SUPPORTING INFORMATION

Structural basis of the inhibition of GH1 β -glucosidases by multivalent pyrrolidine iminosugars

Macarena Martínez-Bailén,^a Elena Jiménez-Ortega,^b Ana T. Carmona,^a Inmaculada Robina,^a Julia Sanz-Aparicio,^{b,*} David Talens-Perales,^c Julio Polaina,^c Camilla Matassini,^d Francesca Cardona^d and Antonio J. Moreno-Vargas^{a,*}

^aDepartment of Organic Chemistry, Faculty of Chemistry, University of Seville, C/ Prof. García González, 1, 41012-Seville, Spain.

^bDepartment of Crystallography and Structural Biology, Institute of Physical-Chemistry Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain.

^cInstitute of Agricultural Chemistry and Food Technology, CSIC, 46980-Paterna, Valencia. Spain.

^dDepartment of Chemistry 'Ugo Schiff', University of Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy.

- 1. Synthesis of 2, 5, 7, 8.
- 2. Dixon and Cornish-Bowden plots for type of inhibition and K_i determination.
- 3. Crystallographic statistics for the BglA:4 and BglA:10 crystal structures
- 4. ¹H- and ¹³C-NMR spectra for new compounds.

1. Synthesis of 2, 5, 7, 8.

1.1. Synthesis of 2

Monotosylated diethylene glycol^[1] (13)

To a solution of diethylene glycol (500 μ L, 5.22 mmol) in anhydrous CH₂Cl₂ (25 mL) at 0 °C, Ag₂O (928 mg, 3.96 mmol), TsCl (509 mg, 2.64 mmol) and KI (88 mg, 0.53 mmol) were added. After stirring at r.t. for 30 min, the mixture was filtered through celite and the solvent was removed under vacuum. The crude product was purified by chromatography column on silica gel (EtOAc:cyclohexane 2:1) to give **13** (633 mg, 2.43 mmol, 92%) as a colourless oil.

2-(2-(4-Iodophenoxy)ethoxy)ethan-1-ol^[2] (14)

To a solution of **13** (345 mg, 1.33 mmol) in CH₃CN (3.3 mL), 4-iodophenol (310 mg, 1.40 mmol) and K_2CO_3 (222 mg, 1.59 mmol) were added and the mixture was refluxed for 4 h. The mixture was diluted with EtOAc and washed with H₂O and brine. The organic layer was dried over Na₂SO₄, filtered and evaporated. The resulting residue was purified by chromatography column on silica gel (EtOAc:cyclohexane 1:1) to give **14** (308 mg, 1.00 mmol, 75%) as a colourless oil.

2-(2-(4-(Trimethylsilylethynyl)phenoxy)ethoxy)ethan-1-ol^[3] (15)

To a mixture of **14** (297 mg, 0.964 mmol), CuI (2 mg, 0.01 mmol) and PdCl₂(PPh₃)₂ (14 mg, 0.020 mmol), a solution of trimethylsilylacetylene (200 μ L, 1.39 mmol) in Et₃N (4 mL) was added and the mixture was stirred at r.t. overnight. The mixture was filtered through celite and the solvent was removed under vacuum. The crude product was dissolved in CH₂Cl₂ and washed with HCl (1M) and H₂O. The organic layer was dried over Na₂SO₄, filtered and evaporated. The resulting residue was purified by chromatography column on silica gel (EtOAc:cyclohexane 1:1) to give **15** (265 mg, 0.952 mmol, 99%) as a yellow oil.

2-(2-(4-Ethynylphenoxy)ethoxy)ethan-1-ol^[3] (16)

A mixture of **15** (252 mg, 0.905 mmol) and KOH/MeOH (5%, 3.6 mL) was stirred at r.t. for 1 h. After this time, HCl (1M) was added and the mixture was extracted with CH_2Cl_2 . The organic layer was dried over Na₂SO₄, filtered and evaporated. The resulting residue was purified by chromatography column on silica gel (EtOAc:cyclohexane 2:1) to give **16** (178 mg, 0.863 mmol, 95%) as a pale yellow solid.

