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Abstract Quantifying biomass consumption and carbon release is critical to understanding the role of
fires in the carbon cycle and air quality. We present a methodology to estimate the biomass consumed
and the carbon released by the California Rim fire by integrating postfire airborne LiDAR and
multitemporal Landsat Operational Land Imager (OLI) imagery. First, a support vector regression (SVR)
model was trained to estimate the aboveground biomass (AGB) from LiDAR-derived metrics over the
unburned area. The selected model estimated AGB with an R? of 0.82 and RMSE of 59.98 Mg/ha. Second,
LiDAR-based biomass estimates were extrapolated to the entire area before and after the fire, using
Landsat OLI reflectance bands, Normalized Difference Infrared Index, and the elevation derived from
LiDAR data. The extrapolation was performed using SVR models that resulted in R? of 0.73 and 0.79
and RMSE of 87.18 (Mg/ha) and 75.43 (Mg/ha) for the postfire and prefire images, respectively. After
removing bias from the AGB extrapolations using a linear relationship between estimated and observed
values, we estimated the biomass consumption from postfire LiDAR and prefire Landsat maps to be
6.58+0.03Tg (10'%g), which translate into 12.06 +0.06 Tg CO2. released to the atmosphere, equivalent
to the annual emissions of 2.57 million cars.

1. Introduction

Forest fires are a natural process playing a critical role in the structure and functioning of many terrestrial eco-
systems that are adapted to fires. They are a key element of forest composition and succession, resulting in
stand thinning, removing understory vegetation, and regulating patterns of carbon (C) accumulation by pro-
moting vertical stratification of the forest canopy [Chuvieco, 2008; French et al., 2003]. Whereas low to mod-
erate severity fires may increase nutrients and promote vegetation renovation, high burn severity fires reduce
organic matter and deteriorate soil structure and porosity [Certini, 2005; Neary et al., 1999]. Forest fires also
impact the C cycle through the direct release of C into the atmosphere during the biomass burning
[Andreae, 1991; French et al., 2003; van der Werf et al., 2006]. Therefore, quantifying the impact of fires on eco-
system structure and C emissions from biomass burning are important elements of evaluating the interac-
tions of climate and ecosystems.

Climate condition is a key driver of fire occurrence. In areas where climate change leads to warmer and drier
future conditions, the frequency and the intensity of fires are expected to increase, causing significantly lar-
ger impacts on ecosystem function and its role on the global carbon cycle [Liu et al., 2013; Stocks et al., 1998].
In addition, areas with increased fuel load, due to the loss of traditional woodcutting activities and fire exclu-
sion policies, may adversely favor the occurrence of extreme fires with large socioeconomic and ecological
consequences. These so-called megafires [Attiwill and Binkley, 2013; San-Miguel-Ayanz et al., 2013] release
to the atmosphere huge amounts of C accumulated during decades of tree growth. The expected increase
in the intensity and frequency of megafires [Attiwill and Binkley, 2013] requires improved accounting of the
C released by these fires and better characterization of their role in the climate system.

Quantification of the C emissions from biomass burning can be achieved using remote sensing by either direct
top-down measurement of trace gases released during the fire [Arellano et al., 2004; Kaufman et al., 1992] or by
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an indirect bottom-up modeling approach in which burned area observations are combined with ecosystem
biomass and fuel data [Seiler and Crutzen, 1980]

C, = AxBxfxp, (M

where A is the area burned (in hectare), B is the biomass density (Mgha™"), f. is the fraction of the biomass
that is carbon, and  is the combustion completeness (CC) or burning efficiency, i.e., the fraction of biomass
consumed during burning.

Uncertainties in the C release derived from the model by Seiler and Crutzen [1980] result from the uncer-
tainty in each of its parameters. van der Werf et al. [2006] pointed out A as the most uncertain parameter
at a global scale; however, uncertainties in biomass density and combustion completeness significantly
impact emission estimates as well. Fuel load, i.e.,, the amount of biomass available for burning, is usually
estimated based on biome-averaged values, which have large uncertainties due to the spatial variability
in biomass within the biome [van der Werf et al., 2006; van Leeuwen et al,, 2014] and may not represent
well the biomass density of the affected area. More recently, biogeochemical models that account for
the effect of herbivory and fuel wood collection have been used to estimate fuel load [van der Werf
et al.,, 2006, 2010]. Nevertheless, the accuracy of the fuel load estimates is subject to the difficulty of para-
meterizing the model appropriately.

Thus, development of more accurate methods for estimating aboveground biomass and the fraction of the
biomass consumed during the fire is crucial to improve and validate fire emission estimates, as well as to cor-
rect estimates of fuel loads yielded by biogeochemical models used at regional and global scales.

Remote sensing provides a robust way of deriving fuel load. In particular, airborne and satellite LIDAR mea-
surements have allowed development of novel techniques to accurately quantify the vertical and horizontal
structures and the aboveground biomass over a wide variety of forest ecosystems [Garcia et al., 2012; Hudak
etal, 2012; Neesset et al., 2013]. As most LIDAR measurements are currently acquired from airborne platforms,
the data are often limited in terms of spatial and temporal coverage. This hinders the analysis of prefire and
postfire ecosystem status, in most cases due to the lack of data that would enable the characterization of
aboveground biomass before the fire. On the other hand, multispectral optical and Radar sensors onboard
satellites provide wide-area coverage and frequent observations, which makes these sensors particularly well
suited for monitoring fuel load dynamics. As a result, integration of airborne LiDAR with optical or Radar satel-
lite observations provides a convenient alternative to overcome the shortcomings of LiDAR data availability,
allowing for more accurate representation of the fuel load and the biomass dynamics, thus improving fire
emission estimates.

