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ABSTRACT 21 

Hyperspectral images of intact grapes during ripening were recorded using a near 22 

infrared hyperspectral imaging system (900 - 1700 nm). Spectral data have been 23 

correlated with grape skin total phenolic concentration, sugar concentration, titratable 24 

acidity and pH by modified partial least squares regression (MPLS) using a number of 25 

spectral pre-treatments and different sets of calibration. The obtained results (RSQ and 26 

SEP respectively) for the global model of red and white grape samples were: 0.89 and 27 

1.23 mg g-1 of grape skin for total phenolic concentration, 0.99 and 1.37 ºBrix for sugar 28 

concentration, 0.98 and 3.88 g L-1 for titratable acidity and for pH 0.94 and 0.12. 29 

Moreover, separate calibration models for red and white grape samples were also 30 

developed. The obtained results present a good potential for a fast and reasonably 31 

inexpensive screening of these parameters in intact grapes and therefore, for a fast 32 

control of technological and phenolic maturity. 33 

KEYWORDS: Technological maturity, phenolic maturity, grapes, near infrared 34 

hyperspectral imaging; chemometrics. 35 

36 



3 
 

1. Introduction 37 

Grape harvest time is one of the most fundamental aspects that have influence on the 38 

future of wine quality. A number of factors have influence on this decision, among them 39 

technological and phenolic maturity of grape, especially grape skins phenolic maturity. 40 

Technological maturity is mainly connected with sugar concentration, titratable acidity 41 

and pH. The sugar concentration determines the potential alcoholic strength. The 42 

titratable acidity and pH help to control the wine quality and colour. Phenolic maturity 43 

shows the ripeness degree for the skins, pulp and seeds taking into account its phenolic 44 

composition (Meléndez, Ortiz, Sarabia, Íñiguez, & Puras, 2013; Ferrer-Gallego, 45 

Hernández-Hierro, Rivas-Gonzalo, & Escribano-Bailón, 2012). 46 

It is really important to the winemakers the determination of adequate technological and 47 

phenolic maturities. Nowadays, at wineries, the maturity of grapes is usually controlled 48 

using classic physical and chemical analyses. For determining the sugar concentration is 49 

common to carry out density studies in the grape must since the specific gravity is 50 

directly related to the contents of soluble solids (°Brix) or to the Baume scale. It is also 51 

possible to measure the sugar concentration in the must by means of its refractive index. 52 

The determination of the total acidity and pH is usually carried out by means of 53 

volumetric titrations using NaOH and selective electrodes respectively. The detailed 54 

phenolic profile is performed by High Pressure Liquid Chromatography (Xu et al., 55 

2011) meanwhile spectrophotometric methods such as Folin-Ciocalteu are commonly 56 

selected for total phenolic determinations (Singleton, 1985). 57 

All methods above mentioned are time consuming or destructive, or both. It would be 58 

interesting to replace these methods for new ones, not destructives and roughly reliable. 59 

Near infrared spectroscopy (NIRS) has been also used as analysis tool to replace 60 

traditional methods (Ferrer-Gallego, Hernández-Hierro, Rivas-Gonzalo, & Escribano-61 
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Bailón, 2011). Moreover, hyperspectral techniques have been studied to replace 62 

physicochemical analysis in several matrices (Baiano, Terracone, Peri, & Romaniello, 63 

2012; Fernandes et al., 2011; Barbin, Elmasry, Sun, & Allen, 2013). 64 

Characterizations of food quality, safety and composition have been accomplished using 65 

the aforesaid analytical tool (Elmasry, Kamruzzaman, Sun, & Allen, 2012; Gowen, 66 

