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SWITCHING CONTROLS FOR ANALYTIC SEMIGROUPS AND
APPLICATIONS TO PARABOLIC SYSTEMS\ast 
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Abstract. In this work, we extend the analysis of the problem of switching controls proposed
in [E. Zuazua, J. Eur. Math. Soc. (JEMS), 13 (2011), pp. 85--117]. The problem asks the following
question: Assuming that one can control a system using two or more actuators, does there exist a
control strategy such that at all times, only one actuator is active? We answer positively when the
controlled system corresponds to an analytic semigroup spanned by a positive self-adjoint operator
which is null-controllable in arbitrary small times. Similarly to [E. Zuazua, J. Eur. Math. Soc.
(JEMS), 13 (2011), pp. 85--117], our proof relies on analyticity arguments and will also work in
finite dimensional settings and under some further spectral assumptions when the operator spans an
analytic semigroup but is not necessarily self-adjoint.
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1. Introduction.
Setting and main results. In this article, we are interested in the following system:

(1.1) y\prime +Ay = Bu, t \in (0, T ), y(0) = y0 \in H.

Here, y is the state variable, assumed to belong to a Hilbert space H, \prime denotes the
time derivative, A describes the free dynamics, and  - A generates a C0 semigroup.
The function u is the control, acting on the system through the control operator B,
which is assumed to be in L (U,H), where U is a Hilbert space, and u will be searched
in the space L2(0, T ;U), with T > 0.

Controllability of systems of the form (1.1) has been analyzed thoroughly in many
works. We do not intend to give an exhaustive account of the theory, and we simply
refer the reader to the textbook [30].

Here, we focus on the case where U can be identified with U1 \times U2 through an
isomorphism, i.e.,

(1.2) there exists a linear isomorphism \pi : U1 \times U2 \rightarrow U,
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so that we can associate to B \in L (U,H) two operators B1 \in L (U1, H) and B2 \in 
L (U2, H) such that

(1.3) \forall (u1, u2) \in U1 \times U2, B\pi (u1, u2) = B1u1 +B2u2.

The control problem (1.1) can then be rewritten as

(1.4) y\prime +Ay = B1u1 +B2u2, t \in (0, T ), y(0) = y0,

with u1 \in L2(0, T ;U1) and u2 \in L2(0, T ;U2).
The question we are interested in is the possibility of constructing switching con-

trols, that is, controls u1 \in L2(0, T ;U1) and u2 \in L2(0, T ;U2) such that

(1.5) a.e. in t \in (0, T ), \| u1(t)\| U1
\| u2(t)\| U2

= 0.

Informally, this means that at each time t, only one control is active.
Of course, under condition (1.5) one cannot expect to have better controllability

properties for (1.4) than for the general case (1.1). We thus assume some control-
lability properties for (1.1) and discuss which properties can be obtained for control
problem (1.4) under condition (1.5).

More precisely, we will assume that system (1.1) is null-controllable in arbitrary
small times; i.e., for all T > 0, there exists a constant CT such that for all y0 \in H,
there exists u \in L2(0, T ;U) such that the solution y of (1.1) satisfies

(1.6) y(T ) = 0,

and the control u verifies the inequality

(1.7) \| u\| L2(0,T ;U) \leq CT \| y0\| H .

In fact, we would rather use the following equivalent observability property (see,
e.g., [30, Theorem 11.2.1]): For all T > 0, there exists CT such that for all zT \in H,
the solution z of

(1.8)  - z\prime +A\ast z = 0, t \in (0, T ), z(T ) = zT \in H

satisfies

(1.9) \| z(0)\| H \leq CT \| B\ast z\| L2(0,T ;U).

Our goal then is to show the following result.

Theorem 1.1. Assume that system (1.1) is null-controllable in arbitrary small
times and that one of the following two conditions holds:

\bullet A : D(A) \subset H \rightarrow H is a self-adjoint positive definite operator with compact
resolvent, H being a Hilbert space;

\bullet H is a finite dimensional vector space.
Let B \in L (U,H), where U is a Hilbert space, and assume that U is isomorphic to
U1 \times U2 for some Hilbert spaces U1 and U2, and define B1 and B2 as in (1.3).

Then system (1.4) is null-controllable in arbitrary small times with switching
controls, i.e., controls satisfying (1.5). More precisely, given any T > 0 and any
y0 \in H, there exist control functions u1 \in L2(0, T ;U1) and u2 \in L2(0, T ;U2) such that
the solution y of (1.4) satisfies (1.6), while the control functions satisfy the switching
condition (1.5).
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2822 F. W. CHAVES-SILVA, S. ERVEDOZA, AND D. A. SOUZA

The proof of Theorem 1.1 is given in section 2. It is strongly inspired by the
work [31] and revisits two ideas which are already presented there but that we ex-
ploit further. Indeed, to construct controls u1 and u2, for zT \in H we minimize the
functional

(1.10) J(zT ) =
1

2

\int T

0

max\{ \| B\ast 
1z(t)\| 2U1

, \alpha (t)\| B\ast 
2z(t)\| 2U2

\} dt+ \langle y0, z(0)\rangle H ,

where z is the solution of the adjoint problem (1.8), and \alpha = \alpha (t) is given by

(1.11) \alpha (t) = 1 +
1

2
sin(\omega t), t \in \BbbR ,

where \omega \in \BbbR \ast is suitably chosen.
Similarly to [31], the main difficulty is guaranteeing that for any minimizer ZT

of J (in a suitable class to be defined later), the set \{ t \in (0, T ), \| B\ast 
1Z(t)\| 2U1

=
\alpha (t)\| B\ast 

2Z(t)\| 2U2
\} is of measure zero and thus either guarantees the switching structure

of the controls provided or corresponds to the straightforward case ZT = 0; see section
2 for more details.

As it turns out, this property depends on the analyticity of the semigroup of
generator  - A\ast . Moreover, we shall use the fact that \alpha is analytic and oscillates at
infinity, and therefore no resonances effect preventing from the switching structure
(1.5) can arise.

Before going further, let us remark that the work [31] proposed a similar strategy,
see [31, pp. 94--95 and Theorem 2.2], but did not manage to conclude that the set
\{ t \in (0, T ), \| B\ast 

1Z(t)\| 2U1
= \alpha (t)\| B\ast 

2Z(t)\| 2U2
\} either is of zero measure or corresponds

to the trivial case ZT = 0 in the general setup we propose; there, only the finite
dimensional case was considered, and it was assumed that B1 and B2 were scalar
(i.e., U1 = U2 = \BbbR ) and that (A,B1  - \alpha  - B2) and (A,B1 + \alpha +B2) satisfy Kalman
rank conditions for some \alpha  - and \alpha + in the accumulation sets of \alpha at  - \infty and +\infty ,
respectively. Note in particular that these conditions are not satisfied for the 2 \times 2
control system,

A =

\biggl( 
0 0
0 0

\biggr) 
, B1 =

\biggl( 
1
0

\biggr) 
, B2 =

\biggl( 
0
1

\biggr) 
.

Some extensions were given in some particular infinite dimensional settings and for
nonscalar control operators but under strong spectral assumptions. Namely, only
the case of the heat equation has been discussed when the following assumptions are
satisfied:

\bullet The set of eigenvalues (\lambda k)k\in \BbbN satisfies the fact that for all \Lambda \in \BbbR , there is at
most one pair (k, \ell ) such that \lambda k + \lambda \ell = \Lambda ,

\bullet eigenvectors (\varphi k)k\in \BbbN of the Laplace operator satisfy \| B\ast 
1\varphi k\| U1

\not = \| B\ast 
2\varphi k\| U2

for all k \in \BbbN .
Here, our arguments avoid these strong spectral requirements by using the ana-

lytic function \alpha = \alpha (t) in (1.10) and the fact that for \alpha of the form (1.11), the set
of accumulation points at  - \infty is a nontrivial interval. We emphasize that our work
differs from [31] in the analysis of the set \{ t \in (0, T ), \| B\ast 

1Z(t)\| 2U1
= \alpha (t)\| B\ast 

2Z(t)\| 2U2
\} 

and the sufficient conditions required to prove that it is of zero measure, allowing us
to state the existence of switching controls under the minimal assumption that system
(1.1) is null-controllable.
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Remark 1.2. Let us also point out that this result is easy to obtain in finite
dimensional settings, as was mentioned to us by Marius Tucsnak. Indeed, when H is
of finite dimension, it is easy to check that for all T > 0, for any i \in \{ 1, 2\} , considering
any nonempty open time interval Ii, the set Ri(Ii) defined by

Ri(Ii) =

\Biggl\{ \int T

0

e - (T - s)ABi1Ii(s)ui(s) ds, with ui \in L2(0, T )

\Biggr\} 
,

i.e., the reachable set for (1.4) at time T starting from y0 = 0 and with control ui

acting only in the time interval Ii (1Ii is the indicator function of the interval Ii), the
other control being null, equals the set \scrR i defined by

\scrR i = Ran (Bi, ABi, . . . , A
d - 1Bi),

where d is the dimension of the space H. In particular, Ri(Ii) is independent of the
choice of the time interval Ii.

