SUPPORTING INFORMATION

Structural basis of the inhibition of GH1 $\boldsymbol{\beta}$-glucosidases by multivalent pyrrolidine iminosugars

Macarena Martínez-Bailén, ${ }^{a}$ Elena Jiménez-Ortega, ${ }^{\text {b }}$ Ana T. Carmona, ${ }^{\text {a }}$ Inmaculada Robina, ${ }^{\text {a Julia }}$ Sanz-Aparicio, ${ }^{\text {b, }}{ }^{*}$ David Talens-Perales, ${ }^{\text {c }}$ Julio Polaina, ${ }^{\text {c }}$ Camilla Matassini, ${ }^{\text {d }}$ Francesca Cardona ${ }^{\text {d }}$ and Antonio J. Moreno-Vargas ${ }^{\text {a,** }}$
${ }^{a}$ Department of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012-Seville, Spain.
${ }^{b}$ Department of Crystallography and Structural Biology, Institute of Physical-Chemistry Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain.
${ }^{c}$ Institute of Agricultural Chemistry and Food Technology, CSIC, 46980-Paterna, Valencia. Spain.
${ }^{d}$ Department of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy.

1. Synthesis of $\mathbf{2}, \mathbf{5}, \mathbf{7}, \mathbf{8}$.
2. Dixon and Cornish-Bowden plots for type of inhibition and K_{i} determination.
3. Crystallographic statistics for the $\operatorname{BglA}: 4$ and $\operatorname{BglA}: 10$ crystal structures
4. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra for new compounds.
5. Synthesis of $\mathbf{2}, \mathbf{5}, \mathbf{7}, \mathbf{8}$.

1.1. Synthesis of 2

Monotosylated diethylene glycol ${ }^{[1]}$ (13)

To a solution of diethylene glycol ($500 \mu \mathrm{~L}, 5.22 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, $\mathrm{Ag}_{2} \mathrm{O}(928 \mathrm{mg}, 3.96 \mathrm{mmol}), \mathrm{TsCl}(509 \mathrm{mg}, 2.64 \mathrm{mmol})$ and $\mathrm{KI}(88 \mathrm{mg}, 0.53 \mathrm{mmol})$ were added. After stirring at r.t. for 30 min , the mixture was filtered through celite and the solvent was removed under vacuum. The crude product was purified by chromatography column on silica gel (EtOAc:cyclohexane 2:1) to give 13 ($633 \mathrm{mg}, 2.43 \mathrm{mmol}, 92 \%$) as a colourless oil.

2-(2-(4-Iodophenoxy)ethoxy)ethan-1-ol ${ }^{[2]}$ (14)

To a solution of $\mathbf{1 3}(345 \mathrm{mg}, 1.33 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3.3 \mathrm{~mL})$, 4-iodophenol ($310 \mathrm{mg}, 1.40 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(222 \mathrm{mg}, 1.59 \mathrm{mmol})$ were added and the mixture was refluxed for 4 h . The mixture was diluted with EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}$ and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The resulting residue was purified by chromatography column on silica gel (EtOAc:cyclohexane 1:1) to give $14(308 \mathrm{mg}, 1.00 \mathrm{mmol}, 75 \%)$ as a colourless oil.

2-(2-(4-(Trimethylsilylethynyl)phenoxy)ethoxy)ethan-1-ol ${ }^{[3]}$ (15)

To a mixture of $14(297 \mathrm{mg}, 0.964 \mathrm{mmol})$, $\mathrm{CuI}(2 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14 \mathrm{mg}$, $0.020 \mathrm{mmol})$, a solution of trimethylsilylacetylene ($200 \mu \mathrm{~L}, 1.39 \mathrm{mmol}$) in $\mathrm{Et}_{3} \mathrm{~N}(4 \mathrm{~mL})$ was added and the mixture was stirred at r.t. overnight. The mixture was filtered through celite and the solvent was removed under vacuum. The crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $\mathrm{HCl}(1 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The resulting residue was purified by chromatography column on silica gel (EtOAc:cyclohexane 1:1) to give 15 ($265 \mathrm{mg}, 0.952 \mathrm{mmol}, 99 \%$) as a yellow oil.

