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Abstract
Time series forecasting of disaggregated freight flow is a key issue in decision-making by port authorities. For this purpose 
and to test new deep learning techniques we have selected seven time series of imported goods from Morocco to Spain 
through the port of Algeciras, and we have tested two forecasting deep neural networks models: dilated causal 
convolutional and encoder–decoder recurrent. We have experimented with four different granularities for each series: 
quarterly, monthly, weekly and daily. The results show that our neural network models can manage these raw series without 
first removing seasonality or trend. We also highlight the ability of neural models to work with a fixed input size of one 
year, being able to make good predictions using the same input size for all granularities. The two deep learning models have 
globally improved the benchmarks of the M4 Competition of forecasting. Each neural network model obtains its best results 
under different circumstances: the recurrent one with daily granularity and intermittent series, and the convolutional one 
with weekly and monthly granularities.

Keywords Disaggregated freight transport · Time-series forecasting · Machine learning · Deep learning · Dilated convolutional 
neural network · Encoder–decoder recurrent neural network

1 Introduction

Seaports are major infrastructure elements of transportation
networks in supply chains. Port authorities are responsible
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formaking decisions regarding these infrastructures and their
facilities in light of freight transport demand forecasts (Sys-
tematics 1997; Chopra 2019). Disaggregated freight flow
allows for a segmented analysis of future freight transport
demand in order to help prioritise transport investments,
transport policy development and the growth of the indus-
try of logistics (Havenga 2013).

The aim of this work is to evaluate the usefulness of
machine learning techniques for the prediction of the flow of
goods through seaports. Machine learning techniques base
their predictions on inferred models from data. There are
multiple machine learning applications in many domains, as
healthcare, education and sports, but has only recently been
applied to commercial transactions, so its application to the
study of international trade trends is limited (Batarseh et al.
2019).

Weare especially interested in deep learningmodels.Deep
learning is a specific kind of machine learning that allows
a machine to learn complicated concepts by building them
from simpler concepts. The different components of this type
of model are organized into a deep and layered structure
(Goodfellow et al. 2016).
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Our experiments seek to give insights into the applicability
of the new deep learning techniques to the forecasting of the
flow of goods. Specifically, we have used two deep learning
models based on the following techniques:

– Convolutional neural networksA type of artificial neural
network in which neurons are organized into hierarchical
blocks, each of which specializes in enhancing certain
features of the input data.

– Recurrent neural networks Another type of neural net-
work composed of nodes that, in addition to receiving
information from the previous layer, can also obtain it
from themselves, thus allowing the sequential process-
ing of data.

2.1 Data description and forecast horizons

Our dataset consists of seven disaggregated time series of
goods importations from Morocco to Spain through the port
of Algeciras in the period 2000–2016, corresponding to the
European tariff chapters shown in Table 1.

The seven series represent a great variety of seasonality
and trend, which will allow us to evaluate the behavior of our
forecasting techniques under very different conditions.

Maritime traffic time series are updated in the databases
with the current timestamp for every port operation (loading
or unloading). From the original series, which have a one-
minute granularity, we have resampled them into four levels
of granularity (quarterly, monthly, weekly and daily), and
for each we have considered a multi-step forecast horizon as
defined in theM4Competition (Makridakis et al. 2020). This
wayweobtain a set of 28 series (available at,Xxxxx2020) for
short, medium and long term forecasting. And therefore we
can support very different types of decisions, like strategic,
planning and operational decisions.

Table 2 shows for each granularity level, the forecast hori-
zon, the seasonality period and the time interval of the series.
Daily series are the ones presenting two types of seasonality
(annual and weekly). For these type of series we have short-
ened the time interval to the last two and a half years, which
is long enough for our prediction purposes.

Figure 1 shows the seven series with monthly granularity.
Validation and test periods are plotted in green and orange,
respectively. We describe how we have done the validation
and test splitting in Sect. 2.2. As we can see, there are highly
seasonal series (like chapter 7), intermittent series (like chap-
ter 10) and series with a mix of trend, seasonality and noise
(like chapter 3).

Series with small or zero values can cause problems in
the calculation of error measurements (Sect. 4.2). To avoid
this, we have treated all the series in the same way, adding a
constant value of 1 to them.

Figure 2 shows the autocorrelation plots of the daily series
in period 2000–2016. These plots shed light on which series
haveweekly, annual or both seasonalities.Aswe can observe,
the seven series show different behavioural patterns. The
weekly seasonality seems to be present in all the series, even
in chapters 7 and 10 where it appears in an overlapping way
to the annual seasonality. Chapter 7, shows a well defined
annual seasonality. And chapter 10 seems to integrate an
annual seasonality with a semiannual one.

