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Simulating key properties of lithium-ion batteries with a fault-tolerant quantum computer
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There is a pressing need to develop new rechargeable battery technologies that can offer higher energy storage,
faster charging, and lower costs. Despite the success of existing methods for the simulation of battery materials,
they can sometimes fall short of delivering accurate and reliable results. Quantum computing has been discussed
as an avenue to overcome these issues, but only limited work has been done to outline how it may impact battery
simulations. In this work, we provide a detailed answer to the following question: how can a quantum computer
be used to simulate key properties of a lithium-ion battery? Based on recently introduced first-quantization tech-
niques, we lay out an end-to-end quantum algorithm for calculating equilibrium cell voltages, ionic mobility, and
thermal stability. These can be obtained from ground-state energies of materials, which are the core calculations
executed by the quantum computer using qubitization-based quantum phase estimation. The algorithm includes
explicit methods for preparing approximate ground states of periodic materials in first quantization. We bring
these insights together to estimate the resources required to implement a quantum algorithm for simulating a
realistic cathode material, dilithium iron silicate.
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I. INTRODUCTION

Lithium-ion batteries have revolutionized portable elec-
tronic devices, allowing them to operate independently, safely,
and over an extended period of time during multiple charg-
ing cycles [1–6]. Rechargeable batteries are also expected to
play a central role in powering transportation and facilitat-
ing energy storage from renewable resources [7–10]. Despite
their current remarkable performance, there is an increasing
demand for new battery technologies that can deliver longer
lifetimes, faster charging, higher capacity, and lower costs
[11–14].

To achieve this goal, an interdisciplinary effort is cru-
cial to discover new materials [15] and to understand their
performance for batteries. Anchored by computer simulation
methods, important steps have been taken towards reducing
the overall cost associated with discovering and commercial-
izing new materials. Electronic structure methods to simulate
materials are widely employed to study the building blocks
of commercial batteries: an electrochemical cell consisting of
two electrodes, the anode and the cathode, separated by an
electrolyte [7,10,16].

*These authors contributed equally.
†juanmiguel@xanadu.ai

The ability to accurately compute ground-state energies of
battery materials is important to derive key properties that
define their performance. For example, accurate electronic
structure calculations aid in the discovery of materials for
high-energy cathodes [17,18], better anodes that enable faster
charging [19], and more stable electrolytes [20]. Extending
the lifespan of commercial batteries while maintaining their
safe operation requires understanding how to suppress the
reaction mechanisms driving the loss of ions and the degrada-
tion of the electrode active materials [21,22]. For example, the
growth of the solid electrolyte interphase consumes lithium
ions which may result in a significant capacity loss [23,24],
and the electrochemical reduction of degraded oxide-based
cathodes can lead to ignition of the electrolyte [25]. These
simulations involve large-scale and costly computations to
predict stable structures, phases, and properties of new ma-
terials [26,27].

Density functional theory (DFT) methods [28,29] have
been central to making progress in the simulation of bat-
tery properties at the atomistic level [30]. However, DFT
requires access to the exchange and correlation energy density
functionals which are only approximately known. Despite
the fact that a diverse landscape of different functionals
has been developed [31], DFT has limitations which pre-
vent it from tackling key battery properties, especially those
requiring highly accurate electronic structure calculations
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of materials characterized by strong electronic correlations
[17,30].

The local density and the generalized gradient approxima-
tions (LDA and GGA) to the exchange-correlation functionals
have been extensively used in materials science due to their
favorable computational performance [30–32]. Unfortunately,
it is well known that they suffer from self-interaction error
[33], which can lead to very inaccurate values of the absolute
energy of the system. This is particularly critical to simulate
battery properties derived from the difference of the total ener-
gies of the material computed for different electronic phases,
which lacks error cancellations. For example, predicting the
cell voltage requires computing the lithium insertion energy
into a transition metal oxide cathode. In this case LDA/GGA
approximations introduce large deviations in the computed
voltage of up to 1 V [30]. Alternatively, the DFT+U method
[34] has been used to partially mitigate this problem. Inspired
by the Hubbard model, this approach aims at capturing the
effects of local electronic correlations in the transition metal
by incorporating a Hubbard-like term in the DFT formulation
[34]. However, the improvements in the simulated quantities
comes at the price of using specific values of the Hubbard pa-
rameter U which are strongly system-dependent. LDA/GGA
self-interaction error can also be reduced by using hybrid
functionals which incorporate a fraction of the exact exchange
from Hartree-Fock theory [35]. However, hybrid functionals
also contain an adjustable parameter to select the amount of
exact exchange to be included in the calculation, and their
computational performance scales poorly with the system
size. Overall, these corrections to DFT approximations reduce
the deviations in the predicted cell voltages to about 0.2 V
[30,36] with the limitations mentioned above.

Quantum computing is a fundamentally different approach
to the simulation of quantum systems that may be capable
of overcoming some of the limitations of DFT approxima-
tions [37–40]. Quantum algorithms are known to be capable
of performing electronic structure calculations with chemical
accuracy using time and memory resources that scale only
polynomially with system size [41–43]. One of the most im-
portant of these algorithms, and the one we will analyze in
this review, is the phase estimation algorithm, which allows
recovering Hamiltonian eigenvalues as phases appearing in
the Hamiltonian simulation of time evolution [44]. Neverthe-
less, as with any emerging technology, quantum computing
also faces several challenges. To fully unlock the potential
of quantum computing, the long-term goal of the field is to
build fault-tolerant devices capable of reliably implementing
sophisticated large-scale quantum algorithms. This is a major
experimental and theoretical effort requiring innovations on
several fronts. While the computational resource requirements
of quantum algorithms have steadily decreased over time [45],
there is still significant room to improve and identify problems
of practical importance where a convincing argument can be
made for the benefits of a quantum approach [38,46–48].

In this work, we combine insights from quantum chem-
istry, materials science, and quantum algorithms to address
the following question: how can a quantum computer be used
to simulate key properties of a lithium-ion battery? Prior
work at the intersection of battery simulation and quantum
computing [6,49] focused mainly on computing ground-state

energies of electrolyte molecules. We instead focus on the
simulation of cathode materials, which is crucial for pre-
dicting important properties of a battery cell. We describe
how the equilibrium cell voltage, ionic mobility, and ther-
mal stability of lithium-ion batteries can be obtained from
ground-state energy calculations of these materials. We then
perform a detailed end-to-end description of a qubitization-
based quantum phase estimation algorithm, which is based on
the first-quantization techniques pioneered in Refs. [43,50].
The description of the algorithm includes an explicit recipe
for preparing approximate ground states in first quantization
and a summary of circuit implementation strategies. Finally,
we apply the quantum algorithm to the concrete case study
of dilithium iron silicate, a realistic cathode material. The
analysis includes an estimate of the resources required to
implement the full quantum algorithm, an estimate that is
performed using the TFermion library [45]. We find that for
≈3 × 105 plane waves and a target precision of ε = 0.043 eV
(chemical accuracy), we would require ≈2.5 × 1013 Toffoli
gates, which would require synthesis times of the order of 1
year using 1 MHz gates. This signals that we need to further
improve the involved algorithms, but also that we are close to
the regime where these algorithms could become practical.

The rest of this paper is organized as follows. Due to the
interdisciplinary nature of this work, we begin in Sec. II with
a comprehensive background on lithium-ion batteries, their
properties, and a description of the specific cathode material
that we will analyze later on, Li2FeSiO4. We then shift gears
in Sec. III and give an end-to-end description of the full quan-
tum algorithm to perform ground-state energy calculation of
cathode materials, including the review of previous work in
Appendix D and Appendix E. It is also in this section where
we explain one of our main contributions, the implementation
of Givens rotations to prepare the Hartree-Fock state in first
quantization. In Sec. IV we study how the quantum algorithm
can be applied to the simulation dilithium iron silicate and
report the results for resource estimation. We conclude in
Sec. V, followed by an outlook of future research directions
in Sec. VI.

II. LITHIUM-ION BATTERIES

This work encompasses technical information from sev-
eral disciplines: materials science, computational chemistry,
battery technologies, and quantum algorithms, as indicated in
Fig. 1. Knowledge from all these fields is important to under-
stand how quantum computing can be used in the context of
battery simulations. While experts might choose to skip some
of these sections, they contain important information that is
widely used throughout this work.

A. Battery properties

Figure 2 depicts the fundamental components of a
rechargeable lithium-ion battery [51]. The battery cell consists
of a positive electrode (cathode) and a negative electrode
(anode) that are electrically isolated by a porous membrane
(separator) and embedded in an ion-conducting material (elec-
trolyte). The conversion of chemical into electrical energy in
a battery cell is driven by the chemical reactions that occur
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FIG. 1. Quantum computing for battery simulations. (a) Sketches
depicting three key properties of lithium-ion batteries that can be
obtained from calculations of the ground-state energies of cathode
materials and isolated molecules (Sec. II). (b) Summary of the main
steps of the first-quantized quantum algorithm implemented in this
work. The ground-state energy E of a given material is obtained
by running a qubitization-based quantum phase estimation (QPE)
algorithm on a quantum computer (Sec. III C). The initial state for
the QPE method is obtained by calculating Hartree-Fock orbitals and
using the quantum computer to prepare the corresponding antisym-
metric Hartree-Fock state (Sec. D 1). (c) Examples of measurable
quantities that can be derived: the cell voltage is given by the differ-
ence between the chemical potentials (μ) of the electrodes computed
from the energy variation (�E ) of the cathode material; the activation
energy (Ea), which is used to predict the ionic mobility; and the
temperature profile that helps to define the battery thermal stability.

at the electrode-electrolyte interface. During discharge, an
oxidation reaction at the anode produces electrons and lithium
ions. The electrons flow via an external circuit and the lithium
ions diffuse through the electrolyte until they get inserted into
the cathode material (intercalation), which is reduced by the
external electrons. During charging, an external voltage is ap-
plied to reverse this process, i.e., the lithium ions are extracted
from the cathode (deintercalation), transported in the opposite
direction, and intercalated into the anode material.

Typically, the cathode contains active materials based on
metal oxides. The main classes of cathode materials are
layered and spinel oxides such as lithium cobalt (LiCoO2)
and lithium manganese (LiMn2O4) oxide cathodes, and the
polyanion materials, e.g., Li2FeSiO4 [52]. Their chemical
composition and main distinguishing features are discussed
in more details in Sec. IV. The commercial active materials of
the anode are typically carbon-based materials, e.g., graphite
and amorphous carbon, as they offer a safe, environmentally
friendly, and cost-efficient option. However, carbon-based an-

cathode anode

separator
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electrons

lithium ions

+ -

negative
collector

positive
collector

FIG. 2. Schematic of a typical lithium-ion battery. The negative
electrode is usually a graphitic carbon that holds lithium ions within
its layers, whereas the positive electrode is a source of lithium ions.
During discharge, lithium ions move within the battery from the
negative to the positive electrode. The process is reversed during
charging. The electrolyte transports lithium ions between the elec-
trodes and the separator functions as a physical barrier keeping
cathode and anode apart. Negative and positive collectors receive
electrons from the external circuit during charging and discharging,
respectively.

odes possess a low specific capacity that lowers the overall
capacity of the battery. Alternatively, silicon, germanium, and
tin have also been actively investigated as high-capacity anode
materials [53]. The electrolyte, whose main role is to effi-
ciently transport lithium ions between the electrodes, typically
consists of a lithium salt such as lithium hexafluorophosphate
(LiPF6) dissolved in high dielectric solvents like ethylene
carbonate [54]. The separator serves as a physical barrier
keeping the cathode and anode apart, preventing the direct
flow of electrons, and allowing only the lithium ions to pass
through. Commercial separators are typically synthetic resins
such as polyethylene (PE) and polypropylene (PP). Typically,
the anode materials offer a higher lithium-ion storage capacity
than cathodes. Therefore, the cathode material is the main
limiting factor in the performance of batteries [55] and also
responsible for up to 50% of the total battery cost [56].

Optimization of lithium-ion battery performance is crit-
ical to developing the next generation of energy storage
systems. Such advances depend not only on the discovery
of novel materials but also on the development of more
accurate methods to simulate key properties of lithium-
ion batteries. The landscape of properties determining their
performance is extremely rich. It includes mechanical and
electrochemical properties, thermal stability of the cathode,
the electrochemical windows of the electrolyte, formation of
the solid-electrolyte interphase, and ionic mobility, among
others [57–60]. Typically, the computational simulation of
these properties requires multiscale approaches combining
electronic structure methods, molecular dynamics, and con-
tinuum models to describe solvation effects [23,30,52]. In this
section, we follow the strategy presented in Ref. [30] and fo-
cus our attention on the equilibrium cell voltage of the battery,
the ionic mobility, and the thermal stability of the cathode
material. We briefly describe these properties and explain how
they can be computed from the ground-state energy of the
cathode material. This section is thus a summary of the main
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results of Ref. [30], where readers can find a more in-depth
discussion of these properties.

1. The equilibrium voltage

The equilibrium voltage is key to determining the amount
of energy that can be stored in a battery in comparison to its
volume (energy density) and weight (specific energy) [61].
The average voltage V of a device that produces electrical
energy from chemical reactions (electrochemical cell) is given
by the Nernst equation [62,63]

V = −�G

nF
, (1)

where n is the number of charges transferred, F is the Faraday
constant, and �G is the variation of the free energy associated
with the cell reaction. For example, for the typical lithium
cobalt oxide LiCoO2 cathode and a metallic lithium anode,
the electrical work generated by the chemical reaction

Lix1 CoO2 + (x2 − x1)Li → Lix2 CoO2 (2)

is determined by the free energy difference

�G = GLix2 CoO2 − GLix1 CoO2 − (x2 − x1)GLi, (3)

where x2 > x1 denotes the number of ions per formula unit in
the cathode material upon lithium insertion. At low tempera-
tures (� 300 K), the thermal and entropic contributions to the
free energy are small [30,64], and the equilibrium cell voltage
is computed in terms of the variation of the internal energy
�E ,

V = − [ELix2 CoO2 − ELix1 CoO2 − (x2 − x1)ELi]

(x2 − x1)e
, (4)

where e is the electron charge. The total energies entering
Eq. (4) are usually obtained from electronic structure calcu-
lations performed using density functional theory methods. In
practice, the average cell voltage is estimated by taking the
energy difference for the extreme cases in which the amount
of intercalated lithium ions in the material’s unit cell is max-
imum (lithiated phase) and minimum (delithiated phase). For
example, predicting the voltage for LiCoO2 requires comput-
ing the energies of two materials with compositions LiCoO2

and CoO2.

2. Ionic mobility

Developing high-power batteries requires using materials
that allow for optimal and stable mobility of the lithium ions
during battery operation [65–67]. To this aim, understanding
the microscopic mechanisms that determine the ionic mobility
in the electrode materials is essential for predicting new mate-
rials with better lithium intercalation rates which can enable,
for example, faster charging regimes [30].

The relevant quantity that characterizes the mobility of the
lithium ions in a given material is the chemical diffusivity D.
In cases where the diffusion mechanisms do not depend on the
temperature, a microscopic model can be used to describe the
hopping of a lithium ion from its original site to a neighboring
vacant site in the crystal structure of the host material. In this
approximation, the diffusivity can be calculated as [68]

D(T ) ≈ a2k(T ), (5)

where a is the hopping distance between two adjacent sites
[69], and k(T ) is the hopping rate given by

k(T ) = ν∗(T )e− (ET−EI )
kBT . (6)

In Eq. 6 ν∗(T ) is the average vibration frequency of the
lithium ions in the material (effective attempt frequency)
[70,71], EI is the total energy of the material when the lithium
ion is in the original site, ET is the energy of the transition state
that has to be overcome during the diffusion, and T and kB are
the temperature and the Boltzmann constant, respectively. For
given initial and final states of the hopping process, there are
efficient methods such as the nudged elastic band approach
[72] to find the transition state along the minimum energy path
of the diffusion process. From Eq. (6), it suffices to compute
the activation energy (ET − EI ) to predict the ionic diffusivity.

3. Thermal stability of cathode materials

There are many different processes that contribute to the
degradation of the battery performance over time. These
include the formation of the solid electrolyte interphase,
degradation of the cathode active materials, lithium plating
on the anode, and growth of lithium dendrites, among others
[21]. Simulating these processes remains a challenge since it
involves bottom-up approaches from the atomic level to the
macroscopic scale [73].

Predicting the thermal stability of the cathode materials
is important to maximize the safety of lithium-ion batteries,
which can be unstable in their charged state. As more lithium
ions are removed from oxide-based cathode materials, they
may degrade to other phases of the material [74]. This phase
transformation, typically driven by an exothermic chemical
reaction, can result in the release of heat and oxygen gas,
which in turn may lead to thermal runaway and combustion
of the electrolyte [25,75].

The reduction chemical reaction for a lithium metal oxide
cathode with composition LixMyOz+z′ , where M refers to one
or multiple transition metals and O refers to oxygen, is given
by [30]

LixMyOz+z′ → LixMyOz+
z′

2
O2. (7)

The free energy change of the reaction in Eq. (7) is given by

�G = −GLixMyOz+z′ + GLixMyOz + z′

2
GO2 . (8)

Under isobaric and isothermal conditions, the free energy
difference �G can be written as

�G = �E + P�V − T �S, (9)

where P is the pressure, �V is the change in the volume of
the material, T is the temperature, and �S is the change in
entropy. The dominant contributions to Eq. (9) come from the
variation of the internal energy �E of the cathode material
and the entropy change due to the release of oxygen gas [74].
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Thus, the reaction free energy can be approximated as

�G ≈ −ELixMyOz+z′ + ELixMyOz

+ z′

2
EO2 − z′

2
T S(O2), (10)

where EO2 is the total energy of the oxygen molecule at zero
temperature and S(O2) is its entropy, which can be obtained
from experimental thermochemistry data [76]. The tempera-
ture for which �G equals zero is the temperature at which the
cathode material becomes unstable and undergoes the degra-
dation reaction in Eq. (7). This temperature can be calculated
from the equation above as

T = −ELixMyOz+z′ + ELixMyOz + (z′/2)EO2

(z′/2)S(O2)
. (11)

Similar to Eq. (4) for computing the equilibrium cell voltage,
Eq. (11) allows us to compute the transition temperature for
a given cathode material by calculating the ground state ener-
gies of different phases of the cathode material and the oxygen
molecule. A key step for assessing the thermal stability of
a cathode material is the construction of a phase diagram
to reliably predict the stability of the reduced phases of the
material [74]. This requires highly accurate calculations of
formation energies which are challenging for current DFT
methods [77].

B. Overview of cathode materials

In this section we provide a summary of the main charac-
teristics of metal oxide cathodes which are discussed more
extensively in Ref. [52]. Exploring new cathode materials
has been crucial to improving the performance of batteries
and lowering their cost. In particular, the ground-breaking
discovery of metal oxide cathodes [78] allowed to signifi-
cantly increase the operating cell voltage, and enabled the
use of graphite anodes to overcome the safety problems
associated with the use of lithium anodes [12]. There are
three classes of oxide cathodes that have been proposed for
battery applications: layered oxides, spinel oxides, and the
polyanion materials [52]. Among the different layered oxide
materials with formula LiMO2, where M indicates a tran-
sition metal, the lithium cobalt oxide LiCoO2 has been a
popular active material for commercial cathodes due to its
high operating voltage, good structural stability and high ionic
mobility [36,79]. However, a large-scale deployment of the
next-generation of lithium ion batteries will benefit from re-
placing cobalt with lower-cost and environmentally friendly
materials.