2-(2-(4-Ethynylphenoxy)ethoxy)ethan-1-ol ${ }^{[3]}$ (16)

A mixture of $\mathbf{1 5}(252 \mathrm{mg}, 0.905 \mathrm{mmol})$ and $\mathrm{KOH} / \mathrm{MeOH}(5 \%, 3.6 \mathrm{~mL})$ was stirred at r.t. for 1 h . After this time, $\mathrm{HCl}(1 \mathrm{M})$ was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The resulting residue was purified by chromatography column on silica gel (EtOAc:cyclohexane 2:1) to give $\mathbf{1 6}$ ($178 \mathrm{mg}, 0.863 \mathrm{mmol}$, 95%) as a pale yellow solid.

2-(2-(4-Ethynylphenoxy)ethoxy)ethyl-4-methylbenzenesulfonate ${ }^{[3]}$ (2)

To a solution of $\mathbf{1 6}(2.79 \mathrm{~g}, 13.5 \mathrm{mmol})$ in a mixture $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: pyridine $4: 1$ (anhydrous, 30 mL) at $0^{\circ} \mathrm{C}, \mathrm{TsCl}(4.69 \mathrm{~g}, 24.4 \mathrm{mmol})$ was added. After stirring at r.t. for 6.5 h , the mixture was washed with $\mathrm{HCl}(1 \mathrm{M})$ and $\mathrm{H}_{2} \mathrm{O}$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The resulting residue was purified by chromatography column on silica gel (EtOAc:cyclohexane 1:4) to give $2(4.84 \mathrm{~g}, 13.4 \mathrm{mmol}, 99 \%)$ as a purple oil.

1.2. Synthesis of 5

Pent-4-yn-1-yl 4-methylbenzenesulfonate ${ }^{[4]}$ (5)

To a solution of pent-4-yn-1-ol ($1.5 \mathrm{~mL}, 15 \mathrm{mmol}$) in anhydrous pyridine $(40 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}, \mathrm{TsCl}$ $(8.91 \mathrm{~g}, 46.3 \mathrm{mmol})$ was added. After stirring at r.t. for 5 h , water was added and the solvent was removed under vacuum. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with $\mathrm{HCl}(1 \mathrm{M})$, sat. aq. soln. of NaHCO_{3} and brine. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated.

The crude product was purified by chromatography column on silica gel (EtOAc:cyclohexane $1: 10)$ to give $5(3.34 \mathrm{~g}, 14.0 \mathrm{mmol}, 91 \%)$ as a colourless oil.

1.3. Synthesis of 7 and 8

N-(tert-Butoxycarbonyl)tris(hydroxymethyl)aminomethane ${ }^{[5]}$ (17)

A solution of $\mathrm{Boc}_{2} \mathrm{O}(2.39 \mathrm{~g}, 10.7 \mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH}(10 \mathrm{~mL})$ was added to a suspension of TRIS $(1.01 \mathrm{~g}, 8.30 \mathrm{mmol})$ in ${ }^{t} \mathrm{BuOH}: \mathrm{H}_{2} \mathrm{O}(1: 1,15 \mathrm{~mL})$ and the reaction mixture was stirred at r.t. for 1 d. The solvent was removed under vacuum and the product was purified by precipitation with cold EtOAc. Compound 17 ($1.72 \mathrm{~g}, 7.77 \mathrm{mmol}, 94 \%$) was obtained as a white solid.