O'Donnell, Cullen, Downey, & Frias, 2007; Lorente et al., 2012). 67 

In the wine sector, it is really important to know critical parameters and attributes of 68 

grapes, and is necessary to do it quickly and precisely. Near infrared hyperspectral 69 

imaging could be an option to measure these parameters without sample destruction and 70 

reagent consumption. In essence, hyperspectral imaging is a rapid, non-destructive, 71 

rugged, multiparametric and flexible tool that potentially provides a suitable way to 72 

analyse food (Gowen et al., 2007). 73 

The aim of this study is to develop a useful and non-destructive hyperspectral method 74 

for the determination of the principal parameters that compose phenolic and 75 

technological maturity (i.e. pH, total acidity, sugar concentration and total phenols) in 76 

white and red grapes. The samples used in this work have been collected in the 77 

Condado de Huelva Designation of Origin D.O. (Andalusia, Spain) which is under the 78 

typical climatic conditions of a warm area (Gordillo et al., 2012). To our knowledge, 79 

this is the first time that near infrared hyperspectral imaging has been applied to grapes 80 

to face the aforementioned goals. 81 

2. Material and methods 82 

2.1. Samples 83 

Vitis vinifera L. cv. Zalema, Tempranillo and Syrah were collected from four vineyards 84 

located in the Condado de Huelva Designation of Origin D.O. (Andalusia, Spain). 85 

Zalema is a white cultivar autochthonous to the South of Spain where it represents over 86 
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90% of the overall production (Hernanz et al., 2009). Zalema grapes were collected 87 

from two vineyards which present different types of soil, sand and clay. Tempranillo is 88 

the most often grown red grape cultivar in Spain for producing quality red wines and 89 

Syrah is a resistant cultivar to warm climatic conditions (Gordillo et al., 2012). 90 

Both, white and red grapes were collected at different dates from mid-July to early 91 

September in the 2012 vintage. In this way, grapes were collected at different stages of 92 

maturity. There were different numbers of samples for each variety due to the earlier 93 

ripening of the red cultivars. Sixteen dates were taken into account for Tempranillo, 94 

seventeen for Syrah and eighteen for each Zalema type of soil. Three groups of berries 95 

were collected for each date and vineyard. With the aim of achieving representative 96 

samples, these were collected from the top, middle and bottom of the cluster and in the 97 

sunlight and shade side of this. After that, the samples were immediately frozen and 98 

stored at -20 ºC until analyses were performed. Two subsamples were taken from each 99 

sample, one to determine the reference parameters and the other one for the 100 

hyperspectral analysis. 101 

2.2. Determination of reference parameters 102 

Reference parameters were total phenolic concentration in grape skins, sugar 103 

concentration, titratable acidity and pH. Total phenolic concentration was determined 104 

using the Folin-Ciocalteu method (Singleton, 1985). In order to perform this 105 

determination, grape skins were separated manually from the whole grapes. Afterwards, 106 

one gram of grape skin was macerated in 10 mL of methanol containing 0.1% of 12M 107 

HCl. Methanolic phases were centrifuged (3000 rpm, 10 min) and successively pooled, 108 

approxymately 2 mL millilitres of water were added and the extract was concentrated 109 

under vacuum at 30 ºC until methanol was removed and finally made up to 10 mL with 110 

ultrapure water. The total phenolic concentration was determined using the Folin-111 
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Cicalteu method in this aqueous extract and it was expressed as gallic acid equivalents 112 

per gram of grape skin. 113 

Technological maturity parameters were determined using the analytical methods 114 

recommended by the O.I.V. (1990) using the must obtained after crushing the grapes. 115 

2.3. Hyperspectral imaging analysis 116 

Fig. 1 shows the main components of the hyperspectral imaging device (Infaimon S.L., 117 

Barcelona, Spain) which were the illumination source, optics (mirror scanner and lens), 118 

spectrograph, camera and computer. The system comprised a Xenics® XEVA-USB 119 

InGaAs camera (320 × 256 pixels; Xenics Infrared Solutions, Inc., Leuven, Belgium), a 120 

spectrograph (Specim ImSpector N17E Enhanced; Spectral Imaging Ltd., Oulu, 121 

Finland) covering the spectral range between 900 and 1700 nm (spectral resolution of 122 