Recall that if H is a finite dimensional space of dimension d and system (1.1) is
controllable, the Kalman rank condition is satisfied, i.e., Ran (B,AB, . . . , An - 1B) =
\BbbR d, so that by construction (recall (1.3)) \scrR 1 +\scrR 2 = \BbbR d.

Therefore, using the above comments, given any initial datum y0 \in H and
nonempty open time subintervals I1 and I2 of (0, T ), there exist controls u1\in L2(0, T ;U1)
and u2 \in L2(0, T ;U2) such that the solution y of (1.4) satisfies (1.6), while u1 is sup-
ported in I1 and u2 is supported in I2.

Even if this is a stronger statement than Theorem 1.1 in the case of finite dimen-
sion, our approach has the advantage of building a strategy which naturally constructs
switching controls and optimizes the choice of switching times, while the above result
gives switching structures through a priori choices of supports of controls u1 and u2.

In fact, our proofs can be adapted to the case of more than two control operators
and to unbounded control operators B \in L (U,D(A\ast )\prime ). Assume that U is isomorphic
to U1 \times \cdot \cdot \cdot \times Un for some n \in \BbbN \ast satisfying n \geq 2, i.e.,

(1.12) there exists a linear isomorphism \pi : U1 \times \cdot \cdot \cdot \times Un \rightarrow U,

so that we can associate to B \in L (U,D(A\ast )\prime ) n operators Bi \in L (Ui,D(A\ast )\prime ),
i \in \{ 1, . . . , n\} , by the formula

(1.13) \forall (u1, . . . , un) \in U1 \times \cdot \cdot \cdot \times Un, B\pi (u1, . . . , un) =

n\sum 
i=1

Biui.

When we have n controls ui \in L2(0, T ;Ui), the interesting notion of switching control
is the following:

(1.14) a.e. in t \in (0, T ),

n\prod 
i=1

\left(  \sum 
j \not =i

\| uj(t)\| Uj

\right)  = 0.

In other words, we say that controls (u1, . . . , un) \in L2(0, T ;U1\times \cdot \cdot \cdot \times Un) are switching
if almost everywhere (a.e.) in t \in (0, T ), at most one control is active.

We then claim that Theorem 1.1 can be generalized to this case as follows.

Theorem 1.3. Assume that system (1.1) is null-controllable in arbitrary small
times and that one of the following two conditions holds:
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\bullet A : D(A) \subset H \rightarrow H is a self-adjoint positive definite operator with compact
resolvent, with H being a Hilbert space;

\bullet H is a finite dimensional vector space.
Let B \in L (U,D(A\ast )\prime ), where U is a Hilbert space, let n \in \BbbN \ast with n \geq 2, assume
that U is isomorphic to U1 \times \cdot \cdot \cdot \times Un for some Hilbert spaces Ui, i \in \{ 1, . . . , n\} , and
define Bi for i \in \{ 1, . . . , n\} as in (1.13).

Then the system

(1.15) y\prime +Ay =

n\sum 
i=1

Biui, t \in (0, T ), y(0) = y0,

is null-controllable in arbitrary small times with switching controls, i.e., controls sat-
isfying (1.14). More precisely, given any T > 0 and any y0 \in H, there exist n control
functions ui \in L2(0, T ;Ui), i \in \{ 1, . . . , n\} , such that solution y of (1.15) satisfies
(1.6), while the control functions satisfy switching condition (1.14).

The proof of Theorem 1.3 is given in section 3 and follows the same steps as those
in the proof of Theorem 1.1.

In section 4 we will give several examples of applications, in particular regarding
general parabolic systems and the Stokes problem. We also explain under which
assumptions Theorems 1.1 and 1.3 can be extended to non-self-adjoint operators A
with a compact resolvent which generates an analytic semigroup; see section 5 and
Theorem 5.1. However, it is important to note immediately that the assumptions
required to deal with non-self-adjoint operators seem quite delicate to check in practice
(as we will explain in two examples) due to the possible complexity of the spectrum
in those cases.

Related results. As stated above, this work is strongly related to the work [31],
which triggered our analysis. But more generally, it is related to the common idea
that minimizing \ell 1 norms enforces sparsity. This idea has been developed thoroughly
in the context of optimal control; see, e.g., [1, 21, 22, 23] and references therein.

As we will see later in the examples in section 4, when considering parabolic
systems or the Stokes problem, Theorem 1.3 will easily provide controllability results
with controls having at each time at most one active component. This is in sharp
contrast to the questions addressed for parabolic systems or Stokes models when
the control can act on only one component, in which the controllability properties
can be strongly modified depending on the geometry of the domains or the time
of controllability (see, e.g., [2, 3, 14] and the references therein), while the use of
nonlinear terms may help reestablish control properties; see, e.g., the works [7, 9, 10].
In other words, the notion we are analyzing in this context truly lies in between the
notions of controllability with controls acting on all components and controllability
with controls acting on only one component.

2. Proof of Theorem 1.1. The structure of the proof of Theorem 1.1 is exactly
the same whether A is a self-adjoint operator or H is a finite dimensional space, and
it closely follows the proof presented in [31].

Let y0 \in H and T > 0 be fixed, and then introduce the functional J defined in
(1.10) for zT \in H and z solving (1.8).

Since inf \alpha = 1/2 > 0 and sup\alpha = 3/2 < \infty , it is clear that the observability
property (1.9) implies that for all T > 0, there exists a constant CT such that for all

D
ow

nl
oa

de
d 

12
/1

2/
22

 to
 5

2.
18

.6
3.

16
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SWITCHING CONTROLS FOR ANALYTIC SEMIGROUPS 2825

zT \in H,

(2.1) \| z(0)\| 2H \leq C2
T

\int T

0

max\{ \| B\ast 
1z(t)\| 2U1

, \alpha (t)\| B\ast 
2z(t)\| 2U2

\} dt.

Although the functional J in (1.10) is convex, the functional J is, in general, not
coercive with respect to the norm of H (this is, for instance, the case when considering
the heat equation). We thus introduce the space

(2.2) X = H
\| \cdot \| obs

,

i.e., the completion of the space H with respect to the norm \| \cdot \| obs given by

(2.3) \| zT \| 2obs =
\int T

0

max\{ \| B\ast 
1z(t)\| 2U1

, \alpha (t)\| B\ast 
2z(t)\| 2U2

\} dt.

One then easily checks that, since this norm is equivalent to\int T

0

\| B\ast z(t)\| 2U dt,

for \alpha of the form (1.11), the space X does not depend on the choice of the parameter
\omega in (1.11).

Using (2.1), it is clear that the functional J in (1.10) admits a unique extension
(still denoted the same way) as a continuous functional in X, is coercive in X, and
stays convex.

The functional J has therefore a minimizer ZT \in X. To derive the Euler--
Lagrange equation satisfied by ZT , it is convenient to first analyze when the set

(2.4) I = \{ t \in (0, T ), \| B\ast 
1Z(t)\| 2U1

= \alpha (t)\| B\ast 
2Z(t)\| 2U2

\} 

is of nonzero measure.
Note that, when H is of finite dimension, X = H, and thus, for ZT \in H, the

function t \mapsto \rightarrow \| B\ast 
1Z(t)\| 2U1

 - \alpha (t)\| B\ast 
2Z(t)\| 2U2

is in fact continuous on [0, T ]. When H is
of infinite dimension, the set X might be more intricate than H; still, as we will see in
the proof of Lemma 2.1, for ZT \in X, the function t \mapsto \rightarrow \| B\ast 

1Z(t)\| 2U1
 - \alpha (t)\| B\ast 

2Z(t)\| 2U2

is in fact continuous on any interval of the form (0, T \prime ) with T \prime < T (see (2.11)), and
thus the set I is properly defined.

