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Abstract 
 

In this work, we describe a classification system to 

automatically recognize the pattern of HEp-2 cells 

within IIF images. For this purpose we have carried 

out several steps to preprocess the data, select a 

proper predictor and generate a model. The use of 

Evolutionary Computation in the feature selection step 

and the optimization of the classification system is the 

main contribution of this work. 

 

 

1. Method 
 

The proposed pattern recognition system has been 

carried out following the next steps (see Figure 1): 

1. We have chosen a standard number of pixels for 

all the data. In our case the considered resolution 

for the training and testing steps has been of 

100x100. The system resizes the image data to the 

mentioned resolution. 

2. With respect to the training data, every image was 

transformed to one instance and included into a 

unique training file with ARFF format  [4]. 

3. The number of features (pixels) of the training file 

was reduced with the CFS evaluator and 

considering the Best First algorithm as searching 

method [1]. In a second phase, a Genetic 

Algorithm (GA) improved the quality of the final 

set of features. The fitness of the GA is the 

accuracy of the classification subsystem that will 

be described in the next step. To obtain the 

average of the accuracy, the training file was 

randomly divided into two folds and then they 

were used as training and testing data twice (2 x 

holdout 85%-15%). 

4. The classification subsystem used for label 

predictions is J48 (C4.5) [2]. This predictor has 

been boosted by the AdaBoost M1 method [3]. 

This decision has been made by discarding the rest 

of the classifiers that integrate the framework used 

(Weka [4]) and taking into account the observed 

accuracy of each one. Furthermore, a GA 

optimized the AdaBoost parameters. Regarding 

the GA design, each individual represents a 

combination of values of these parameters, and the 

fitness is the accuracy of the classification 

subsystem using holdout (2 x holdout 85%-15%) 

with the pre-processed training data (features 

selected). 

5. The final classifier system was trained with the 

full pre-processed training data and the optimized 

AdaBoost + C4.5 stack. In the testing step, each 

testing image will be resized, transformed in an 

ARFF file with only one instance and unknown 

label, and filtered with the same feature set 

calculated in the training step. 
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Figure 1. Training and testing processes 
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