Here we explore both the spatial and temporal extrapolation of the LiDAR data with multispectral Landsat OLI
(Operational Land Imager) data over large areas to quantify the biomass before and after the fire. We also
quantify the burned fuel consumption and the amount of carbon released during the Rim megafire in
California. The LiDAR data were acquired after the fire event covering the entire burn and a 2 km buffer of
unburned vegetation. We developed a methodology to address several specific objectives as follows: (1) to
estimate aboveground biomass (AGB) from LiDAR data, (2) to quantify prefire and postfire biomass over
the entire burned area, (3) to quantify the biomass consumed and the C released during the megafire, and
(4) to assess estimation uncertainty.

2. Materials and Methods
2.1. Study Area

The study site comprises the footprint of the Rim fire, in the Sierra Nevada Mountains, California, USA. This
megafire started on 17 August 2013 and was not contained until 24 October 2013, burning more than
104,000 ha of the Stanislaus National Forest and Yosemite National Park (Figure 1). The area is topographically
rough, with elevations ranging from 60 to 2400 m and slopes of up to 90%. The fire burned through a mosaic
of vegetation types, which included low-elevation grasslands, chaparral, and foothill-oak woodland savanna
habitat; mixed conifer-broadleaf forests dominated by pines in the lower montane zone; and mixed conifer
forests in higher elevation areas dominated by firs. A more detailed description of the study site can be found
in Casas et al. [2016].
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Figure 1. Study area comprising the footprint of the Rim fire, in the Sierra Nevada Mountains, California, USA.

According to the burn severity map developed by the U.S. Forest Service Rapid Assessment of Vegetation
Condition after Wildfire processing system [Miller and Quayle, 2015], the area experienced different levels
of burn severity, with 35.8% in high burn severity, 25.4% in moderate severity, 30.9% in low severity, and
7.9% remained unburned.

2.2, Data Sets

2.2.1. Reference Aboveground Biomass Data Sets

As part of the study, 71 circular plots of 0.09 ha (equivalent to the Landsat pixel resolution) were collected
across a 2 km buffer zone around the fire perimeter. The plots were located following a stratified random
sampling scheme using a Landsat-based prefire vegetation map provided by the U.S. Forest Service. The
strata were defined by vegetation type (softwood (conifers), hardwoods (broadleaf trees), and mixed forests)
and diameter classes (12.7-25.2 cm, 25.2-50.6 cm, 50.6-76 cm, and >76 cm). Although the randomness of
plot locations was slightly perturbed by accessibility constraints, the plots represented well the range of avail-
able biomass and were used to calibrate and validate the models based on the LiDAR data.

For each tree with diameter at breast height (DBH) greater than 10 cm, the species was recorded and the DBH
tallied. The center of each plot was positioned using a differential GPS, with a horizontal accuracy after
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Table 1. Properties of the Plots Measured in the Field®

DBH (cm) Height (m) AGB (Mgha ) Stem Density (tree ha ')
Maximum 142.5 53.6 645.4 1455.6
Minimum 100 49 2421 222
Average 304 16.7 195.8 35838
Standard deviation 19.9 8.5 143.1 263.7

¥The plot size is 0.09 ha (Landsat OLI pixel size on the ground).

postprocessing better than 0.5 m. The spatial error in two plots exceeded 2 m, and these were discarded from
further analysis. Additionally, fractional cover (FC) was estimated from the LiDAR data, and those plots having
a FC less than 10% were also removed from the analysis. Thus, the final data set consisted in 65 field plots.

For each tree the total aboveground biomass (AGB) was computed using the National Biomass Estimator
Library (NBEL) developed by the Forest Management Service Center (FMSC). The NBEL synthesizes published
biomass equations for the U.S. and also unpublished allometric models developed by FMSC that are stored
along with their associated metadata in a SQLite database [Wang, 2014]. The models used to estimate AGB
were functions of DBH and tree height. The height was estimated from the measured DBH using the species
level equations compiled by Keyser and Dixon [2012]. Table 1 summarizes the structural attributes of the
sampled plots.

To extrapolate AGB values using Landsat OLI data, we used the LiDAR-derived AGB as a reference. More than
500 pixels were randomly selected based on the histogram for the LiDAR-derived AGB to ensure that the sam-
ples covered the full range of AGB values in the study area. Our sampling was limited to unburned and low-
severity areas. In this way, the effect of fire-induced structural changes was eliminated from the sample.
2.2.2. LiDAR Data and Processing

LiDAR data were collected on November 2013 by the National Center for Airborne Laser Mapping using an
Optech Gemini Airborne Laser Terrain Mapper instrument that recorded up to four returns per pulse.
These data covered the extent of the fire plus a 2km buffer. The site was flown at a mean elevation of
2200 m above sea level with a maximum scan angle of + 14° and a nominal 50% overlap between flight lines.
The average point density was approximately 20 points m~2. The vendor provided the point cloud data set
and a 1 m digital elevation model (DEM) that was used to normalize the height of each return.

