered [37, 22]. Furthermore, we show that, for l > 2, there is a family of kinks
corresponding to Klein-Gordon potentials. The potential for l = 4 is obtained explicitly, whereas
for l = 3 and l ≥ 5, the potentials can be expressed implicitly. Interestingly, we analytically
obtain the kink solutions Eq. (4.3) even when the potential can only be numerically found. The
kinks are stable, and are a linear superposition of two terms: the first is either the sine-Gordon
kink (for l odd numbers) or the ϕ4 kink (for even l), while the second is a localized function.
These kinks resemble the ϕ4 wobbling kinks studied in Ref. [11]. The corresponding spectra
of the Sturm-Liouville problem associated to the stability of these kinks have several internal
modes, some of which have a localized odd eigenfunction, while others have a localized even
eigenfunction.

Finally, we found that if the lowest frequency of the continuous spectrum satisfies ωph < l
(sufficient condition for instability), then the static solution is unstable. This is precisely the
case of all the studied pulses sechn(x) of a family of nonlinear Klein-Gordon equations with a
potential given by Eq. (4.18). We explain how certain inhomogeneous terms can be introduced
into the nonlinear Klein-Gordon equation in order to obtain stable pulses.

To complete our discussion, the following observations are in order:

(1) Not all Sturm-Liouville problems associated to the stability problem of the nonlinear Klein-
Gordon equation lead to the Pöschl-Teller potential (see, for instance, Ref. [23, 74]).

(2) Not all the Sturm-Liouville problems associated with the linear stability of static solutions
of the nonlinear Klein-Gordon equations have been analytically solved. For instance, for
the double sine-Gordon equation [21, 6], only its kink solution and the zero mode of its
associated Sturm-Liouville problem are known. Indeed, by taking the spatial derivative of
its static kink, it has no zeros. According to our results, all the remaining discrete eigen-
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values, if any, are positive, and the double sine-Gordon kink is linearly stable. However,
the computation of the explicit expressions for the remaining eigenfunctions remains an
open problem.

A The orthogonality and completeness relations

In this section, the orthogonality and completeness relations presented in Section 3.3 are deduced.
In order to achieve our goal, the theory of the one-dimensional Schrödinger equation, developed
in Chapter 3§2 of Ref. [54], is employed.

Instead of dealing with the function ψ(x, k) given by (3.10) and ψ(x,−k), it is convenient to
use the functions u1(x, k) and u2(x, k), defined below (see Eq. (A.3)). First, two independent
solutions of Eq. (3.1) are introduced, the so-called Jost functions,

f1(x, k) =
ψ(x, k)

P
(−ik,ik)
l (1)

,

f2(x, k) =
ψ(x,−k)

P
(ik,−ik)
l (−1)

, k > 0, (A.1)

with the asymptotics

f1(x, k) = eikx + o(1) as x→∞,
f2(x, k) = e−ikx + o(1) as x→ −∞. (A.2)

Subsequently, using Eq. (2.12) on page 159 of Ref.[54], the transmission coefficient a(k) is
defined,

a(k) :=
1

2ki
W [f1(x, k), f2(x, k)] = −

A2
l,k

P
(−ik,ik)
l (1)P

(ik,−ik)
l (−1)

,

for k > 0, where Al,k is given by Eq. (3.15). According to Theorem 2.3 on page 165 in Ref. [54],
the new functions

u`(x, k) =
f`(x, k)

a(k)
, ` = 1, 2, k > 0,

u`(x, 0) = P
(0,0)
l (tanhx), (A.3)

together with the eigenfunctions corresponding to the discrete spectrum (3.26), constitute an
orthogonal complete set of functions in L2(R). The orthogonality reads∫

R
ψκ(x)ψν(x)dx = δκ,ν ,

∫
R
ψκ(x)u`(x, k)dx = 0, (A.4)

1

2π

∫
R
u`(x, k)uι(x,m)dx = δ`,ιδ(k −m), (A.5)

where ν, κ = 1, 2 . . . , l; `, ι = 1, 2; k,m ≥ 0; δκ,ν is the Kronecker delta, and δ(x) denotes the delta
Dirac function (which is not actually a function, but a distribution, and hence Eq. (A.5) should
be understood in the distributional sense). For an introduction to the theory of distribution see
e.g. Ref. [75].

On the other hand, for all Φ(x) ∈ L2(R), one has the expansion [54]. Recall that Eq. (2.25), on
page 165 of Ref. [54], which is a completeness relation, is proved for Φ ∈ C2

0 (R) (twice contin-
uously differentiable functions on R with compact support). However, since C∞0 (R) (infinitely
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differentiable functions on R with compact support) is a subset of C2
0 (R) and C∞0 (R) is dense

in L2(R), then C2
0 (R) is dense in L2(R) and therefore the following expansion is true for all

Φ ∈ L2(R)

Φ(x) =
1

2π

2∑
`=1

∫ ∞
0
c`(k)u`(x, k)dk +

l∑
κ=1

cκψκ(x), (A.6)

where

c`(k) =

∫
R
u`(y, k)Φ(y)dy,

cκ =

∫
R
ψκ(y)Φ(y)dy.

Formula (A.6) is the so-called completeness relation for the set {u1, u2}k≥0 ∪{ψκ}κ=1,...,l. It can
also be written in the distributional sense as follows (see Remark on page 168 in Ref. [54]):∫ ∞

0

2∑
`=1

[
u`(x, k)u`(y, k)

]
dk +

l∑
κ=1

ψκ(x)ψκ(y) = δ(x− y). (A.7)

The above orthogonality and completeness relations can be written in a compact form. Notice
that the integrands of the first terms in Eq. (A.6) are

c`(k)u`(x, k) =

(∫ ∞
0

u`(y, k)Φ(y)dy

)
u`(x, k), ` = 1, 2.

Using |P (ik,−ik)
l (−1)|2 = |P (−ik,ik)

l (1)|2 = A2
l,k, it is straightforward to deduce that

u1(y, k)u1(x, k) =
ψ(y, k)ψ(x, k)

A2
l,k

, (A.8)

u2(y, k)u2(x, k) =
ψ(y,−k)ψ(x,−k)

A2
l,k

.

Using the above identities and changing k → −k in the second integral of Eq. (A.6), this
expression becomes

Φ(x) =
1

2π

∫
R

[
A−2l,k

(∫
R
ψ(y, k)Φ(y)dy

)
ψ(x, k)

]
dk (A.9)

+

l∑
κ=1

(∫
R
ψκ(y)Φ(y)dy

)
ψκ(x).

From the above equation it follows that the set of functions defined by Eqs. (3.26)-(3.27) sat-
isfies the completeness relation (3.28) and its equivalent expression (3.29). In a similar way the
orthogonality relations (A.4)-(A.5) become the relations (3.30)-(3.31), respectively.

The set of functions defined by Eqs. (3.26) and (3.27) that satisfy the relations (3.29), (3.30),
and (3.31) are those used in the theory of the nonlinear Klein-Gordon Eq. (1.2).
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