Tris[(propargyloxy)methyl]aminomethane (7)

To a solution of $\mathbf{1 7}(1.63 \mathrm{~g}, 7.37 \mathrm{mmol})$ in anhydrous DMF $(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, propargyl bromide $(4.8 \mathrm{~mL}, 45 \mathrm{mmol})$ and $\mathrm{KOH}(2.92 \mathrm{~g}, 44.2 \mathrm{mmol})$ were added (addition of KOH in portions during $15 \mathrm{~min})$. The reaction mixture was stirred at $35^{\circ} \mathrm{C}$ for 1 d . After this time, the mixture was diluted with EtOAc and washed with $\mathrm{H}_{2} \mathrm{O}$ (three times). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered
and evaporated. The resulting residue was purified by chromatography column on silica gel (EtOAc:cyclohexane 1:7 \rightarrow EtOAc) to give the corresponding tripropargylated derivative (1.45 g , $4.32 \mathrm{mmol}, 59 \%$) as a yellow solid. To a solution of this compound ($1.43 \mathrm{~g}, 4.26 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(17 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, TFA $(7.0 \mathrm{~mL}, 94 \mathrm{mmol})$ was added slowly and the reaction mixture was stirred at r.t. for 2 h . Evaporation of the solvent and chromatographic purification on Dowex 50WX8 eluting with $\mathrm{MeOH}, \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{NH}_{4} \mathrm{OH} 17 \%$, afforded $7(809 \mathrm{mg}, 3.44 \mathrm{mmol}$, $81 \%)$ as a yellow solid. IR $\left(\mathrm{vcm}^{-1}\right) 3366,3282,3250(\equiv \mathrm{C}-\mathrm{H}, \mathrm{NH}), 2923,2103(\mathrm{C} \equiv \mathrm{C}), 1590,1440$, $1359,1265,1090,911,727 .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}, J \mathrm{~Hz}\right) \delta 4.15\left(\mathrm{~d}, 6 \mathrm{H},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=2.4\right.$, $-\mathrm{OCH}_{2} \mathrm{CC} \equiv \mathrm{H}$), $3.47\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{2} \mathrm{NCCH}_{2} \mathrm{O}\right), 2.42\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CC} \equiv H\right), 1.58$ (br. s, $2 \mathrm{H},-\mathrm{NH}_{2}$). ${ }^{13} \mathrm{C}-$ NMR ($\left.75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) \delta 79.9\left(-\mathrm{OCH}_{2} \mathrm{CC} \equiv \mathrm{H}\right), 74.5\left(-\mathrm{OCH}_{2} \mathrm{CC} \equiv \mathrm{H}\right), 72.2\left(\mathrm{H}_{2} \mathrm{NCCH}_{2} \mathrm{O}\right)$, $58.8\left(-\mathrm{OCH}_{2} \mathrm{CC}=\mathrm{H}\right)$, $55.7\left(\mathrm{H}_{2} \mathrm{NCCH}_{2} \mathrm{O}\right)$. HRESIMS m / z found 236.1277, calc. for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+}: 236.1281$.

Hexakis[(propargyloxy)methyl]- N, N '-dimethyladipamide (8)