2-(2-(4-Ethynylphenoxy)ethoxy)ethyl-4-methylbenzenesulfonate^[3] (2)

To a solution of **16** (2.79 g, 13.5 mmol) in a mixture CH₂Cl₂:pyridine 4:1 (anhydrous, 30 mL) at 0 °C, TsCl (4.69 g, 24.4 mmol) was added. After stirring at r.t. for 6.5 h, the mixture was washed with HCl (1M) and H₂O. The organic layer was dried over Na₂SO₄, filtered and evaporated. The resulting residue was purified by chromatography column on silica gel (EtOAc:cyclohexane 1:4) to give **2** (4.84 g, 13.4 mmol, 99%) as a purple oil.

1.2. Synthesis of 5

Pent-4-yn-1-yl 4-methylbenzenesulfonate^[4] (5)

To a solution of pent-4-yn-1-ol (1.5 mL, 15 mmol) in anhydrous pyridine (40 mL) at 0 °C, TsCl (8.91 g, 46.3 mmol) was added. After stirring at r.t. for 5 h, water was added and the solvent was removed under vacuum. The residue was dissolved in CH_2Cl_2 , washed with HCl (1M), sat. aq. soln. of NaHCO₃ and brine. The organic layer was dried over Na₂SO₄, filtered and evaporated.

The crude product was purified by chromatography column on silica gel (EtOAc:cyclohexane 1:10) to give **5** (3.34 g, 14.0 mmol, 91%) as a colourless oil.

1.3. Synthesis of 7 and 8

*N-(tert-*Butoxycarbonyl)tris(hydroxymethyl)aminomethane^[5] (17)

A solution of Boc_2O (2.39 g, 10.7 mmol) in 'BuOH (10 mL) was added to a suspension of TRIS (1.01 g, 8.30 mmol) in 'BuOH:H₂O (1:1, 15 mL) and the reaction mixture was stirred at r.t. for 1 d. The solvent was removed under vacuum and the product was purified by precipitation with cold EtOAc. Compound **17** (1.72 g, 7.77 mmol, 94%) was obtained as a white solid.

Tris[(propargyloxy)methyl]aminomethane (7)

To a solution of **17** (1.63 g, 7.37 mmol) in anhydrous DMF (20 mL) at 0 °C, propargyl bromide (4.8 mL, 45 mmol) and KOH (2.92 g, 44.2 mmol) were added (addition of KOH in portions during 15 min). The reaction mixture was stirred at 35 °C for 1 d. After this time, the mixture was diluted with EtOAc and washed with H₂O (three times). The organic layer was dried over Na₂SO₄, filtered

and evaporated. The resulting residue was purified by chromatography column on silica gel (EtOAc:cyclohexane 1:7→EtOAc) to give the corresponding tripropargylated derivative (1.45 g, 4.32 mmol, 59%) as a yellow solid. To a solution of this compound (1.43 g, 4.26 mmol) in anhydrous CH₂Cl₂ (17 mL) at 0 °C, TFA (7.0 mL, 94 mmol) was added slowly and the reaction mixture was stirred at r.t. for 2 h. Evaporation of the solvent and chromatographic purification on Dowex 50WX8 eluting with MeOH, H₂O and NH₄OH 17%, afforded **7** (809 mg, 3.44 mmol, 81%) as a yellow solid. IR (v cm⁻¹) 3366, 3282, 3250 (≡C-H, NH), 2923, 2103 (C≡C), 1590, 1440, 1359, 1265, 1090, 911, 727. ¹H-NMR (300 MHz, CDCl₃, δ ppm, *J* Hz) δ 4.15 (d, 6H, ⁴*J*_{H,H} = 2.4, -OCH₂CC≡H), 3.47 (s, 6H, H₂NCCH₂O), 2.42 (t, 3H, -OCH₂CC≡H), 1.58 (br. s, 2H, -NH₂). ¹³C-NMR (75.4 MHz, CDCl₃, δ ppm) δ 79.9 (-OCH₂CC≡H), 74.5 (-OCH₂CC≡H), 72.2 (H₂NCCH₂O), 58.8 (-OCH₂CC≡H), 55.7 (H₂NCCH₂O). HRESIMS *m*/*z* found 236.1277, calc. for C₁₃H₁₈NO₃ [M+H]⁺: 236.1281.