We computed 16 variables related to canopy structure derived from the vertical structure of the forest mea-
sured by the LiDAR data, including height percentiles (H,s, Hsg, Hys, Hog, and Hgg), the mean, standard devia-
tion, kurtosis, skewness, and coefficient of variation for the height of the returns above 2m. Biomass
distribution within the canopy was estimated as follows: Hog—Hso, Hog—Has, Hop—Hso, and Hgp—Has, as well
as the canopy depth (maximum minus minimum vegetation height). Finally, the ratio of hits above 2 m to
all returns was computed to represent canopy fractional cover [Hopkinson and Chasmer, 2009; Morsdorf
et al,, 2006] (Table S1 in the supporting information). These metrics have been shown to have strong relation-
ships with the aboveground biomass [Hudak et al., 2012; Neesset et al., 2013].

In addition, we derived 19 metrics from the intensity of LiDAR returns after normalization to a standard range
[Garcia et al., 2010]. These metrics included intensity percentiles (l,s, Iso, 175, lso, and lgo), the mean, kurtosis,
range, skewness, coefficient of variation, and standard deviation, as well as accumulated intensity at Hys,
Hso, H7s, Hog, and Hog. The canopy FC was also estimated as the ratio of the canopy energy to the total energy
[Garcia et al., 2010; Hopkinson and Chasmer, 2009], as further detailed in Table S1 in the supporting informa-
tion. We did not apply a correction factor to the intensity of the ground energy to account for the differences
in reflectance between canopy and ground at the wavelength used by the LiDAR system, as suggested by
other authors [Lefsky et al., 1999b; Morsdorf et al., 2006], because this factor is site dependent and it was
not available for our study site. In addition, we computed the canopy reflection sum [Means et al., 1999] by
summing the intensities of the canopy returns within the plot [Hall et al., 2006] and the density-weighted
canopy reflection sum [Garcia et al., 2010], which accounts for variation in point density throughout the study
site that results from topography or scan angle differences.

Following the approach described by Muss et al. [2011], we also constructed pseudowaveforms for each plot
and derived six additional metrics related to the vegetation spatial distribution. These metrics included the
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height of the median energy and the height/median ratio, which are related to AGB [Drake et al., 2002; Hyde
et al., 2005], the canopy height profile (CHP) describing canopy structure [Lefsky et al., 1999a], the mean
canopy height, and the quadratic mean canopy height. In addition, we included the CHP variation coefficient
and the area under the canopy waveform (AUCW) representing vertical heterogeneity and the amount of
canopy material, respectively [Bouvier et al., 2015; Muss et al., 2011].

2.2.3. Landsat OLI Data and Processing

We selected two orthorectified Landsat OLI reflectance images (path/row: 043/034) to estimate the biomass
before and after the fire. The image dates were chosen based on the following two criteria: (1) minimize time
gaps between the fire event and Landsat and LiDAR data acquisitions and (2) cloud and snow cover over the
burned area must be zero. As a result, we chose the prefire image acquired on 30 July 2013 and the postfire
image acquired on 18 October 2013. Although the postfire image was collected 6 days before the fire was
fully contained, this was the only image that satisfied the above criteria. The next available image was
acquired 1 year after the fire, and by then, cleaning and salvage logging operations had introduced structural
changes that were undesirable for our purpose.

The imagery, downloaded from the U.S. Geological Survey Earth Explorer web site (http://earthexplorer.usgs.
gov/; accessed: 21 August 2015), had been processed based on the Landsat Ecosystem Disturbance Adaptive
Processing System (LEDAPS) atmospheric correction [Masek et al., 2006]. To ensure an appropriate coregistra-
tion between the different data sets used, the Landsat images were geocorrected by collecting ground
control points (n > 25) using an intensity LIDAR image as reference and applying a linear transformation
model, yielding an RMSE < 1 pixel.

Estimation of AGB and its dynamics from multispectral data relies on establishing relations between biomass
and vegetation spectral response [Foody and Mathur, 2004; Meng et al., 2007; Pflugmacher et al., 2014], which
is usually performed using spectral indices and/or transformations. We selected Landsat OLI reflectance
bands 2 through 7 and derived four vegetation indices: the normalized difference vegetation index (NDVI)
[Tucker, 1979], Normalized Difference Infrared Index (NDII) [Hunt and Rock, 1989], Enhanced Vegetation
Index [Huete et al., 2002], and Visible Atmospherically Resistant Index [Gitelson et al., 2002]. We also used
brightness, greenness, and wetness components of the tasseled cap transformation [Kauth and Thomas,
1976] using the OLI-specific coefficients [Baig et al., 2014]. Tasseled cap components, particularly wetness,
have been used to assess forest structure and forest change [Cohen et al., 1995; Hansen et al., 2001; Pascual
et al., 2010]. From the brightness and greenness component we computed the tasseled cap angle and tas-
seled cap distance metrics [Powell et al., 2010] that are related to vegetation cover and vegetation composi-
tion and structure, respectively [Pflugmacher et al.,, 2014]. In Table S2 in the supporting information, we
provide additional details.