A suspension of adipic acid ($58 \mathrm{mg}, 0.40 \mathrm{mmol}$) in $\mathrm{SOCl}_{2}(1 \mathrm{~mL})$ was refluxed for 3 h under nitrogen atmosphere. After cooling to r.t., the solvent was evaporated and the crude adipoyl chloride was used directly for the next reaction without further purification. To a solution of $\mathbf{7}$ ($242 \mathrm{mg}, 1.03 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL}$), DIPEA ($420 \mu \mathrm{~L}, 2.40 \mathrm{mmol}$) was added. After cooling at $0{ }^{\circ} \mathrm{C}$, a solution of adipoyl chloride ($73 \mathrm{mg}, 0.40 \mathrm{mmol}$) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the reaction was stirred at r.t. overnight. The mixture was washed with $\mathrm{HCl}(0.5 \mathrm{M})$ and water (three times). The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated. The resulting residue was purified by chromatography column on silica gel (EtOAc:cyclohexane $1: 1 \rightarrow 2: 1)$ to give $\mathbf{8}^{[6]}(147 \mathrm{mg}, 0.253 \mathrm{mmol}, 63 \%)$ as a white solid. IR $\left(v \mathrm{~cm}^{-1}\right) 3314,3270(\equiv \mathrm{C}-$ H, NH), 2952, 2117 (C $\equiv \mathrm{C}$), 1667, 1642 (C=O), 1556, 1438, 1358, 1288, 1088, 958, 804. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}, J \mathrm{~Hz}$) $\delta 5.73$ (br. s, $2 \mathrm{H}, \mathrm{NH}$), $4.13\left(\mathrm{~d}, 12 \mathrm{H},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=2.4,-\mathrm{OCH}_{2} \mathrm{CC} \equiv \mathrm{H}\right.$), 3.82 ($\mathrm{s}, 12 \mathrm{H},-\mathrm{NHCCH}_{2} \mathrm{O}$), $2.44\left(\mathrm{t}, 6 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CC} \equiv H\right.$), 2.17-2.13 (m, 4H, $-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}$), 1.64$1.60\left(\mathrm{~m}, 4 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right) \delta 173.1$ ($\mathrm{C}=\mathrm{O}$), 79.7 ($\left.\mathrm{OCH}_{2} \mathrm{CC} \equiv \mathrm{H}\right), 74.8\left(-\mathrm{OCH}_{2} \mathrm{CC} \equiv \mathrm{H}\right), 68.7\left(-\mathrm{NHCCH}_{2} \mathrm{O}\right), 59.3\left(-\mathrm{NHCCH}_{2} \mathrm{O}\right), 58.8\left(-\mathrm{OCH}_{2} \mathrm{CC} \equiv \mathrm{H}\right)$, $37.0\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right), 25.0\left(-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}=\mathrm{O}\right)$. HRESIMS m / z found 603.2667, calc. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}:$603.2677.
2. Dixon and Cornish-Bowden plots ${ }^{[7]}$ for the determination of the type of inhibition and K_{i}.

Figure S1. Dixon and Cornish-Bowden plots for compound 4.

Figure S2. Dixon and Cornish-Bowden plots for compound 10.

Figure S3. Dixon and Cornish-Bowden plots for compound 12.

3. Crystallographic statistics for the $\mathrm{BglA}: 4$ and $\mathrm{BglA}: 10$ complex crystal structures

Crystallographic statistics
(Values in parentheses are for the high resolution shell)

Crystal data	BglA/ compound 4	BglA/ compound 10
Space group	P 4 212	P 4212
Unit cell parameters		
a (\AA)	146.73	146.10
b (\AA)	146.73	146.10
c (\AA)	140.05	140.35
Data collection		
Beamline	XALOC (ALBA)	XALOC (ALBA)
Temperature (K)	100	100
Wavelength (\AA)	0.97926	0.97926
Resolution (\AA)	$\begin{aligned} & \hline 48.91-2.13 \\ & (2.17-2.13) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 48.70-2.85 \\ & (3.00-2.85) \\ & \hline \end{aligned}$
Data processing		
Total reflections	572842 (27706)	225830 (33371)
Unique reflections	85545 (4461)	32518(4772)
Multiplicity	6.7 (6.2)	6.9 (7.0)
Completeness (\%)	99.9 (99.6)	91.1 (93.0)
Mean I / σ ($)$	11.6 (2.2)	9.2 (2.5)
$R_{\text {merge }}{ }^{\dagger}$ (\%)	10.4 (70.1)	14.1 (69.1)
$R_{\text {pim }}{ }^{\dagger \dagger}$ (\%)	4.3 (29.9)	7.0 (34.1)
Molecules per ASU	2	2
Refinement		
$\mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}{ }^{\dagger \dagger \dagger}$ (\%)	21.59/24.13	18.53/23.25
N^{0} of atoms/average B (\AA^{2})		
Protein	7294/34.35	7294/48.53
Other molecules	56/45.04	50/60.35
Water Molecules	458/46.44	150/33.31
All atoms	7808/35.14	7494/48.30
Ramachandran plot (\%)		
Favoured	96.41	96.08
Outliers	0.11	0.67
RMS deviations		
Bonds (\AA)	0.01	0.005
Angles (${ }^{\circ}$)	1.2	1.39
PDB accession codes	6R4K	6QWI