This has motivated the exploration of novel mixed-metal
layered materials with composition LiNi1−y−zMnyCozO2, the
so-called NMC cathodes [52]. These materials result from the
progressive substitution of cobalt with the more abundant el-
ements manganese and nickel. In these materials, manganese
eases the incorporation of nickel while serving as a structure
stabilizer. Furthermore, they exhibit better chemical stability
against oxygen loss from the cathode crystal lattice at highly
delithiated phases [80]. In general, NMC cathodes show a
high capacity across the full spectrum of compositions, which
make them the leading cathode materials for automotive bat-
teries [56]. Spinel oxides have been also investigated [81,82].

An advantage of the LiMn2O4 spinel oxide is the reduction
in cost when compared with cobalt-based layered oxides. On
the other hand, the number of chemical compositions for
stable spinel-like phases is rather limited. Moreover, they are
typically characterized by a lower cell voltage than traditional
layered oxides [52].

The third class of cathode materials that have been investi-
gated are the polyanion oxides [83,83]. Polyanion materials
based on phosphates with composition LiMPO4 (M = Co,
Ni) offer a promising avenue to increase the cell voltage to
values as high as 5 volts [84]. On the other hand, the or-
thosilicates with stoichiometry Li2MSiO4 (M = Fe, Mn) [85]
have recently attracted significant attention. The landscape of
possible materials opens also the possibility of using them to
develop sodium-ion batteries [86]. Furthermore, an interesting
feature of these materials is the possibility of extracting both
lithium ions via a two-electron redox process, which could
produce a higher capacity as compared to other cathodes [87].

In the next section, we focus on the cathode material
dilithium iron silicate Li2FeSiO4 oxide [85]. This material is
attractive in terms of sustainability since silicon and iron are
among the most abundant elements on earth. Importantly, this
silicate has high thermal stability due to the strong covalent
bond between the silicon and oxygen atoms [88]. We have
also selected this material as our use case because its conven-
tional unit cell is orthogonal and significantly smaller than the
unit cells of NMC cathodes. This facilitates the analysis and
implementation of the quantum algorithm.

C. Analysis of the Li2FeSiO4 material

Dilithium iron silicate belongs to the family of materi-
als with tetrahedral structures [89] where the lithium, iron,
and silicon ions are coordinated by four oxygen atoms that
form a tetrahedron. In general, these structures can be further
classified into two families identified as β and γ . In β-type
structures, all tetrahedra point in the same direction. The γ

polymorphs instead self-assemble in groups of three, with the
central tetrahedron oriented in the opposite direction to the
outer two [87].

The conventional unit cell and the structure of the
Li2FeSiO4 βII -polymorph [90] are shown in Fig. 3. The unit
cell of this material is orthorhombic (stretched cubic lattice
along two of its sides) and the crystal lattice is spanned by
the primitive vectors a1 = a1(1, 0, 0), a2 = a2(0, 1, 0), a3 =
a3(0, 0, 1), where a1 = 5.02 Å, a2 = 5.40 Å and a3 = 6.26 Å
are the lattice constants [91]. The basis consists of sixteen
atoms: four lithium (Li), two iron (Fe), two silicon (Si), and
eight oxygen (O) atoms in the unit cell. The Li, Fe, and Si
ions are tetrahedrally coordinated by the oxygen atoms. From
Fig. 3(b) we see that all tetrahedra point in the same direction,
perpendicular to the close-packed planes. Moreover, along the
a3 direction, the material consists of chains of LiO4 parallel to
alternating rows of SiO4 and FeO4 tetrahedra.

The lithium intercalation into the silicate cathode material
is represented by the chemical reaction

LixFeSiO4 + (2 − x)Li → Li2FeSiO4, (12)

where x in the equation above indicates the number of lithium
atoms that have been removed per formula unit. The analog
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FIG. 3. (a) Conventional unit cell for the dilithium iron silicate
Li2FeSiO4 cathode material [90]. (b) Crystal structure of the βII

polymorph where all tetrahedra point in the same direction. Along
the a3 direction, chains of LiO4 (green) are parallel to rows of
alternating SiO4 (blue) and FeO4 (brown) tetrahedra representing the
fourfold coordination of the lithium, silicon, and iron atoms by the
oxygen atoms located at the vertices. This figure was produced using
the VESTA package [92].

of Eq. (4) to compute the equilibrium cell voltage for this
cathode material is given by

V = − [ELi2FeSiO4 − ELixFeSiO4 − (2 − x)ELi]

(2 − x)e
. (13)

Equation (13) can be evaluated for the lithiated (Li2FeSiO4)
and delithiated (LiFeSiO4) phases of the material, where the
latter is produced by removing one lithium atom per formula
unit.

In practice, the total energies entering Eq. (13) are typi-
cally obtained from first-principles density functional theory
(DFT) calculations. Previous DFT simulations for this mate-
rial have underestimated the experimental voltage (∼3.10 V)
by roughly 0.4–0.7 V [93–95]. The large deviations have been
ascribed to the self-interaction error of semi-local functionals
and the lack of error cancellations in Eq. (13), as mentioned in
the introduction. Authors in Ref. [91] have used the DFT+U
correction to predict a more accurate voltage which is 0.24 V
above the experimental value [93].

III. QUANTUM ALGORITHM FOR BATTERY
SIMULATION

The quantum algorithm takes as input the Hamiltonian
describing the interacting electrons in the material’s unit
cell and produces an estimate of its smallest eigenvalue, the
ground-state energy. A method to represent and construct
Hamiltonians is required, which should be tailored to the
quantum algorithm. We define the electronic Hamiltonian in
Sec. III A and explain why a first-quantization approach in
a plane-wave basis [96] is well suited for simulating battery
materials. As described in the literature [41,97], the quantum
phase estimation algorithm requires a method to prepare an
approximate ground state to be used as input. This is chal-
lenging to perform both for periodic materials and in first
quantization, so care must be taken to understand suitable
methods for doing so. This is discussed in Sec. III B, where
we outline the Hartree-Fock method for periodic materials
and describe strategies for preparing the resulting Hartree-
Fock state on a quantum computer. Finally, we outline how

the qubitization formalism [98] can be used to encode the
Hamiltonian into a suitable unitary. We employ the results of
Ref. [43] to analyze the overall complexity of the algorithm
and to compile all operations into a universal set of quantum
gates compatible with fault-tolerant architectures.

A. First-quantized plane-wave Hamiltonians and wave functions

In the quantum phase estimation algorithm, there are three
main choices to be made:

(1) The Hamiltonian simulation technique used to encode
Hamiltonians into unitaries. Widely studied approaches in-
clude Trotterization [99], Taylor series [100], qubitization
[98], or interaction picture simulation [101].

(2) The state and Hamiltonian representation. This includes
a choice between first or second quantization and potentially
also a specific fermion-to-qubit mapping such as Jordan-
Wigner [102] or Bravyi-Kitaev [103].

(3) The basis functions used to represent the state and
the Hamiltonian. For material simulations, this is a choice
between plane wave functions or localized atom-centered
orbitals typically expanded in terms of contracted Gaussian
functions [104,105].

Plane waves are suited for the study of periodic systems
and lead to compact representations of Hamiltonians. The
challenge is that many plane waves are required to reach
high accuracy, which leads to a prohibitively large number
of qubits in second quantization. This motivates the choice
of first-quantization techniques for materials simulation [43].
Finally, the qubitization approach, which is further described
in Sec. III C, has the advantage that the desired unitary
can be implemented exactly using a number of gates that
scales linearly with the number of particles in the system,
up to polylogarithmic factors [43]. Therefore, we focus on
qubitization-based quantum phase estimation algorithms for
first-quantized Hamiltonians represented in a plane-wave ba-
sis. We explain these concepts in more detail below.

The atomic structure of a cathode material is defined by its
unit cell consisting of a group of atoms that can be translated
in space to span the entire crystal. The electronic structure
of the material can be obtained by solving the Schrödinger
equation within the unit cell by imposing periodic boundary
conditions. In the Born-Oppenheimer approximation [106]
the Hamiltonian describing the interacting electrons in the unit
cell is given by

H = T + U + V, (14)

where T and V are the kinetic energy and the electron-electron
interaction operators, respectively, and U is the Coulomb
electron-nuclei interaction term; see Appendix C.

Any complete set of basis functions can be used to repre-
sent the first-quantized Hamiltonian H . However, for periodic
systems, using plane waves with the periodicity of the un-
derlying lattice is a natural choice. More importantly, as we
describe in Sec. III C, they significantly simplify the resulting
expression for the Hamiltonian, which is beneficial to imple-
ment the quantum algorithm.

Plane-wave functions are defined as

ϕp(r) = 1√
�

eiGp·r, (15)
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where � is the volume of the unit cell and the wave vector Gp

is a reciprocal lattice vector (see Appendix A 1). For the case
of an orthogonal lattice, we define

Gp = 2π
[ p1

a1
,

p2

a2
,

p3

a3

]
, (16)

p ∈ G =
[
−N1/3

2
+ 1,

N1/3

2
− 1

]3

, (17)

where a1, a2, a3 are the lattice constants, N is the total number
of plane waves, and the set G contains integer vectors defining
a grid of points in the reciprocal lattice. Note that Eq. (17)
assumes a uniform distribution of points along the three or-
thogonal axes.

In first quantization, the wave function of η electrons
in a basis of N single-particle wave functions (orbitals) is
represented by directly specifying the single-particle state oc-
cupied by each electron: we employ η registers each of size
n = 	log N
, where the computational basis of each register
enumerates the single-electron states.

A general wave function for a system of interacting parti-
cles is written as a sum of weighted Slater determinants of η

electrons in N orbitals:

|ψ〉 =
∑

i∈(N
η )

ciA(|pi1 , . . . , piη 〉), (18)

where
∑

i |ci|2 = 1 with the index i denoting a choice of η

occupied orbitals,

A : |pi1 , . . . , piη 〉 →
∑
σ∈Sη

(−1)π (σ )

√
η!

|σ (pi1 , . . . , piη )〉 , (19)

is the antisymmetrization operator, Sη is the symmetric group
on η elements, π (σ ) is the parity of the permutation, and
|pi1 , pi2 , . . . , piη 〉 = |pi1〉 |pi2〉 . . . |piη 〉 is an ordered product
state of η registers with n qubits each. The number of
qubits needed to represent the state scales logarithmically
with N , requiring 3η	log(N1/3 + 1)
 qubits, while a second-
quantization approach would require N qubits.

B. Initial state preparation

The quantum phase estimation algorithm requires an in-
put state with sufficiently large overlap with the true ground
state. In most quantum algorithms for quantum chemistry,
this is done by preparing a state of noninteracting electrons
described by single-particle wave functions (orbitals) that are
optimized using the Hartree-Fock method [107]. This state
is usually referred to as the Hartree-Fock state. In second
quantization and the molecular orbital basis, the Hartree-Fock
state is straightforward to prepare since it is a computational
basis state with no entanglement between qubits. The situation
is more complicated when studying periodic materials in first
quantization using a plane-wave basis. Here we need to apply
the Hartree-Fock method to extended materials and provide
an algorithm to prepare the resulting Hartree-Fock state in a
plane-wave basis, which must be explicitly antisymmetrized.
Thus, we have to carry out two main tasks: first, we generate
an antisymmetrized state representing the Hartree-Fock state
in the molecular orbital basis. Then, we will rotate the basis to

FIG. 4. Antisymmetrization circuit. Example of an antisym-
metrization circuit for three electrons. The operation C represents
a comparison test controlled on the two registers that are being
compared. The seed register is measured in order to postselect on
the collision-free subspace. The Z gates perform the phase flip when
swapping two registers. At the end of the circuit, the auxiliary record
qubits (bottom register) can be discarded as they are disentangled
[41]. This circuit can be extended to an arbitrary number of electrons
η by increasing the size of the sorting network and adding additional
auxiliary qubits for each required comparison and swap.

plane waves, ensuring that antisymmetrization is preserved in
the process.

For the former, a very efficient protocol was proposed
in Ref. [41], which can be used for any ordered state
|pi1〉 |pi2〉 · · · |piη 〉 with pi1 < · · · < piη . Its key idea is to
save into auxiliary qubits the ordering process of a symmet-
ric state. Such qubits can then be used to antisymmetrize
|pi1〉 |pi2〉 . . . |piη 〉, by reversing the ordering procedure, as de-
picted in Fig. 4. We review this procedure in more detail in
Appendix D 1.

The second step key step we have to implement is the basis
rotation from the molecular orbital to the plane wave basis.
This task too has been discussed in the literature [108–110].
According to the Thouless theorem, a basis change can be
written as the exponential of a sum of single particle fermionic
excitation operators [111], as described in Eq. (D8),

U (u) = e
∑

pq[ln u]pqa†
paq . (20)

The rotations that these operators implement are called single-
particle Givens rotations. In the Appendix D 2 we describe the
Ref. [110] method to find a product of such Givens rotations
decomposing U (u), thus allowing its implementation via local
unitary gates. Overall, this will require applying η(N − η)
rotations, between η initially occupied orbitals, and N − η

unoccupied ones.
One of the main contributions of our paper is showing

how to implement the Givens rotations in first quantization,
and illustrating how this preserves the antisymmetry of the
state. We begin by describing how this rotation acts in second
quantization, derive its action in first quantization, and finally
discuss its implementation algorithm. Consider a basis state in
second quantization a†

p1
· · · a†

pη
|�〉, where the orbital indices

p j are distinct and |�〉 is the vacuum state. For this state,
Rpq(θpq) acts as the identity if none or both of p, q are in
{p1, . . . , pη}. Otherwise, it applies the rotation

RY (θpq) =
(

cos(θpq) sin(θpq)
− sin(θpq) cos(θpq)

)
, (21)
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FIG. 5. Circuit diagram of an example controlled rotation
RY (θpq ). The rotation is performed on the subspace spanned by
|p〉 = |0101〉 and |q〉 = |0010〉. The following procedure is applied
to the bits where they differ, namely, the last three qubits. First,
we apply X gates such that |p〉 → |0000〉 and |q〉 → |0111〉. Then
CNOT gates map these states to |0000〉 and |0100〉 respectively. This
allows us to perform a rotation on the second qubit controlled on the
auxiliary qubit |∑ bi mod 2〉a. Finally, the CNOTs and X gates are
uncomputed, yielding the desired controlled rotation on the subspace
span{|p〉 , |q〉}.

where the rows and columns correspond to (a†
p, a†

q ). For
example, for η = 2 and three orbitals p, q, s, we have
Rpq(θpq)a†

s a†
q |�〉 = cos(θpq)a†

s a†
q |�〉 − sin(θpq)a†

s a†
p |�〉.

A Givens rotation in first quantization must preserve the
basis of antisymmetrized states A(|p1, . . . , pη〉). Consider
the operator B : a†

p1
· · · a†

pη
|�〉 → A(|p1, . . . , pη〉) that maps

states in both representations. The transformation of interest
in first quantization is then given by BRpq(θpq)B†, which we
denote by R(1)

pq (θpq). The previous example expressed in first
quantization is then R(1)

pq (θpq)A(|s, q〉) = cos(θpq)A(|s, q〉) −
sin(θpq)A(|s, p〉).

To discuss the quantum circuit implementation, we extend
the definition of R(1)

pq (θpq) to the full Hilbert space spanned
by the states |p1, . . . , pη〉. The action on |p1, . . . , pη〉 is the
following. If p j ∈ {p, q} for exactly one j, it acts as the
rotation RY (θpq) on the subspace span{|p〉 , |q〉} of the jth
register; otherwise it acts as the identity. This is indeed an
extension of the operator by linearity. In our example, we
have R(1)

pq (θpq) |s, q〉 = cos(θpq) |s, q〉 − sin(θpq) |s, p〉 and it is
straightforward to compute R(1)

pq (θpq) |q, s〉, then subtract both
states to derive the equation we wrote for R(1)

pq (θpq)A(|s, q〉).
We now describe how to implement the action of R(1)

pq (θpq)
on |p1, . . . , pη〉:

(1) Initialize η auxiliary qubits in the state |0〉1 . . . |0〉η.
(2) For 1 � j � η: If p j ∈ {p, q}, flip the auxiliary qubit

|0〉 j to |1〉 j .
(3) For 1 � j � η − 1: Controlled on the auxiliary qubit

|b j〉 j , swap the jth and ηth register.
(4) The auxiliary qubits are now in some state

|b1〉1 . . . |bη〉η, where each b j indicates if p j ∈ {p, q}.
Controlled on the parity of

∑η

i=1 bi, apply RY (θpq) on
the subspace span{|p〉 , |q〉} of the ηth register. This step
is illustrated for an example in Fig. 5 and can be easily
generalized.

(5) Undo the controlled swaps and uncompute the auxil-
iary qubits by applying the same operators in steps 2 and 3.

When |p1, . . . , pη〉 contains none or both of p, q, we get∑
bi = 0 (mod 2). Thus, no rotation happens in step 4. After

undoing the swaps and flips we return to the initial state, hence
acting as the identity. Now assume pj ∈ {p, q} for exactly

one 1 � j � η. Then
∑

bi = 1 (mod 2), as b j = 1 and all
others are zero. Thus the rotation is done on pj since p j will
be located on the ηth register after step 3. After undoing the
swaps, we get the desired state.

C. Qubitization-based quantum phase estimation

We now focus on the most expensive part of the quantum
algorithm, quantum phase estimation. The first step is to iden-
tify a method for encoding the Hamiltonian into a suitable
unitary. Although there are several strategies to achieve this,
the qubitization approach of Ref. [98] is particularly appeal-
ing because the resulting unitary can be implemented exactly
without the need for any approximation.