Finally, for each band we calculated a set of isotropic texture metrics from the gray level co-occurrence matrix
for window sizes varying from 3 x 3 to 9 x 9 pixels. These metrics included the following: homogeneity, con-
trast, standard deviation, entropy, angular second moment, and correlation. They were previously found
effective for biomass estimation in different forest ecosystems [Kelsey and Neff, 2014; Lu, 2005].

2.3. Ancillary Data

The DEM provided with the LiDAR data was resampled to 30 m using the average of all pixels included within
the 30 m cell. Subsequently, the slope and aspect were computed for each pixel.

A Landsat-based prefire vegetation map was provided by the U.S. Forest Service and reclassified into three
vegetation type groups as follows: softwood, hardwoods, and mixed forest. These auxiliary layers were used
in subsequent statistical analyses. A burn severity map derived from Landsat data, which was sensitive to dif-
ferent burn severity levels [Key and Benson, 2006], was also provided by the U.S. Forest Service, separating
unburned areas from low, medium, and high severity burn levels.

2.4. AGB Estimation

In order to model AGB, we used a least squares support vector regression (SVR) approach (see supporting
information for more details), using the LS-SVMIab toolbox developed by De Brabanter et al. [2011] and
implemented in MATLAB [MATLAB, R2010a]. Nonparametric regression techniques are attractive because
they do not make explicit assumptions about data distributions and thus can model complex relationships
between dependent and independent variables [Zhao et al, 2011]. We used a Gaussian radial basis
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function kernel, controlled by its bandwidth (h). The second parameter determining the estimation accu-
racy is the penalty parameter (y), which represents a trade-off between the model complexity and error on
the training data. These two parameters were obtained by a grid search with tenfold cross validation.

A different support vector regression (SVR) model was developed for each of the remote sensing data sets
we used. Given the large number of metrics derived from each data set, we used three methods for fea-
ture selection to reduce the processing time, increase model generalization performance, and help with
the interpretation (see supporting information for more details) [Weston et al., 2000]. The model based
on the metrics (features) derived from the LiDAR data was calibrated and validated using the field mea-
surements described in section 2.2.1. However, to develop and validate the models based on the
Landsat data (prefire and postfire biomass models), we used the LiDAR-based AGB estimates, which
allowed us to construct a much larger reference data set. Thus, for each date, we created a data set of
514 samples, with the features derived from the Landsat OLI image and the ancillary data. In both cases,
approximately 70% of the samples were used for model training/calibration and the remaining samples
were used for independent validation.

An initial evaluation of the LiDAR-based postfire AGB estimates showed the presence of high AGB values
within the high burn severity class. These areas had high Hsg values, while the amount of canopy material
(AUCW) was very low. Due to the strong correlation between Hsy and AGB, this resulted in an overestima-
tion of AGB in high burn severity areas. Therefore, we modeled the relationship between Hsy, and AUCW
and derived a correction factor that was applied to the Hsy metric to account for the changes in the dis-
tribution of canopy returns as a result of the fire. Subsequently, we recomputed AGB based on the
weighted Hsg (see supporting information for more details). Although the overestimation for Hsy was most
evident in high burn severity areas, we applied the AGB correction over the entire burn, including all
severity levels. This was motivated by the fact that burn severity maps derived from Landsat data may
not accurately capture the actual damage caused by the fire to understory and midstory vegetation in
low and moderate severity areas [Miller and Quayle, 2015], especially if canopy cover is high.
Hereinafter, the corrected AGB estimates are referred to as the “corrected LiDAR-based AGB” or the AGB
obtained with corrected LiDAR-based data.

2.5. Biomass Consumption and Carbon Release Estimation

The amount of biomass consumed by the Rim fire was computed as the difference between the prefire AGB
estimated from Landsat and the postfire AGB estimates derived from LiDAR and Landsat, as discussed above in
section 2.4. Furthermore, De Santis et al. [2010] related the changes in different vegetation indices to combus-
tion completeness, i.e, the fraction of biomass consumed by the fire. Therefore, in addition to the corrected
LiDAR-based postfire AGB, we also computed the difference between the prefire and postfire Landsat AGB esti-
mates. In this way, we could evaluate the extent to which optical data alone can capture changes in biomass.

Finally, after computing the consumed biomass we estimated the released C by multiplying the biomass by a
C fraction coefficient 0.5, as it is commonly done [Marklund and Schoene, 2006]. We reported the consumed
biomass for the entire study area and also per burn severity levels.