For the two cases we are interested in, we claim that the set I can be of nonzero
measure only in the straightforward case ZT = 0. This is precisely given in the
following lemmas.

Lemma 2.1. When A is a self-adjoint positive definite operator with compact re-
solvent and \alpha is as in (1.11) with \omega \in \BbbR \setminus \{ 0\} , the set I is necessarily of zero measure,
except in the case \| B\ast 

1Z\| L2(0,T ;U1) = \| B\ast 
2Z\| L2(0,T ;U2) = 0 where I = (0, T ).

Lemma 2.2. Let H be a finite dimensional space. Let (\lambda k)k\in \{ 1,...,K\} be the eigen-
values of the matrix A\ast ordered so that \Re (\lambda k) \leq \Re (\lambda k+1) for all k, and define the set
W as follows:

W = \{ 0\} \cup 
\biggl\{ 
\Im (\lambda k) - \Im (\lambda k1),

1

2
(\Im (\lambda k) - \Im (\lambda k1

)),

\forall (k, k1) such that \Re (\lambda k) = \Re (\lambda k1
)

\biggr\} 
.

(2.5)
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Then, for \alpha as in (1.11) with \omega \in \BbbR \setminus W , the set I is necessarily of zero measure,
except in the trivial case \| B\ast 

1Z\| L2(0,T ;U1) = \| B\ast 
2Z\| L2(0,T ;U2) = 0 where I = (0, T ).

The proofs of Lemmas 2.1 and 2.2 are postponed to sections 2.1 and 2.2, respec-
tively.

Remark 2.3. We point out that Lemmas 2.1 and 2.2 do not use the unique con-
tinuation property \| B\ast 

1Z\| L2(0,T ;U1) = \| B\ast 
2Z\| L2(0,T ;U2) = 0, which implies that Z = 0

in (0, T ), but only the analyticity of the semigroup and the clear structure of the
spectrum of the operator A when A is a matrix or a self-adjoint operator. This will
be of interest when extending Theorem 1.1 to n operators; see section 3.

Based on the above results, using the observability property (1.9), we deduce that
the set I is of zero measure except in the trivial case ZT = 0. Therefore, when ZT \not = 0,
setting

I1 = \{ t \in (0, T ), \| B\ast 
1Z(t)\| 2U1

> \alpha (t)\| B\ast 
2Z(t)\| 2U2

\} ,(2.6)

I2 = \{ t \in (0, T ), \| B\ast 
1Z(t)\| 2U1

< \alpha (t)\| B\ast 
2Z(t)\| 2U2

\} ,(2.7)

we see that the Euler--Lagrange equation satisfied by Z easily yields the fact that for
all zT \in H,

(2.8) 0 =

\int 
I1

\langle B\ast 
1Z(t), B\ast 

1z(t)\rangle U1
dt+

\int 
I2

\alpha (t)\langle B\ast 
2Z(t), B\ast 

2z(t)\rangle U2
dt+ \langle y0, z(0)\rangle H ;

see [31, pp. 91--93] for the careful justification of this identity, which we briefly recall
in the appendix for completeness.

It is then easy to check that, setting

(2.9) u1(t) =

\biggl\{ 
B\ast 

1Z(t) for t \in I1,
0 for t \in I2,

u2(t) =

\biggl\{ 
0 for t \in I1,
\alpha (t)B\ast 

2Z(t) for t \in I2,

the corresponding solution y of (1.4) satisfies (1.6), while u1 and u2 satisfy the switch-
ing condition (1.5).

On the other hand, it is easy to check that if ZT = 0, then y0 = 0, and the
controls u1 = 0 and u2 = 0 are also suitable for controlling the trajectory (1.4) to
zero at time T (i.e., (1.6)), and they obviously satisfy the switching condition (1.5).

It therefore remains to show Lemmas 2.1 and 2.2, whose proofs are given in the
next sections.

2.1. Proof of Lemma 2.1: The case of a self-adjoint positive definite
operator \bfitA with compact resolvent. In order to prove that the set I is of zero
measure except when \| B\ast 

1Z\| L2(0,T ;U1) = \| B\ast 
2Z\| L2(0,T ;U2) = 0, we will consider a

strictly positive and strictly increasing sequence Tn going to T as n \rightarrow \infty and will
show that for all n \in \BbbN , the set

(2.10) In = I \cap (0, Tn)

is of zero measure except in the trivial case where B\ast 
1Z and B\ast 

2Z vanish identically
on (0, Tn). This will entail as well that I is of zero measure except in the trivial case
where B\ast 

1Z and B\ast 
2Z vanish identically.
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Let n \in \BbbN and consider the corresponding Tn. From (1.9) applied between Tn

and T , there exists Cn such that for all zT \in H, the solution z of (1.8) satisfies

sup
t\in (0,Tn)

\| z(t)\| H \leq Cn\| B\ast z\| L2(0,T ;U) \leq 
\surd 
2Cn\| zT \| obs.

Therefore, the map zT \in H \mapsto \rightarrow z(t) \in C0([0, Tn];H) extends by continuity to X, and
in particular, for ZT \in X,

Z is well defined and continuous on (0, Tn) with values in H, and

 - Z \prime +A\ast Z = 0, t \in (0, Tn), Z(Tn) = Zn \in H,(2.11)

and the set In can be equivalently defined as

In = \{ t \in (0, Tn), \| B\ast 
1Z(t)\| 2U1

= \alpha (t)\| B\ast 
2Z(t)\| 2U2

\} .

Now, since Z satisfies (2.11), Z is an analytic function on (0, Tn) because  - A\ast =  - A
is the generator of an analytic semigroup, and it can thus be extended uniquely as an
analytic function on ( - \infty , Tn) as the solution of

(2.12)  - Z \prime +A\ast Z = 0, t \in ( - \infty , Tn), Z(Tn) = Zn \in H.

Therefore, since \alpha also is an analytic function, if In is of positive measure, then

(2.13) \forall t \in ( - \infty , Tn), \| B\ast 
1Z(t)\| 2U1

= \alpha (t)\| B\ast 
2Z(t)\| 2U2

.

Our next goal is to prove that (2.13) cannot be satisfied except in the trivial case
\| B\ast 

1Z\| L2(0,Tn;U1) = \| B\ast 
2Z\| L2(0,Tn;U2) = 0. We thus assume (2.13).

Now, since A is a positive definite self-adjoint operator with compact resolvent,
its spectrum is given by a positive strictly increasing sequence of eigenvalues 0 < \lambda 1 <
\lambda 2 < \cdot \cdot \cdot < \lambda k < \lambda k+1 \rightarrow \infty and of corresponding eigenspace Hk = Kernel(A - \lambda kI),
which are two by two orthogonal.

We expand Zn \in H using this basis,

(2.14) Zn =
\sum 
k\in \BbbN 

wk, with wk \in Hk, and \| Zn\| 2H =
\sum 
k

\| wk\| 2H ,

so that

(2.15) \forall t < Tn, Z(t) =
\sum 
k\in \BbbN 

wke
\lambda k(t - Tn).

Now, let

(2.16) k0 = inf\{ k \in \BbbN , \| B\ast 
1wk\| U1 + \| B\ast 

2wk\| U2 \not = 0\} .

Our goal is thus to check that k0 cannot be finite. If k0 is finite, then we should have

(2.17) \| B\ast 
1wk0

\| U1
+ \| B\ast 

2wk0
\| U2

\not = 0.

Therefore, setting

Zr(t) =
\sum 
k \not =k0

wke
\lambda k(t - Tn) (t < Tn),
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the identity (2.13) implies that for all t < Tn,

\| B\ast 
1wk0\| 2U1

 - \alpha (t)\| B\ast 
2wk0\| 2U2

=  - 2e - \lambda k0
(t - Tn)\Re (\langle B\ast 

1wk0
, B\ast 

1Zr(t)\rangle U1
 - \alpha (t)\langle B\ast 

2wk0
, B\ast 

2Zr(t)\rangle U2
)

 - e - 2\lambda k0
(t - Tn)

\bigl( 
\| B\ast 

1Zr(t)\| 2U1
 - \alpha (t)\| B\ast 

2Z(t)\| 2U2

\bigr) 
.

Since
\exists C > 0\forall t < Tn, \| B\ast 

1Zr(t)\| U1 + \| B\ast 
2Zr(t)\| U2 \leq Ce\lambda k0+1(t - Tn),

the last identity yields for all t < Tn,\bigm| \bigm| \| B\ast 
1wk0

\| 2U1
 - \alpha (t)\| B\ast 

2wk0
\| 2U2

\bigm| \bigm| \leq Ce(\lambda k0+1 - \lambda k0
)(t - Tn) + Ce2(\lambda k0+1 - \lambda k0

)(t - Tn).