The qubitization-based encoding proceeds as follows. A
Hamiltonian can be written as a linear combination of
unitaries

H =
∑

�

α�H�, (22)

where each H� is a unitary operator and we set α� > 0, which
can always be ensured by absorbing the phase inside the
unitaries. The main strategy is to implement the operator
e−i arccos(H ). This can be done exactly using the quantum walk
operator [41]

Q = (2 |0〉 〈0| − I )PREP†
H SELH PREPH , (23)

which acts on the system register and an additional auxiliary
register. The prepare operator is defined as

PREPH |0〉 |ψ〉 =
(∑

�

√
α�

λ
|�〉

)
|ψ〉, (24)

where |ψ〉 is an arbitrary state and λ = ∑
� α�. The select

operator is defined as

SELH =
∑

�

|�〉〈�| ⊗ H�. (25)

If |�k〉 is an eigenstate of H with eigenvalue Ek , the oper-
ator Q performs the transformation

Q|0〉|�k〉 = Ek

λ
|0〉|�k〉 −

√
1 −

(
Ek

λ

)2

|ψ⊥〉, (26)

where |ψ⊥〉 is some state orthogonal to |0〉|�k〉. Defining
cos(θk ) = Ek

λ
, a similar calculation can be performed to derive

the action of Q on |ψ⊥〉, leading to the following result:

Q|0〉|�k〉 = cos(θk )|0〉|�k〉 − sin(θk )|ψ⊥〉,
Q|ψ⊥〉 = cos(θk )|ψ⊥〉 + sin(θk )|0〉|�k〉. (27)

The operator Q is therefore block-diagonal, with each
block Qk corresponding to a two-dimensional subspace Wk =
span{|0〉|�k〉, |ψ⊥〉} that effectively forms a qubit, hence the
name “qubitization.” Diagonalizing the two-dimensional sub-
matrices Qk leads to a spectral decomposition [41]

Qk = eiθk |θk〉〈θk| + e−iθk |−θk〉〈−θk|, (28)

where |±θk〉 are the eigenstates of Qk . By using quantum
phase estimation on Q with an initial state close to the ground
state |0〉|�0〉 = α|θk〉 + β|−θk〉 for some coefficients α and
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β, we obtain an estimate of θk with probability |α|2 and an
estimate of −θk with probability |β|2. For the ground state,
either result allows retrieval of the ground-state energy since
cos(±θ0) = E0/λ.

To estimate the total cost of quantum phase estimation it
suffices to focus on three key factors. The first one is the
target accuracy, which may depend on the application but is
ultimately chosen by the user. The second is the parameter
λ = ∑

� α�, which can be viewed as the one-norm of the
Hamiltonian, as described in Eq. (26). It is a crucial quantity
in the complexity of quantum phase estimation because it
effectively sets the energy scale of the problem: E0/λ has to
be estimated with sufficient precision to recover E0 with the
desired error ε, which is challenging if λ is large. Overall, this
means O(λ/ε) calls to a circuit implementing the qubitization
operator are needed [41]. The value of λ can be calculated by
adding the amplitudes for each component of the Hamiltonian
[43]:

λT :=
∑
�T

α�T = 6ηπ2

�2/3
(2np−1 − 1)2 = O

( η

�2

)
, (29)

λU :=
∑
�U

α�U = η
∑

I ZI

π�1/3
λν = O

(
η2

�

)
, (30)

λV :=
∑
�V

α�V = η(η − 1)

2π�1/3
λν = O

(
η2

�

)
, (31)

it is possible to gradually increase where

λν =
∑
ν∈G0

1

‖ν‖2
, � =

(
�

N

)1/3

. (32)

Finally, a key result in Refs. [43,50] shows that for
fermionic Hamiltonians in first quantization, it is possible to
implement the qubitization operator using circuits of depth
Õ(η), where the tilde means that polylogarithmic terms are
omitted. In fact, the leading cost subroutine in quantum phase
estimation are several controlled swaps with cost adding up
to 12ηnp. These controlled swaps are used to place the jth
electron plane wave |q〉 j and ith electron plane wave |p〉i in
auxiliary registers where translations of the lattice or phases
are applied in [see, e.g., (E14) and (E11)]. The resulting
factors must be later swapped back to their corresponding
registers. The PREP operator subroutines, in contrast, might
be technically more convoluted, such as the momentum state
preparation explained in Appendix E 5. However, they are
also less expensive as they avoid the η multiplier, and in-
stead depend only on several number of qubit factors, such
as np which are typically polylogarithmic in N and smaller.
A detailed description of each of these steps can be found in
Appendix E.

Overall, this leads to a total complexity Õ(ηλ/ε) for the
qubitization-based quantum phase estimation algorithm. More
specifically, by setting � = O(η), the asymptotic complexity
of the algorithm is

Õ

(
η4/3N2/3 + η8/3N1/3

ε

)
. (33)

Moreover, taking constant resolution � = O(N ), i.e., � =
O(1), results in a scaling Õ(η3/ε) that grows only polylog-
arithmically in N .

IV. RESOURCE ESTIMATION

In this section, we discuss the gate cost, qubit cost, and
estimated runtime of implementing the quantum algorithm for
calculating the ground-state energy of the Li2FeSiO4 cathode
material. All calculations to derive these costs have been car-
ried out using the TFermion library [45].

1. Gate cost

In the setting of fault-tolerant quantum computing, it is
customary to distinguish between Clifford gates, which satisfy
symmetry properties that make them easier to implement,
and non-Clifford gates, which are much more expensive and
therefore carry the leading cost of the quantum computation
[112]. Typically T gates or Toffoli gates are the non-Clifford
gates considered in practical error-correcting codes such as the
surface code [113]. Non-Clifford gates are expensive because
they cannot be transversely and fault-tolerantly implemented
in two-dimensional codes [114,115], the codes with the
most favorable thresholds. Consequently, their fault-tolerant
implementation requires either “code switching” [116] to
three-dimensional codes [117,118] for the T or Toffoli gates,
or a process known as magic state distillation which usu-
ally has a lower overhead [119]. Magic state distillation can,
however, require many physical qubits and rounds of error
detection within such codes, during which Clifford operations
can be applied in parallel [50].

The most expensive step of the algorithm is performing
qubitization-based quantum phase estimation. The central re-
sult of Ref. [43] is an explicit and general formula for the
number of Toffoli gates required to implement this algorithm
for a first-quantized Hamiltonian. For clarity, we have repro-
duced it fully in Eq. (F1) in Appendix F, and summarize it
here by writing the leading terms. By taking only these leading
terms, the number of Toffoli gates required is equal to⌈

πλ

2εQPE

⌉
[12ηnp + polylog(η, N, ε) + λZ + Er(λZ )], (34)

where we recall np = 	log(N1/3 + 1)
 is the number of qubits
needed to represent a component of the signed plane-wave
index, λZ = ∑

I ZI is the sum of nuclear charges, εQPE is
the accuracy of quantum phase estimation, and Er(x) =
minm(2m + 	2−mx
). The dominant term in the cost of the
algorithm is the prefactor λ, which depends on the number
of particles η, the success probability of the momentum state
preparation, and on the spacing parameter � = ( �

N )1/3 in the
cell. This λ is not exactly λT + λU + λV , but has to be slightly
increased to take into account some failure probabilities and
implementation decisions; for a more detailed discussion see
Ref. [43], Eqs. (116)–(124). In the case of Li2FeSiO4, the
cell consists of η = 156 electrons and has dimensions 5.02 ×
5.40 × 6.26 Å3, amounting to � ≈ 1145a3

0, where a0 is the
Bohr radius.
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FIG. 6. Non-Clifford gate cost for initial state preparation and quantum phase estimation. (a) The non-Clifford gate cost due to Givens
rotations used in the circuit for initial state preparation. (b) Toffoli gate cost of the quantum phase estimation algorithm. All calculations are
done for the unit cell of Li2FeSiO4 with 156 electrons. The total number of qubits is 2375 for np = 4 and 6652 for np = 9. In the right figure we
depict only Toffoli gate count, as the number of T gates is much smaller (<3 × 105). The total error ε includes contributions from different
approximations throughout the algorithm, but it does not take into account the error derived from a finite basis set. The range of values for
the error ε was set based on the required accuracy for simulating the battery properties described in Sec. II A. While an error in the energy of
the order of 0.1 eV is tolerable for predicting experimental voltages, simulating the ionic mobility and the thermal stability requires a higher
precision of ε ∼ 0.1 mHa = 0.0027 eV. The slope of the Toffoli gate cost for fixed target precision is a consequence of the leading cost term
in (34), 12ηnp	(πλ)/(2εQPE )
, where np = 	log(N1/3 + 1)
. The indicated eV energy precision directly translates into the precision of the
calculated voltage V [see Eq. (13)], as the denominator in that equation represents a multiple of the charge of an electron, in our case 1e. Note
also that in our battery example we would need to compute the energy of both the lithiated and delithiated phase, the latter being cheaper
because of a smaller η. Consequently, the error in both estimations will be added when computing any of the battery properties discussed.
Thus a chemical precision error of ε = 0.043 eV is just under the target voltage error of 0.1 V. These calculations were performed with the
TFermion library [45].

The number of plane waves N is a free parameter of the
algorithm, which can be chosen to achieve a desired basis
error εb in representing wave functions. This error scales as
εb = Õ(1/N ) ([96], Appendix E). While it is difficult to pro-
vide the prefactors required to quantify the basis error exactly
as a function of N , a variety of heuristic guidelines can be em-
ployed. It has been argued that in periodic materials roughly
10–20 times as many plane waves as Gaussians are needed
for the same level of precision [96]. Taking the Dunning basis
sets from cc-pVDZ to cc-pV5Z as a comparison point [120],
we get 104 to 106 plane waves. We can also take the inverse
density of plane waves as a point of reference: � = 10−2a0

is expected to be more accurate than large Gaussian basis
sets [43]. Taking ranges from � ∈ [10−2a0, a0] translates to
N ∈ [103, 109]. Another free parameter of the algorithm is the
target precision εQPE for quantum phase estimation. The error
in the phase estimation can be directly linked to an error in the
voltage estimation using Eq. (13).

Figure 6 represents how the cost of the full algorithm, cap-
tured by the number of Toffoli gates, depends on the number
of plane waves N for different values of the error ε in the
estimated ground-state energy. The values of ε raging from
0.0027 eV to 0.1 eV were chosen according to the required
precision for simulating the battery properties described in
Sec. II A. For the equilibrium cell voltage an error smaller
than 0.1 V is considered to be accurate as this is typically the
estimated error for experimental potentials [36]. Furthermore,
this error is comparable with the small entropic contribution
to the free energy of the cathode material which is often
neglected [64]. On the other hand, for simulating the mobility

of the lithium ions in the cathode we have to compute the
hopping rate k given by Eq. (6). This requires calculating the
activation energy entering the exponential of the equation with
a significantly higher precision of the order of 0.1 mHa =
0.0027 eV [38]. Similarly, classical computations of the tran-
sition temperature in Eq. (11) at which a cathode material
undergoes a degradation reaction, aims at an error of the
order of 20 K [74]. This value translates into an energy error
of 20 K kB ≈ 0.002 eV. If we have access to highly accurate
values for the oxygen molecule entropy [76] the total energy
difference entering the numerator of Eq. (11) would need to be
computed with a similar precision of approximately 0.1 mHa.

The discrete number of qubits required to represent the
quantum state, and its direct relation to the Toffoli cost (34),
suggest using a number of plane waves N translating directly
to integer values of np. Therefore in our resource estima-
tions, we take N = (2np − 1)3 for np ∈ [3, 9]. These resource
estimations differ in two details from the full gate cost equa-
tion presented in Eq. (F1). First, the phase estimation error
εQPE is not the only error source we consider; we also take
into account others due to the finite number of bits used to
represent |m〉 or |RI〉 in the PREPU implementation. We refer
to these as εM and εR respectively. Additionally, we include
the modification needed for dealing with a noncubic unit cell,
as explained in Appendix G.

There is also one subtlety that explains why we only count
Toffoli gates in the phase estimation algorithm. In principle,
there is an important contribution of T gates from the rotations
required to implement e−iGν ·RI , which should be implemented
over all applications of the qubitization operator. However,
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there is a way to avoid such T gates, as shown in Ref. [43]. The
key idea is to perform the addition in the dot product Gν · RI

on a gradient phase state 2−b/2 ∑2b−1
k=0 e−2π ik/2b |k〉. This proce-

dure, via a phase kickback [121,122], implements the desired
rotations without increasing the number of T gates that are
required to prepare the gradient phase state in the first place.
Finally, additional T gates might be needed in the inverse QFT,
but those are negligible.

2. Qubit cost

The full description of each contribution to the total
number of logical qubits for the quantum phase estimation
algorithm is given in ([43], Appendix C). This can be applied
to the cathode material we study as the modifications required
to accommodate a noncubic lattice (Appendix G) change the
qubit cost by a relatively small constant. We do not reproduce
here these logical qubit numbers, but instead give their overall
sum:

3ηnp + 4nMnp + 12np + 2

⌈
log2

(⌈
πλ

2εQPE

⌉)⌉
+ 2	log2(η)
 + 5nM + 3n2

p + 	log2(η + 2λZ )

+ max(5np + 1, 5nR − 4) + max(nT , nR + 1) + 33,

(35)

where nM, nR, nT represent numbers of qubits that are de-
termined according to non-Clifford gate optimization of the
different error sources of the algorithm. These include for
example the choice of M in the momentum state preparation
as in Eq. (E24) and the number of bits to represent nuclei co-
ordinates. For each quantity nM, nR, nT , the number of qubits
ranges from 30 to 50 depending on the total error budget,
while 	log(η + 2λZ )
 ≈ 9. Note, however, that the leading
term is 3ηnp, corresponding to the η momenta registers, each
using np qubits for three coordinates.

In contrast, during the initial state preparation, we need
3ηnp qubits to represent the quantum state, and (3np − 1) + 1
auxiliary qubits for the multicontrol NOT operations. With
these choices, the overall number of logical qubits is 2375
for np = 4 and 6652 for np = 9, where the leading term 3ηnp

provides the most significant contribution of 1872 and 4680
logical qubits, respectively.

3. Algorithmic runtime

While we leave an accurate runtime analysis for future
work, rough estimates can be obtained. There are three main
variables that determine the runtime: the surface code distance
d (correcting �d/2� errors in computations), the number of
non-Clifford gates Nnc, and the clock rate f for applying gates.
The total time is then given by Nncd/ f .

First, we need to obtain the surface code distance d leading
to a logical failure rate low enough to perform the compu-
tation. These calculations depend on the hardware platform,
and for this purpose we focus on photonic architectures such
as those described in Refs. [47,123]. More specifically, we
employ the formula in [[47], Eq. 9] for the value of d in our
estimations, which leads to values of d between 30 to 40.

Next, we discuss the number of non-Clifford gates. As
mentioned before, non-Clifford gates are produced using

FIG. 7. Estimation of the time required to run the algorithm.
This figure illustrates total runtime for synthesizing all the Toffoli
gates indicated in Fig. 6 for ε = 0.043 eV. All calculations are done
for the unit cell of Li2FeSiO4 with 156 electrons, and we assume
that the number of plane waves used in the state preparation and
quantum phase estimation are the same. The total number of qubits
is 2,375 for np = 4 and 6652 for np = 9. We compute the distillation
time as the product of the number of Toffoli gates, the surface code
distance d , and the clock frequency, all divided by a small np factor
originating from the techniques in [124] that parallelize the CSWAPs
and arithmetic computations. We compute d in this figure as in the
moderate error case of Ref. [47]. We emphasize that these are rough
estimates whose main purpose is to provide a method to interpret the
gate cost.

distillation of magic states made in so-called magic state fac-
tories. In algorithms with few qubits, these factories make up
a large percentage of the quantum computer. However, for an
algorithm with qubit costs in the thousands, the footprint is
rather small (roughly 2%). Thus, parallelization techniques
[124,125] that do not depend on the hardware can enable
fast injection of distilled magic states, reducing runtime by
an order of magnitude. In a further optimization, since the
algorithm we study relies heavily on Toffoli gates (Fig. 6),
we can directly synthesize them using efficient magic state
factories [126]. This generally quintuples the speed of the
algorithm compared to previous state-of-the-art procedures
[127].

Finally, we discuss the clock rate, which is the most
challenging value to calculate, with there being a variety of
estimates in the literature. For this reason, rather than choos-
ing a specific number, we explore how the runtime is affected
by different values of the clock rate. The results are shown
in Fig. 7. For a lower clock rate of 10 KHz, the runtime is a
few years, even when using only np = 4. On the other hand,
assuming an optimistic but in principle achievable clock rate
of 100 MHz [47,123], for np = 4 we obtain a runtime estimate
of less than an a day. For np = 9, the runtime is a about a
year. Arguably, an appropriate choice is to select a number
of plane waves no larger than N = 106, which translates to
np = 7 as even in a large basis set such as cc-pV5Z basis, our
system requires no more than that many planes to be accurate
[43,96]. For this value and a 100 MHz clock rate, the runtime
is roughly a few weeks.
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We reiterate that these are all rough estimates for perform-
ing one round of quantum phase estimation. This may need
to be repeated to successfully project on the true ground-state.
While these estimates require further study, they indicate that
additional improvements to all aspects of this algorithm will
be crucial for the practicality of quantum algorithms for bat-
tery simulation.

V. CONCLUSIONS

This work presents a comprehensive analysis of how
quantum computers can be used in the context of mate-
rials simulation for lithium-ion batteries. To the best of
our knowledge, this is the first attempt to estimate the re-
sources required to execute quantum algorithms aimed at
performing high-accuracy ground-state energy calculations
of a realistic cathode material. Our study explicitly estab-
lishes a connection between battery simulation and quantum
computing—many key properties can be derived from the es-
timation of ground-state energies of periodic materials, which
are amenable to known quantum algorithms. Thus, to impact
the field of battery simulations, a focus should be placed
on developing quantum algorithms for simulating materials.
This includes a closer look at better methods for preparing
approximate ground states.

Plane waves are an attractive basis set for describing
wave functions of periodic materials as they can inherit the
periodicity of the lattice and lead to simpler Hamiltonian
representations. In a second-quantized approach where a qubit
is assigned to each basis function, this leads to quantum algo-
rithms potentially running on millions of logical qubits, which
is a troubling prospect. Consequently, quantum algorithms
based on first-quantization could be unmatched for battery
simulations that rely heavily on understanding the proper-
ties of electrode materials described by periodic systems.
First-quantization methods are a relatively new technique in
quantum algorithms, which we identify as an important area
for future research.

A careful resource estimation of the full quantum algo-
rithm reveals that despite its favorable asymptotic scaling, the
overall resource requirements remain daunting. This is true
even under the assumption that a Hartree-Fock approxima-
tion has sufficiently large overlap wit the true ground state.
Concretely, our calculations indicate that thousands of logical
qubits and trillions of logical gates are necessary to execute
one round of quantum phase estimation. These numbers are
not entirely prohibitive; based on optimistic estimates of the
clock rate of fault-tolerant quantum computers, implementing
the full quantum phase estimation algorithm may take some-
where between hours to months depending on the number of
plane waves used. Nevertheless, these resource estimates are
a pressing invitation to undertake a dedicated effort aimed at
reducing the cost of the quantum algorithm by many orders of
magnitude.

Overall, this paper lays the foundation for future work on
quantum computing for battery simulation. In the following
section, we present an outlook on promising research direc-
tions aimed at both increasing the scope of application and
improving algorithmic performance.

VI. OUTLOOK

The quantum algorithms for battery simulation detailed in
this work can be extended to simulate other materials, reduce
the gate and qubit costs, and expand the scope of applications
by addressing other processes that occur in a battery cell. We
provide an outlook on potential avenues for achieving this.

A. Improving algorithmic performance

The preparation of the initial state is a crucial step of
any quantum phase estimation algorithm. For the simulation
of realistic cathode materials, it remains an open question
whether the state obtained from a Hartree-Fock approximation
has sufficient overlap with the true ground state of the system.
It is therefore important to develop techniques to quantify
the quality of the input state and to identify better methods
for preparing approximate ground states. For example, defin-
ing a Slater determinant at the � point as the initial state
is also an approximation that is typically more suitable for
simulating a large supercell of the cathode material. Using
classical simulations at the level of truncated configuration
interaction or coupled-cluster methods for periodic systems
could be helpful to quantify the quality of the Hartree-Fock
state and, importantly, to build quantum circuits for preparing
a better initial state beyond the mean-field approximation. It
is also possible to leverage quantum algorithms directly, for
example adiabatic quantum algorithms.