2.2 Machine learning approach to forecasting

A time series is a sequence of observations st taken from a
variable at successive equally spaced points t in time. For the
purpose of multi-step forecasting, we represent a series by

The data we have selected for the experimentation con-
sists of seven disaggregated time series of goods importations 
from Morocco to Spain through the port of Algeciras in 
the period 2000–2016. The series present a great variety 
of seasonality and trend, which will allow us to evaluate 
the behavior of our forecasting techniques under very dif-
ferent conditions. We have also resampled the original series 
into four granularities (quarterly, monthly, weekly and daily), 
each associated with a specific forecast horizon (8 quarters, 
18 months, 13 weeks, and 14 days), thus covering short, 
medium and long term forecasting. With this variety we 
wanted to avoid one of the most common shortcomings of 
many time series forecasting works, in which conclusions 
are based on a few or a single time series, as well as on one-
step or short-term predictions (Makridakis et al. 2018). We 
consider this wide range of experiments to be an additional 
guarantee for the conclusions we draw from our results.

Our experiments show that both deep learning models 
globally beat the overall weighted average (OWA) accuracy 
measure of all baselines. We use as baselines all the methods 
included in the M4 Competition benchmarks. By levels of 
granularity, the recurrent model obtain the best results for 
daily data and the convolutional model for weekly data.

This paper is organized in six sections. The second section 
deals with defining the specific details of our forecasting task. 
Section 3 describes the two deep learning models we have 
used in our experiments. In Sect. 4 we present our experi-
mental methodology. We discuss the results in Sect. 5 and 
extract conclusions in Sect. 6.

2 The task

In this section we describe the time series forecasting task. 
First, we present the dataset used in our experiments, and then 
we explain the machine learning approach to forecasting.



Table 1 European tariff chapter
of selected series

Chapter Description

3 Fish and crustaceans, molluscs and other aquatic invertebrates

7 Edible vegetables and certain roots and tubers

10 Cereals

16 Preparations of meat, of fish or of crustaceans, molluscs or other aquatic
invertebrates

62 Articles of apparel and clothing accessories, not knitted or crocheted

69 Ceramic products

85 Electrical machinery and equipment and parts thereof; sound recorders
and reproducers, television image and sound recorders and reproducers,
and parts and accessories of such articles

Table 2 Time series
characteristics by granularity

Granularity level Seasonality period Forecast horizon Time interval

Quarterly Year 8 2000–2016

Monthly Year 18 2000–2016

Weekly Year 13 2000–2016

Daily Year/Week 14 2014–07 to 2016–12

Fig. 1 Monthly series. Green represents the validation data and orange the test data



Fig. 2 Autocorrelation plot of daily series in period 2000–2016
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Fig. 3 Machine learning vector-to-vector models for time series fore-
casting. The input vector x contains the n values previous to the
prediction. The output vector y contains the predicted values. a The
multiple output model obtains the complete h (forecast horizon) values
of the forecast. b The recurrent model obtains a one-step prediction
value that has to be used iteratively to obtain the h values

so that it is temporarily ordered. We iterate in the same way
until we obtain the h one-step predictions for the vector y.

Once the mappings of our model are defined, we need a
dataset of examples so that the machine learning algorithm
can experience through a supervised learning scheme. The

where sT is the last observation previous to the prediction of 
the observed values {sT +1, . . . , sT +h}, being h the forecast 
horizon.

A machine learning algorithm is able to learn from expe-
rience to perform a task by combining an optimization 
procedure, a cost function, a model and a dataset. Time series 
forecasting can be performed as a regression task, where a 
machine learning algorithm is asked to make a prediction 
y for the next h time steps, conditioned by the n preceding 
observations x. To address this, we have considered two fore-
casting strategies (Fig. 3), namely the multiple output and the 
recursive strategies (Bontempi et al. 2012). In the multiple 
output strategy, our model defines a mapping from Rn → Rh 

to get y directly from x, however, in the recursive strategy our 
model defines a mapping from Rn → R to obtain a one-step 
prediction y from x. For the next prediction, we modify the 
vector x by removing the oldest observation and adding y



Fig. 4 Training sets for multiple
output and recursive forecasting
strategies
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training sets for our two forecasting strategies are created
from the observed values {s1, . . . , sT }, and consists of matri-
ces X and Y (Fig. 4), where each training pair is provided
by the i th row of X and Y respectively. The goal for our
model is to learn from the example pairs how to predict y
from x when using the multiple output strategy, and how to
predict the single output y from x in the recursive case. The
strength of themultiple output strategy is its ability to capture
the dependence between the predicted values. In the case of
the recursive strategy, every predicted value depends on the
accuracy of the previous ones, accumulating errors, so it may
deteriorate. The advantage of the recursive strategy is that it
results in a training set larger that the direct one, increased
by h − 1 pairs. In addition, it uses data closer to the pre-
diction as input for the training. In our experiments we have
reached better results using the direct strategy for daily and
weekly granularities, and using the recursive one formonthly
and quarterly granularities. This makes sense because, for
monthly and quarterly granularities we have less data points
for training.