${ }^{\dagger} \mathrm{R}_{\text {merge }}=\sum_{\mathrm{hkl}} \Sigma_{\mathrm{i}}\left|\mathrm{I}_{\mathrm{i}}(\mathrm{hkl})-[\mathrm{I}(\mathrm{hkl})]\right| / \sum_{\mathrm{hkl}} \Sigma_{\mathrm{i}} \mathrm{I}_{\mathrm{i}}(\mathrm{hkl})$, where $\mathrm{I}_{\mathrm{i}}(\mathrm{hkl})$ is the ith measurement of reflection hkl and [I(hkl)] is the weighted mean of all measurements.
${ }^{\dagger} \mathrm{R}_{\mathrm{pim}}=\sum_{\mathrm{hkl}}[1 /(\mathrm{N}-1)] 1 / 2 \sum_{\mathrm{i}}\left|\mathrm{I}_{\mathrm{i}}(\mathrm{hkl})-[\mathrm{I}(\mathrm{hkl})]\right| / \sum_{\mathrm{hkl}} \sum_{\mathrm{i}} \mathrm{I}_{\mathrm{i}}(\mathrm{hkl})$, where N is the redundancy for the hkl reflection.
${ }^{\#} \mathrm{R}_{\text {work }} / \mathrm{R}_{\text {free }}=\Sigma_{\mathrm{hkl}}|\mathrm{Fo}-\mathrm{Fc}| / \Sigma_{\mathrm{hkl}}|\mathrm{Fo}|$, where Fc is the calculated and Fo is the observed structure factor amplitude of reflection hkl for the working / free (5\%) set, respectively.

Figure S4. A view of the BglA octamer complexed with compound 10, highlighting the observed part of the inhibitor bound in two of the subunits
4. ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}$-NMR spectra for new compounds.

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 363 \mathrm{~K}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

'H-NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)

'H-NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)

[1] Bouzide, A.; Sauve, G. Silver(I) oxide mediated highly selective monotosylation of symmetrical diols. Application to the synthesis of polysubstituted cyclic ethers. Org. Lett. 2002, 4, 2329-2332.
[2] Chen, J.; Cheuk, K. K. -L.; Tang, B. Z. Synthesis and characterization of poly(phenylacetylene)s carrying oligo(ethylene oxide) pendants. J. Polym. Sci. Part A. Polymer Chemistry 2006, 44, 1153-1167.
[3] Veliks, J.; Seifert, H. M.; Frantz, D. K.; Klosterman, J. K.; Tseng, J. -C.; Lindena, A.; Siegel, J. S. Towards the molecular Borromean link with three unequal rings: double-threaded ruthenium(II) ring-inring complexes. Org. Chem. Front. 2016, 3, 667-672.
[4] Hayashi, K.; Tanimoto, H.; Zhang, H.; Morimoto, T.; Nishiyama, Y.; Kakiuchi, K. Efficient synthesis of α, β-unsaturated alkylimines performed with allyl cations and azides: application to the synthesis of an ant venom alkaloid. Org. Lett. 2012, 14, 5728-5731.
[5] Chabre, Y. M.; Contino-Pépin, C.; Placide, V.; Shiao, T. C.; Roy, R. Expeditive synthesis of glycodendrimer scaffolds based on versatile TRIS and mannoside derivatives. J. Org. Chem. 2008, 73, 5602-5605.
[6] Cardona, F.; Parmeggiani, C.; Matassini, C.; Goti, A.; Morrone, A.; Catarzi, S.; D'Adamio, G. New dendrimeric pyrrolidines, their synthesis and medical use. PCT Int. Appl. 2017, WO 2017137895 A1 20170817.
[7] Cornish-Bowden, A. A Simple Graphical Method for Determining the Inhibition Constants of Mixed, Uncompetitive and Non-Competitive Inhibitors. Biochem. J. 1974, 137,143-144.