The gate counts reported in Sec. IV show that significant
work is likely still required to reduce the computational cost
of the quantum algorithm. This could be achieved by reducing
both the number of electrons in the computational unit cell and
the number of plane-wave basis functions. To this aim, pseu-
dopotentials can be employed to describe the electron-nuclei
interaction terms in the Hamiltonian [128]. This methodology
is widely used in DFT approaches to solve problems in mate-
rials science. Their inclusion leads to a problem of interacting
valence-only electrons where the presence of core electrons
is modeled by a short-ranged effective potential, which adds
new terms to the electron-nuclei interaction operator U [128].

Incorporating the pseudopotentials into the quantum al-
gorithm would require adapting several steps that depend
directly on the precise form of the Hamiltonian. This include
the decomposition into a linear combination of unitaries and
the implementation of the qubitization operator. Further re-
ductions in the cost of running the algorithm may be possible
by manipulation of the Hamiltonian, for example, by exploit-
ing symmetries or employing factorization strategies. Some
of these techniques have already been explored in the context
of simulating molecules in second quantization [42,129] and
could be extended to deal with periodic materials in first
quantization.

B. Extending the scope of application

As described in Sec. III, the algorithm presented in this
work is constrained to simulate cathode materials with or-
thogonal unit cells. Going beyond this approximation is key
to simulate different phases of the cathode materials. For
example, such a generalization would allow studying state-of-
the-art cathodes used in electric vehicles, which crystallize in
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a rhombohedral structure. Extending the algorithm to account
for any crystal system requires generalizing Eqs. (16) and
(17), which define the reciprocal lattice vectors. While this
does not affect the expressions of the Hamiltonian matrix
elements, it does require generalizing the decomposition of
the Hamiltonian as a linear combination of unitaries, as well
as the qubitization operator and its circuit implementation.

It is also worth exploring the applicability of the quantum
algorithm to simulate battery properties of increasing com-
plexity. For example, the redox potential of the electrolyte
molecules is important to predict the electrochemical stabil-
ity of the cell [30]. Redox potentials are obtained from the
ground-state energies of the oxidized and reduced electrolyte
molecules, which are embedded in a solvent solution. Single
molecules could also be simulated with the present algorithm
by using the supercell approach to avoid the interaction be-
tween periodic images. In the case of electrolyte molecules,
performing accurate simulations of redox potentials requires
accounting for solvation effects [30,130].

More complicated phenomena occur at the
electrode/electrolyte interface which are crucial to understand
the degradation processes of batteries [59]. In particular,
describing the formation and composition of the solid
electrolyte interphase (SEI) is paramount to both improve
the performance and to extend the lifespan of lithium-ion
batteries [23]. Chemical reactions that induce lithium ion
losses at the SEI in graphite anodes have been identified as
a predominant cause of battery capacity fading upon cycling
[131,132]. Modeling the growth of the solid electrolyte
interphase at the atomic scale is challenging. However,
at the core of this process is the reduction of electrolyte
molecules near the anode surface [133], for which chemical
reaction rates can also be computed in terms of ground-state
energy calculations. Advanced dynamical simulations of
such reactions requires multiscale approaches combining ab
initio molecular dynamics and continuum solvent models
[134–136], where most of the computational overhead comes
from the costly electronic structure calculations.

It is a challenge to adapt quantum algorithms to simulate
such systems. Typically, quantum algorithms have been stud-
ied in the context of molecules and materials consisting of not
more than a few hundred electrons. This is largely because,
despite their polynomial scaling, quantum algorithms still be-
come more costly when tackling larger systems potentially
containing thousands of electrons. This will likely require
stepping outside the box of existing approaches and exploring
disruptive new ideas in quantum algorithms. Pursuing efforts
in this direction may enable feasible simulations of more
complicated and larger-scale phenomena that occur in battery
cells.

As a whole, we are in the early stages of understanding
how quantum computing can truly impact industrial opera-
tions. This applies in a broad sense to quantum simulation,
which extends beyond the context of batteries. Still, lithium-
ion batteries are complex systems involving a variety of
molecules, materials, and chemical processes. They can there-
fore serve as testbed for continued development in quantum
algorithms, whose gains may then be extended to other ar-
eas that benefit from progress in techniques for simulating
materials and molecules. Our work will contribute to the

continued developments that will be necessary to understand
the role that quantum computers can play in impacting indus-
trial processes, particularly the development of new battery
technologies.
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APPENDIX A: BASIC CONCEPTS OF PERIODIC SYSTEMS

We summarize the basic concepts used in the paper that are
key for the simulation of the electronic structure of periodic
materials, as well as provide an introduction to the Hartree-
Fock procedure. More extensive and detailed description can
be found in textbooks for solid-state physics and electronic
structure methods [128,137].

1. The direct and reciprocal lattices

In a crystal structure the positions of the atoms repeat
periodically in space. Its entire structure can be defined by
specifying (i) the type of atoms and their positions in the
smallest portion of the crystal lattice, the primitive unit cell
and (ii) the primitive vectors a1, a2, a3 used to define all pos-
sible translations in space. The lattice of points obtained by
replicating the unit cell is called the Bravais (direct) lattice.
For a three-dimensional space the direct lattice consists of all
points with positions vectors

Rn = n1a1 + n2a2 + n3a3, (A1)

where n1, n2, and n3 take integer values. For example, for the
simple case of an orthogonal lattice, the primitive vectors are
given by

a1 = a1x̂, a2 = a2ŷ, a3 = a3ẑ, (A2)

where a1, a2, and a3 are the lattice constants defining the
distance between the atoms in different unit cells along the
orthogonal directions. More complicated primitive vectors to
describe different types of materials are extensively covered
in the literature [137,138].

The primitive unit cell defines a volume that fills all the
space without leaving gaps when it is translated through all
the vectors in a Bravais lattice. The conventional unit cell fills
the same space when translated through some subset of the
vectors of the lattice. It is typically larger than the primitive
cell and contains the crystal symmetry. The primitive cell with
the full symmetry of the lattice is known as the Wigner-Seitz
cell, which is defined by the space bounded by the planes that
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bisect the lines joining one site of the lattice with all its closest
neighbors [137].

On the other hand, the concept of a reciprocal lattice is
fundamental for both analytical and numerical techniques to
simulate periodic systems. Consider a set of points R consti-
tuting a direct lattice and a plane wave eik·r. The set of all
wave vectors G that yield plane waves with the periodicity of
a given direct lattice is known as its reciprocal lattice. This
periodicity restriction implies that the condition

eiG·(r+R) = eiG·r ⇒ eiG·R = 1 (A3)

applies for any r and for all R in the direct lattice. For a given
set of primitive vectors a1, a2, a3, the reciprocal lattice can be
generated by the primitive vectors

b1 = 2π
a2 × a3

a1 · (a2 × a3)
,

b2 = 2π
a3 × a1

a1 · (a2 × a3)
, (A4)

b3 = 2π
a1 × a2

a1 · (a2 × a3)
,

which satisfy bi · a j = 2πδi j with i, j = 1, 2, 3. For example,
from Eq. (A2) it follows that the primitive vectors bi for an
orthogonal lattice are defined as

b1 = 2π

a1
x̂, b2 = 2π

a2
ŷ, b3 = 2π

a3
ẑ. (A5)

Using Eq. (A3) it can be shown that the reciprocal lattice
associated with a given direct lattice consists of all points with
position vectors

Gn = n1b1 + n2b2 + n3b3. (A6)

The Wigner-Seitz primitive cell of the reciprocal lattice is
called the first Brillouin zone.

2. Single-electron states in a periodic potential

In the independent electron approximation the effective
potential felt by an electron in a crystal structure has the
periodicity of the underlying Bravais lattice:

U eff (r + R) = U eff (r). (A7)

It follows from Bloch’s theorem that the wave function of a
single electron in the periodic potential U eff (r) can be chosen
to have the form

φk(r) = eik·ruk(r), (A8)

where uk(r) has the periodicity of the Bravais lattice. By
imposing the Born–von Kármán boundary condition on the
wave function, it is straightforward to show that the allowed
values of k, known as k-points, are given by the expression

k =
3∑

i=1

ni

Ni
bi, (A9)

where Ni are integers of order N1/3
cell and Ncell = N1N2N3 is

the total number of unit cells in the crystal. In the limit of
the macroscopic crystal, k can be considered a continuous
variable which takes values in the first Brillouin zone of the
reciprocal lattice.

In general, a wave function φ(r) that satisfies the
Schrödinger equation

H effφ(r) =
[
−∇2

2
+ U eff (r)

]
φ(r) = Eφ(r), (A10)

can be expanded in a set of plane waves that satisfy the
boundary conditions:

φ(r) =
∑

q

Cqeiq·r. (A11)

Similarly, we can expand the effective potential U eff (r) using
a set of plane waves. Since U eff (r) is periodic in the lattice,
its expansion will only contain plane waves with wave vectors
that are vectors of the reciprocal lattice

U eff (r) =
∑

μ

U eff (Gμ)eiGμ·r, (A12)

U eff (G) = 1

�

∫
cell

drU eff (r)e−iG·r, (A13)

where � denotes the volume of the unit cell. Next, we use
Eqs. (A11) and (A12) to represent the Schrödinger equation in
the basis of plane waves and define q = k + Gμ to obtain the
equation for the coefficients C representing the single-electron
states φn(r) in the plane wave basis, Eq. (A11) [128]∑

μ′
H eff

μμ′ (k)Cμ′n(k) = En(k)Cμn(k), (A14)

where the Hamiltonian matrix is defined as

H eff
μμ′ (k) = ||k + Gμ||2

2
δμμ′ + U eff (Gμ − Gμ′ ). (A15)

Summarizing:
(1) Eq. (A14) is the Schrödinger equation in momentum

space, simplified by the fact that U eff (k) is nonvanishing only
when k is a vector of the reciprocal lattice.

(2) For a fixed k, the set of equations for all reciprocal
lattice vectors G couple only those coefficients Ck, Ck+G1 ,
Ck+G2 , . . . whose wave vectors differ from k by a reciprocal
lattice vector.

(3) The eigenvalues En(k) and the eigenvectors Cμn(k) are
characterized by the discrete band index n.

(4) The number of bands for each k-point is determined by
the number of plane waves entering the expansion (A12).

(5) In practice, the plane wave basis is truncated using a
cutoff value for the kinetic energy:

||k + Gμ||2
2

< Ecutoff . (A16)

(6) The wave function φnk(r) is a superposition of plane
waves of the form

φnk(r) = 1√
Ncell�

∑
μ

Cμn(k)ei(k+Gμ )·r. (A17)

3. Hartree-Fock method for periodic materials

The Hartree-Fock method is a mean-field approximation
that considers a state of independent electrons. These particles
occupy orbitals that are optimized to minimize the energy
of the state. In first quantization, they can be written as the
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antisymmetric state A(|p1, p2, . . . , pη〉), which is a special
case of Eq. (18). States of this form are referred to as Slater
determinants.

The standard approach for obtaining the Hartree-Fock or-
bitals φ(r) is to express them as a linear combination of basis
functions χ (r) as

φi(r) =
∑

μ

Cμiχμ(r) (A18)

and optimize the coefficients Cμi. The optimal coefficients
can be found by solving the generalized eigenvalue equa-
tions [139–141]

FC = SCE , (A19)

where C is a coefficient matrix with entries Cμi, F is known as
the Fock matrix, S is the overlap matrix, and E is a matrix of
eigenvalues. The Fock matrix and overlap matrix depend on
integrals over the basis functions, as explained in Ref. [107].
The most expensive step in the Hartree-Fock method is the
construction of the Fock matrix and the overall complexity of
the algorithm scales as O(N4) [142].

For periodic systems, it is important to ensure that the
Hartree-Fock orbitals respect the periodicity of the system.
From the Bloch theorem [137], it follows that the wave func-
tion describing the state of an electron in a periodic potential,
e.g., the mean-field potential in a crystal structure, has the
form

φnk(r) = eik·runk(r), (A20)

where the wave vector k is the crystal momentum and the
function unk(r) has the periodicity of the underlying crystal
lattice. The allowed values of k, known as k-points, are ob-
tained by imposing the Born-Von Karman boundary condition
on the wave function in Eq. (A20). See Appendix A 2 for
more details and for a summary of the general properties of
electronic states in periodic potentials.

The function unk(r) can be expanded using the basis set of
plane waves defined in Eq. (15), so the state φnk(r) satisfies
the Bloch theorem and is given by

φnk(r) = 1√
Ncell�

∑
μ

Cμn(k)ei(k+Gμ )·r, (A21)

where Ncell is the number of unit cells in the macroscopic
crystal. Eq. (A19) can be solved for each k-point to obtain the
energies En(k) and the optimized coefficients Cμn(k) which
define the electronic band structure of the material [143]. This
is a feasible and straightforward approach, but the cost of
the algorithm can become prohibitive if the number of plane
waves N is very large.

An alternative is to employ Bloch atomic orbitals as the
basis functions [144]. For an atom located at coordinates Rμ

with corresponding atomic orbitals χμ(r), we define the Bloch
atomic orbital

χμk(r) = 1√
Ns

Ns∑
i=1

eiT i·kχμ(r − T i − Rμ), (A22)

where the sum runs over all Ns atomic sites and T i is a
lattice vector. The atom-centered orbitals χμ are typically
approximated by a set of primitive Gaussian functions, which

facilitates the calculation of the Fock matrix. The Hartree-
Fock orbitals are then expressed as a linear combination of
Bloch atomic orbitals

φnk(r) =
∑

μ

Cμn(k)χμk(r). (A23)

The advantage of this representation is that it is typically
possible to work with much fewer Bloch atomic orbitals
than plane waves to achieve a similar quality of the approx-
imate ground state. Then the Hartree-Fock equations can be
solved using the localized basis set and transformed to the
plane wave representation. It is important to note that quan-
tifying the overlap between the Hartree-Fock state and the
ground-state of periodic materials is an open problem of great
importance since it directly affects the cost of quantum phase
estimation.

APPENDIX B: DENSITY FUNCTIONAL THEORY

At present, first-principles calculations of the electronic
structure of cathode materials are largely performed using
density functional theory (DFT) methods [18,30]. In this sec-
tion we explain the main concepts of DFT and describe the
most common approximations used for battery simulations.

1. Basic concepts

Density functional theory has been the workhorse for sim-
ulating the electronic structure of molecules and materials for
more than two decades [145]. The core of this success is
that the quantity used in DFT to compute the properties of
an interacting electron system is the ground-state electronic
density n(r) (a function of three variables), which is a much
simpler object than the wave function �(r1, . . . , rη ) (a func-
tion of 3η variables). The ground-state wave function �0 of
the η-electron system is a solution of the Schrödinger equation

H�0(r1, . . . , rη ) = E0�0(r1, . . . , rη ), (B1)

where E0 is the ground-state energy and H = T + U + V
is the electronic Hamiltonian. Here T is the kinetic-energy
operator, U is a given potential operator, e.g., the electron-
nuclei interaction, and V is the Coulomb electron-electron
interaction. These terms are defined as follows:

T =
η∑

i=1

−∇2
i

2
, (B2)

U =
η∑

i=1

u(ri ), (B3)

V = 1

2

η∑
i �= j=1

1

||ri − r j || . (B4)

The electronic structure problem defined above can be
recast in terms of the electronic density n(r), which is given
by

n(r) = η

∫
dr2 . . . drη||�(r, r2, . . . , rη )||2. (B5)

The Hohenberg-Kohn theorem [28], one of the pillars of DFT,
proves that there is a one-to-one correspondence between the
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potential u(r) and the ground-state electronic density n0(r) of
the interacting system. This mapping is expressed by writing
u(r) as a density functional u[n0](r), which implies that the
wave function �0 computed via the Schrödinger Eq. (B1) also
becomes a density functional �0[n0](r). Thus, the expectation
value of the Hamiltonian for a given potential u0 defines the
energy functional

Eu0 [n] = 〈�[n]|T + U0 + V |�[n]〉

=
∫

dr n(r)u0(r) + F [n], (B6)

where �[n] is a wave function producing the density n(r)
and F [n] = T [n] + V [n] is the so-called universal functional,
since it is the same for any Coulomb system. Applying the
variational principle, the ground-state electronic density n0(r)
can be obtained by solving the Euler equation

δ

δn(r)

[
Eu0 [n] − μ

∫
dr′n(r′)

]
= 0, (B7)

where μ is a Lagrange multiplier to ensure the correct number
of electrons. In principle, Eq. (B7) allows us to find the elec-
tronic density n0(r) and thus the ground-state energy Eu0 [n0]
without having to solve the Schrödinger equation. However,
the actual form of the universal functional F [n] is unknown
and must be approximated.

It was the later formulation proposed by Kohn and Sham
[146] which transformed DFT into a practical computational
scheme for simulations. The Kohn-Sham approach assumes
that for any interacting system with ground-state density
n(r) there is always a noninteracting system, the Kohn-Sham
system, which reproduces the same density n(r). Since the
Hamiltonian of the noninteracting system contains no V op-
erator, Eq. (B6) for the Kohn-Sham system simplifies to

Eus [n] =
∫

dr n(r)us(r) + Ts[n], (B8)

where us(r) is an effective potential and Ts[n] is the kinetic
energy functional for the noninteracting system. In this case,
the density n(r) can be found from the equation

δEus [n]

δn(r)
= δTs[n]

δn(r)
+ us(r) = μ. (B9)

Solving the equation above still requires access to the func-
tional Ts[n], which is only approximately known [147].
However, the many-body wave function for the noninteracting
system is the product sate φ1(r1)φ2(r2) . . . φη(rη ), antisym-
metrized under all possible particle exchanges (a Slater
determinant [107]), where the single-electron states φi(r) sat-
isfy the equation[

−1

2
∇2 + us(r)

]
φi(r) = εiφi(r), (B10)

where εi is the energy of the Kohn-Sham orbital φi(r), and the
electronic density n(r) can be computed as

n(r) =
η∑

i=1

||φi(r)||2. (B11)

In order to solve Eq. (B10) we need to know the effective po-
tential us(r). To that aim, we first rewrite the energy functional

Eu0 [n] in Eq. (B6), as

Eu0 [n] = Ts[n] +
∫

drn(r)u0(r) + EH[n] + Exc[n], (B12)

where

EH[n] = 1

2

∫
dr dr′ n(r)n(r′)

||r − r′|| (B13)

is the classical Coulomb energy, and Exc[n] is called the
exchange-correlation (xc) energy functional defined as

Exc[n] = T [n] − Ts[n] + V [n] − EH[n]. (B14)

Then, by taking the derivative of the functional Eu0 [n] in
Eq. (B7) and comparing the result with Eq. (B9), we find that
the Kohn-Sham potential us(r) is given by

us[n](r) = u0(r) + uH[n](r) + uxc[n](r), (B15)

where

uH[n](r) =
∫

dr′ n(r′)
||r − r′|| and uxc[n](r) = δExc[n]

δ[n](r)
(B16)

are the Hartree and exchange-correlation potentials, respec-
tively. Eqs. (B10), (B11) and (B15) are known as the
Kohn-Sham equations, and the solutions of Eq. (B10) (Kohn-
Sham orbitals) for the exact exchange-correlation functional
can be used to compute the ground-state electronic density
n0(r) of the interacting quantum system and its total energy
Eu0 [n0] given by [148]

Eu0 [n0] =
η∑

i=1

εi − EH[n0]

−
∫

drn0(r)uxc[n0](r) + Exc[n0]. (B17)

2. DFT approximations for simulating cathode materials

In practice, we have access only to approximate exchange-
correlation energy functionals. Different strategies included
in the so-called Jacob’s ladder to DFT approximations [149]
have been used to develop a diverse landscape of avail-
able functionals [31,145]. In general, choosing the best
possible approximation to simulate a particular system is
never straightforward and typically requires expert knowl-
edge for making the most adequate choices. In particular,
most DFT simulations of the battery properties described
in the previous section rely on the local-density (LDA) and
generalized-gradient (GGA) approximations [30]. Within the
LDA approach, the exchange and correlation energies are
computed from the value of the electronic density at each
point using analytical expressions derived for the uniform
electron gas [150]. On the other hand, GGA functionals ac-
count for the inhomogeneities of the electronic structure of
materials by including terms that depend on the gradient of
the density.