3.25 nm), two 70 W tungsten iodine halogen lamps (Prilux ®, Barcelona, Spain) 123 

mounted as source light, a mirror scanner (Spectral Imaging Ltd., Oulu, Finland) and a 124 

computer system. Hyperspectral images were recorded using a 50 Hz frame rate and an 125 

exposure time of 9 ms using the instrument acquisition software SpectralDAQ v. 3.62 126 

(Spectral Imaging Ltd., Oulu, Finland). 127 

A two point reflectance calibration was used. A Spectralon® ceramic tile (Labsphere 128 

Inc., North Sutton, USA) was used as a white reference while dark current was recorded 129 

by taking a measurement after covering the spectrograph lens with a cup and closing the 130 

shutter. Corrected reflectance values (R) were calculated taking into account the 131 

relationship between sample (S), white standard (W) and dark current (D) absolute 132 

signal intensities using the following formula: 133 

R=[(S-D)/(W-D)]   (1) 134 

Thereafter, the samples were thawed and tempered at room temperature and the 135 

hyperspectral images of the intact grapes on a polyethylene plastic were recorded. The 136 
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characteristic spectral profile of this surface was useful in segmentation process for 137 

recognising the region of interest. Noisy wavebands at both extremes of the spectra 138 

range were removed and only spectral data in the resulting effective wavelength 950 - 139 

1650 nm regions were used in data analysis due to reduced efficiency outside this range  140 

in the used device. 141 

2.4. Image processing and data analysis 142 

Image processing. Image treatment was carried out using Matlab (R2010b; The Math 143 

Works, Inc. USA). Prior to the quantitative analysis, a discriminant method was applied 144 

to the grape images to isolate the grapes from other parts of image. Firstly, three regions 145 

of interest (ROIs) were selected (background, grape and pedicel) to develop a stepwise 146 

lineal discriminant model. The aforementioned discriminant model classified each pixel 147 

into two classes (grape or no grape pixel) using the reflectance values from six 148 

wavelengths (979, 1034, 1073, 1314, 1386 and 1550 nm). After that, the average 149 

spectrum of the grape region was extracted and then transformed into Log (1/R) units. 150 

The procedure was repeated for each sample and the obtained spectra were combined 151 

into the spectral matrix. 152 

Data analysis. Prior to quantitative analysis, an unsupervised pattern recognition 153 

technique, principal component analysis (PCA), was used in order to provide 154 

information about the latent structure of spectral matrix. The spectral matrix was 155 

constructed from the red grape spectra, white grape spectra or both. This method 156 

provides not only information related to spectral outliers, the distribution of samples in 157 

the newly-created space and their possible separations in different spectral groups but is 158 

also an important source of knowledge with which to create cross-validation groups 159 

used in the calibration process (Shenk & Westerhaus, 1995; Brereton, 2003). 160 
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Calibrations were performed using modified partial least squares regression (MPLS). 161 

For achieving this task, the corresponding total phenolic concentration, sugar 162 

concentration, titratable acidity and pH values were allocated to the raw spectrum of 163 

each sample, and then different spectral pre-treatments were tested. They were also used 164 

different calibration sets (i.e red grapes, white grapes or both). In this method, the group 165 

of calibration samples is divided into a series of subsets in order to perform cross-166 

validation to set the number of PLS factors, reduce the possibility of overfitting (Shenk 167 

& Westerhaus, 1995) and remove chemical outliers. Using the T≥2.5 criterion, samples 168 

that presented a high residual value when they were predicted were eliminated from the 169 

set. Finally, validation errors are combined into a single figure, the standard error of 170 

cross-validation (SECV). 171 

Spectral pre-treatments are usually applied to NIR raw data; scattering effects were 172 

removed using multiplicative scatter correction (MSC), standard normal variate (SNV), 173 

and detrending (Geladi, MacDougall, & Martens, 1985; Dhanoa, Lister, & Barnes, 174 