During the learning process, the optimization procedure
aims to minimize a cost function, that provides a measure of
the error in the model forecasts. This is achieved by adjust-
ing certain internal parameters of the model, represented by
the vector θ , that define the mapping y = f (x, θ) of the
model; from now, when the forecasting strategy is recursive,
we will consider y a one-dimensional vector. Among the
possible cost functions, we have chosen the mean absolute
error (MAE), defined over the complete dataset ofm training
examples (x, y) by:

J (θ) = 1

m

m∑

i=1

‖y − f (x, θ)‖1, (2)

where‖.‖1 denotes L1 norm.Minimizing theMEAcost func-
tion leads to a function f (x, θ) that estimates the median
value of y for each x; assuming that the training pairs are a
subset of the infinitely many samples from the true data gen-
erating distribution (Goodfellow et al. 2016). We have used

other regression-specific cost functions and obtained worse
results. This is consistent with the recent work of Chai et al.
(2019), where they concluded that theMAEcost function can
achieve a better robustness and generalization capability than
the conventional mean square error (MSE); and the investi-
gation of Qi et al. (2020) about the advantages of the MAE
in our context of deep neural network-based vector-to-vector
regression.

Due to the complexity of neural network models, they are
usually optimized using an iterative method, such as gra-
dient descent, that allows controlling the overfitting during
optimization.Todo this, a percentageof trainingpairs is sepa-
rated, so that they do not influence the optimization, although
the value of the cost function J (θ) is calculated for these
pairs, saving the parameters θ each time a new minimum
is reached for them. Once the optimization is complete, the
saved values are used to define the model.

It is a common practice to split the time series into train-
ing and test portions (Hyndman and Athanasopoulos 2018).
The test data are used to evaluate the accuracy of a model
trained with previous data (Fig. 5a). It is necessary to adjust
the model’s hyperparameters before the test forecasting are
made. To achieve this, the training data are split into a vali-
dation and a new training part (Fig. 5b). Then, the model is
trained repeatedly until the hyperparameters are tuned to get
the best prediction regarding the validation data. A length for
the test and validation data equal to the forecast horizon is
just the right size for our task.

3 Neural network architectures

The capability of machine learning models in the effective
determination of seasonal effect and trend in time series is
a controversial issue (Makridakis et al. 2018). In our deep
learning models, we have found that it is possible, achieving
the best results with an input data size of one year, agreeing
with the conclusions of Hamzaçebi (2008), who proposes



Fig. 5 Model training, validation and test datasets during: a the test process, b the validation process

dimensional input vector x and a learnable vector k, called
kernel or filter. A one-unit convolutional layer outputs a vec-
tor y given by

yt = (x�k)t =
∑

i

xt+i−1ki , (3)

where � denotes a cross-correlation operator. Each yt con-
tains a similarity measure, obtained through the dot product
of a region of the input x (starting at xt ) and the filter k.
The output y is sometimes referred to as the feature map.
When forecasting time series, the value of yt cannot depend
on future values of x, so the causal convolution is used to
address it:

yt =
∑

i

xt−i+1ki , (4)

where an implicit zero padding of x is assumed in the imple-
mentation, so that both x and y are n-dimensional. Figure 6
depics this operation. A causal convolutional layer with m
units would provide a n ×m feature map. It is very common
to work with a stack of convolutional layers, so they must be
able to process a n × m matrix X to get a n × m matrix Y,
in which each feature Yt, f is calculated using the 2D-slice
K f ,:,: of the filter tensor and a region of the matrix X ending
at row t :

Yt, f =
∑

i, j

Xt−i+1, jK f ,i, j (5)

To deal with long-range time dependencies in the time
series, one solution is to increase the input region affecting
the features (receptive field). The dilated causal convolution
applies the filter over a region larger than its size by skipping
input values with a certain rate r :

an input size equal to the length of the seasonal period for 
improving forecasts with seasonal series.

3.1 Convolutional networks

A convolutional neural network (Aloysius and Geetha 2017)
(CNN) is a type of artificial neural network in which neurons 
are organized in blocks, resulting in a neuron specialization 
similar to that present in the neurons of the visual cortex of a 
biological brain. Although the original concepts of the CNNs 
are inspired by image recognition, the model is applied very 
successfully to many other tasks. The hierarchical structure 
of CNNs makes them less dense, and less prone to overfitting, 
than the general (fully connected) neural network model. 
CNNs usually include two types of layers: convolutional and 
pooling layers. Convolutional layers apply filters by means 
of operations that involve a region of the input data. In image 
processing, for example, these filters allow certain aspects of 
the images to be highlighted, such as borders, vertical lines, 
etc. Pooling layers are usually applied after a convolution and 
they summarize, by reducing the dimensionality, the features 
extracted by the convolutional filters. It is usual to complete 
the architecture of a CNN with a final fully connected layer 
that performs the high-level reasoning of the network, using 
as input the features extracted by the previous convolutional 
and pooling layers. CNNs designed for image processing 
work with 2D data, but they can be defined for any other 
dimension. 1D CNNs, for example, can process sequential 
data such as natural language texts or time series (Lim et al. 
2017).