DFT has been central to make progress in the atomistic
simulation of materials even though it faces important lim-
itations in simulating key properties of batteries. LDA and
GGA functionals are extensively used in materials science due
to their favorable computational performance. These approxi-
mations are affected by the well-known self-interaction error
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[33] which can lead to very inaccurate values of the abso-
lute energy of the quantum system. However, most properties
of molecules and materials are obtained by computing total
energy differences where these errors cancel as long as the
electronic structure of the system does not change drastically.
This is not the case when simulating the battery properties
described in the previous section.

Lithium insertion into the cathode material involves an
electron transfer from a metallic state in a lithium anode to
a localized state in the transition metal-oxide cathode. Using
DFT to compute the energy difference between these two
different electronic phases lacks error cancellation and leads
to large deviations of up to one volt in the calculated voltages
[30]. For the same reasons, it is still challenging for DFT to
compute accurate formation energies for reliably predicting
other stable phases of the cathode materials.

The DFT+U method [34] has been used to partially
mitigate this problem of standard DFT approximations. In-
spired by the Hubbard model, this approach incorporates a
Hubbard-like term to treat the strong on-site Coulomb inter-
actions between the electrons populating the d or f orbitals
[34]. However, the improvements on the simulated quantities
comes at the price of using specific values of the Hubbard
parameter U which are strongly system-dependent. Alterna-
tively, LDA/GGA self-interaction error can also be reduced
by using specific hybrid functionals which incorporate a frac-
tion of the exact exchange from Hartree-Fock theory [35].
However, hybrid functionals also contain an adjustable param-
eter to select the amount of exact exchange to be included in
the calculation, and their computational performance scales
poorly with the system size. Overall, these corrections to DFT
approximations reduce the deviations in the predicted cell
voltages to about 0.2 volts [30,36].

APPENDIX C: ELECTRONIC HAMILTONIAN IN FIRST
QUANTIZATION

We derive the matrix elements of the Hamiltonian in first
quantization given by Eqs. (C8)–(C10) in Sec. III A. In first
quantization, each term of the electronic Hamiltonian H =
T + U + V can be projected on to the plane-wave basis func-
tions defined in Eq. (15) as follows:

T =
η∑

i=1

N∑
p,q=1

Tpq|p〉〈q|i, (C1)

U =
η∑

i=1

N∑
p,q=1

Upq|p〉〈q|i, (C2)

V = 1

2

η∑
i �= j=1

N∑
p,q,r,s=1

Vpqrs|p〉〈s|i |q〉〈r| j, (C3)

with |p〉i and |q〉i indexing momentum basis functions. The
matrix elements of the kinetic energy operator are obtained
from the integral

Tpq =
∫

drϕ∗
p(r)

(
− ∇2

2

)
ϕq(r)

= ‖Gq‖2

2

∫
drei(Gq−Gp)r = δp,q

||Gp||2
2

. (C4)

For computing the matrix elements of the electron-nuclei and
electron-electron interaction, we use that the Fourier trans-
form of the Coulomb potential 1/r is F[1/r] = 4π/G2. The
matrix elements of the one-particle operator

U =
η∑

i=1

L∑
I=1

− ZI

|ri − RI | (C5)

are computed as

Upq =
L∑

I=1

∫
drϕ∗

p(r)

(
− ZI

||r − RI ||
)

ϕq(r)

= − 1

�

L∑
I=1

ZI

∫
dr

e−i(Gp−Gq )·(r−RI )

||r − RI || ei(Gq−Gp)·RI

= −4π

�

L∑
I=1

ZI
ei(Gq−Gp)·RI

||Gp − Gq||2 . (C6)

In this equation, L is the number of atoms in the unit cell, ZI

is the atomic number of the Ith atom, and ri, RI denote the
positions of the electrons and nuclei, respectively. Similarly,
for the matrix elements of the two-particle operator V we have

Vpqrs =
∫

dr1dr2
ϕ∗

p(r1)ϕ∗
q (r2)ϕr (r2)ϕs(r1)

||r1 − r2||
= 4π

�||Gp − Gs||2
∫

dr2ei[(Gr−Gq )−(Gp−Gs )]·r2

= 4π

�

δGp−Gs,Gr−Gq

||Gν ||2 , (C7)

where Gν = Gp − Gs = Gr − Gq �= 0. By inserting
Eqs. (C4)–(C7) into Eqs. (C1)–(C3), correspondingly, we
obtain the following Hamiltonian representation:

T =
η∑

i=1

∑
p∈G

‖Gp‖2

2
|p〉〈p|i, (C8)

U = −4π

�

η∑
i=1

∑
q∈G

∑
ν∈G0

(q−ν)∈G

∑L
I=1 ZI eiGν ·RI

‖Gν‖2
|q − ν〉〈q|i, (C9)

V = 2π

�

η∑
i �= j

∑
p,q∈G

∑
ν∈G0

(p+ν)∈G
(q−ν)∈G

1

‖Gν‖2
|p + ν〉〈p|i|q − ν〉〈q| j .

(C10)

Note that in those equations, we require that ν ∈ G0. This
aliasing is commonplace in electronic structure codes, and the
error caused has the same asymptotic behavior as the basis
error [96].

APPENDIX D: HARTREE-FOCK STATE PREPARATION

In this Appendix we give a more detailed explanation on
the preparation of the Hartree-Fock state in first quantization.
It consists of two main steps: the antisymmetrization proce-
dure from Ref. [41], and the basis change method explained
in Ref. [110]. Together with our method to implement the
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Givens rotations required by the latter, this fully explains how
to prepare the objective state.

1. Antisymmetrization

First quantization and second quantization approaches
differ in one important aspect: in the former case, the anti-
symmetry of fermionic systems appears in the state, while in
the latter it does so in the operators. Therefore, it is important
to describe how a quantum computer can antisymmetrize the
initial state. This procedure will only need to be implemented
once because the particle exchange operator commutes with
the Hamiltonian, meaning that quantum phase estimation pre-
serves the antisymmetry of the state.

The antisymmetrization procedure is mathematically de-
fined in Eq. (19). Ref. [41] introduced an efficient antisym-
metrization algorithm that relies on the concept of a sorting
network. The main idea is to employ the sorting network on
an equal superposition state of auxiliary qubits, keep a record
of the permutations made during the sort, and use the record
to reverse the sorting operations on the state of the system.
This results in an equal superposition of all permutations of
the input state. The records can also be used to apply the
corresponding phase to the permutation, resulting in the de-
sired antisymmetrized state. More precisely, the algorithm of
Ref. [41] proceeds as follows (see Fig. 4):

(1) Define the function f (η) = 2	log(η2 )
 � η2. Introduce an
auxiliary seed system of η registers each containing 	log(η2)

qubits. Apply a Hadamard gate on all qubits to create an equal
superposition state

1√
f (η)η

f (η)∑
�1,...,�η=0

|�1, . . . , �η〉. (D1)

(2) Introduce a record register containing as many qubits
as there are sorting operations in the network and initialize it
to the all-zero state. The state of the seed and record registers
is

1√
f (η)η

f (η)∑
�1,...,�η=0

|�1, . . . , �η〉|0〉. (D2)

(3) Apply the sorting network to the seed register and save
the information on which swaps were made in the record reg-
ister. The unnormalized state of seed and record after sorting
is

1√
f (η)η

∑
0��1�...��η

⎛
⎝|�1, . . . , �η〉

∑
σ∈Sη

|σ1, . . . , σT 〉�

⎞
⎠, (D3)

where σ1, . . . , σT are the T swaps applied by the sorting net-
work that also decompose the permutation σ = σ1 ◦ · · · ◦ σT .

(4) Project the state into the repetition-free subspace
span({|�1, . . . , �η〉 : �i �= � j}). This projection is probabilis-
tically done via a measurement of the seed register. The result
is the state

|�1, . . . , �η〉 1√|Sη|
∑
σ∈Sη

σ=σ1◦···◦σT

|σ1, . . . , σT 〉. (D4)

If f (η) is chosen as in step 1, the projection succeeds with
probability greater than 1/2 [41]. The seed register is disen-
tangled from the system register and can be discarded.

(5) Using the information in the record register, apply the
inverse of the sorting network to the system with an additional
Z gate on each record qubit. Since the record register is in
a superposition over permutations in Sη, this inverse sorting
applies an equal superposition of all possible permutations
of η different elements, together with an overall phase cor-
responding to the parity of the permutation. We thus end up
with an antisymmetric state, as desired.

The cost of this antisymmetrization procedure can be up-
per bounded by the use of up to three sorting networks:
two for the sorting of the record register to account for the
failure probability in the postselection, and the final one for
inverse sorting on the system register. Calling a = �log η�
and b = 	log η
, the number c of comparison operators in
the network is 2a−1a(a + 1)/2 � c � �n/2�b(b + 1)/2. Each
comparison operator can be implemented with 2	(log η) + 1

or 2	log N
 Toffoli gates [151], and half as many Toffolis are
required to implement the controlled swap operations. Over-
all, the antisymmetrization can be performed using circuits
with O(polylog(η) log log N ) depth.

2. Basis change

A common approximation to the ground-state is to con-
sider an optimized Slater determinant defined at the � point
[k = (0, 0, 0)] of the Brillouin zone (see Appendix A 1). Each
independent electron occupies an orbital represented as a lin-
ear combination of basis functions, as captured by Eqs. (A21)
and (A23). This means that in a plane-wave basis, the qubit
representation of the first-quantized Hartree-Fock state, which
is a single Slater determinant, is a superposition over the
computational basis states.

Despite this state being more complicated than in second
quantization, any single Slater determinant can be efficiently
prepared on a quantum computer by performing transforma-
tions at the level of fermionic ladder operators [110,152,153].
This allows us to choose an initial basis of orbitals where the
quantum states can be written as computational basis states
and then perform a basis change into the optimized Hartree-
Fock orbitals.

Any basis transformation of fermionic ladder operators can
be described as

ã†
p =

N∑
q=1

upqa†
q, (D5)

ãp =
N∑

q=1

u∗
pqaq, (D6)

where a†
q, aq are the ladder operators satisfying the canonical

anticommutative relations, and upq are entries of a N × N
unitary matrix for a system with N orbitals. Here p, q are
indices that indicate which orbitals are being considered. The
entries of this unitary can be computed from the inner product
between the initial ϕ and final orbitals φ

upq = 〈φq, ϕp〉 =
∫

drφ∗
q (r)ϕp(r), (D7)

032428-18



SIMULATING KEY PROPERTIES OF LITHIUM-ION ... PHYSICAL REVIEW A 106, 032428 (2022)

where in our case ϕp(r) corresponds to a plane wave defined
by Eq. (15) and φq(r) is a periodic Hartree-Fock orbital.

In the full Hilbert space, the transformation corresponds to
a particle-preserving operation that can be written as

U (u) = exp

(∑
pq

[log u]pq(a†
paq − a†

qap)

)
. (D8)

It was shown in Ref. [110] that this transformation can be
decomposed into a sequence of unitaries of the form

Rpq(θpq) = exp{θpq[a†
paq − a†

qap)]}, (D9)

and that these unitaries fulfill

Rpq(θpq)U (u) = U (rpq(θpq)u), (D10)

where rpq(θpq) is a Givens rotation on the two-dimensional
subspace of row p and column q ([154], Sec. 11.3.1), i.e., only
entries upp, upq, uqp, and uqq are affected by the rotation. It
is possible to choose angles θpq such that the lower-triangle
components of the matrix u are set to zero by the rotation.
Repeating this for each entry below the diagonal of the matrix
effectively diagonalizes u and is equivalent to finding a QR
decomposition [110]. This results in(∏

p�=q

Rpq(θpq)

)
U (u) =

N∏
p=1

eiφpn̂p, (D11)

which is a diagonal operator. Applying the inverse rotations
directly gives a decomposition of U (u):

U (u) =
(∏

p�=q

Rpq(θpq)

)† N∏
p=1

eiφpn̂p . (D12)

There are precisely (N
2 ) entries below the diagonal in ma-

trix U (u), but clever implementations can lead to a smaller
number of rotations: since only rotations between η occupied
orbitals and N − η unoccupied orbitals need to be performed,
the actual number of rotations scales as η(N − η). As we
discuss in later Appendixes, even though the cost of preparing
this state is nonnegligible, for practical simulations of cath-
ode materials the cost of the full quantum algorithm is still
dominated by quantum phase estimation.

A further improvement is possible: in state preparation we
can work with a number of plane waves N ′ that is smaller than
the one used for the full algorithm. The reason is that the error
in approximating the ground state does not impact the final
accuracy of the algorithm, but only its success probability by
decreasing the overlap with the true ground state. Therefore,
while the full algorithm is carried out on n = 	log N
, state
preparation can be performed on a subset of n′ = 	log N ′

qubits. This is important because it mitigates the linear scaling
in N of state preparation, ensuring that its final cost is smaller
than the cost of running quantum phase estimation.

APPENDIX E: QUANTUM PHASE ESTIMATION CIRCUIT
IMPLEMENTATION

1. Quantum phase estimation

We assume that we are given (i) a quantum circuit that can
implement a unitary operator U and (ii) an input eigenstate

FIG. 8. Conceptual circuit diagram for the quantum phase esti-
mation algorithm. The system register is initialized in the eigenstate
|ψ〉 of the target unitary. The auxiliary register consists of t qubits,
initialized in the basis state |0〉. After applying a Hadamard gate (H)
on all auxiliary qubits, increasing powers of the target unitary are
applied to the system register, controlled on the state of each aux-
iliary qubit. Concluding with an inverse quantum Fourier transform
(QFT−1) and measuring the output qubits gives a binary string that
can be processed to estimate the desired phase.

|ψ〉 of U such that U |ψ〉 = eiθ |ψ〉. The goal is to estimate the
phase θ with precision ε. If we can solve this phase estimation
problem, then it is also possible to estimate eigenvalues Ek of
an electronic Hamiltonian H . This is done by choosing U to
share eigenvectors with H such that the eigenphases θk can
be related to the eigenvalues of H by an invertible function
θk = f (Ek ). For example, a simple strategy to accomplish this
is to set U = e−iH .

The standard version of the quantum phase estimation al-
gorithm uses two registers, as sketched in Fig. 8. The first
register contains the qubits required to represent the state |ψ〉,
and the second register contains t auxiliary qubits. The main
strategy of the algorithm is to prepare the state

|�〉 = 1√
2t

(
2t −1∑
k=0

e2π iφk|k〉
)

|ψ〉, (E1)

where θ = 2πφ, 0 � φ � 1, and |k〉 denotes a computational
basis state for t auxiliary qubits. In Eq. (E1), the state of the
auxiliary qubits is equivalent to applying a quantum Fourier
transform [44] to a state |bin(φ)〉 = |φ1, φ2, . . . , φt 〉 that en-
codes a binary representation of φ as φ = ∑t

j=1 φ j2− j , where
φ j ∈ {0, 1}. Therefore, applying an inverse quantum Fourier
transform to the auxiliary qubits of the state |�〉 in Eq. (E1)
will prepare the state |bin(φ)〉:

1√
2t

2t −1∑
k=0

e2π iφk|k〉|ψ〉 QFT −1

−−−→ |bin(φ)〉|ψ〉. (E2)

The auxiliary qubits can then be measured in the compu-
tational basis to retrieve φ and thus the phase θ = 2π iφ. The
number of auxiliary qubits required to approximate φ to an
accuracy ε = 2−n with probability of success 1 − δ is at most
t = n + 	log(2 + 1

2δ
)
 [44]. Here the logarithm is in base 2, a

choice maintained throughout this article.
The task of phase estimation can therefore be reduced to

preparing the state |�〉 in Eq. (E1). A quantum computer can
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prepare this state as follows. First, a Hadamard gate is applied
to all auxiliary qubits to create an equal superposition over the
computational basis states:

|0〉|ψk〉 → 1√
2t

2t −1∑
k=0

|k〉|ψ〉. (E3)

As shown in Fig. 8, we then apply U controlled on the
state of the first auxiliary qubit, U 2 controlled on the state
of the second qubit, U 4 controlled on the third qubit, and so
forth until applying U 2t

controlled on the final qubit. Denoting
the states of the auxiliary qubits as |k〉 = |k0, k1 . . . , kt 〉 such
that the bit string k0k1 . . . kt is a binary representation of the
integer k, this sequence of operations transforms the state of
both registers as

1√
2t

2t −1∑
k=0

|k〉|ψ〉 → 1√
2t

2t −1∑
k=0

eiθ (
∑t

j=1 k j 2 j )|k〉|ψ〉

= 1√
2t

2t −1∑
k=0

e2π iφk|k〉|ψ〉, (E4)

as desired.
To perform simulations of materials, a system initialization

into the ground state of the Hamiltonian would be required to
carry out the algorithm as depicted above. This is of course
generally not feasible in practice. Instead, consider a general
input state |ψ〉 = ∑

i ci|Ei〉 expressed in the eigenbasis of the
encoded Hamiltonian, where the eigenstate |Ei〉 has a corre-
sponding eigenvalue Ei. After encoding the Hamiltonian into
a suitable unitary, the algorithm produces an estimate of Ei

with probability pi = |ci|2. In particular, it provides an esti-
mate of the ground-state energy with probability p0 = |c0|2 =
|〈ψ |E0〉|2. Thus, it is extremely important that the input state
has a sufficiently large overlap with the ground state since,
on average, the quantum phase estimation algorithm needs
to be repeated O(1/p0) times to calculate the ground-state
energy with high probability. It is often possible to use clas-
sical methods to compute an upper bound on the ground-state
energy which is smaller than the first excited-state energy.
Hence, the accuracy of the phase estimation procedure can
be gradually increased, and as soon as the energy is esti-
mated to be above the upper bound with high probability,
the algorithm is restarted [41]. This alleviates the cost of
running the algorithm when failing to project onto the ground
state.