2.6. Uncertainty Analysis

The performance of the SVR models was evaluated using the coefficient of determination (R%), the adjusted
coefficient of determination (R* adj), the root-mean-square error (RMSE), and the relative root-mean-square
error (relRMSE) (Table S3 in the supporting information). The AGB extrapolation to the entire study area was
based on a two-step regression approach as follows: (i) first, field measurements were used to model AGB
from LiDAR data and then (ii) the LiDAR-based AGB so obtained was used to train the Landsat AGB model.
The errors in these steps, denoted by RMSE; and RMSE,, propagated to the final estimates. To calculate
the overall error (variance) of the two-step AGB estimator (i.e., aéode“ng), we assumed the error of the indivi-
dual steps to be independent, which leads to aﬁqode“ng = RMSE,2 + RMSE,2. Other sources of error contribut-
ing to the overall uncertainty, such as remote sensing measurement error, sensor noise, field measurement
error, and other sources (see supporting information), were not included in the uncertainty analysis and
considered negligible compared to the error due to modeling. A comprehensive analysis of the error
propagation and accounting for all error sources requires additional data not available for this study. The
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Table 2. Accuracy of the SVR Model of AGB Based On Metrics Selected by Expert Knowledge®

Feature Selection Selected Variables R? R? Adj RMSE (Mgha™") relRMSE (%)

Expert knowledge AUCW Hsg 0.82 0.81 59.98 30.63
0.82 0.79 67.18 3431
0.81 0.80 62.17 31.76

3For each accuracy measure, the first line corresponds to the calibration data set, the second line corresponds to the
validation data set, and the third line (in bold) corresponds to the accuracy for the combined data sets.

ground-based AGB estimation error was considered negligible, as there was no uncertainty associated with
the allometric equations used in NBEL.

We assessed the errors in the AGB and the biomass consumption estimates at a burn severity class level and
combined these class-wide errors into the overall, site-wide quantities. This analysis accounted for spatial
autocorrelation of the AGB error at the pixel scale using the techniques described by McRoberts [2006] and
Weisbin et al. [2014] (details are provided in the supporting information). As the biomass consumption esti-
mate is the difference between two correlated AGB estimates, its variance was estimated following
McRoberts et al. [2014].

3. Results
3.1. AGB Estimates Using LiDAR Data

Table 2 shows the results for the SVR model based on the metrics selected with one of the feature selec-
tion methods, the expert knowledge method. This model yielded the best results over the validation data
and did not include correlated metrics as happened with the evolutionary algorithm. Therefore, this
model was used to generate the LiDAR-based AGB map for the study area. The results of the models built
using the other two feature selection methods, the stepwise regression and the evolutionary algorithm,
are given in Table S4 in the supporting information. Figure 2 shows the scatterplot of the LiDAR-based
versus field-based AGB estimates.

The application of the SVR model using the Hsq corrected based on the AUCW (section 2.4) showed significant
differences compared to the original image. After correcting Hso, the new AGB spatial distribution agreed better
with the burn severity map (as illustrated in Figure 3), with an ~80% decrease in AGB in high burn severity areas
and an ~50% reduction in uncertainty (Table 3). Between the two LiDAR-based methods of AGB estimation, the
AGB based on the corrected LiDAR data
reflects more accurately the variation in

700 y=0.78x +37.38 the postfire AGB over the landscape
R2=0.81 (Figure 3). Table 3 also presents the mean
600| RMSE=62.17 Mg ha'* AGB estimates and their uncertainties for
different burn severity levels, vegetation
‘E 500 L7 ‘ types, and AGB estimation methods.
4
gm . ,.’ 3.2. AGB Estimates Using Landsat
@ 400 ol OLI Data
.
% . 7 :’ * . Our first attempt to model AGB from
w300 .
_g . ,,’ Landsat data was based on a model
< o v that included texture that is the
g 0 L3 e entropy of band 3 in a 9x9 window.
ooy A This model yielded an R* of 0.73 and
100 .":‘,-’ 061 and a relative RMSE of 46% and
R - 56% for the calibration and the valida-
0 tion data, respectively. Nevertheless,
0 100 200 300 400 500 600 700

Field-based AGB (Mg ha't)

Figure 2. LiDAR-based AGB estimates compared to field-based AGB esti-
mates. The solid line represents the 1:1 line.

when the AGB map was produced, it
exhibited a clear pattern related to
the entropy band rather than to the
actual AGB distribution (Figure S4 in
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Figure 3. Spatial distribution of the postfire AGB estimated from LiDAR data: (a) burn severity map (added for comparison), (b) AGB using the original Hsg metric, and
(c) AGB using a corrected Hsg metric (also referred to as the “corrected LiDAR AGB").

the supporting information). Therefore, we performed a second analysis that excluded texture measures to
avoid this artifact. The final features selected to model AGB from Landsat were the OLI reflective bands 2 to
6, the NDII, and the elevation. Table 4 summarizes the performance of the prefire and postfire models.
Figure 4 shows the scatterplots of the Landsat-based versus LiDAR-based AGB for each model.

The combined uncertainty of the Landsat AGB estimates was computed using the RMSE of the models devel-
oped at each step (section 2.6) using the complete reference data set, i.e., the 65 plots for the LIiDAR model
and the 514 pixels for the Landsat model. This resulted in an overall relative RMSE of 55.3% and 49.9% for
the postfire and prefire AGB, respectively. We also computed the uncertainties for the estimates of the mean
AGB over areas with different burn severity levels and vegetation types. The uncertainty of the aggregated
estimates was much smaller due to the large number of pixels and relatively weak spatial correlation
(Table 3). However, the overall uncertainty of the postfire AGB estimates obtained with Landsat was double
the uncertainty of corrected LiDAR-based AGB, particularly in high severity regions where Landsat signifi-
cantly overestimated LiDAR AGB by more than 150%.