3.1.1 The dilated causal convolutional layer

A 1D-convolutional layer is composed of a number of units 
that perform the convolution operation. Usually in practice, 
each unit computes the cross-correlation operation of an n-
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Fig. 7 DCCNN forecasting model. Without loss of generality, we have
assumed an input vector x of length n = 8. Each convolutional layer
(omitted for clarity) contains m filters of 2 rows that get a new feature
map. The yellow lines show how an increasing dilation rate in powers
of 2 enlarge the receptive field affecting the features. Finally, the last
feature map is resized so that the dense layer can predict the output y

Yt, f =
∑

i, j

Xt−ir+r , jK f ,i, j (6)

Figure 7 shows the feature maps obtained by a stack of
dilated causal convolutional layers, and how a dilation rate
that increases exponentially in each layer, results in an
exponential growth of the receptive field. To complete the
convolutional layer, a learnable bias b f is added per filter,
and also an activation function:

Yt, f = φ

⎛

⎝
∑

i, j

Xt−ir+r , jK f ,i, j + b f

⎞

⎠ (7)

where φ is usually the rectified linear activation function
(ReLU).

3.1.2 Dilated causal convolutional neural network (DCCNN)

In this deep learning approach, we have leveraged new archi-
tectures from the work of Oord et al. (2016), based on the

use of a stack of dilated causal convolutional layers to deal
with long-term dependencies.

Our DCCNN model defines a vector-to-vector mapping
y = f (x), from the n previous values of a time series to
the next h forecasted values, and is trained to estimate the
median value of y conditioned to x, as explained in Sect. 2.2.
The model is implemented using a stack of dilated causal
convolutional layers as defined in Eq. (7). The stack has l
layers, each consisting of m units (filters), and a dilation rate
r starting at 1 and doubling with each successive layer. The
first layer maps the input vector x to a n × m feature map.
Successive layers take as input the feature map of the pre-
vious layer to produce a new one, in which each feature is
influenced by a receptive field that is consequently duplicated
each time, starting from a length of 2 (Fig. 7). We have deter-
mined the number of layers l so that the size of the receptive
field does not exceed the dimensionality of the input vector
x:

l = �log2 n�, (8)

where �.� denotes the integer part.
Once the input vector x is processed by the learned stack

of convolutional layers, the resultingmeaningful featuremap
needs to be reshaped to a vector. Then, a learned dense layer
with h unitsmaps the features vector to the forecasting output
vector y. Dilation significantly reduce the number of convo-
lutional layers required, not being necessary the addition of
pooling layers. The number of filters m of the convolutional
layers is a hyperparameter tuned during model validation.

3.2 Recurrent networks

Recurrent neural networks (Mandic and Chambers 2001) is
another major architecture in the current catalogue of deep
neural network models.

They are basically characterized by having layers that, in
addition to receiving information from the previous layer of
the network, also receive it from the state of the layer itself in
the previous iteration, i.e. they have cycles and therefore state
memory. This makes them dependent on time and causes the
order in which the data are provided to directly influence the
results obtained, something appropriate when working with
time series.

3.2.1 From the dense layer to the GRU layer

A typical dense (fully connected) layer contains m neural
units that map from a d-dimensional input vector x to an
m-dimensional output vector y, and is defined by

y = φ(Wx + b), (9)



where φ is the activation function that makes nonlinearity
possible, W is a learnable m × d weight matrix, and b a
learnablem-dimensional bias vector. If we feedback the out-
put to the input, we get a recurrent neural network (RNN)
layer, that can operate on a sequence of inputs x1, x2, . . . , xτ

into a sequence of “hidden” outputsh1,h2, . . . ,hτ , with each
output ht depending on the input xt (at the same time step)
and the output ht−1(at the previous time step):

ht = φ(Wxt + Uht−1 + b), (10)

where φ is usually the tanh activation function and U is
a learnable m × m weight matrix. Considering the RNN
layer as a dynamical system, ht will represent the state
at time step t . The RNN layer can use the state to store
information about activations triggered by previously pro-
cessed data. Learning about long sequences, using a gradient
descent method, presents the main problem that the flow of
the back-propagation error tends to disappear. Hochreiter and
Schmidhuber (1997) provided a remedy to this problem with
theLongShort-TermMemory (LSTM)architecture, inwhich
they achieve a constant error flow through the use of gating
mechanisms to control the flow of information. Later, Cho
et al. (2014) proposed theGatedRecurrent Unit (GRU) archi-
tecture, based on this same concept and structurally similar,
but simpler and usually faster than anLSTM, yielding similar
results (Chung et al. 2014).

In a GRU layer, the output state ht is a mixture of the
previous state ht−1 and the proposed estate h̃t , governed in
each dimension by an update gate ut ,

ht = ut � h̃t + (1 − ut ) � ht−1, (11)

where�denotes theHadamard product, allowing that a value
close to 1 in a dimension of the gate ut causes the update of
this dimension in the output state ht to the value for this
dimension in the proposed state h̃t . Similarly, a value close
to 0 causes an update in the output state from the previous
state, allowing to remember useful information for the future.
The update gate ut is a mapping from the current input xt and
the previous output estate ht−1 to the range 0 to 1,

ut = σ(Wuxt + Uuht−1 + bu), (12)

where σ is the logistic sigmoid function, Wu and Uu are
learnable weight matrices, and bu is a learnable bias vector.
The output candidate h̃t is calculated similarly to the output
state in an RNN layer, but using a reset gate rt to selectively
erase part of the information contained in the previous state
ht−1:

h̃t = φ(Wxt + U(rt � ht−1) + b). (13)

The reset gate rt is computed in a similar way as the update
gate:

rt = σ(Wrxt + Urht−1 + br ). (14)

As a whole, the GRU layer is capable of preserving relevant
information in future, forgetting what is no longer of interest.