Applying the controlled unitaries is the most expensive part
of the algorithm because they can be complicated operations
that depend on all parameters of the electronic Hamiltonian.
Nevertheless, as we discuss in more detail in Sec. III, the
cost of applying these unitaries scales polynomially with the
system size. Overall, the quantum phase estimation algo-
rithm applies the controlled U operation a total of

∑t
j=1 2 j =

2t+1 − 2 times to achieve precision ε = 2−n = O(2−t ). This
means that the number of calls to a circuit implementing U
scales as O(1/ε).

There are variants of quantum phase estimation that
substitute the quantum Fourier transform by classical post-
processing and by iteratively refining the estimated phase
[155]. Iterative methods have several advantages over stan-

dard quantum phase estimation, a notable one being that they
are straightforward to parallelize. One of the best-performing
examples is a Bayesian technique called rejection filtering
phase estimation [156]. The empirical scaling of this method
with respect to error is 4.7/ε, close to the optimum of π/ε

[157].
In the next section, we describe the full quantum algorithm

for estimating ground-state energies of cathode materials.
This includes strategies for constructing the Hamiltonian,
preparing approximate ground states as input, encoding
Hamiltonians into unitaries, and performing quantum phase
estimation.

Quantum phase estimation is performed on the qubitization
operator of Eq. (23), which can be implemented in terms of the
PREPH and SELH operators of Eqs. (24) and (25). We follow
the optimized compilation strategies pioneered in Ref. [43] to
implement these operators. This section is therefore largely a
concise summary of the results in Ref. [43,50].

To understand the strategy behind the implementation
of those operators, we discuss qubitization at a more ab-
stract level, and leverage the concept of block-encoding. For
qubitization-based simulation to work, the operators PREPH

and SELH must satisfy certain properties [98], chief among
them the block-encoding identity

(〈0|PREP†
H · SELH · PREPH |0〉)|ψ〉 = H

λ
|ψ〉. (E5)

Importantly, it is not required that these operators have the
specific form in (24) and (25); although those are preferred
choices and can sometimes be realized.

We then observe the following fact: if the linear sum of uni-
taries of H decomposes to H = A + B, then the qubitization
subroutines of H can be defined in terms of those of A and B.
For example, given the decomposition H = T + (U + V ), we
can define the state preparation subroutine of H as(√

λT

λ
|0〉+

√
λU + λV

λ
|1〉

)
⊗ PREPT |0〉 ⊗ PREPU+V |0〉,

(E6)

and the selection subroutine of H as

|0〉〈0| ⊗ SELT ⊗ I + |1〉〈1| ⊗ I ⊗ SELU+V , (E7)

and it is a straightforward calculation that the above defini-
tions satisfy the block-encoding identity (E5). Note the use
of one additional qubit to distinguish the implementation of
T and U + V subroutines. The same discussion applies to
PREPU+V and SELU+V , which decompose into individual
terms for U and V . As a consequence, two qubits are needed
to prepare a superposition with the amplitudes λT , λU , and λV .

We also have to discuss how to implement the controlled
version of Hamiltonian simulation. In the standard formula-
tion of quantum phase estimation, it is customary to apply
the target unitary controlled on the state of an auxiliary qubit.
However, it is also possible to instead apply the inverse unitary
when the auxiliary qubit is in state |0〉 [158]. To do that,
consider the reflection operator

R = PREPH (2|0〉〈0| − I )PREP†
H . (E8)
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It satisfies the property

R Qn R = (Q†)n. (E9)

This implies that multiple controls on Qn can be replaced with
a single control on whether R operations are implemented be-
fore and after applying Qn. From Eq. (23), both Q and R can be
implemented as sequences of select and prepare operators as
well as the reflection operator 2|0〉〈0| − I , for which standard
circuit implementations are known [44]. Therefore, to deter-
mine how to implement the full quantum phase estimation
algorithm, it suffices to specify how to implement the prepare
and select operators. This is discussed next.

2. LCU Hamiltonian decomposition

To employ the qubitization approach for a fermionic
Hamiltonian in first quantization, it is necessary to express
it as a linear combination of unitaries. This was performed in
Ref. [43] as follows. First, assume that the lattice constants
satisfy a1 = a2 = a3 in Eq. (17), a restriction that we lift
in Appendix G. The kinetic energy operator T can then be
simplified by observing that

G2
p =

(
2π p
�1/3

)2

= 4π2

�2/3

∑
ω,r,s

2r+s pω,r pω,s, (E10)

where pω,r denotes the rth bit of the ω component of the
momentum vector. States with amplitudes defined by the
product of momentum components are difficult to prepare, but
they can be converted to phases by observing that pω,r pω,s =
1−(−1)pω,r pω,s

2 . Thus, the operator T in Eq. (C8) can be rewritten
as

T =
η∑

j=1

∑
w∈{x,y,z}

np−2∑
r=0

np−2∑
s=0

π2

�2/3
2r+s·

×
∑

b∈{0,1}

∑
p∈G

(
(−1)b(pw,r pw,s⊕1)|p〉〈p| j

)
(E11)

where np = 	log(N1/3 + 1)
 is the number of qubits needed
to store a signed binary representation of one component of
the momentum vector. We can identify the amplitudes α�T

and corresponding unitaries H�T in the linear combination of
unitaries expansion as

α�T = π2

�2/3
2r+s, (E12)

H�T =
∑
p∈G

(−1)b(pw,r pw,s⊕1)|p〉〈p| j, (E13)

where �T := ( j,w, r, s, b). Similarly, the operators U and V
of Eqs. (C9) and (C10) can be rewritten as

U =
∑
ν∈G0

L∑
I=1

2πZI

�‖Gν‖2

η∑
j=1

∑
b∈{0,1}

×
∑
q∈G

(−eiGν ·RI (−1)b[(q−ν)/∈G]|q − ν〉〈q| j ) (E14)

with G0 the set formed from G by removing the point (0,0,0),
and

V =
∑
ν∈G0

π

�‖Gν‖2

η∑
i �= j=1

∑
b∈{0,1}

∑
p,q∈G

× ((−1)b([p+ν/∈G]∨[q−ν/∈G])|p + ν〉〈p|i|q − ν〉〈q| j ).
(E15)

Logical clauses such as [p + ν /∈ G] ∨ [q − ν /∈ G] indicate
multiplication by one if the clause is satisfied and multiplica-
tion by zero otherwise. We identify the respective amplitudes
and operators in the expansion as

α�U = 2πZI

�‖Gν‖2
, (E16)

H�U =
∑
q∈G

−eiGν ·RI (−1)b[(q−ν)/∈G]|q − ν〉〈q| j, (E17)

α�V = π

�‖Gν‖2
, (E18)

H�V =
∑

p,q∈G
(−1)b([p+ν/∈G]∨[q−ν/∈G])|p + ν〉〈p|i|q − ν〉〈q| j,

(E19)

where we employ a similar indexing strategy �U :=
(I, ν, b, j) and �V := (ν, b, i, j). The phases (−1)b[(q−ν)/∈G]

and (−1)b([p+ν/∈G]∨[q−ν/∈G]) are designed to cancel out the am-
plitudes of the Hamiltonian terms where p + ν or q − ν lead to
vectors outside of G. For example, b = 0 and b = 1 give two
opposite amplitudes for |q − ν〉〈q| j when q − ν /∈ G. Strictly
speaking, the operators H�U , H�V are not unitaries, as their
kernels include any state |q − ν〉 or |p + ν〉 outside of G. Nev-
ertheless, the qubitization procedure effectively implements
these operators due to block encoding, as explained later in
Appendix E 6.

3. Prepare operators

We first explain how to prepare states with amplitudes√
α�T
λT

,
√

α�U
λU

, and
√

α�V
λV

. This process is divided into four

parts. A high-level overview is given in Fig. 9, along with a
summary at the end of this section.

FIG. 9. High-level representation of PREP subroutine. The first
two rotations can be attributed to the preparation of registers a and
m in Eq. (E26). The joint circuit for PREPT and the extra step of
PREPV is shown in Fig. 12. Finally, we have the preparation of the
momentum state and the QROM routine.
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FIG. 10. Preparation of a state proportional to
∑

r 2r/2|r〉, where
r is encoded in unary. We prepare exponentially decreasing ampli-
tudes by using a sequence of Hadamard and controlled-Hadamard
gates. By flipping all qubits, the desired state with exponentially
increasing amplitudes is obtained. The bottom qubit represents a flag
qubit that can be measured to project out the invalid all-zero state.

1. Implementing PREPT . We aim to prepare the state
PREPT |0〉 = ∑

�T

√
α�T /λT |�T 〉. By explicitly specifying all

indices and assigning independent registers to each index, this
state is proportional to

2−(np−1)
∑

b, j,ω,r,s

2(r+s)/2|b〉b| j〉d |ω〉|r〉g|s〉h, (E20)

or equivalently

21−np |+〉b

η∑
j=1

| j〉d

2∑
ω=0

|ω〉 f

np−2∑
r=0

2r/2|r〉g

np−2∑
s=0

2s/2|s〉h, (E21)

where |+〉 = (|0〉 + |1〉)/
√

2. A key step is to prepare a state
of the form

2−(np−1)/2
np−2∑
r=0

2r/2|r〉. (E22)

This can be performed with a circuit consisting of controlled
Hadamard gates as shown in Fig. 10. The overall circuit for
implementing PREPT is illustrated in Fig. 11.

2. Momentum state for PREPU+V . The chal-
lenge in preparing the target states PREPU |0〉 =∑

�U

√
α�U
λU

|�U 〉, PREPV |0〉 = ∑
�V

√
α�V
λV

|�V 〉 is that the

amplitudes α�U , α�V both depend on 1
‖Gν‖ = 1

2π
1

‖ν‖ . This
common term means that the preparation of the momentum
state below is required for both prepare operators:

1√
λν

∑
ν∈G0

1

‖ν‖ |νx〉|νy〉|νz〉. (E23)

The detailed steps to prepare this state are summarized in
Appendix E 5, and we explain the high-level strategy here.
We start by preparing a uniform superposition over acceptable
values of |ν〉 and over auxiliary registers |m〉 and |μ〉:

np+1∑
μ=2

∑
ν∈Bμ

M∑
m=0

1

2μ
|μ〉|νx〉|νy〉|νz〉|m〉, (E24)

where M should be judiciously chosen, and the sets Bμ :=
{ν ∈ G0 : 2μ−2 � ‖ν‖∞ < 2μ−1} form a partition of G0. An

|0〉 H |+〉
|00〉 / Uniform |ω〉

|0〉⊗ log η / Uniform |i〉 •

|0〉⊗ log η / Uniform |j〉 •
|0〉flag i = j

|0〉⊗(np−1) / Exponential |r〉

|0〉⊗(np−1) / Exponential |s〉

FIG. 11. Circuit representation of PREPT and PREPV . The uni-
form superpositions can be implemented with a series of single
control rotations or with Hadamard gates (H ) and an inequality test.
The creation of exponential superpositions of the form

∑
r 2r/2|r〉

are implemented as in Fig. 11. The preparation of the uniform su-
perposition over | j〉 and the equality test with |i〉 is only required
for PREPV , but we include it here due to its conceptual similarity to
other preparations in PREPT .

inequality test is then used to discard part of the auxiliary state
whenever m � 	M(2μ−2/‖ν‖)2
. As shown in Appendix E 5,
this corrects the amplitudes of |ν〉 as desired.

The success probability of this procedure, dependent on the
inequality test, converges to 0.2398 with large M and np ([50],
Eq. (29)). There are a few alternatives on how to deal with the
failure case. One possibility is to first reduce its probability
via amplitude amplification [159] and then, in the rare case of
failure, simply apply the identity operator. Since the effect of
that is the addition of an identity to the Hamiltonian, we can
correct any estimate made later on ([50], Eq. (30)). Another
solution is to use the failure case to apply the SELT opera-
tor. This is done by modifying the subroutine equations and
using a rotated auxiliary qubit cos(θ )|0〉 + sin(θ )|1〉, where
θ = arcsin[2

√
(λU + λV )/λ] [43]. When λT /(λU + λV ) < 3,

the first approach decreases the leading term in the resource
estimation formula (derived later in Eq. (34)), resulting in a
lower total cost in certain regimes, such as in our example
application in Sec. IV.

Together with the steps described in the next parts, we use
PREP′

U+V to denote the approximation to PREPU+V that takes
into account the failure probability.

3. Final step for PREPU . To finish PREPU , we prepare
a new state 1√

λZ

∑
I

√
ZI |RI〉 where |RI〉 is a computational

basis state encoding the position vector RI and λZ is a nor-
malization factor. For this purpose, we employ a general state
preparation technique called QROM [158], although other
methods for preparing arbitrary states could be used since this
leads to a small overhead. The state |RI〉 will be used later in
SELU to apply −eiGν ·RI .

4. Final step for PREPV . In contrast, PREPV requires cre-
ating an additional uniform superposition state proportional
to

∑η

i �= j=1 |i〉d | j〉e. To prepare such a state, we can use two
uniform superpositions and a flag qubit to indicate whenever
i = j.

5. Summary. We collect all the states prepared so far. De-
pending on whether the value of λT /(λU + λV ) is greater or
smaller than 3, the formula for the final state may change
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slightly due to some failure auxiliary flag. For the purpose of
illustration, we assume λT /(λU + λV ) � 3, which implies the
following expression for the PREP subroutine application:

[cos(θ )|0〉 + sin(θ )|1〉] ⊗ PREPT |0〉 ⊗ PREP′
U+V |0, 0〉.

(E25)
Consequently, the final state that we aim to prepare is ([43],

Eq. (48)):

[cos(θ )|0〉 + sin(θ )|1〉]a|+〉b

(
1√
3

2∑
w=0

|w〉 f

)

⊗ 1√
η

(√
η − 1|0〉c

η∑
i �= j=1

|i〉d | j〉e + |1〉c

η∑
j=1

| j〉d | j〉e

)

⊗
(

1

2np−1 − 1

np−2∑
r,s=0

2(r+s)/2|r〉g|s〉h

)

⊗
(√

λU

λU + λV
|0〉 +

√
λV

λU + λV
|1〉

)
m

×
(

1√
λZ

L∑
I=1

√
ZI |RI〉

)
l

,

⊗
(√

Pν

λν

|0〉 j

∑
ν∈G0

1

‖ν‖ |ν〉k +
√

1 − Pν |1〉 j |ν⊥〉k

)
, (E26)

where Pν is the probability of successfully preparing the mo-
mentum state. We have used different subscripts to denote
different registers, which are explained below:

(1) b, f , g, h are used for PREPT .
(2) n, k are employed for the momentum state preparation,

common to both PREPU and PREPV .
(3) a is a rotated auxiliary register that allows us to apply

SELT when the momentum state preparation fails.
(4) m is used for selecting between PREPU and PREPV .
(5) l is exclusively used for PREPU in making the super-

position 1√
λZ

∑
I

√
ZI |RI〉.

(6) c, d, e are used for PREPV , where d, e each contain a
superposition

∑η

i=1 |i〉, and c is a flag qubit to indicate when
i = j.

The overall cost of implementing PREPH is dominated by
the momentum state preparation, which includes the possible
amplitude amplification procedure.

4. Select operators

We now explain how to implement SELT , SELU , and
SELV . The objective of these operators is to apply a unitary
operation conditioned on the state of an auxiliary qubit. In
our case, these unitaries either apply a phase or translate the
corresponding momentum register by a given vector. The most
straightforward way to apply SELH is to iterate over the states
|p j〉 and apply the corresponding unitary operators H� con-
trolled on the state | j〉 of the auxiliary register. For example,

|p1〉 / × ×
|p2〉 / × ×

...

|pη〉 / × ×

|0〉 / × × ×
O

× × ×

|a〉 /

|j〉 / • • • • • •

FIG. 12. Main technique used in the SEL operator. The strategy
used in SEL consists of (i) swapping the |p j〉 register into an auxiliary
register, controlled on the value of | j〉; (ii) performing the target
uncontrolled operation O, where some additional register |a〉 such as
|ν〉 might intervene; and (iii) reversing the swaps. Each |p j〉 contains
three ω coordinates x, y and z, each with np qubits. We use O to rep-
resent different potential operations applied during SELH . In SELT ,
the operator O represents the application of a phase (−1)b(pω,r pω,r⊕1).
For SELU and SELV , it may similarly refer to controlled phases or to
arithmetic sums for computing |q − ν〉, |p + ν〉.

an arbitrary operation O can be applied as

η∑
j=1

| j〉
η⊗

i=1

|pi〉 �→

η∑
j=1

(| j〉 ⊗ |p1〉 . . . O(|p j〉) . . . |pη〉). (E27)

Each controlled application of O on the right-hand side acts
on a different register. This is problematic because it requires
many controlled operations. A more efficient technique con-
sists of using control-SWAP operations to effectively transfer
the target register to an auxiliary one and then performing
uncontrolled operations on those registers before swapping
them back ([43], Eq. (72)). We now explain this procedure
in more detail. The circuit corresponding to this technique is
shown in Fig. 12.

1. Implementing SELT . We implement a control-swap gate
(CSWAP) of the rth and sth bits of the ωth component of |p j〉
into the state of auxiliary qubits, as follows. First, the state
|p j〉 is swapped into an auxiliary register, controlled on the
value of | j〉e (see Fig. 12):

| j〉e ⊗
⊗

i

|pi〉 ⊗ |0〉 �→

| j〉e ⊗ (|p1〉 . . . |0 j〉 . . . |pη〉) ⊗ |p j〉. (E28)

Then we apply yet another CSWAP gate to the ωth component
of |p j〉 to a new auxiliary register, controlled on |ω〉 f , for ω ∈
{x, y, z}. Finally, we perform similar CSWAPs moving the rth
and sth bits of |p j,ω〉 into two extra auxiliary qubits, controlled
on |r〉g and |s〉h, respectively.
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/ Exponential |μ〉 • • • • •

/ H |νx〉 • • •
/ H |νy〉 • • •
/ H |νz〉 • • •
/ H |m〉 •

|0〉flag ν �= −0

|0〉flag ν ∈ Bμ

|0〉flag (2μ−2)2M > m‖ν‖2

FIG. 13. Quantum circuit for momentum state preparation. The circuit for implementing a state with exponential amplitudes is the same as
in Fig. 11. The controlled Hadamard gates correspond to the preparation of Cμ in Fig. 14. There is also a register for the uniform superposition
over |m〉, as well as the three tests. The later one checking the condition (2μ−2)2M > m‖ν‖2 constitutes the key step in this procedure.