3.3. Estimation of the Carbon Released by the Rim Fire

Table 5 presents the estimates for the biomass loss and C released to the atmosphere during the Rim fire
using the three different postfire AGB estimates derived from the LiDAR and the Landsat data. In all cases,
the AGB estimates were corrected for bias based on a linear regression between the observed and the esti-
mated values (Figures 2 and 4). This process improves the dilution bias existing in the results but may intro-
duce some random errors due to adjustments and changes introduced on all pixels, even with high
estimation accuracy [Xu et al., 2016]. The estimates of the consumed biomass changed from 2.75+0.21 Tg
obtained using the original LiDAR-derived AGB to 6.58 +0.03 Tg derived using the corrected LiDAR data.
Applying a 50% biomass to carbon conversion factor, we obtained the estimates of the released C that

Table 3. AGB Mean = Std Error (in Units of Mg ha~') Within the Strata Defined by Burn Severity and Vegetation Type for
Estimates Obtained Using LiDAR and Landsat OLI Data

LiDAR-Based Corrected LiDAR- Landsat-Based Landsat-Based
Strata AGB Based AGB Prefire AGB Postfire AGB
Unburned Coniferous 216.77 £ 0.64 216.77 £ 0.64 214.07 £ 1.49 209.39+2.24
Deciduous  74.81 £0.44 74.81+0.44 81.64+£0.78 9532+ 1.55
Mixed 147.56 + 0.87 147.56 + 0.87 115.74 £ 0.57 118.01+£0.70
Low severity Coniferous  250.08 + 0.45 183.81+£0.32 23534+0.79 232.69+0.57
Deciduous 101.42 +0.80 94.48 £0.42 96.77 £ 2.40 102.47 £ 0.93
Mixed 193.71 £0.62 146.36 + 0.54 162.81 £ 1.04 154.96 + 0.96
Moderate severity Coniferous 190.29 + 0.54 90.65 £0.22 184.56 £ 1.09 122.58+0.36
Deciduous  76.74 +0.45 65.38+£0.28 82.86+ 1.05 77.25+0.62
Mixed 144.28 £ 0.61 88.4+0.35 136.58 £ 2.63 90.04 +0.57
High severity Coniferous 151.05+0.32 3497+0.14 172.13+£045 92.66 +0.28
Deciduous  64.34+0.36 30.60+0.22 81.50+1.84 92.53+0.89
Mixed 13223 £0.44 33.89+0.20 133.71£0.55 90.46 + 0.45
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Table 4. Features Selected From Landsat OLI for the SVR AGB Model (Left Most Column) and the Model Accuracy for
Each Date®

Variables Selected R? R? adj RMSE (Mgha ") relRMSE (%)
Prefire
B2-B6, NDI, elevation 0.79 0.79 75.43 36.02
072 071 87.82 41.94
0.76 0.76 80.65 38.52
Postfire
073 072 87.18 4163
06 058 105.01 50.15
0.67 0.67 94.77 45.26

3For each accuracy measure and for each date, the first line corresponds to the calibration data set, the second line
corresponds to the validation data set, and the third line (in bold) corresponds to the combined data set.

ranged from 1.37£0.11 TgC to 3.29 £ 0.02 TgC. For the Landsat-based approach the consumed biomass esti-
mate was 3.93+0.17 Tg or 1.87 £0.08 TgC.

Figure 5 shows the spatial distribution of AGB difference between the Landsat prefire and the Landsat
(Figure 5b) and LiDAR (Figure 5c) postfire estimates, representing the biomass consumption across the
Rim fire domain. The difference between the LiDAR and Landsat data used for postfire AGB estimates
can be readily observed in the significant underestimation by Landsat of the fire impact in terms of
the biomass loss, particularly in the high severity areas. The AGB loss image derived from corrected
LiDAR data shows the best visual agreement with the burn severity map (Figure 5a). Nonetheless, it
can be seen that the match between the biomass difference map and the burn severity map is not per-
fect. One reason for this is that the burn severity map is only an approximate qualitative representation
of the fire damage. Besides that, the burn severity map reflects a relative change in the overall vegeta-
tion spectral signal rather than an absolute measure of the biomass loss. Therefore, different burn sever-
ity levels could represent similar biomass losses depending on the prefire biomass levels and the extent
and severity of forest disturbance, and the actual biomass loss can vary substantially within a burn
severity class.

Furthermore, we quantified the biomass loss for each burn severity class and estimated the proportion of bio-
mass consumed by the fire, i.e., the combustion completeness factor, for each severity level (Table 6). It can be
seen from Table 6 that for all burn severity levels, both, Landsat and the uncorrected LiDAR data underesti-
mated the CC values provided by De Santis et al. [2010] (last row in Table 6), while the corrected LiDAR data
consistently overestimated those values.
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Figure 4. Scatterplots of LiDAR-derived versus Landsat-derived AGB for the (a) prefire and (b) postfire images.
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Table 5. Biomass Consumed and C Released by the Rim Fire for the Entire Burned Area and per Burn Severity Level, Obtained Using Different Estimation Methods
Burn Severity