Since \lambda k0+1 > \lambda k0
, making t \rightarrow  - \infty , we obtain that

(2.18) \forall \alpha \infty \in 
\biggl[ 
lim inf
t\rightarrow  - \infty 

\alpha , lim sup
t\rightarrow  - \infty 

\alpha 

\biggr] 
, \| B\ast 

1wk0
\| 2U1

 - \alpha \infty \| B\ast 
2wk0

\| 2U2
= 0.

Since lim inft\rightarrow  - \infty \alpha < lim supt\rightarrow \infty \alpha , we easily get that this implies

B\ast 
1wk0

= 0 and B\ast 
2wk0

= 0.

This contradicts (2.17), so that k0 is infinite, and thus B\ast 
1Z = 0 and B\ast 

2Z = 0 on
( - \infty , Tn). This shows that, except when B\ast 

1Z and B\ast 
2Z vanish identically on (0, Tn),

In is of zero measure. In particular, passing to the limit n \rightarrow \infty , we easily get that I
is of zero measure except if B\ast 

1Z and B\ast 
2Z vanish identically on (0, T ).

Remark 2.4. In the above proof, we did not use the specific form of \alpha . In fact,
as one can check, the proof of Lemma 2.1 works for any function \alpha satisfying

(2.19)

\left\{       
\alpha is an analytic function on \BbbR ,
0 < inf

\BbbR 
\alpha < sup

\BbbR 
\alpha < \infty ,

lim inf
t\rightarrow  - \infty 

\alpha < lim sup
t\rightarrow  - \infty 

\alpha .

2.2. Proof of Lemma 2.2: The case of a finite dimensional space \bfitH . In
order to prove Lemma 2.2, we will use the following result.

Lemma 2.5. Let J be a finite set, and let (\mu j)j\in J be a finite sequence of two by
two distinct real numbers.

Then, for any finite sequence (aj)j\in J of elements of \BbbC such that

(2.20) lim
t\rightarrow  - \infty 

\left(  \sum 
j\in J

aje
i\mu jt

\right)  = 0,

we have

(2.21) \forall j \in J, aj = 0.

Proof. To prove Lemma 2.5, we use the fact that since there is a finite number of
\mu j , \int 1

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
j\in J

bje
i\mu jt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

dt
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is a norm on \{ b = (bj)j\in J , bj \in \BbbC \} and is thus equivalent to the quantity\sum 
j\in J

| bj | 2.

Now, for (aj)j\in J as in (2.20), we have for any T \in \BbbR ,

\sum 
j\in J

| aj | 2 =
\sum 
j\in J

| aje - i\mu jT | 2 \leq C

\int 1

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
j\in J

aje
i\mu j(t - T )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

dt \leq C

\int  - T+1

 - T

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\sum 
j\in J

aje
i\mu jt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

dt.

Thus, choosing T going to +\infty , the assumption (2.20) and the above estimates give
Lemma 2.5.

Let us now come back to the proof of Lemma 2.2. To begin, we put the matrix A\ast 

into its Jordan form and call (\lambda k)k\in \{ 1,...,K\} its eigenvalues ordered so that \Re (\lambda k) \leq 
\Re (\lambda k+1) for all k, and we call Hk the corresponding generalized eigenspaces.

We then prove that when \omega \in \BbbR \setminus W (recall the definition of W in (2.5)), with
the choice of \alpha as in (1.11), I necessarily is of zero measure except in the trivial case
\| B\ast 

1Z\| L2(0,T ;U1) = \| B\ast 
2Z\| L2(0,T ;U2) = 0.

We thus assume that I is of nonzero measure and we let Z be the solution of (1.8)
with initial datum ZT \in X. Here, since H is finite dimensional, X = H and ZT \in H.
Then the solution Z of (1.8) can be defined on \BbbR and is an analytic function of time,
and we write it under the form

(2.22) Z(t) =
\sum 
k

e\lambda k(t - T )

\Biggl( 
mk\sum 
\ell =0

(T  - t)\ell wk,\ell 

\Biggr) 
(t \in \BbbR ),

wheremk is the size of the maximal Jordan block corresponding to \lambda k (or, equivalently,
its algebraic multiplicity), and each wk,\ell belongs to Hk. Besides, since we assume that
I is of nonzero measure and since Z in (2.22) is analytic with respect to time, we should
have I = (0, T ), and it follows that

(2.23) \forall t \in \BbbR , \| B\ast 
1Z(t)\| 2U1

= \alpha (t)\| B\ast 
2Z(t)\| 2U2

.

Now, let

k0 = inf \{ k \in \{ 1, . . . ,K\} : \exists \ell \in \{ 0, . . . ,mk\} such that \| B\ast 
1wk,\ell \| U1 + \| B\ast 

2wk,\ell \| U2 \not = 0\} .

If k0 < \infty , we define \ell 1 by

\ell 1 = sup \{ \ell : \exists k with \Re (\lambda k) = \Re (\lambda k0
) and \| B\ast 

1wk,\ell \| U1
+ \| B\ast 

2wk,\ell \| U2
\not = 0\} ,

and consider the set

D = \{ k : \Re (\lambda k) = \Re (\lambda k0) and \| B\ast 
1wk,\ell 1\| U1 + \| B\ast 

2wk,\ell 1\| U2 \not = 0\} ,

which describes the indices giving the dominant terms in \| B\ast 
1Z(t)\| 2U1

 - \alpha (t)\| B\ast 
2Z(t)\| 2U2

as t \rightarrow  - \infty . Indeed, setting
(2.24)

Zd(t) =
\sum 
k\in D

wk,\ell 1e
i\Im (\lambda k)(t - T ) and Zr(t) = Z(t) - e\Re (\lambda k0

)(t - T )(T  - t)\ell 1Zd(t),

D
ow

nl
oa

de
d 

12
/1

2/
22

 to
 5

2.
18

.6
3.

16
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2830 F. W. CHAVES-SILVA, S. ERVEDOZA, AND D. A. SOUZA

we have, for some C independent of time,

\forall t \in ( - \infty , T ), \| B\ast 
1Zr(t)\| U1 + \| B\ast 

2Zr(t)\| U2

\leq 
\biggl\{ 

Ce\Re (\lambda k0
)t(1 + (T  - t)\ell 1 - 1) if \ell 1 \geq 1,

Ce(\Re (\lambda k0+1)+\Re (\lambda k0
))t/2 if \ell 1 = 0,

(2.25)

and thus, possibly changing the constant,

(2.26) \forall t \in ( - \infty , T  - 1), \| B\ast 
1Zr(t)\| U1 + \| B\ast 

2Zr(t)\| U2 \leq Ce\Re (\lambda k0
)t(T  - t)\ell 1 - 1.

Therefore, using (2.23), we easily get that

(2.27) \forall t \in ( - \infty , T  - 1),
\bigm| \bigm| \| B\ast 

1Zd(t)\| 2U1
 - \alpha (t)\| B\ast 

2Zd(t)\| 2U2

\bigm| \bigm| \leq C

T  - t
.

Now, we expand \| B\ast 
1Zd(t)\| 2U1

 - \alpha (t)\| B\ast 
2Zd(t)\| 2U2

as follows:

\| B\ast 
1Zd(t)\| 2U1

 - \alpha (t)\| B\ast 
2Zd(t)\| 2U2

(2.28)

=
\sum 
k\in D

\| B\ast 
1wk,\ell 1\| 2U1

 - 
\biggl( 
1 +

sin(\omega t)

2

\biggr) \sum 
k\in D

\| B\ast 
2wk,\ell 1\| 2U2

+ 2
\sum 
k\in D

\sum 
k1\in D, k1>k

\Re 
\Bigl( 
ei(\Im (\lambda k) - \Im (\lambda k1

))t\langle B\ast 
1wk,\ell 1 , B

\ast 
1wk1,\ell 1\rangle U1

\Bigr) 
 - 2

\biggl( 
1 +

sin(\omega t)

2

\biggr) \sum 
k\in D

\sum 
k1\in D, k1>k

\Re 
\Bigl( 
ei(\Im (\lambda k) - \Im (\lambda k1

))t\langle B\ast 
2wk,\ell 1 , B

\ast 
2wk1,\ell 1\rangle U2

\Bigr) 
.