Hexakis[(propargyloxy)methyl]-N,N'-dimethyladipamide (8)

A suspension of adipic acid (58 mg, 0.40 mmol) in SOCl₂ (1 mL) was refluxed for 3 h under nitrogen atmosphere. After cooling to r.t., the solvent was evaporated and the crude adipoyl chloride was used directly for the next reaction without further purification. To a solution of 7 (242 mg, 1.03 mmol) in anhydrous CH₂Cl₂ (2.5 mL), DIPEA (420 µL, 2.40 mmol) was added. After cooling at 0 °C, a solution of adipoyl chloride (73 mg, 0.40 mmol) in anhydrous CH_2Cl_2 was added and the reaction was stirred at r.t. overnight. The mixture was washed with HCl (0.5M) and water (three times). The organic phase was dried over Na₂SO₄, filtered and evaporated. The resulting residue was purified by chromatography column on silica gel (EtOAc:cyclohexane 1:1→2:1) to give $\mathbf{8}^{[6]}$ (147 mg, 0.253 mmol, 63%) as a white solid. IR (v cm⁻¹) 3314, 3270 (≡C-H, NH), 2952, 2117 (C=C), 1667, 1642 (C=O), 1556, 1438, 1358, 1288, 1088, 958, 804. ¹H-NMR $(300 \text{ MHz}, \text{CDCl}_3, \delta \text{ ppm}, J \text{ Hz}) \delta 5.73 \text{ (br. s, 2H, NH)}, 4.13 \text{ (d, 12H, } {}^4J_{\text{H,H}} = 2.4, \text{-OCH}_2\text{CC} \equiv \text{H}),$ 3.82 (s, 12H, -NHCCH₂O), 2.44 (t, 6H, -OCH₂CC≡H), 2.17-2.13 (m, 4H, -CH₂CH₂C=O), 1.64-1.60 (m, 4H, -CH₂CH₂C=O). ¹³C-NMR (75.4 MHz, CDCl₃, δ ppm) δ 173.1 (C=O), 79.7 (-OCH₂CC≡H), 74.8 (-OCH₂CC≡H), 68.7 (-NHCCH₂O), 59.3 (-NHCCH₂O), 58.8 (-OCH₂CC≡H), 37.0 (-CH₂CH₂C=O), 25.0 (-CH₂CH₂C=O). HRESIMS m/z found 603.2667, calc. for $C_{32}H_{40}N_2O_8Na [M+Na]^+: 603.2677.$

- 1/Abs ^{5,0} ◆[S] = 2.08 mM [S] = 4.16 mM 4,0 ▲[S] = 16.7 mM 3,0 2,0 1,0 0,0 \geq -60 -40 40 80 -20 60 100 20 Ø [Inhibitor] in μM -1,0 _ 12,0 [S]/Abs [S] = 2.08 mM [S] = 4.16 mM 10,0 **a** [S] = 8.33 mM 8,0 6,0 4,0
- 2. Dixon and Cornish-Bowden plots^[7] for the determination of the type of inhibition and K_i .

Figure S1. Dixon and Cornish-Bowden plots for compound 4.

10

20

30

40

50

[Inhibitor] in μM

60

2,0

0,0

0

-10

Figure S2. Dixon and Cornish-Bowden plots for compound 10.

Figure S3. Dixon and Cornish-Bowden plots for compound 12.

3. Crystallographic statistics for the BglA:4 and BglA:10 complex crystal structures

Crystal data	BglA/	BglA/
	compound 4	compound 10
Space group	P 4 2 ₁ 2	P 4 2 ₁ 2
Unit cell parameters		
a (Å)	146.73	146.10
b (Å)	146.73	146.10
c (Å)	140.05	140.35
Data collection		
Beamline	XALOC (ALBA)	XALOC (ALBA)
Temperature (K)	100	100
Wavelength (Å)	0.97926	0.97926
Resolution (Å)	48.91-2.13	48.70-2.85
	(2.17-2.13)	(3.00-2.85)
Data processing		
Total reflections	572842 (27706)	225830 (33371)
Unique reflections	85545 (4461)	32518(4772)
Multiplicity	6.7 (6.2)	6.9 (7.0)
Completeness (%)	99.9 (99.6)	91.1 (93.0)
Mean <i>I</i> /σ (<i>I</i>)	11.6 (2.2)	9.2 (2.5)
R_{merge}^{\dagger} (%)	10.4 (70.1)	14.1 (69.1)
$R_{pim}^{\dagger\dagger}$ (%)	4.3 (29.9)	7.0(34.1)
Molecules per ASU	2	2
Refinement		
$R_{work} / R_{free}^{\dagger \dagger \dagger}$ (%)	21.59/24.13	18.53/23.25
Nº of atoms/average B (Å ²)		
Protein	7294/34.35	7294/48.53
Other molecules	56/45.04	50/60.35
Water Molecules	458/46.44	150/33.31
All atoms	7808/35.14	7494/48.30
Ramachandran plot (%)		
Favoured	96.41	96.08
Outliers	0.11	0.67
RMS deviations		
Bonds (Å)	0.01	0.005
Angles (°)	1.2	1.39
PDB accession codes	6R4K	6QWI