Eventually, this results in a copy of |p j,ω,r〉 and |p j,ω,s〉 in
a register with two auxiliary qubits. Next, we use them as
control of a controlled-controlled Z gate with target register
b, along with an additional Z gate on b. The result is the
phase (−1)bp j,ω,r p j,ω,s+b = (−1)b(p j,ω,r p j,ω,s⊕1). This implements
the target phase in Eq. (E13). Finally, we use CSWAP gates to
return the components of p into their original register. Overall,
the action of this circuit implementing the SELT operator can
be written as

SELT : |b〉b| j〉e|ω〉 f |r〉g|s〉h|p j〉 �→
(−1)b(p j,ω,r p j,ω,s⊕1)|b〉b| j〉e|ω〉 f |r〉g|s〉h|p j〉, (E29)

which makes use of the registers prepared in Eq. (E20).
2. Implementing SELU and SELV . The strategy for U and

V is similar to the one described above for T and illustrated
in Fig. 12. The main differences are that, from Eqs. (E14)
and (E15), to implement SELU and SELV we need to (i)
perform controlled sums and subtractions on the momentum
registers, (ii) apply a phase to cancel out the amplitudes of
the states where p + ν /∈ G or q − ν /∈ G (see the discussion
after Eq. (E19)), and (iii) apply a second phase for the −eiGν ·RI

exponent, which is only required for SELU . We describe these
steps in further details in Appendix E 6.

The controlled swaps are the most expensive procedure in
each step of quantum phase estimation; they are the only part
of the implementation of the qubitization operator that scales
linearly with the number of particles η. This is because we
have to swap the 3ηnp qubits representing the system state
[see Eq. (18)] in and out of the auxiliary qubits.

5. Preparation of the momentum state

The process of implementing PREPU and PREPV involves
the common step of preparing the momentum state (E23)
reproduced below:

1√
λν

∑
ν∈G0

1

‖ν‖ |νx〉|νy〉|νz〉.

To prepare it ([50], pp. 4–5), the necessary steps as depicted
in Fig. 13 are the following:

(1) Use the same technique as in Fig. 11 for PREPT to
prepare a unary-encoded register

1√
2np+2

np+1∑
μ=2

√
2μ|μ〉 = 1√

2np+2

np+1∑
μ=2

√
2μ|0 . . . 1 . . . 1︸ ︷︷ ︸

μ

〉.

(E30)
(2) Prepare a uniform superposition state using controlled

Hadamards over registers |νx〉, |νy〉, and |νz〉, which will take
values from −2μ−1 + 1 to 2μ−1 − 1 as signed integers. These
superpositions can be written using a series of nested cubes Cμ

and their differences Bμ = Cμ\Cμ−1; see the circuit depicted
in Fig. 14.

(3) The previous preparation contains both a representa-
tion for |+0〉 and |−0〉. The latter is therefore flagged as
failure.

FIG. 14. Preparation of the superposition corresponding to Cμ.
The first register in |νi〉 is the sign qubit, using controlled Hadamard
gates. This procedure has to be repeated for i ∈ {x, y, z}. The last
multicontrolled NOT can be understood as part of the detection of ν

having a −0 value in one of the components.
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(4) Similarly, to avoid double counting, we should flag as
failure when ν, prepared for a given value of μ, is also in the
inner cube Cμ−1, i.e., ν /∈ Bμ.

(5) Use Hadamard gates to prepare a superposition over
|m〉 from 0 to M, where M is a large power of two.

(6) Finally, this last register undergoes an inequality test

(2μ−2)2M > m‖ν‖2. (E31)

This test ([43], Eq. (84)) yields

1√
M(2np+2)

np+1∑
μ=2

∑
ν∈Bμ

	M(2μ−2/‖ν‖)2
−1∑
m=0

× 1

2μ
|μ〉|νx〉|νy〉|νz〉|m〉|0〉 + |�⊥〉, (E32)

with the desired amplitudes for each ν upon success:

√
	M(2μ−2/‖ν‖)2


M22μ(2np+2)
≈ 1

4
√

2np+2

1

‖ν‖ . (E33)

Note the amplitudes 1
2μ in (E32) come from the factor

√
2μ

in (E30), as well as three factors of
√

2−μ from the uniform
superposition over |νx〉, |νy〉 and |νz〉.

6. Implementing SELU and SELV operators

We explain in more depth the steps to implement SELU

and SELV , implied from (E14) and (E15): (i) controlled sums
and subtractions, (ii) a phase to cancel out the amplitudes of
the invalid states, and (iii) exclusively for SELU , the phase
−eiGν ·RI .

Following the procedure depicted in Fig. 13, sums and
subtractions are performed by the operator O. The details
and cost involved in this arithmetic operation can be found
in ([43], Sec. II.D).

The control-phase cancellations (−1)b[(q−ν)/∈G] and
(−1)b([p+ν/∈G]∨[q−ν/∈G]) are similar to the case discussed
for SELT . For example, if p + ν /∈ G, then one of the three
coordinates of p + ν has absolute value larger than 2np−1,
which means that some extra auxiliary qubit will take value
|1〉. This qubit can be used to apply a multicontrolled Z
gate on |+〉b. In a further optimization, this last phase
implementation can be shown to be unnecessary when p + ν

or q − ν are outside G, since the extra auxiliary qubits are
among those that are automatically selected to be |0〉 in
the block-encoding identity (E5) ([43], Sec. II.D). Notice
how this selection also enables the implementation of the
nonunitary operators H�U , H�V , since any state p + ν or q − ν

outside of G is projected to zero, which is how H�U , H�V act
on these states.

The phase −eiGν ·RI in SELU requires to multiply and sum
all three coordinates Gνi (RI )i. The inner product can be done
in the computational basis with standard reversible quantum
algorithms. Finally, the binary expression of

∑
i Gνi (RI )i is

used to perform controlled RZ (π/2b+1) rotations, where b is
the bit we are rotating.

Overall, we may describe the SELU operator as

SELU : |b〉b| j〉e|0〉m|ν〉k|RI〉l |q j〉 �→
|b〉b| j〉e|0〉m|ν〉k|RI〉l |q j − ν〉 �→

(−1)b[(q−ν)/∈G]|b〉b| j〉e|0〉m|ν〉k|RI〉l |q j − ν〉 �→
−eiGν ·RI (−1)b[(q−ν)/∈G]|b〉b| j〉e|0〉m|ν〉k|RI〉l |q j − ν〉.

(E34)

Similarly, for SELV we apply the transformation

SELV : |b〉b|i〉d | j〉e|1〉m|ν〉k|pi〉|q j〉 �→
|b〉b|i〉d | j〉e|1〉m|ν〉k|pi + ν〉|q j − ν〉 �→

(−1)b([p+ν/∈G]∨[q−ν/∈G])|b〉b|i〉d | j〉e|1〉m|ν〉k

⊗|pi + ν〉|q j − ν〉. (E35)

It can be seen from these two equations that the operation
|q j〉|ν〉 �→ |q j − ν〉|ν〉 must be implemented in both cases, so
it can be implemented just once controlled on the register that
selects U + V instead of T .

APPENDIX F: TOFFOLI GATE COST FULL EQUATION

As mentioned in Sec. IV 1, below we reproduce the full
Toffoli gate cost equation of the qubitization-based quantum
phase estimation algorithm, while briefly outlining the origin
of each term in the expression:⌈

πλ

2εQPE

⌉
︸ ︷︷ ︸

#(controlled-Q calls)

(
2(nT + 4nηZ + 2br − 12)︸ ︷︷ ︸

preparation qubit T/(U+V )

+ 14nη + 8br − 36︸ ︷︷ ︸
uniform i& j and i �=j test

+ a
[
3n2

p + 15np − 7 + 4nM (np + 1)
]︸ ︷︷ ︸

preparation 1/|ν| amplitudes

+ λZ + Er(λZ )︸ ︷︷ ︸
QROM

+ 2(2np + 2br − 7)︸ ︷︷ ︸
preparation over w,r&s

+ 12ηnp︸ ︷︷ ︸
swap p&q

+ 5(np − 1) + 2︸ ︷︷ ︸
SELT

+ 24np︸︷︷︸
|p±ν〉

+ 6npnR︸ ︷︷ ︸
eiGν ·RI

+ 18︸︷︷︸
selection between T,U,V

+ nηZ + 2nη + 6np + nM + 16︸ ︷︷ ︸
(2|0〉〈0|−1)

+ Õ(log ε−1)︸ ︷︷ ︸
Rotations

)
. (F1)

The different terms of the form nx as well as the term br denote
qubit numbers. Importantly, all these quantities are logarith-
mic in the precision derived from various error sources. In
addition, note that a = 3 or 1 depending on whether or not
amplitude amplification is used in the preparation of 1/‖ν‖
amplitudes (see part 2 in Appendix E).

APPENDIX G: NONCUBIC UNIT CELLS

We explore what happens if the cell, instead of having a
cubic form, is a rectangular parallelepiped, i.e., the primitive

032428-25



ALAIN DELGADO et al. PHYSICAL REVIEW A 106, 032428 (2022)

vectors of the cell are orthogonal but not orthonormal. There-
fore, let us take the vectors of the direct lattice (A1) to be
(a1n1, a2n2, a3n3), where the coefficients ai are different.

Following the Appendix C formalism to find the Hamilto-
nian matrix elements, we observe that the Fourier transform
of the Coulomb potential 1/r still has the same form, i.e.,
F[1/r] = 4π

||Gν ||2 . Thus, when expressing the Hamiltonian op-
erators in Eqs. (C8)–(C10), the components of Gν (16) are
rescaled appropriately. Notice that p or ν do not change as they
label the plane wave basis along with only the vector space
structure (17), while the geometry is accounted for in Gν (16).
This has the following consequences for the algorithm:

(1) In PREPT , we previously created a uniform superposi-
tion over w, with w indexing each component of ν. Now such
a superposition will not be done uniformly, but according to
the weights 1/ai.

(2) In PREPU+V , to prepare the momentum state∑
ν

1
‖Gν‖ |ν〉, each ‖ν‖ in the equations of Appendix E 5

needs to be replaced with ‖Gν‖. Thus, there is a rescaling
of the amplitudes in (E31), i.e., (2μ−2)2M > m(ν2

x /a2
1 +

ν2
y /a2

2 + ν2
z /a2

3). The remaining inequality test can be carried
out similarly yielding the desired amplitudes. Notice that
we normalize the coefficients a−1

i . For our case-study con-
stants and after amplitude amplification, this has the effect
of increasing the asymptotic failure probability from ∼0.1%
to ∼5.5%.

Regarding the SEL operators, the only phase which could
have a change in its implementation is −eiGν ·RI . However,
since the RI coordinates are those of the direct lattice with
coordinates (RI )iai, which have the inverse weights of Gν’s
coordinates pi/ai, there is no change to the implementation of
this phase either.

[1] M. Yoshio, R. J. Brodd, and A. Kozawa, Lithium-Ion Batteries
(Springer, New York, 2009), Vol. 1.

[2] A. Yoshino, Angew. Chem. Int. Ed. 51, 5798 (2012).
[3] A. Manthiram, ACS Central Sci. 3, 1063 (2017).
[4] T. M. Gür, Energy Environ. Sci. 11, 2696 (2018).
[5] G. Zubi, R. Dufo-López, M. Carvalho, and G. Pasaoglu,

Renewable Sustainable Energy Rev. 89, 292 (2018).
[6] T. Kim, W. Song, D.-Y. Son, L. K. Ono, and Y. Qi, J. Mater.

Chem. A 7, 2942 (2019).
[7] D. Castelvecchi, Nature (London) 596, 336 (2021).
[8] A. Fotouhi, D. J. Auger, K. Propp, S. Longo, and M. Wild,

Renewable Sustainable Energy Rev. 56, 1008 (2016).
[9] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding,

Prog. Nat. Sci. 19, 291 (2009).
[10] L. Trahey, F. R. Brushett, N. P. Balsara, G. Ceder, L. Cheng,

Y.-M. Chiang, N. T. Hahn, B. J. Ingram, S. D. Minteer, J. S.
Moore et al., Proc. Natl. Acad. Sci. USA 117, 12550 (2020).

[11] J. W. Choi and D. Aurbach, Nat. Rev. Mater. 1, 16013 (2016).
[12] X.-B. Cheng, R. Zhang, C.-Z. Zhao, and Q. Zhang, Chem. Rev.

117, 10403 (2017).
[13] W. Liu, M.-S. Song, B. Kong, and Y. Cui, Adv. Mater. 29,

1603436 (2017).
[14] P. Albertus, S. Babinec, S. Litzelman, and A. Newman, Nat.

Energy 3, 16 (2018).
[15] J. J. de Pablo, B. Jones, C. L. Kovacs, V. Ozolins, and A. P.

Ramirez, Curr. Opin. Solid State Mater. Sci. 18, 99 (2014).
[16] C. P. Grey and D. S. Hall, Nat. Commun. 11, 6279 (2020).
[17] M. Zhang, D. A. Kitchaev, Z. Lebens-Higgins, J.

Vinckeviciute, M. Zuba, P. J. Reeves, C. P. Grey, M. S.
Whittingham, L. F. J. Piper, A. Van der Ven et al., Nat. Rev.
Mater. 7, 522 (2022).

[18] M. S. Islam and C. A. J. Fisher, Chem. Soc. Rev. 43, 185
(2014).

[19] S. Ahmed, I. Bloom, A. N. Jansen, T. Tanim, E. J. Dufek, A.
Pesaran, A. Burnham, R. B. Carlson, F. Dias, K. Hardy et al.,
J. Power Sources 367, 250 (2017).

[20] L. Cheng, R. S. Assary, X. Qu, A. Jain, S. P. Ong, N. N. Rajput,
K. Persson, and L. A. Curtiss, J. Phys. Chem. Lett. 6, 283
(2015).

[21] F. Leng, Z. Wei, C. M. Tan, and R. Yazami, Electrochim. Acta
256, 52 (2017).

[22] J. Xiao, Science 366, 426 (2019).
[23] A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, npj Comput.

Mater. 4, 15 (2018).
[24] S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L.

Wood III, Carbon 105, 52 (2016).
[25] X. Feng, M. Ouyang, X. Liu, L. Lu, Y. Xia, and X. He, Energy

Storage Materials 10, 246 (2018).
[26] G. Ceder, MRS Bull. 35, 693 (2010).
[27] Y. Lu and J. Chen, Nat. Rev. Chem. 4, 127 (2020).
[28] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[29] J. Kohanoff, Electronic Structure Calculations for Solids and

Molecules: Theory and Computational Methods (Cambridge
University Press, New York, 2006).

[30] A. Urban, D.-H. Seo, and G. Ceder, npj Comput. Mater. 2,
16002 (2016).

[31] G. E. Scuseria and V. N. Staroverov, in Theory and Appli-
cations of Computational Chemistry (Elsevier, Amsterdam,
Netherlands, 2005), pp. 669–724.

[32] K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S.
Blügel, V. Blum, D. Caliste, I. E. Castelli, S. J. Clark, A. Dal
Corso et al., Science 351, aad3000 (2016).

[33] C. Toher, A. Filippetti, S. Sanvito, and K. Burke, Phys. Rev.
Lett. 95, 146402 (2005).

[34] V. I. Anisimov, F. Aryasetiawan, and A. I. Lichtenstein, J.
Phys.: Condens. Matter 9, 767 (1997).

[35] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118,
8207 (2003).

[36] V. L. Chevrier, S. P. Ong, R. Armiento, M. K. Y. Chan, and G.
Ceder, Phys. Rev. B 82, 075122 (2010).

[37] S. McArdle, S. Endo, A. Aspuru-Guzik, S. C. Benjamin, and
X. Yuan, Rev. Mod. Phys. 92, 015003 (2020).

[38] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer,
Proc. Natl. Acad. Sci. USA 114, 7555 (2017).

[39] A. M. Childs, D. Maslov, Y. Nam, N. J. Ross, and Y. Su, Proc.
Natl. Acad. Sci. USA 115, 9456 (2018).

[40] A. Ho, J. McClean, and S. P. Ong, Joule 2, 810 (2018).
[41] D. W. Berry, M. Kieferová, A. Scherer, Y. R. Sanders, G. H.

Low, N. Wiebe, C. Gidney, and R. Babbush, npj Quantum Inf.
4, 22 (2018).

[42] J. Lee, D. W. Berry, C. Gidney, W. J. Huggins, J. R. McClean,
N. Wiebe, and R. Babbush, PRX Quantum 2, 030305 (2021).

032428-26

https://doi.org/10.1002/anie.201105006
https://doi.org/10.1021/acscentsci.7b00288
https://doi.org/10.1039/C8EE01419A
https://doi.org/10.1016/j.rser.2018.03.002
https://doi.org/10.1039/C8TA10513H
https://doi.org/10.1038/d41586-021-02222-1
https://doi.org/10.1016/j.rser.2015.12.009
https://doi.org/10.1016/j.pnsc.2008.07.014
https://doi.org/10.1073/pnas.1821672117
https://doi.org/10.1038/natrevmats.2016.13
https://doi.org/10.1021/acs.chemrev.7b00115
https://doi.org/10.1002/adma.201603436
https://doi.org/10.1038/s41560-017-0047-2
https://doi.org/10.1016/j.cossms.2014.02.003
https://doi.org/10.1038/s41467-020-19991-4
https://doi.org/10.1038/s41578-022-00416-1
https://doi.org/10.1039/C3CS60199D
https://doi.org/10.1016/j.jpowsour.2017.06.055
https://doi.org/10.1021/jz502319n
https://doi.org/10.1016/j.electacta.2017.10.007
https://doi.org/10.1126/science.aay8672
https://doi.org/10.1038/s41524-018-0064-0
https://doi.org/10.1016/j.carbon.2016.04.008
https://doi.org/10.1016/j.ensm.2017.05.013
https://doi.org/10.1557/mrs2010.681
https://doi.org/10.1038/s41570-020-0160-9
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1038/npjcompumats.2016.2
https://doi.org/10.1126/science.aad3000
https://doi.org/10.1103/PhysRevLett.95.146402
https://doi.org/10.1088/0953-8984/9/4/002
https://doi.org/10.1063/1.1564060
https://doi.org/10.1103/PhysRevB.82.075122
https://doi.org/10.1103/RevModPhys.92.015003
https://doi.org/10.1073/pnas.1619152114
https://doi.org/10.1073/pnas.1801723115
https://doi.org/10.1016/j.joule.2018.04.021
https://doi.org/10.1038/s41534-018-0071-5
https://doi.org/10.1103/PRXQuantum.2.030305


SIMULATING KEY PROPERTIES OF LITHIUM-ION ... PHYSICAL REVIEW A 106, 032428 (2022)

[43] Y. Su, D. W. Berry, N. Wiebe, N. Rubin, and R. Babbush, PRX
Quantum 2, 040332 (2021).

[44] M. A. Nielsen and I. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, New
York, 2002).

[45] P. A. M. Casares, R. Campos, and M. A. Martin-Delgado,
Quantum 6, 768 (2022).

[46] V. von Burg, G. H. Low, T. Häner, D. S. Steiger, M. Reiher,
M. Roetteler, and M. Troyer, Phys. Rev. Res. 3, 033055
(2021).

[47] I. H. Kim, Y.-H. Liu, S. Pallister, W. Pol, S. Roberts, and E.
Lee, Phys. Rev. Res. 4, 023019 (2022).

[48] J. J. Goings, A. White, J. Lee, C. S. Tautermann, M. Degroote,
C. Gidney, T. Shiozaki, R. Babbush, and N. C. Rubin,
arXiv:2202.01244 (2022).