From this, we deduce that the function \| B\ast 
1Zd(t)\| 2U1

 - \alpha (t)\| B\ast 
2Zd(t)\| 2U2

is of the form\sum 
j aje

i\mu jt, where

\{ \mu j\} = \{ 0, \pm \omega , (\Im (\lambda k) - \Im (\lambda k1
)), \pm \omega + (\Im (\lambda k) - \Im (\lambda k1

)) for k, k1 \in D\} .

This set is finite, but there might be some nondistinct values in the set given on the
right-hand side. We shall thus rely on the choice \omega /\in W (recall that W is defined in
(2.5)), which guarantees that 0 and \omega appear only once in the above list. Therefore,
using (2.27), Lemma 2.5 guarantees at least that the numbers in front of the constant
term (corresponding to \mu = 0) and of ei\omega t in (2.2) vanish, i.e.,

0 =
\sum 
k\in D

\| B\ast 
1wk,\ell 1\| 2U1

 - 
\sum 
k\in D

\| B\ast 
2wk,\ell 1\| 2U2

,

0 =
\sum 
k\in D

\| B\ast 
2wk,\ell 1\| 2U2

.

Combining the above two identities, we easily deduce that

\forall k \in D, \| B\ast 
1wk,\ell 1\| U1

+ \| B\ast 
2wk,\ell 1\| U2

= 0.

From its definition, it follows that the set D is necessarily empty. This contradicts
the definition of k0 and \ell 1. Hence, k0 = \infty , B\ast 

1Z(t) = 0, and B\ast 
2Z(t) = 0 for all t \in \BbbR .
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3. Proof of Theorem 1.3. Of course, the proof of Theorem 1.3 follows the
proof of Theorem 1.1. We point out only the main differences that are needed in the
proof of Theorem 1.1 to conclude Theorem 1.3.

To fix ideas, we consider only the case n = 3, as the case of n \geq 4 control operators
can be treated in the same way as the price of adding some notation.

Given y0 \in H, we consider the functional

J(zT )=
1

2

\int T

0

max\{ \alpha 1(t)\| B\ast 
1z(t)\| 2U1

, \alpha 2(t)\| B\ast 
2z(t)\| 2U2

, \alpha 3(t)\| B\ast 
3z(t)\| 2U3

\} dt

+\langle y0, z(0)\rangle H ,

(3.1)

defined for zT \in D(A\ast ), where z is the solution of the adjoint problem (1.8), and
\alpha i = \alpha i(t) is given by

(3.2) \alpha i(t) = 1 +
1

2
sin(\omega it), t \in \BbbR , i \in \{ 1, 2, 3\} ,

where the frequencies \omega i are suitably chosen.
Similarly to the proof of Theorem 1.1, the functional J can be extended by con-

tinuity on the space

X = D(A\ast )
\| \cdot \| obs

,

where the norm \| \cdot \| obs is the one defined by

\| zT \| 2obs =
\int T

0

max\{ \alpha 1(t)\| B\ast 
1z(t)\| 2U1

, \alpha 2(t)\| B\ast 
2z(t)\| 2U2

, \alpha 3(t)\| B\ast 
3z(t)\| 2U3

\} dt

and is coercive on that space X. Therefore, J has a minimizer ZT \in X. Next, to
properly derive the Euler--Lagrange equation satisfied by ZT , we study the sets

\forall (i, j) \in \{ 1, 2, 3\} 2 with i < j,

Ii,j =
\Bigl\{ 
t \in (0, T ), \alpha i(t)\| B\ast 

i Z(t)| 2Ui
= \alpha j(t)\| B\ast 

jZ(t)\| 2Uj

\Bigr\} 
.

(3.3)

The case when \bfitA is a self-adjoint positive definite operator with com-
pact resolvent. In this case, Lemma 2.1 can be easily adapted to show the following
result.

Lemma 3.1. When A is a self-adjoint positive definite operator with compact re-
solvent, and (\alpha i)i\in \{ 1,2,3\} are as in (3.2) with (\omega 1, \omega 2, \omega 3) \in \BbbR 3

+ two by two distinct,
for all i, j \in \{ 1, . . . , 3\} with i \not = j, the set Ii,j is necessarily of zero measure, except in
the trivial case \| B\ast 

i Z\| L2(0,T ;Ui) = \| B\ast 
jZ\| L2(0,T ;Uj) = 0.

Since the proof of Lemma 3.1 is the same as the proof of Lemma 2.1 and relies
on the fact that \alpha i/\alpha j admits a set of accumulation points at  - \infty which contains a
nontrivial interval, we skip it and leave it to the reader.

The case when \bfitH is a finite dimensional vector space. In this case, we
choose the parameters \omega i successively; for instance, we can take

(3.4) \omega 1 = 0, \omega 2 \in \BbbR \setminus W,

where W is defined as in (2.5), and

(3.5) \omega 3 \in \BbbR \setminus W3,
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where W3 is defined by

(3.6) W3 = W \cup \{ \pm \omega 2,\pm \omega 2+\Im (\lambda k) - \Im (\lambda k1
) \forall (k, k1) such that \Re (\lambda k) = \Re (\lambda k1

)\} .

We then prove the following result.

Lemma 3.2. When H is a finite dimensional space, setting \omega 1 = 0 and choosing
\omega 2 \in \BbbR \setminus W (defined in (2.5)) and \omega 3 \in \BbbR \setminus W3 (defined in (3.6)) and taking \alpha i as
in (1.11) corresponding to \omega i, we have that for all (i, j) \in \{ 1, 2, 3\} with i < j, the
set Ii,j is necessarily of zero measure, except in the trivial case \| B\ast 

i Z\| L2(0,T ;Ui) =
\| B\ast 

jZ\| L2(0,T ;Uj) = 0.

We briefly sketch the proof of Lemma 3.2 below.

Sketch of the proof of Lemma 3.2. Clearly, when i = 1, the proof of Lemma 3.2
reduces to the proof of Lemma 2.2.

We thus focus on the case when i = 2 and j = 3. Similarly to the proof of
Lemma 2.2, we assume that I2,3 is of positive measure. By analyticity, this implies
that I2,3 = (0, T ) and, by extending Z on \BbbR by analyticity, that for all t \in \BbbR ,
\alpha 2(t)\| B\ast 

2Z(t)\| 2U2
= \alpha 3(t)\| B\ast 

3Z(t)\| 2U2
. We then expand Z as in (2.22) and define, as

in the proof of Lemma 2.2,

k0=inf \{ k\in \{ 1, . . . ,K\} : \exists \ell \in \{ 0, . . . ,mk\} such that \| B\ast 
2wk,\ell \| U2 + \| B\ast 

3wk,\ell \| U3 \not =0\} ,

and, if k0 < \infty ,

\ell 1 = sup \{ \ell : \exists k with \Re (\lambda k) = \Re (\lambda k0
) and \| B\ast 

2wk,\ell \| U2
+ \| B\ast 

3wk,\ell \| U3
\not = 0\} ,

D = \{ k : \Re (\lambda k) = \Re (\lambda k0
) and \| B\ast 

2wk,\ell 1\| U2
+ \| B\ast 

3wk,\ell 1\| U3
\not = 0\} ,

Zd(t) =
\sum 
k\in D

wk,\ell 1e
i\Im (\lambda k)(t - T ) (t \in \BbbR ).

With the above choices, similarly to (2.2), for all t \in \BbbR we have the formula

\alpha 2(t)\| B\ast 
2Zd(t)\| 2U2

 - \alpha 3(t)\| B\ast 
3Zd(t)\| 2U3

(3.7)

=

\biggl( 
1 +

sin(\omega 2t)

2

\biggr) \sum 
k\in D

\| B\ast 
2wk,\ell 1\| 2U2

 - 
\biggl( 
1 +

sin(\omega 3t)

2

\biggr) \sum 
k\in D

\| B\ast 
3wk,\ell 1\| 2U3

+ 2

\biggl( 
1 +

sin(\omega 2t)

2

\biggr) \sum 
k\in D

\sum 
k1\in D, k1>k

\Re 
\Bigl( 
ei(\Im (\lambda k) - \Im (\lambda k1

))t\langle B\ast 
2wk,\ell 1 , B

\ast 
2wk1,\ell 1\rangle U2

\Bigr) 
 - 2

\biggl( 
1 +

sin(\omega 3t)

2

\biggr) \sum 
k\in D

\sum 
k1\in D, k1>k

\Re 
\Bigl( 
ei(\Im (\lambda k) - \Im (\lambda k+1))t\langle B\ast 

3wk,\ell 1 , B
\ast 
3wk1,\ell 1\rangle U3

\Bigr) 
,

which holds instead of (2.2). Additionally, since for all t\in \BbbR we have \alpha 2(t)\| B\ast 
2Z(t)\| 2U2

 - 
\alpha 3(t)\| B\ast 

3Z(t)\| 2U3
= 0, we can also deduce, as in (2.26), that

(3.8) \forall t \in ( - \infty , T  - 1),
\bigm| \bigm| \alpha 2(t)\| B\ast 

2Zd(t)\| 2U2
 - \alpha 3(t)\| B\ast 

3Zd(t)\| 2U3

\bigm| \bigm| \leq C

T  - t
.