3.2.2 Encoder–decoder recurrent neural network (EDRNN)

This deep learning approach is based on the encoder–decoder
architecture proposedbyCho et al. (2014) andSutskever et al.
(2014), to map sequences to sequences.

Our EDRNN model defines a vector-to-vector mapping
y = f (x), from the n previous values of a time series to
the next h forecasted values, which is trained to estimate the
median value of y conditioned to x, as explained in Sect. 2.2.
The model is implemented using GRU layers as defined
in Eqs. (11–14) for our particular case of scalar sequence
of inputs xt , and consists of two separate neural networks
(encoder and decoder) jointly trained. The encoder–decoder
architecture (Fig. 8) allows processing input and output
sequences of different lengths. Its design and operation are
described below:

(a) Encoder A learnedGRU layer withm units processes the
input vector x = (x1, . . . , xn) in temporal order, updat-
ing the m-dimensional output state ht for every input
value so the final state c codifies the whole history of the
input. The number of units m is a hyperparameter tuned
during model validation.

1

2

…

m

GRU 
(m units)n … 2 1

GRU 
(m units)

c (final state)

Dense 
(1 unit)

Decoder
output

1
1

State Decoder input

(a) Encoder

(b) Decoder

1

2

…

m

1 2 … h

x (input vector)

y (output vector)

Fig. 8 EDRNN forecasting model. a Encoder. The input vector x is
summarized in a state vector c. b Decoder. The state of the GRU layer
is initialized to the final state c of the encoder, and the decoder input to
xn . In orange we highlight the prediction loop where, for each iteration,
the new predicted value is stored in the next component of the output
vector y, and the GRU and dense layer outputs are fed back



Table 3 Benchmarks of the M4
Competition used as baseline Statistical benchmarks without removing the seasonality or trend

1 Naïve 1 All forecasts are equal to the last observation prior to the prediction

2 Seasonal Naïve (Naïve S) All forecasts for the same time step within the seasonal period are equal
to the last known observation of the same time step. This means that the
last observed seasonal period is repeated consecutively in the prediction

Statistical benchmarks removing the seasonality

3 Naïve 2 Like Naïve 1

4 SES Simple exponential smoothing

5 Holt Holt’s exponential smoothing

6 Damped Damped exponential smoothing

7 Combination (Comb) The arithmetic average of methods SES, Holt and Damped

8 Theta It was the winner method of the M3 Competition. It decomposes a
series into two or more Theta lines that are extrapolated separately and
combined to form a forecast (Assimakopoulos and Nikolopoulos 2000)

Machine learning benchmarks removing the seasonality and linear trend

9 MLP A multilayer perceptron

10 RNN A basic recurrent neural network

(b) Decoder It consists of a GRU layer with m units and a
dense layer with 1 unit. At each time step t the dense
layer maps the state ht of the GRU layer to the decoder
output yt , and the GRU layer maps the previous state
ht−1 and the previous decoder output yt−1 to the current
state ht . Thus, the decoder model can be defined by

yt = g(ht−1, yt−1). (15)

The decoder is trained according to this mapping, with
the initial ht−1 set to the final state c of the encoder,
and the initial yt−1 set to the last encoder input xn . To
generate the first prediction y1 of the decoder, we start by
initializing it in the same way as before. Then, we iterate
by feeding back each decoder output as a new decoder
input, and each output state of the GRU layer as the new
input state, until we complete h consecutive predictions.

4 Methodology

In this section, we present our experimental methodology.
First, we briefly describe the baseline methods. In the second
subsection, we present the different evaluation metrics we
have used. Finally, in the third subsection we specify the
main aspects of our experimental scenarios.

4.1 Baseline

We have taken as baseline the ten benchmarks of the M4
Competition (Makridakis et al. 2020) listed in Table 3 and
whose code is available online.1

1 https://github.com/M4Competition/M4-methods.

In some of these methods, the seasonality of the series is
removedwhen passing a 90%autocorrelation test, and in oth-
ers the linear trendmay also be removed. In these cases, once
the forecasts are made and before the results are evaluated,
both are restored.

4.2 Evaluationmetrics

Among the forecast accuracymetrics typically used, we have
adopted those of the M4 Competition.

These metrics are expressed in terms of: the training
data {s1, s2, . . . , sT }; the test data {sT+1, sT+2, . . . , sT+h},
where h is the forecast horizon; and the forecast data
{ŝT+1, ŝT+2, . . . , ŝT+h}.

Detailed information on these metrics is given below:

– The symmetricmean absolute percentage error (sMAPE)
metric was originally defined by Armstrong (1985) and
later modified:

sMAPE =2

h

T+h∑

t=T+1

|st − ŝt |
|st | + |ŝt | · 100(%) (16)

This percentage metric provides a result between 0 and
200%. It has the disadvantage of being undefined for
intermittent serieswhen any observed value st and its pre-
diction ŝt are equal to zero. Also problematic are small
values of st (Hyndman and Koehler 2006). Moreira-
Matias et al. (2013) encountered these problems and
added a constant to the denominator to produce more
accurate statistics, based on the work of Jaynes (2003).
We have adopted a similar solution, adding 1 to all the
series beforemaking the forecasts, and subtracting it after

https://github.com/M4Competition/M4-methods


calculating the error metrics. In this way we also avoid
problems related to the seasonal adjustments of the base-
line methods when zero values are present.