1995). Moreover, the effect of differentiation and variations in spectral ranges were 175 

tested in the development of the NIRS calibrations. 176 

The software used was Win ISI® (v1.50) (Infrasoft International, LLC, Port. Matilda, 177 

PA, USA). This software allowed the data pre-treatment and development of 178 

quantitative and qualitative models. From the three samples of each date, one (33%) 179 

was randomly allocated to the validation set and the other two (66%) to the calibration 180 

set. Consequently, from the 213 spectral samples (99 red and 114 white grape spectral 181 

samples), 142 were allocated in the calibration set and the remaining 71 were allocated 182 

in the validation set (two and one thirds of white and red grape spectral samples 183 

respectively). 184 

3. Results and discussion 185 
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3.1. Chemical analysis 186 

Total phenolic concentration ranged from 2.2 to 15.8 mg g-1 of grape skin with a 187 

standard deviation value of 2.9 mg g-1 of grape skin. 188 

Sugar concentration, titratable acidity and pH ranged from 4.1 to 25.4 ºBrix, 2.7 to 52.9 189 

g L-1 and 2.5 to 3.8 respectively. 190 

3.2 Hyperspectral imaging analysis 191 

It was expected a clear difference between red and white grape spectra, however the 192 

average spectra of red and white grapes are really similar (Fig. 2). For this reason it was 193 

initially decided to work with both groups together. This figure shows the average 194 

spectra of red and white grapes over the 950-1650 nm range. Standard deviation spectra 195 

for each group are also represented and for display reasons they have been multiplied by 196 

a factor of 10. Spectral intensities were low and well within the linear response range of 197 

the instrument detector range. A strong feature of the sample spectra was the absorbance 198 

pattern around 1250 and 1450 nm wavelengths. 199 

A SNV (2,5,5,1) spectral pre-treatment was applied to the spectra of both red and white 200 

grapes in the 950-1650 nm regions, where the hyperspectral system has revealed greater 201 

efficiency. Mathematical treatment is denoted as a,b,c,d, where the first digit is the 202 

number of the derivative; the second is the gap over which the derivative is calculated; 203 

the third is the number of data points in a running average or smoothing, and the fourth 204 

is the second smoothing (Shenk & Westerhaus, 1995). This spectral pre-treatment was 205 

applied only in the calibration set and after that, principal component analysis was 206 

carried out in order to look for spectral outliers and create cross-validation groups. 207 

Overall, the spectral variability explained was 99% using 15 principal components and 208 

Mahalanobis distances for each sample were calculated. Samples were ranked in order 209 
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of their H (Mahalanobis) distance from the mean spectrum of the entire sample set and 210 

the H > 3 criterion was applied. Only one H-outlier was found, a Zalema sample which 211 

spectrum did not meet this criterion and it was eliminated from the calibration set. Fig. 212 

3 shows the scores of the grape samples in the space defined by the first and second 213 

principal components which described 57.38% (PC1) and 22.06% (PC2) of the 214 

variability in the data. In this plot (Fig. 3a) it is not possible to separate completely red 215 

and white grape samples, however, it is possible to see some differences between both 216 

groups. Furthermore, it is also possible to find some semi-separation between the early 217 

days of ripening and the rest of samples (Fig. 3b). It is not shown a cultivar comparison 218 

(i.e. Zalema, Tempranillo and Syrah) because the different varieties were overlapped in 219 

this plane. 220 

Finally, quantitative calibrations were developed by modified partial least squares 221 