Accordingly, using Lemma 2.5 on function t \mapsto \rightarrow \alpha 2(t)\| B\ast 
2Zd(t)\| 2U2

 - \alpha 3(t)\| B\ast 
3Zd(t)\| 2U3

,
which goes to 0 as t \rightarrow  - \infty , and considering the coefficients in front of the constant
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term and in front of ei\omega 3t in (2), which appear only once in the expansion (2) since
\omega 3 /\in W3, we deduce

0 =
\sum 
k\in D

\| B\ast 
2wk,\ell 1\| 2U2

 - 
\sum 
k\in D

\| B\ast 
3wk,\ell 1\| 2U3

,

0 =
\sum 
k\in D

\| B\ast 
3wk,\ell 1\| 2U3

.

This easily yields that k0 = \infty and, consequently, that \| B\ast 
2Z(t)\| U2

+\| B\ast 
3Z(t)\| U3

= 0
for all t \in \BbbR , and concludes the proof of Lemma 3.2.

End of the proof of Theorem 1.3. We choose the coefficients (\omega 1, \omega 2, \omega 3) \in \BbbR 3

such that either the assumptions of Lemma 3.1 are satisfied in the case of a self-adjoint
operator or the assumptions of Lemma 3.2 are satisfied when considering the case of
H of finite dimension. According to Lemmas 3.1 and 3.2, if Ii,j is of positive measure
for some i, j \in \{ 1, 2, 3\} with i \not = j, taking \ell \in \{ 1, 2, 3\} \setminus \{ i, j\} , only two cases arise as
follows:

\bullet If t \mapsto \rightarrow \| B\ast 
\ell Z(t)\| 2U\ell 

is identically zero, then the observability property (1.9)
implies that Z = 0 identically, which corresponds to a minimizer for J only
in the case y0 = 0, which can be steered to 0 by keeping all the controls equal
to 0 at all times.

\bullet If t \mapsto \rightarrow \| B\ast 
\ell Z(t)\| 2U\ell 

is not identically zero, since it is an analytic function, its
zero set has no accumulation point, and thus

a.e. t \in (0, T ), \alpha \ell (t)\| B\ast 
\ell Z(t)\| 2U\ell 

> max\{ \alpha i(t)\| B\ast 
i Z(t)\| 2Ui

, \alpha j(t)\| B\ast 
jZ(t)\| 2Uj

\} .

Accordingly, except in the trivial case ZT = 0, we have the following:
(3.9)
a.e. t \in (0, T ), \exists !\ell \in \{ 1, 2, 3\} , such that \alpha \ell (t)\| B\ast 

\ell Z(t)\| 2U\ell 
> max

i \not =\ell 
\{ \alpha i(t)\| B\ast 

i Z(t)\| 2Ui
\} .

We can then write the Euler--Lagrange equation satisfied by a minimizer ZT of J and
obtain, after setting for each i \in \{ 1, 2, 3\} ,

ui(t) =

\Biggl\{ 
\alpha i(t)B

\ast 
i Z(t) when \alpha i(t)\| B\ast 

i Z(t)\| 2Ui
> max

j \not =i
\{ \alpha j(t)\| B\ast 

jZ(t)\| 2Uj
\} ,

0 otherwise,

that the corresponding solution y of (1.15) satisfies y(T ) = 0, while the controls u1,
u2, u3 satisfy the switching condition (1.14).

4. Examples.

4.1. Examples in finite dimension. Theorems 1.1 and 1.3 have many interest-
ing consequences---even for finite dimensional systems. Below we give some examples.

Example 1: General matrix A. Let us fix H = \BbbR d for d \in \BbbN \ast , and let A be a d\times d
matrix. Then it is clear that the control system

(4.1) y\prime +Ay =

\left(     
u1

u2

...
ud

\right)     , t \in (0, T ), y(0) = y0 \in \BbbR d,
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is exactly controllable at any time T . Indeed, controllability can be achieved as
follows: given y0 and y1 in \BbbR d, we take y, a smooth function of time with values in
\BbbR d such that y(0) = y0 and y(T ) = y1, and simply set u = y\prime +Ay.

Therefore, it is clear that Theorem 1.3 applies when considering the operators
Biui = uiei for i \in \{ 1, . . . , d\} , where ei is the vector of \BbbR d whose ith component
equals 1 and all other components vanish. We thus get the following result.

Theorem 4.1. Let d \in \BbbN \ast , H = \BbbR d, and A be a d \times d matrix. Then for any
y0 \in \BbbR d, there exist d control functions ui \in L2(0, T ;\BbbR ) such that the controlled
trajectory of (4.1) satisfies y(T ) = 0 and with control functions satisfying condition
(1.14), i.e., such that a.e. in (0, T ), at most one of the controls ui(t) for i \in \{ 1, . . . , d\} 
is nonzero.

This result can be applied, for instance, to the following case, which corresponds
to the space semidiscretization of the 1-dimensional heat equation on (0, L) with
homogeneous Dirichlet boundary conditions at x = 0 and x = L:

(4.2)

\left\{     
y\prime j  - 

1

h2
(yj+1  - 2yj + yj - 1) = uj , t \in (0, T ), j \in \{ 1, . . . , d\} ,

y0(t) = yd+1(t) = 0, t \in (0, T ),
yj(0) = y0j , j \in \{ 1, . . . , d\} ,

where h > 0 is a (small) parameter. Indeed, (4.2) can be seen as the finite difference
approximation of the heat equation

(4.3)

\left\{   \partial ty  - \partial xxy = u, t \in (0, T ), x \in (0, L),
y(t, 0) = y(t, L) = 0, t \in (0, T ),
y(0, x) = y0(x), x \in (0, L),

choosing the parameter h in (4.2) of the form h = L/(d + 1). Theorem 4.1 then
yields that (4.2) can be controlled to zero with controls ui \in L2(0, T ;\BbbR ) for each
i \in \{ 1, . . . , d\} such that at any time, only one of the controls ui is active.

It is not clear how that process can pass to the limit as d \rightarrow \infty , and this is an
interesting open question.

Example 2: General matrices (A,B) satisfying Kalman condition. If A is a d\times d
matrix and B is a d\times n matrix, it is well known (see, e.g., [30]) that system (1.1) is
controllable if and only if the following Kalman condition is satisfied:

(4.4) Rank(B ,AB , A2B, . . . , Ad - 1B) = d.

Now, we have chosen B under the form of a d\times n matrix, which means that the control
function u belongs to u \in L2(0, T ;\BbbR n). As before, when n \geq 2, it is interesting to
write

(4.5) Bu =

n\sum 
i=1

Biui, where Bi is the ith column of B.

Applying Theorem 1.3, we get the following result.

Theorem 4.2. Let A be a d \times d matrix, let B be a d \times n matrix such that the
Kalman rank condition (4.4) holds, and let Bi denote the ith column of the matrix B.
Then for any y0 \in \BbbR d, there exist n control functions ui \in L2(0, T ;\BbbR ) such that the
controlled trajectory of (1.15) satisfies y(T ) = 0 and with control functions satisfying
condition (1.14), i.e., such that a.e. in (0, T ), at most one of the controls ui(t) for
i \in \{ 1, . . . , d\} is nonzero.
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Again, a nice application is given by the space semidiscretization of some PDE,
for instance, of the wave equation. Indeed, if we consider the wave equation

(4.6)

\left\{   \partial tty  - \partial xxy = u, t \in (0, T ), x \in (0, L),
y(t, 0) = y(t, L) = 0, t \in (0, T ),
(y(0, x), \partial ty(0, x)) = (y0(x), y1(x)), x \in (0, L),

its finite difference semidiscretization is given by

(4.7)

\left\{     
y\prime \prime j  - 1

h2
(yj+1  - 2yj + yj - 1) = uj , t \in (0, T ), j \in \{ 1, . . . , d\} ,

y0(t) = yd+1(t) = 0, t \in (0, T ),
(yj(0), y

\prime 
j(0)) = (y0j , y

1
j ), j \in \{ 1, . . . , d\} ,

where h = L/(d + 1). It is clear that system (4.7) is controllable in any arbitrary
time, so that Theorem 4.2 applies immediately and provides controls ui \in L2(0, T )
for all i \in \{ 1, . . . , d\} such that at all times only one of the controls is active.