Total Burned Area Low Moderate High
A Biomass £ U AC+U A Biomass +U AC+U A Biomass +U AC+U A Biomass + U AC+U
Method (Tg) (TgQ) (Tg) (TgQ) (TgQ) (T90) (T9Q) (TgQ)
Landsatpre-Landsatpest 3.93+£0.17 1.96 £ 0.09 0.90+0.17 0.45 +£0.09 1.30+0.01 0.65+0.01 1.73+0.02 0.86£0.01
Landsatpre-LiDAR 2.75+0.21 1.37£0.11 0.94 £ 0.06 0.47 £0.03 0.70£0.2 0.35+0.01 1.11+£0.04 0.56 £ 0.02
Landsatpre-LiDARcorrected 6.58+0.03 3.29+0.02 1.84+0.03 0.92+0.02 1.67 £0.01 0.84+0.01 3.07+0.01 1.53+0.01

4. Discussion
4.1. LiDAR-Based AGB Estimation

The LiDAR metrics that produced the best biomass model included 50th percentile canopy height (Hso) and the
area under canopy waveform (AUCW). The latter was also highly correlated with the canopy cover (r*=0.90;
p < 0.001), hence providing a description of the horizontal distribution of forest cover. LiDAR height metrics,
such as percentiles or the mean of the height distribution, have been previously used as reasonable predictors
of AGB, due to the relationship between AGB and canopy height. However, the inclusion of metrics such as frac-
tional cover, which represents the horizontal variation of forest structure, is necessary to improve LiDAR-based
AGB estimation in heterogeneous forests [Garcia et al., 2010; Hall et al., 2005; Neesset and Gobakken, 2008].

The estimation of AGB over burned areas with different severity levels was a critical step in our methodology.
Since fires alter vegetation structure, ideally the model developed should capture the burn severity patterns
and reflect these on the AGB estimates. A visual analysis of the LiDAR-derived AGB map (Figure 3) shows that
some areas of moderate and high burn severity still have large AGB values. Several reasons could explain this
overestimation. On the one hand, pixels characterized by dead standing trees (snags) could present high Hsq
values despite much of their biomass having been significantly reduced compared to the prefire condition.
On the other hand, the edge effect can significantly impact height values at 30 m resolution. These effects are
a consequence of considering only returns with height > 2 m in the computation of Hsq. Although this is a
common approach to compute LiDAR metrics [Garcia et al., 2010; Naesset and Gobakken, 2008], which can
be valid over undisturbed areas, the canopy structural changes caused by the fire affect the relationship
between Hsq and AGB resulting in an overestimation of AGB, thus making necessary a correction to account
for the canopy reduction.

Although the model included the AUCW, which accounted for the amount of canopy material and partially
compensated for this effect, the high correlation of Hsq with AGB suggests a higher weight of this metric
in the SVR model, thus biasing the estimates (see supporting information). Therefore, we corrected the bias
in AGB values by modeling the relationship between Hsq and AUCW. The lack of field data prevented us from
validating this correction; however, the relation between tree height and crown size has been reported in

A) AGB consumed o)
Mg/ha
Burn Severity (Mg o )
Unburned |}
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Low [ ]>50-<=100
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I >200
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Figure 5. Spatial distribution of the burn severity and the aboveground biomass (AGB) consumed by the Rim fire obtained with two different estimation methods. (a)
Burn severity map, (b) AGB(Landsat; preﬁre)'AGB(Landsat; postfire), and (c) AGIB(Landsat; preﬁre)'AGB(corrected LiDAR; postfire)
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Table 6. Combustion Completeness Factors Estimated by This Study Based On Different Data Sets and the Values
Provided by De Santis et al. [2010] for a Mediterranean Conifer Forest in California

Burn Severity

Source Low Moderate High
Landsat data 0.16 0.40 0.48
LiDAR data 0.16 0.22 0.31
Corrected LiDAR data 0.32 0.52 0.85
De Santis et al. [2010] 0.25 0.47 0.65

other studies [Mehtdtalo et al., 2014; Popescu et al., 2003]. It should be noted that the correction mainly
affected pixels that experienced a large reduction in the canopy material, whereas pixels where trees retained
leaves and/or branches and thus had high AUCW were barely affected by the correction.

4.2. Landsat-Based AGB Estimation

Our final estimates of AGB are the result of a two-step modeling approach, which yielded a final relative RMSE
of approximately 50% for both, the prefire and the postfire estimates. Despite these high errors, our results
are similar or even better than those reported in other studies that estimated AGB from Landsat data
[Frazier et al., 2014; Hall et al., 2006; Powell et al., 2010].

In general, the relationship between Landsat spectral bands and biomass is extremely variable, depending on
forest structure [Hall et al., 2006; Jakubauskas and Price, 1997]. There are examples showing the potential of
Landsat reflectance for extrapolating forest structure over large regions [Foody et al., 2003]. However, such
extrapolations can have large uncertainty at the pixel level, as shown in our study. In this work, several vege-
tation indices were employed for biomass modeling. The selection of NDII agrees with Roberts et al. [2004]
and Lu et al. [2004] who found better relations between water sensitive indices and AGB as they exhibited
greater sensitivity to large LAl values than NDVI.