(MPLS) regression. As described above, to perform this calibration all grape spectra, 222 

red and white, were used as the independent (X) variables. Total phenolic concentration, 223 

sugar concentration, titratable acidity and pH were used as dependent (Y) variables. The 224 

statistical parameters of the final calibration equations are shown in Table 1 where N is 225 

the number of samples used to obtain the calibration equation after eliminating samples 226 

for chemical reasons (T criterion). The best of the different mathematical treatments, the 227 

range of application, and standard deviations are also shown. 228 

The robustness of the selected models was tested using a set of 71 samples, which did 229 

not belong to the calibration set, as external validation. In the case of titratable acidity, 230 

two samples presented reference values outside the applicability of the obtained models 231 

and then should not be used in this procedure. As result of this external validation they 232 

were obtained the standard errors of prediction (SEP) for each reference variable, these 233 

values were also included in Table 1. A relevant aspect of this method was observed, 234 
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the prediction of all the reference parameters was worse for the white grape samples 235 

than for the red ones. This can be observed in Fig. 4a, which shows the SEP (expressed 236 

as percentages) when these global models were used to predict the reference parameters 237 

in all, white or red grape samples. Considering these results it was decided to develop 238 

separate calibration models for red and white grape samples. These models were 239 

developed following the same methodology described above. The spectral samples were 240 

randomly allocated to the validation and calibration sets. In the calibration set a SNV 241 

(2,5,5,1) spectral pre-treatment and a principal component analysis were carried out in 242 

order to look for spectral outliers and create cross-validation groups. It was not found 243 

any outlier for red grape model, however, a spectral sample was eliminated from the 244 

white calibration set. The same sample had been eliminated in global model following 245 

the Mahalanobis distance criterion. For each calibration set (i.e. red and withe samples), 246 

a quantitative calibration was developed by modified partial least squares (MPLS) 247 

regression. Finally, the robustness of the selected models was tested using the external 248 

validation sets (33 samples for the red grape model and 38 samples for the white one). 249 

In the case of the red grape model all sample presented reference values inside the 250 

applicability of the obtained model, however, one and three samples were not used in 251 

the white grape model for total phenols and titratable acidity validations respectively. 252 

As result of these external validations they were obtained the standard errors of 253 

prediction (SEP) for each reference variable. The statistical parameters of these 254 

calibrations and the standard errors of prediction are described in Table 1. Better results 255 

were achieved in the prediction of red grape parameters using these new models, 256 

however, the prediction of white ones was worse for total phenolic concentration, sugar 257 

concentration and pH. Fig. 4b shows this behaviour, here it is possible to observe the 258 

SEP (%) when global, red grape and white grape methods are used to predict their 259 
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respective validation sets. Since there were not differences neither in the applied 260 

reference methods nor in the hyperspectral analysis used for white and red grape 261 

samples it was not possible to indicate the source of the larger error for the white 262 

samples than for the red ones. 263 

If differences in determination of analytical and spectral data are discarded, these 264 

findings may be due to a tinier spectral variability in red grape samples than in white 265 

ones. Samples set with tiny spectral variability can generate calibration models that 266 

predict sample parameters with small errors at the expense of less applicability (Shenk 267 

& Westerhaus, 1995). In Fig. 3a it is possible to see that the red grape samples are less 268 

dispersed than white ones. This theory is also supported by the fact that global model is 269 

better than white grape model and worse than red one. This might be because spectral 270 

samples used in the global calibration are as dispersed as the samples in white set but 271 

the global calibration set is greater than the white one. However, the results obtained in 272 

the external validation, the SEP values, are comparatively similar to the errors 273 

previously reported for these parameters using classic near infrared spectroscopy taking 274 

into the account the applicability range (Cozzolino, 2009; Cozzolino, Dambergs, Janik, 275 

Cynkar, & Gishen, 2006; Ferrer-Gallego et al., 2011; González-Caballero, Sánchez, 276 

López, & Pérez-Marín, 2010; Kemps, Leon, Best, De Baerdemaeker, & De Ketelaere, 277 

2010). 278 

4. Conclusion 279 

The procedure reported here using near infrared hyperspectral imaging presents a good 280 

potential for a fast and reasonably inexpensive screening of total phenolic concentration, 281 

sugar concentration, titratable acidity and pH in intact grapes, and therefore, for a fast 282 

control of technological and phenolic maturity. Nonetheless, a comprehensive study 283 
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should be made in order to evaluate factors, such as different production areas and grape 284 

varieties, in the complete development of these models. 285 
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