Here again, it is completely unclear how this process can pass to the limit as
d \rightarrow \infty . It is probably more difficult to analyze here than in the previous example
since the limit equation (4.6) does not correspond to an analytic semigroup. Still,
recent works on sparse optimal controls for the wave equation (see, in particular, [24])
may yield some insight into this problem.

4.2. Distributed control of parabolic systems. To give a nontrivial PDE
example, we consider a smooth bounded domain \Omega of \BbbR N (N \geq 1), an open subset
\scrO \subset \Omega , and the parabolic system

(4.8)

\left\{       
\partial ty  - D\Delta y + Py = 1\scrO 

\biggl( 
u1

u2

\biggr) 
in (0, T )\times \Omega ,

y = 0 on (0, T )\times \partial \Omega ,
y(0, \cdot ) = y0 in \Omega ,

where

y =

\biggl( 
y1
y2

\biggr) 
, D =

\biggl( 
d1 0
0 d2

\biggr) 
with d1, d2 > 0,

with P = P (x) \in L\infty (\Omega ;S+
2 (\BbbR )), where S+

2 (\BbbR ) denotes the set of symmetric positive
definite 2\times 2 matrices with real coefficients. Here, the control

u =

\biggl( 
u1

u2

\biggr) 
acts on system (4.8) on \scrO through multiplication by the indicator function 1\scrO of the
subset \scrO .

System (4.8) fits into the framework of Theorem 1.1 by setting

(4.9) A =  - D\Delta x + P, in H = (L2(\Omega ))2 with domain D(A) = (H2 \cap H1
0 (\Omega ))

2,

and

Bu = 1\scrO 

\biggl( 
u1

u2

\biggr) 
for u =

\biggl( 
u1

u2

\biggr) 
, U = (L2(\scrO ))2.

Indeed, the operator A in (4.9) is obviously self-adjoint with compact resolvent. Ad-
ditionally, the following result is a straightforward consequence of the Carleman esti-
mates in [18].
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Proposition 4.3. System (4.8) is null-controllable in arbitrary small times with
control functions u in L2(0, T ; (L2(\scrO ))2).

Thus, to apply Theorem 1.1, a natural example consists of choosing
(4.10)

B1u1 = 1\scrO 

\biggl( 
u1

0

\biggr) 
, U1 = L2(\scrO ), and B2u2 = 1\scrO 

\biggl( 
0
u2

\biggr) 
, U2 = L2(\scrO ).

Theorem 1.1 then readily implies the following.

Theorem 4.4. System (4.8) is null-controllable in arbitrary small times, with
controls u1 and u2 in L2(0, T ;L2(\scrO )) satisfying the additional switching constraints
(1.5).

Remark 4.5. By a shifting argument, Theorem 4.4 remains true if we only con-
sider P as a bounded symmetric matrix.

Here, we emphasize that our results are different from the ones in which the
controls may act on only one component. Indeed, in such a case, it is clear that more
conditions are needed, since when P = 0 and acting on only one component, the
second component will be free of control.

Of course, when P = 0, it is easy to check that one can control system (4.8) with
controls having a switching structure, since one can control the first component y1
to 0 at time T/2 by keeping the control u2 = 0 in (0, T/2) and can then control the
second component y2 to 0 on (T/2, T ) by keeping the control u1 = 0 in (T/2, T ).
However, when P \not = 0, this strategy does not seem to be directly applicable.

On the other hand, when one wants to control a system through one component
only, it is clear that the coupling terms should play an important role; see, for instance,
[14].

Therefore, our results fall between the questions of controllability of parabolic
systems when the controls act on all the components of the state and when the
controls may act on only one (or some of) the components of the state.

4.3. Distributed controls of 3D Stokes equations. Let \Omega be a smooth
bounded domain of \BbbR 3, and consider the following Stokes equation:

(4.11)

\left\{       
\partial ty  - \Delta y +\nabla p = 1\scrO u in (0, T )\times \Omega ,
div y = 0 in (0, T )\times \Omega ,
y = 0 on (0, T )\times \partial \Omega ,
y(0, \cdot ) = y0 in \Omega .

Here, y = y(t, x) \in \BbbR 3 denotes the velocity field of an incompressible fluid, p is the
pressure, and the control u acts through the nonempty open subset \scrO of \Omega .

This example fits the setting of Theorem 1.3 by choosing the state space

(4.12) H = V 0
n (\Omega ) = \{ y \in L2(\Omega ;\BbbR 3), div y = 0 in \Omega and y \cdot nx = 0 on \partial \Omega \} ,

the operator A as

(4.13) A =  - \BbbP \Delta , with D(A) = \{ y \in H2 \cap H1
0 (\Omega ;\BbbR 3), div y = 0 in \Omega \} in H,

where nx is the outward normal to x \in \partial \Omega , \BbbP is the orthogonal projection on V 0
n (\Omega )

in L2(\Omega ;\BbbR 3), and the control operator

Bu = \BbbP 1\scrO 

\left(  u1

u2

u3

\right)  , with U = (L2(\scrO ))3.
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It is then natural to define the operators B1, B2, and B3 as follows:

(4.14) B1u1 = \BbbP 1\scrO 

\left(  u1

0
0

\right)  , B2u2 = \BbbP 1\scrO 

\left(  0
u2

0

\right)  , B3u3 = \BbbP 1\scrO 

\left(  0
0
u3

\right)  ,

with U1 = U2 = U3 = L2(\scrO ).

Indeed, we have the following results:
\bullet The operator A is self-adjoint on V 0

n (\Omega ); see, e.g., [6, Lemma IV.5.4].
\bullet The Stokes problem (4.11) is null-controllable in arbitrary small times; see
[20].

We can therefore readily apply Theorem 1.3 as follows.

Theorem 4.6. Given any y0 \in V 0
n (\Omega ), there exist control functions u1, u2, and

u3 in L2(0, T ;L2(\scrO )) such that the controlled trajectory y of (4.11) satisfies y(T ) = 0
in \Omega and with control functions u1, u2 and u3 satisfying condition (1.14), i.e., such
that a.e. in (0, T ), at most one of the controls u1(t), u2(t), u3(t) is nonzero.

It is interesting to consider this case, since the controllability of the Stokes equa-
tion (4.11) with controls having one or two vanishing components has been studied in
the literature. In particular, it has been shown in [9] that given \ell \in \{ 1, 2, 3\} , system
(4.11) is null-controllable in arbitrary small times with controls u \in L2(0, T ; (L2(\scrO ))3)
satisfying u\ell \equiv 0. Additionally, the result in [26] shows that system (4.11) may not
be null-controllable (in fact, not even approximate controllable) in some specific geo-
metric settings with controls having two vanishing components.

Note that the result in [10] about the null-controllability of the 3D incompressible
Navier--Stokes equation with controls having two vanishing components depends on
the nonlinear term in the Navier--Stokes equation in the spirit of the celebrated Coron's
return method and thus does not apply to the linear problem (4.11).

4.4. Boundary control of a system of coupled heat equations. This ex-
ample is closely related to the one in section 4.2. Let us consider a smooth bounded
domain \Omega and the following parabolic system:

(4.15)

\left\{   \partial ty  - D\Delta y + Py = 0 in (0, T )\times \Omega ,
y = u1\Gamma on (0, T )\times \partial \Omega ,
y(0, \cdot ) = y0 in \Omega ,

where

y =

\left(     
y1
y2
...
yn

\right)     , D = diag (d1, . . . , dn), with di > 0 \forall i \in \{ 1, . . . , n\} ,

and P = P (x) \in L\infty (\Omega ;S+
n (\BbbR )), where S+

n (\BbbR ) denotes the set of symmetric positive
definite n\times n matrices with real coefficients. Here, the control

u =

\left(   u1

...
un

\right)   D
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acts on the system (4.15) on a nonempty open subset \Gamma of the boundary \partial \Omega through
the multiplication by the indicator function 1\Gamma .