[49] J. E. Rice, T. P. Gujarati, M. Motta, T. Y. Takeshita, E. Lee,
J. A. Latone, and J. M. Garcia, J. Chem. Phys. 154, 134115
(2021).

[50] R. Babbush, D. W. Berry, J. R. McClean, and H. Neven, npj
Quantum Inf. 5, 92 (2019).

[51] J. B. Goodenough, Nat. Electron. 1, 204 (2018).
[52] A. Manthiram, Nat. Commun. 11, 1550 (2020).
[53] N. Nitta and G. Yushin, Part. Part. Syst. Charact. 31, 317

(2014).
[54] Y. Wang and W.-H. Zhong, ChemElectroChem 2, 22 (2015).
[55] J.-M. Tarascon and M. Armand, Materials for Sustainable

Energy: A Collection of Peer-Reviewed Research and Review
Articles from Nature Publishing Group 171 (Nature Publishing
Group, UK, 2011).

[56] W. Li, E. M. Erickson, and A. Manthiram, Nat. Energy 5, 26
(2020).

[57] K. T. Lee, S. Jeong, and J. Cho, Acc. Chem. Res. 46, 1161
(2013).

[58] G. Kermani and E. Sahraei, Energies 10, 1730 (2017).
[59] X. Yu and A. Manthiram, Energy Environ. Sci. 11, 527 (2018).
[60] A. Van der Ven and G. Ceder, J. Power Sources 97–98, 529

(2001).
[61] E. Deiss, A. Wokaun, J.-L. Barras, C. Daul, and P. Dufek,

J. Electrochem. Soc. 144, 3877 (1997).
[62] A.-S. Feiner and A. J. McEvoy, J. Chem. Educ. 71, 493 (1994).
[63] R. Barnard, C. F. Randell, and F. L. Tye, J. Appl. Electrochem.

10, 127 (1980).
[64] Y. Ma, Energy Environ. Mater. 1, 148 (2018).
[65] P. V. Braun, J. Cho, J. H. Pikul, W. P. King, and H. Zhang,

Curr. Opin. Solid State Mater. Sci. 16, 186 (2012).
[66] D. O. Alikin, K. N. Romanyuk, B. N. Slautin, D. Rosato, V. Y.

Shur, and A. L. Kholkin, Nanoscale 10, 2503 (2018).
[67] Y. Saito, S. Takeda, J. Nakadate, T. Sasaki, and T. Cho, J. Phys.

Chem. C 123, 21888 (2019).
[68] G. H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957).
[69] R. Kutner, Phys. Lett. A 81, 239 (1981).
[70] N. J. J. de Klerk, E. van der Maas, and M. Wagemaker, ACS

Appl. Energy Mater. 1, 3230 (2018).
[71] A. Van der Ven, J. C. Thomas, Q. Xu, B. Swoboda, and D.

Morgan, Phys. Rev. B 78, 104306 (2008).
[72] G. Henkelman, B. P. Uberuaga, and H. Jónsson, J. Chem. Phys.

113, 9901 (2000).
[73] R. Hausbrand, G. Cherkashinin, H. Ehrenberg, M. Gröting, K.

Albe, C. Hess, and W. Jaegermann, Mater. Sci. Eng. B 192, 3
(2015).

[74] L. Wang, T. Maxisch, and G. Ceder, Chem. Mater. 19, 543
(2007).

[75] J. Zheng, P. Xu, M. Gu, J. Xiao, N. D. Browning, P. Yan, C.
Wang, and J.-G. Zhang, Chem. Mater. 27, 1381 (2015).

[76] M. W. Chase, Jr., Journal of Physical and Chemical Reference
Data, Monograph No. 9 (ACM, AIP, NIST, 1998).

[77] L. Wang, T. Maxisch, and G. Ceder, Phys. Rev. B 73, 195107
(2006).

[78] J. B. Goodenough and K.-S. Park, J. Am. Chem. Soc. 135,
1167 (2013).

[79] K. Mizushima, P. Jones, P. Wiseman, and J. B. Goodenough,
Solid State Ionics 3–4, 171 (1981).

[80] R. Jung, M. Metzger, F. Maglia, C. Stinner, and H. A.
Gasteiger, J. Electrochem. Soc. 164, A1361 (2017).

[81] M. Thackeray, W. David, P. Bruce, and J. Goodenough, Mater.
Res. Bull. 18, 461 (1983).

[82] J. Lu and K. S. Lee, Materials Tech. 31, 628 (2016).
[83] A. Manthiram and J. Goodenough, J. Power Sources 26, 403

(1989).
[84] A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough,

J. Electrochem. Soc. 144, 1188 (1997).
[85] R. Dominko, J. Power Sources 184, 462 (2008).
[86] C. Masquelier and L. Croguennec, Chem. Rev. 113, 6552

(2013).
[87] M. S. Islam, R. Dominko, C. Masquelier, C. Sirisopanaporn,

A. R. Armstrong, and P. G. Bruce, J. Mater. Chem. 21, 9811
(2011).

[88] D. H. Doughty and E. P. Roth, Electrochem. Soc. Interface 21,
37 (2012).

[89] E. Parthé, Crystal Chemistry of Tetrahedral Structures (CRC
Press, 1964).

[90] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S.
Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder et al., APL
Mater. 1, 011002 (2013).

[91] C. Eames, A. Armstrong, P. Bruce, and M. Islam, Chem.
Mater. 24, 2155 (2012).

[92] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).
[93] A. Nytén, S. Kamali, L. Häggström, T. Gustafsson, and J. O.

Thomas, J. Mater. Chem. 16, 2266 (2006).
[94] P. Larsson, R. Ahuja, A. Nytén, and J. O. Thomas,

Electrochem. Comm. 8, 797 (2006).
[95] A. Kokalj, R. Dominko, G. Mali, A. Meden, M. Gaberscek,

and J. Jamnik, Chem. Mater. 19, 3633 (2007).
[96] R. Babbush, N. Wiebe, J. McClean, J. McClain, H. Neven, and

G. K.-L. Chan, Phys. Rev. X 8, 011044 (2018).
[97] L. Lin and Y. Tong, Quantum 4, 372 (2020).
[98] G. H. Low and I. L. Chuang, Quantum 3, 163 (2019).
[99] S. Lloyd, Science 273 1073 (1996).

[100] D. W. Berry, A. M. Childs, R. Cleve, R. Kothari, and R. D.
Somma, Phys. Rev. Lett. 114, 090502 (2015).

[101] G. H. Low and N. Wiebe, arXiv:1805.00675 (2019).
[102] E. Wigner and P. Jordan, Z. Phys. 47, 631 (1928).
[103] S. B. Bravyi and A. Y. Kitaev, Ann. Phys. 298, 210 (2002).
[104] B. Nagy and F. Jensen, Rev. Comput. Chem. 30, 93 (2017).
[105] B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L.

Windus, J. Chem. Inf. Model. 59, 4814 (2019).
[106] M. Born and J. R. Oppenheimer, Ann. Phys. 389, 457

(1927).
[107] F. Jensen, Introduction to Computational Chemistry (John Wi-

ley & Sons, Chichester, West Sussex, UK, 2017).

032428-27

https://doi.org/10.1103/PRXQuantum.2.040332
https://doi.org/10.22331/q-2022-07-20-768
https://doi.org/10.1103/PhysRevResearch.3.033055
https://doi.org/10.1103/PhysRevResearch.4.023019
http://arxiv.org/abs/arXiv:2202.01244
https://doi.org/10.1063/5.0044068
https://doi.org/10.1038/s41534-019-0199-y
https://doi.org/10.1038/s41928-018-0048-6
https://doi.org/10.1038/s41467-020-15355-0
https://doi.org/10.1002/ppsc.201300231
https://doi.org/10.1002/celc.201402277
https://doi.org/10.1038/s41560-019-0513-0
https://doi.org/10.1021/ar200224h
https://doi.org/10.3390/en10111730
https://doi.org/10.1039/C7EE02555F
https://doi.org/10.1016/S0378-7753(01)00638-3
https://doi.org/10.1149/1.1838105
https://doi.org/10.1021/ed071p493
https://doi.org/10.1007/BF00937346
https://doi.org/10.1002/eem2.12017
https://doi.org/10.1016/j.cossms.2012.05.002
https://doi.org/10.1039/C7NR08001H
https://doi.org/10.1021/acs.jpcc.9b04742
https://doi.org/10.1016/0022-3697(57)90059-8
https://doi.org/10.1016/0375-9601(81)90251-6
https://doi.org/10.1021/acsaem.8b00457
https://doi.org/10.1103/PhysRevB.78.104306
https://doi.org/10.1063/1.1329672
https://doi.org/10.1016/j.mseb.2014.11.014
https://doi.org/10.1021/cm0620943
https://doi.org/10.1021/cm5045978
https://doi.org/10.1103/PhysRevB.73.195107
https://doi.org/10.1021/ja3091438
https://doi.org/10.1016/0167-2738(81)90077-1
https://doi.org/10.1149/2.0021707jes
https://doi.org/10.1016/0025-5408(83)90138-1
https://doi.org/10.1080/10667857.2016.1208957
https://doi.org/10.1016/0378-7753(89)80153-3
https://doi.org/10.1149/1.1837571
https://doi.org/10.1016/j.jpowsour.2008.02.089
https://doi.org/10.1021/cr3001862
https://doi.org/10.1039/c1jm10312a
https://doi.org/10.1149/2.F03122if
https://doi.org/10.1063/1.4812323
https://doi.org/10.1021/cm300749w
https://doi.org/10.1107/S0021889811038970
https://doi.org/10.1039/B601184E
https://doi.org/10.1016/j.elecom.2006.03.012
https://doi.org/10.1021/cm063011l
https://doi.org/10.1103/PhysRevX.8.011044
https://doi.org/10.22331/q-2020-12-14-372
https://doi.org/10.22331/q-2019-07-12-163
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1103/PhysRevLett.114.090502
http://arxiv.org/abs/arXiv:1805.00675
https://doi.org/10.1007/BF01331938
https://doi.org/10.1006/aphy.2002.6254
https://doi.org/10.1002/9781119356059.ch3
https://doi.org/10.1021/acs.jcim.9b00725
https://doi.org/10.1002/andp.19273892002


ALAIN DELGADO et al. PHYSICAL REVIEW A 106, 032428 (2022)

[108] G. Ortiz, J. E. Gubernatis, E. Knill, and R. Laflamme, Phys.
Rev. A 64, 022319 (2001).

[109] R. Somma, G. Ortiz, J. E. Gubernatis, E. Knill, and R.
Laflamme, Phys. Rev. A 65, 042323 (2002).

[110] I. D. Kivlichan, J. McClean, N. Wiebe, C. Gidney, A. Aspuru-
Guzik, G. K.-L. Chan, and R. Babbush, Phys. Rev. Lett. 120,
110501 (2018).

[111] D. J. Thouless, Nucl. Phys. 21, 225 (1960).
[112] A. G. Fowler and S. J. Devitt, arXiv:1209.0510 (2013).
[113] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.

Cleland, Phys. Rev. A 86, 032324 (2012).
[114] A. Y. Kitaev, Ann. Phys. 303, 2 (2003).
[115] H. Bombin and M. A. Martin-Delgado, Phys. Rev. Lett. 97,

180501 (2006).
[116] H. Bombín, New J. Phys. 18, 043038 (2016).
[117] H. Bombin and M.-A. Martin-Delgado, Phys. Rev. Lett. 98,

160502 (2007).
[118] M. Vasmer and D. E. Browne, Phys. Rev. A 100, 012312

(2019).
[119] M. E. Beverland, A. Kubica, and K. M. Svore, PRX Quantum

2, 020341 (2021).
[120] T. H. Dunning Jr, J. Chem. Phys. 90, 1007 (1989).
[121] C. Gidney, Quantum 2, 74 (2018).
[122] A. Y. Kitaev, A. Shen, M. N. Vyalyi, and M. N. Vyalyi,

Classical and Quantum Computation, Vol. 47 (American
Mathematical Society, Providence, Rhode Island, 2002).

[123] I. Tzitrin, T. Matsuura, R. N. Alexander, G. Dauphinais, J. E.
Bourassa, K. K. Sabapathy, N. C. Menicucci, and I. Dhand,
PRX Quantum 2, 040353 (2021).

[124] G. H. Low, V. Kliuchnikov, and L. Schaeffer,
arXiv:1812.00954 (2018).

[125] E. T. Campbell and M. Howard, Phys. Rev. A 95, 022316
(2017).

[126] C. Gidney and A. G. Fowler, Quantum 3, 135 (2019).
[127] A. G. Fowler and C. Gidney, arXiv:1808.06709 (2019).
[128] R. M. Martin, Electronic Structure: Basic Theory and Practical

Methods (Cambridge University Press, New York, 2020).
[129] M. Motta, E. Ye, J. R. McClean, Z. Li, A. J. Minnich, R.

Babbush, and G. K. Chan, npj Quantum Inf. 7, 83 (2021).
[130] J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999

(2005).
[131] M. B. Pinson and M. Z. Bazant, J. Electrochem. Soc. 160,

A243 (2013).
[132] A. Barré, B. Deguilhem, S. Grolleau, M. Gérard, F. Suard, and

D. Riu, J. Power Sources 241, 680 (2013).
[133] G. Ramos-Sanchez, F. A. Soto, J. M. Martinez De La Hoz,

Z. Liu, P. P. Mukherjee, F. El-Mellouhi, J. M. Seminario, and
P. B. Balbuena, J. Electrochem. Energy Convers. Storage 13,
031002 (2016).

[134] K. Leung and J. L. Budzien, Phys. Chem. Chem. Phys. 12,
6583 (2010).

[135] M. M. Islam and A. C. Van Duin, J. Phys. Chem. C 120, 27128
(2016).

[136] Y. Wang, S. Nakamura, M. Ue, and P. B. Balbuena, J. Am.
Chem. Soc. 123, 11708 (2001).

[137] N. W. Ashcroft and N. David Mermin, Solid State Physics
(Holt, Rinehart and Winston, New York, 1976).

[138] E. Prince and A. J. C. Wilson, International Tables for Crystal-
lography, International Tables for Crystallography (Springer,
Dordrecht, Netherlands, 2004), Vol. 100.

[139] J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22, 571
(1954).

[140] J. A. Pople, P. M. Gill, and B. G. Johnson, Chem. Phys. Lett.
199, 557 (1992).

[141] S. Lehtola, F. Blockhuys, and C. Van Alsenoy, Molecules 25,
1218 (2020).

[142] D. L. Strout and G. E. Scuseria, J. Chem. Phys. 102, 8448
(1995).

[143] J. Liu, L. Wan, Z. Li, and J. Yang, J. Chem. Theory Comput.
16, 6904 (2020).

[144] J. C. Slater and G. F. Koster, Phys. Rev. 94, 1498 (1954).
[145] K. Burke, J. Chem. Phys. 136, 150901 (2012).
[146] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[147] R. M. Dreizler and E. K. U. Gross, Density Functional Theory:

An Approach to the Quantum Many-Body Problem (Springer
Science & Business Media, Springer Berlin, Germany,
2013).

[148] C. A. Ullrich, Time-Dependent Density-Functional Theory:
Concepts and Applications (Oxford University Press, Oxford,
2011).

[149] J. P. Perdew and K. Schmidt, Density Functional Theory and
its Application to Materials, edited by V. Van Doren, C. Van
Alsenoy, and P. Geerlings, AIP Conf. Proc. No. 577 (AIP, New
York, 2001), p. 1.

[150] P.-F. Loos and P. M. W. Gill, WIREs Comput. Mol. Sci. 6, 410
(2016).

[151] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton,
arXiv:quant-ph/0410184 (2004).

[152] D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak,
and M. Troyer, Phys. Rev. A 92, 062318 (2015).

[153] Z. Jiang, K. J. Sung, K. Kechedzhi, V. N. Smelyanskiy, and S.
Boixo, Phys. Rev. Appl. 9, 044036 (2018).

[154] W. H. Press and S. A. Teukolsky, VWT, and FBP, Numerical
Recipes: The Art of Scientific Computing (Cambridge Univer-
sity Press, New York, 2007).

[155] A. Y. Kitaev, arXiv:quant-ph/9511026 (1995).
[156] N. Wiebe and C. Granade, Phys. Rev. Lett. 117, 010503

(2016).
[157] D. W. Berry, B. L. Higgins, S. D. Bartlett, M. W. Mitchell,

G. J. Pryde, and H. M. Wiseman, Phys. Rev. A 80, 052114
(2009).

[158] R. Babbush, C. Gidney, D. W. Berry, N. Wiebe, J. McClean,
A. Paler, A. Fowler, and H. Neven, Phys. Rev. X 8, 041015
(2018).

[159] G. Brassard, P. Hoyer, M. Mosca, and A. Tapp, Contemp.
Math. 305, 53 (2002).

032428-28

https://doi.org/10.1103/PhysRevA.64.022319
https://doi.org/10.1103/PhysRevA.65.042323
https://doi.org/10.1103/PhysRevLett.120.110501
https://doi.org/10.1016/0029-5582(60)90048-1
http://arxiv.org/abs/arXiv:1209.0510
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/PhysRevLett.97.180501
https://doi.org/10.1088/1367-2630/18/4/043038
https://doi.org/10.1103/PhysRevLett.98.160502
https://doi.org/10.1103/PhysRevA.100.012312
https://doi.org/10.1103/PRXQuantum.2.020341
https://doi.org/10.1063/1.456153
https://doi.org/10.22331/q-2018-06-18-74
https://doi.org/10.1103/PRXQuantum.2.040353
http://arxiv.org/abs/arXiv:1812.00954
https://doi.org/10.1103/PhysRevA.95.022316
https://doi.org/10.22331/q-2019-04-30-135
http://arxiv.org/abs/arXiv:1808.06709
https://doi.org/10.1038/s41534-021-00416-z
https://doi.org/10.1021/cr9904009
https://doi.org/10.1149/2.044302jes
https://doi.org/10.1016/j.jpowsour.2013.05.040
https://doi.org/10.1115/1.4034412
https://doi.org/10.1039/b925853a
https://doi.org/10.1021/acs.jpcc.6b08688
https://doi.org/10.1021/ja0164529
https://doi.org/10.1063/1.1740120
https://doi.org/10.1016/0009-2614(92)85009-Y
https://doi.org/10.3390/molecules25051218
https://doi.org/10.1063/1.468836
https://doi.org/10.1021/acs.jctc.0c00881
https://doi.org/10.1103/PhysRev.94.1498
https://doi.org/10.1063/1.4704546
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1002/wcms.1257
http://arxiv.org/abs/arXiv:quant-ph/0410184
https://doi.org/10.1103/PhysRevA.92.062318
https://doi.org/10.1103/PhysRevApplied.9.044036
http://arxiv.org/abs/arXiv:quant-ph/9511026
https://doi.org/10.1103/PhysRevLett.117.010503
https://doi.org/10.1103/PhysRevA.80.052114
https://doi.org/10.1103/PhysRevX.8.041015
https://doi.org/10.1090/conm/305/05215