– The mean absolute scaled error (MASE) was proposed
by Hyndman and Koehler (2006) to make it possible to
compare the accuracy of forecasts for all types of series.
The seasonal MASE is a scaled metric that divides each
forecast absolute error by themean absolute error (MAE)
of the Naïve S forecast method on the training data, and
is defined as:

MASE = 1

h

∑T+h
t=T+1 |st − ŝt |

MAE(NaïveStrain)

= 1

h

∑T+h
t=T+1 |st − ŝt |

1
T−m

∑T
t=m+1 |st − st−m |

(17)

where m is the length of the seasonal period considered.
Note that a one-step forecasting is done for the seasonal
naïvemethod, whichmeans that every forecast ŝt is equal
to st−m . The m values considered for the quarterly and
monthly granularity are 4 and 12, respectively. For others
granularities, we have selected the values giving the best
results of the baseline methods, which are 52 for weekly
and 7 for the daily. In any case, for those time series that
fail the seasonality test of the baseline methods, m is set
to 1.

– The overall weighted average (OWA) summarizes the
two previous metrics in a single value that facilitates the
ranking of the different forecasting methods. An OWA
value of less than 1 means that the forecast error of the
evaluated method is less than that of the Naïve 2 method.
The OWA is calculated for each forecasting method as
follows:

1. sMAPEandMASEare computed for each series indi-
vidually.

2. sMAPE mean and MASE mean are obtained across
all series.

3. sMAPE mean and MASE mean are made relative to
its corresponding sMAPE mean and MASE mean of
the forecast Naïve 2 method.

4. Finally, the mean of the relative sMAPE and the rel-
ative MASE is obtained.

OWA =
(

sMAPE

sMAPENaïve2
+ MASE

MASENaïve2)

)
/2 (18)

executed on an Intel(R) Core(TM) i7-6700 CPU @3.4GHz
processor having four cores, with 32GB and a NVIDIA
GeForce GTX 1070. The pseudorandom number generator
has been initialized so that the results can be reproduced.

Relying on the capabilities of deep learning we have
considered the input time series without making any trans-
formation or eliminating the seasonality; only the data was
scaled to the [0, 1] range before being input to the models,
and then restored in the output data.

We have selected the models hyperparameters exclusively
on the basis of the validation results, keeping the test data
separate to evaluate the models once they have been opti-
mized. Due to the large number of combinations in choosing
the best model configuration and the training time spent in
each case, we have manually tuned almost all the hyperpa-
rameters, as they are: optimizer is Adam, activation function
for the dense output layer is linear, batch size is the training
data size, number of epochs is 125 and 525 for DCCNN and
EDRNN, respectively, and loss function is the MAE. Also a
33% of training data is reserved to control overfitting (model
weights are saved for the best result obtained with this data).
Concerning the input length of the models, our selection has
been the corresponding to one year, which confirms the pro-
posal of (Hamzaçebi 2008) for seasonal time series.

Only one hyperparameter has been selected automatically
for the two models depending on the granularity of the data.
These hyperparameters are the number of filters of the convo-
lutional layers in model DCCNN and the number of units of
the recurrent layers inmodel EDRNN. To accomplish this for
a specific model and granularity, we have first obtained the
forecasts within the range [0, 1] for all series, and averaged
their MAE. This is calculated for each value of the hyperpa-
rameter, varying it from 1 to 250 for the daily series and from
1 to 200 for the others. The results are stored in a vector. Then
a moving average of order 7 is calculated from this vector,
and also a moving standard deviation of order 7 so to have
information about the variability of the averaged values. We
have stored these results in two vectorsma7 and std7 respec-
tively. Finally, the selected value for the hyperparameter is
the one associated to the minimum ofma7+std7/2 (Fig. 9).
Table 4 shows the hyperparameters values for all the models
and granularities.

We have chosen a recursive prediction strategy for gran-
ularities with small training data, such as quarterly and
monthly. This way we make the best use of the limited data
available. For weekly and daily granularities, however, the
models have taken full advantage of the direct strategy.

4.3 Implementation framework and setup

The proposed models, convolutional (DCCNN) and recur-
rent (EDRNN), have been implemented using Keras library 
(Chollet et al. 2015) with TensorFlow in the backend and



Fig. 9 Automatic selection of hyperparameters. The number of filters of convolutional layers in model DCCNN with weekly series is set to 142

Table 4 Hyperparameters
values automatically selected for
the two models

Model DCCNN Model EDRNN

Number of filters in convolutional layers Number of units in recurrent layers

Quarterly Monthly Weekly Daily Quarterly Monthly Weekly Daily

24 52 142 39 20 137 29 211

5 Experimental results

In this sectionwe present themain results of our experiments.
First, we include a comparison to show that our two network
architectures improve the results of the baselines.