Crystallographic statistics (Values in parentheses are for the high resolution shell)

 ${}^{\dagger}R_{merge} = \sum_{hkl} \sum_{i} |I_i(hkl) - [I(hkl)]| / \sum_{hkl} \sum_{i} I_i(hkl)$, where $I_i(hkl)$ is the ith measurement of reflection hkl and [I(hkl)] is the weighted mean of all measurements.

 $^{\dagger\dagger}R_{pim} = \Sigma_{hkl} \left[1/(N-1) \right] 1/2 \Sigma_i \left| I_i(hkl) - \left[I(hkl) \right] \right| / \Sigma_{hkl} \Sigma_i I_i(hkl), \text{ where N is the redundancy for the hkl reflection.}$

⁺⁺⁺ $R_{work} / R_{free} = \Sigma_{hkl} | Fo - Fc | / \Sigma_{hkl} | Fo |$, where Fc is the calculated and Fo is the observed structure factor amplitude of reflection hkl for the working / free (5%) set, respectively.

Figure S4. A view of the BglA octamer complexed with compound 10, highlighting the observed part of the inhibitor bound in two of the subunits

4. ¹H- and ¹³C-NMR spectra for new compounds.

¹³C-NMR (75.4 MHz, DMSO-*d*₆, 363 K)

¹³C-NMR (75.4 MHz, CD₃OD)

¹³C-NMR (75.4 MHz, CD₃OD)

¹³C-NMR (75.4 MHz, CDCl₃)

¹³C-NMR (75.4 MHz, CDCl₃)

¹³C-NMR (75.4 MHz, D₂O)

¹³C-NMR (75.4 MHz, D₂O)

[7] Cornish-Bowden, A. A Simple Graphical Method for Determining the Inhibition Constants of Mixed, Uncompetitive and Non-Competitive Inhibitors. *Biochem. J.* **1974**, *137*,143-144.

^[1] Bouzide, A.; Sauve, G. Silver(I) oxide mediated highly selective monotosylation of symmetrical diols. Application to the synthesis of polysubstituted cyclic ethers. *Org. Lett.* **2002**, *4*, 2329-2332.

^[2] Chen, J.; Cheuk, K. K. –L.; Tang, B. Z. Synthesis and characterization of poly(phenylacetylene)s carrying oligo(ethylene oxide) pendants. *J. Polym. Sci. Part A: Polymer Chemistry* **2006**, *44*, 1153-1167.

^[3] Veliks, J.; Seifert, H. M.; Frantz, D. K.; Klosterman, J. K.; Tseng, J. –C.; Lindena, A.; Siegel, J. S. Towards the molecular Borromean link with three unequal rings: double-threaded ruthenium(II) ring-inring complexes. *Org. Chem. Front.* **2016**, *3*, 667-672.

^[4] Hayashi, K.; Tanimoto, H.; Zhang, H.; Morimoto, T.; Nishiyama, Y.; Kakiuchi, K. Efficient synthesis of α , β -unsaturated alkylimines performed with allyl cations and azides: application to the synthesis of an ant venom alkaloid. *Org. Lett.* **2012**, *14*, 5728-5731.

^[5] Chabre, Y. M.; Contino-Pépin, C.; Placide, V.; Shiao, T. C.; Roy, R. Expeditive synthesis of glycodendrimer scaffolds based on versatile TRIS and mannoside derivatives. *J. Org. Chem.* **2008**, *73*, 5602-5605.

^[6] Cardona, F.; Parmeggiani, C.; Matassini, C.; Goti, A.; Morrone, A.; Catarzi, S.; D'Adamio, G. New dendrimeric pyrrolidines, their synthesis and medical use. PCT Int. Appl. **2017**, WO 2017137895 A1 20170817.