The Landsat postfire model performed worse than the prefire model, probably due to illumination conditions
in the fall, as well as phenological effects in the deciduous forest species, although these represented just
10% of the study area. Over the unburned areas, the average AGB estimate was similar to that of the
LiDAR estimates (Table 3). However, over the burned areas, the postfire estimation of AGB had significant bias
due to burn severity. Over high severity fire areas, Landsat estimates were three times greater than LiDAR
over all forest types. Although in this work the postfire estimates were not compared with ground observa-
tions, the results show poor performance of Landsat spectral information compared to LiDAR to quantify the
structural damage of the forests due to fire disturbance. LiDAR provides 3-D information on tree structure
that can be readily related to the damage on the live forest biomass; however, Landsat spectral reflectance
may map areas of disturbance but have limited capability to capture the different degrees of vertical struc-
tural damage caused by fire [Gajardo et al., 2014; Wulder et al., 2009].

4.3. Estimation of Biomass Consumed and Carbon Released by the Rim Fire

The three data sets used to estimate the postfire AGB values yielded very different biomass consumption
values. The use of the original LiDAR postfire AGB estimates produced the lowest biomass consumption.
This is a result of the lack of sensitivity of Landsat data to high AGB values and the overestimation of AGB
by LiDAR data over moderate and high burn severity areas, as described above. The estimate obtained from
the corrected LiDAR data almost doubled that from Landsat. This difference can have multiple explanations.
Over low and moderate burn severity areas Landsat data have limited ability to capture the changes in
understory and midstory vegetation, particularly in high canopy cover forests, whereas LiDAR is more sensi-
tive to these types of change. In addition, since burn severity can vary significantly within a pixel [Miller and
Quayle, 2015], the presence of green vegetation within the pixel would cause an overestimation of AGB from
Landsat. This would particularly affect low and moderate burn severity areas. Over high burn severity areas,
our Hsq correction approach reduced the bias in AGB estimation from LiDAR. Since no field measurements
were made over these areas, no quantitative validation of the correction method was performed; neverthe-
less, our estimates from the corrected LiDAR data are in close agreement with initial estimates performed by
the U.S. Forest Service [U.S. Forest Service, 2014].
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Our estimate of the released C amounts to 12.06 + 0.06 Tg of C02,, equivalent to the annual emissions of 2.57
million cars, as compared to the 11.35 Tg of C02, reported by the U.S. Forest Service. Although our estimate is
slightly higher, it should be born in mind that we excluded shrub vegetation from our analysis, and therefore,
our values underestimate the total consumed biomass. Belowground biomass is usually not accounted for in
biomass consumption computation; however, in some high severity areas of the Rim fire roots were also con-
sumed, which could be a characteristic of megafires. Estimation of the consumption of this biomass component
is challenging from both remote sensing and field observations, and further efforts are needed in this regard.

From the biomass consumption values obtained for each burn severity level, we estimated the proportion of
biomass consumed by the fire (Table 6), i.e.,, the combustion completeness. The use of these CC values
instead of a single value for the entire burned area or by vegetation type as it is commonly used would
improve carbon release estimates based on the model proposed by Seiler and Crutzen [1980]. The CC esti-
mates from the uncorrected LiDAR and Landsat data are lower than those reported by De Santis et al.
[2010] for other Mediterranean conifer forest types in California. However, using the corrected LiDAR-based
AGB puts, our CC estimates in closer agreement, in most cases. Although De Santis et al. [2010] found good
correlations between their CC estimates and temporal differences in vegetation indices, their results did not
represent an actual estimate of biomass consumption, and therefore, it is difficult to assess the accuracy of
their CC values. Differences between our results using Landsat data and the values by De Santis et al.
[2010] can be explained, in part, by the fact that the postfire image used here was collected 1 week before
the fire was fully contained. However, an image acquired after the complete extinction of the fire that also
complied with our image selection criteria would have included forest changes due to postfire cleaning
and salvage logging operations in the study area, which would have also affected the estimates.

5. Conclusions

Although airborne LiDAR is currently the most accurate remote sensing technology for biomass estimation,
only few studies have evaluated its potential to characterize burned areas [Kane et al., 2014; Wulder et al.,
2009], and to the best of our knowledge, it has not been used to estimate postfire AGB. We present a two-
phase methodology to extrapolate limited ground observations and airborne LiDAR-based AGB estimates
with Landsat multispectral imagery, both in space and time, to directly estimate the biomass consumed
and the Creleased during the fire. In particular, we demonstrate how single-date postfire airborne LiDAR data
set can be integrated with Landsat imagery to overcome the limitations of spatial extent and frequency
inherent in airborne LiDAR data to estimate the biomass by the fire.

The application of a correction factor to the LiDAR Hso metric over burned areas compensated for the sys-
tematic overestimation of the postfire AGB from LiDAR data and enabled the most accurate calculation of
the biomass loss, compared to the original, uncorrected LiDAR or the Landsat data. It also improved the esti-
mate of the combustion completeness factor for each burn severity level.

In addition, our methodology provided a formal uncertainty analysis and error propagation approach for cal-
culating the uncertainty of the total emissions at different burn severity levels and sources of errors for future
improvements. Suggested improvements would include addition of plots in burned areas to reduce biomass
modeling uncertainty, optimization of plot size for the scale of the remote sensing data, and development of
improved allometry for estimating the carbon stocks in standing burned trees.
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