In the second subsection we show, through several graphs,
forecast examples generated by the twonetwork architectures
for the four levels of granularity used in the experiments.

5.1 Test and validation results

Table 5 shows the overall performance of our two models,
taking all series and granularity levels together. We outper-
form the best OWA of the benchmarks with the two models
using both validation and test data. The convolutional model
DCCNN improves by 0.74–6.93% and the recurrent model
EDRNN improves by 4.96–8.93%.

Tables 6 and 7 show the validation and test results,
respectively, detailed for each granularity level. We mainly
highlight the performance of the recurrent model with daily
data, and the convolutional model with the weekly one. Both
used a direct forecasting strategy that significantly improves
the best OWA of the benchmarks by more than 12%. Also
outstanding is the convolutional model with monthly data
and a recursive forecasting strategy that improves the best
OWA of the benchmarks. In any case, except for the quar-
terly granularity, at least one of our two models outperforms
all the benchmarks.

Seasonality is perfectly captured by the two models. Evi-
dence of this is that the convolutionalmodelwithweekly data

widely exceeds the best benchmarks, Naïve 2 andNaïve S, on
validation and test data respectively. These two benchmarkts
make their forecasts based exclusively in the seasonality
(Naïve 2) or the last observed seasonal period (Naïve S).
Also, the recurrent model succeeds in capturing the seasonal-
ity as it outperforms all the benchmarks for daily data, where
all the series pass the weekly seasonality test. In Sect. 5.2 we
will appreciate this phenomenon through charts that show
examples of several forecasts with both models.

As for the intermittent data, which are found in all gran-
ularities but are more present in the daily series, the results
lead us to highlight one of the two models, the recurrent one.

The quarterly granularity is the only one for which our
models cannot improve the benchmarks. We believe that
this is due to the lower availability of data for this granular-
ity, which penalizes deep network models that need a larger
amount of data to be properly trained.

In order to reduce the variability of results, each forecast
has been repeated 7 times and averaged before calculating
the error metrics.

5.2 Examples of forecasts

In Figs. 10, 11, 12 and 13 we show forecasts on test data for
different series using the convolutional architecture DCCNN
and the recurrent architecture EDRNN. We have chosen a
series for each granularity, depending on the type of season-
ality:



Table 5 Validation and test
global results

Validation Test

sMAPE MASE OWA % sMAPE MASE OWA %

Naïve 1 64.999 1.958 1.226 −41.51 62.331 2.109 1.211 −40.51

Naïve S 50.910 1.505 0.951 −9.75 46.554 1.434 0.862 0.00

Naïve 2 56.182 1.512 1.000 −15.42 54.360 1.654 1.000 −16.06

SES 51.056 1.248 0.867 −0.11 52.401 1.327 0.883 −2.48

Holt 52.706 1.363 0.920 −6.16 55.279 1.361 0.920 −6.73

Damped 51.502 1.274 0.880 −1.54 52.388 1.320 0.881 −2.22

Theta 50.916 1.249 0.866 0.00 52.372 1.312 0.878 −1.93

Comb 51.483 1.290 0.885 −2.12 52.616 1.322 0.883 −2.53

MLP 55.795 1.526 1.001 −15.58 61.680 1.728 1.090 −26.46

RNN 50.061 1.279 0.868 −0.23 56.112 1.451 0.955 −10.79

DCCNN 48.811 1.287 0.860 0.74 46.279 1.245 0.802 6.93

EDRNN 41.860 1.273 0.794 8.39 44.607 1.352 0.819 4.96

Error reduction (%) on the best benchmark is shown

Table 6 Validation results for granularity level

Quarterly Monthly Weekly Daily

sMAPE MASE OWA sMAPE MASE OWA sMAPE MASE OWA sMAPE MASE OWA

Naïve 1 56.319 2.322 1.162 58.706 2.287 1.356 59.454 1.202 1.406 85.519 2.019 1.087

Naïve S 51.429 2.169 1.074 45.763 1.432 0.945 50.687 1.136 1.264 55.760 1.283 0.699

Naïve 2 52.278 1.862 1.000 46.727 1.571 1.000 42.438 0.853 1.000 83.285 1.760 1.000

SES 45.257 1.787 0.912 40.165 1.284 0.839 47.635 0.838 1.053 71.169 1.085 0.736

Holt 52.541 2.214 1.097 40.660 1.358 0.867 47.789 0.845 1.058 69.834 1.034 0.713

Damped 47.622 1.924 0.972 39.611 1.262 0.825 47.678 0.842 1.055 71.098 1.069 0.731

Theta 44.598 1.771 0.902 40.300 1.301 0.845 47.630 0.839 1.053 71.134 1.087 0.736

Comb 47.529 1.963 0.982 40.044 1.295 0.840 47.701 0.841 1.055 70.659 1.059 0.725

MLP 42.913 1.893 0.919 45.762 1.608 1.001 57.495 1.175 1.366 77.010 1.429 0.868

RNN 40.265 1.642 0.826 44.627 1.531 0.965 45.805 0.872 1.051 69.545 1.068 0.721

DCCNN 51.970 2.168 1.079 35.950 1.202 0.767 39.194 0.698 0.871 68.130 1.079 0.716

−30.6% 7.1% 12.9% −2.3%

EDRNN 48.718 2.070 1.022 34.882 1.248 0.771 41.763 0.779 0.949 42.076 0.996 0.536

−23.7% 6.6% 5.1% 23.4%

Error reduction (%) on the best benchmark is shown

– Quarterly we show chapter 7, which is the one with the
purest annual seasonality.

– Monthly we show chapter 10, that has annual and semi-
annual seasonality.

– Weekly we show chapter 85 that presents an annual sea-
sonality and different trends over time.

– Daily We use chapter 3, that has a weekly seasonal and
a fairly consistent trend over time.

observe this phenomenon by the quality of the daily forecast
of chapter 3 (Fig. 13).

6 Conclusions

In this paper, we have evaluated the usefulness of two deep
learning models for predicting the flow of goods through
seaports, in order to give insights to port authorities in their
decision-making process. We have experimented with seven
time series of imported goods fromMorocco toSpain through
the port of Algeciras. The initial series had a granularity of
one minute, and they were resampled into four granularities
(quarterly, monthly, weekly and daily), each associated with

As we can see from the comparative graphs of the forecasts 
on test data, both architectures behave quite well. Figure 13 
shows that DCCNN behaves especially better for the weekly 
series, as it does on chapter 85. EDRNN, on the other hand, 
makes its best forecasts for the daily granularity. We can



Table 7 Test results for granularity level

Quarterly Monthly Weekly Daily

sMAPE MASE OWA sMAPE MASE OWA sMAPE MASE OWA sMAPE MASE OWA

Naïve 1 48.339 2.628 1.290 58.402 2.410 1.545 66.643 1.865 0.979 75.940 1.534 1.157

Naïve S 39.012 2.032 1.018 41.322 1.446 1.000 44.657 0.939 0.581 61.224 1.319 0.967

Naïve 2 39.361 1.943 1.000 43.536 1.378 1.000 62.988 2.073 1.000 71.556 1.224 1.000

SES 35.838 1.725 0.899 42.589 1.269 0.950 51.281 1.297 0.720 79.893 1.017 0.974

Holt 48.496 1.800 1.079 42.132 1.212 0.924 51.037 1.289 0.716 79.449 1.141 1.021

Damped 35.706 1.671 0.884 41.963 1.225 0.927 51.253 1.296 0.719 80.630 1.087 1.007

Theta 35.945 1.680 0.889 42.819 1.264 0.950 51.083 1.289 0.716 79.643 1.016 0.972

Comb 37.098 1.687 0.905 42.095 1.226 0.928 51.191 1.294 0.718 80.078 1.081 1.001

MLP 44.774 2.381 1.181 52.707 1.738 1.236 61.403 1.562 0.864 87.835 1.232 1.117

RNN 44.596 2.236 1.142 47.765 1.467 1.081 50.908 1.128 0.676 81.179 0.973 0.965

DCCNN 37.467 1.985 0.987 38.072 1.314 0.914 40.644 0.779 0.510 68.932 0.902 0.850

−11.7% 1.1% 12.1% 11.9%

EDRNN 41.651 2.289 1.118 41.690 1.407 0.989 51.410 1.009 0.652 43.679 0.703 0.592

−26.5% −7.1% −12.1% 38.6%

Error reduction (%) on the best benchmark is shown

Fig. 10 Examples of quarterly forecasts on test data

a specific forecast horizon (8 quarters, 18 months, 13 weeks,
and 14 days). The experiments show that our two models,
dilated causal convolutional neural network and encoder–
decoder recurrent neural network, can manage these raw
series without first removing seasonality or trend.

Both models have globally beaten the OWA accuracy
measure of all M4 Competition benchmarks. By levels of
granularity, we highlight the recurrent model with daily data,

which has improved the OWA of the best benchmark by
38.6% on the test set. Also remarkable is the convolutional
model with weekly data, improving the best OWA by 12.1%
on the test set. With quarterly data the results have been poor
due to the few data available for a proper training of the
models. The recurrent model achieve better results than the
convolutional one for more intermittent series such as the
daily ones.



Fig. 11 Examples of monthly forecasts on test data

Fig. 12 Examples of weekly forecasts on test data



Fig. 13 Examples of daily forecasts on test data

We also wish to highlight the success in choosing a year 
for the length of the input data to the models, endorsed by the 
work of Hamzaçebi (2008), who proposes an input size equal 
to the length of the seasonal period for improving forecasts 
with seasonal series. The results and the visualization of the 
forecasts show us that the two models capture the seasonal-
ity and trend correctly, even for intermittent series, without 
applying any previous transformation on the data and simply 
scaling it to the [0, 1] range.

In our particular scenario of multi-output models, the 
direct forecasting strategy yields successful results on weekly 
and daily series, capturing the dependence between the pre-
dicted values. However, for monthly and quarterly series, 
where less training data is available, we have obtained better 
results with the recursive strategy, which increases the size 
of the training data using input data closer to the forecast.
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