System (4.15) fits into the framework of Theorem 1.3 by setting

(4.16) A =  - D\Delta x + P, in H = (L2(\Omega ))n with domain D(A) = (H2 \cap H1
0 (\Omega ))

n,

and the control operator B as

Bu = \~ADir\Gamma (u) for u =

\left(   u1

...
un

\right)   , U = (L2(\Gamma ))n,

where Dir\Gamma : (L2(\Gamma ))n \mapsto \rightarrow (L2(\Omega ))n is the Dirichlet operator given by

Dir\Gamma u = z, where z solves

\biggl\{ 
 - D\Delta z + Pz = 0 in \Omega ,
z = u1\Gamma on \partial \Omega ,

and \~A denotes the extension of A of domain (L2(\Omega ))n on ((H2 \cap H1
0 (\Omega ))

n)\prime ; see [30,
Proposition 3.4.5 and section 10.7].

Similarly to Proposition 4.3, one can show the following using classical Carleman
estimates (see [18]).

Proposition 4.7. System (4.15) is null-controllable in arbitrary small times with
control functions u = (u1, . . . , un) in L2(0, T ; (L2(\Gamma ))n).

One can then readily apply Theorem 1.3 as follows.

Theorem 4.8. System (4.15) is null-controllable in arbitrary small times with
controls u = (u1, . . . , un) in L2(0, T ; (L2(\Gamma ))n) satisfying the additional switching con-
straints (1.14).

Again, we emphasize that our results complement those where the controls act on
only one component of the system, in which the situation is much more intricate since
controllability results will depend on delicate coupling conditions; see, for instance,
[3] and references therein.

4.5. Boundary control of 3D Stokes equations. Again, one can consider
Stokes equations but now controlled from the boundary. Using [20] (see also [16]),
we find that in a smooth bounded domain \Omega \subset \BbbR 3, the 3D Stokes equations are null-
controllable in any time T through any nonempty open subset of its boundary. More
precisely, we let \Omega be a smooth bounded domain of \BbbR 3 and let \Gamma be a nonempty open
subset of \partial \Omega , and we consider the Stokes equation,

(4.17)

\left\{       
\partial ty  - \Delta y +\nabla p = 0 in (0, T )\times \Omega ,
div y = 0 in (0, T )\times \Omega ,
y = 1\Gamma (x)u on (0, T )\times \partial \Omega ,
y(0, \cdot ) = y0 in \Omega ,

where 1\Gamma is the indicator function of the set \Gamma , and u is assumed to belong to
L2(0, T ;L2(\Gamma ;\BbbR 3)) and satisfy

(4.18) \forall t \in (0, T ),

\int 
\Gamma 

u(t, x) \cdot nx d\sigma = 0,
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where nx is the outward normal to \partial \Omega at x \in \partial \Omega . Condition (4.18) can be seen as
a compatibility condition with the divergence free condition div y = 0 and can be
obtained immediately by integrating it in \Omega .

Properly speaking, [20] does not deal with boundary controls, but the follow-
ing result can be easily obtained from [20] using the classical extension/restriction
argument to get controllability results with controls on the boundary.

Theorem 4.9 ([20]). System (4.17) is null-controllable in any time T . More
precisely, for all T > 0, for any y0 \in V 0

n (\Omega ), there exists a control function u \in 
L2(0, T ;L2(\Gamma ;\BbbR 3)) satisfying (4.18) such that the controlled trajectory y of (4.17)
satisfies y(T ) = 0 in \Omega .

Because of condition (4.18), it is natural to decompose the space \{ u \in L2(\Gamma ;\BbbR 3) :\int 
\Gamma 
u(x) \cdot nx d\sigma = 0\} using tangential and normal components of u. Therefore, we

choose a family of triplets (e1(x), e2(x),nx) indexed by x \in \Gamma such that for all x \in \Gamma ,
(e1(x), e2(x),nx) is an orthonormal basis of \BbbR 3, and we define U1 = U2 = L2(\Gamma ;\BbbR )
and U3 = \{ u3 \in L2(\Gamma ;\BbbR ) with

\int 
\Gamma 
u3(x)d\sigma = 0\} , also denoted by L2

0(\Gamma ;\BbbR ), and the
isomorphism \pi in (1.12) is then given by

(4.19) \pi : (u1, u2, u3) \in U1\times U2\times U3 \mapsto \rightarrow (x \mapsto \rightarrow (u1(x)e1(x) + u2(x)e2(x) + u3(x)nx)) .

Now, as before (see, e.g., [29]), to properly define the operator B in this case, we need
to introduce the Dirichlet operator D\Gamma defined by

D\Gamma u = z, where z solves

\left\{    - \Delta z +\nabla p = 0 in \Omega ,
div z = 0 in \Omega ,
z = 1\Gamma u on \partial \Omega ,

and the operator B is defined by

Bu = \~A\BbbP D\Gamma u,

where \~A denotes the extension of the Stokes operator (defined in (4.12)--(4.13)) from
V 0
n (\Omega ) to D(A)\prime , and \BbbP denotes the Leray projection, that is, the orthogonal projection

on V 0
n (\Omega ) in L2(\Omega ;\BbbR 3). The full system (4.17) can then be written as

(4.20)

\left\{   \BbbP y\prime + \~A\BbbP y = Bu, t \in (0, T ),
\BbbP y(0) = \BbbP y0,
(I  - \BbbP )y = (I  - \BbbP )D\Gamma u, t \in (0, T ).

Accordingly, the quantities \BbbP y and (I - \BbbP )y should be handled separately. In particu-
lar (see [29, Theorems 2.3 and 3.1]), for u \in L2(0, T ;L2(\Gamma ;\BbbR 3)) satisfying (4.18), the
solution y of (4.20) with initial datum \BbbP y0 \in V 0

n (\Omega ) satisfies \BbbP y \in L2(0, T ;V 0
n (\Omega ))\cap \varepsilon >0

L2(0, T ;V 1/2 - \varepsilon (\Omega )) \cap H1/4(0, T ;V 0(\Omega )) \cap C0([0, T ];V  - 1(\Omega )) and (I  - \BbbP )y \in 
L2(0, T ;V 1/2(\Omega )). Here, V 0

n (\Omega ) is the space defined in (4.12), and the other spa-
ces are

V s(\Omega )=\{ y\in Hs(\Omega ;\BbbR 3), div y=0 in \Omega , with \langle y \cdot n, 1\rangle H - 1/2(\partial \Omega ),H1/2(\partial \Omega )=0\} (s\geq 0),

V 1
0 (\Omega ) = \{ y \in H1

0 (\Omega ;\BbbR 3), div y = 0 in \Omega \} ,

and V  - 1(\Omega ) is the dual of V 1
0 (\Omega ), with V 0

n (\Omega ) as the pivot space.
Theorem 1.3 then yields the following result.
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Theorem 4.10. Let \Omega be a smooth bounded domain of \BbbR 3, and let \Gamma be a nonempty
open subset of \partial \Omega . Given a family of orthonormal triplets (e1(x), e2(x),nx) for x \in \Gamma 
which defines the control operators B1, B2, and B3 according to (1.13) through the
isomorphism \pi in (4.19), the control system (4.17) is null-controllable in arbitrary
small times with controls (u1, u2, u3) \in L2(0, T ;L2(\Gamma ;\BbbR )2\times L2

0(\Gamma ;\BbbR )) which satisfy the
switching condition (1.14) in the following sense: for any T > 0, for any y0 \in V 0

n (\Omega ),
there exist control functions u1, u2 in L2(0, T ;L2(\Gamma ;\BbbR )), and u3 \in L2(0, T ;L2

0(\Gamma ;\BbbR ))
satisfying the switching condition (1.14) such that the solution y of (4.20) satisfies
\BbbP y(T ) = 0.

Remark 4.11. Although Theorem 4.10 states only the control of \BbbP y at time T ,
extending the controls (u1, u2, u3) by 0 for t \geq T , one easily checks that \BbbP y and
(I  - \BbbP )y vanish for t \geq T . The difficulty is that (I  - \BbbP )y does not a priori make sense
at time T since it only belongs to L2(0, T ;V 1/2(\Omega )).

To the best of our knowledge, there are almost no results regarding the controlla-
bility of Stokes system with controls acting on only normal or tangential components.
We are only aware of [17] for the case of tangential controls on the whole boundary
and of the results in [8] for the Stokes equation in a channel when the control is
localized on the whole boundary of one side of the channel.

5. Extensions. Theorem 1.3 focuses on the case of operators A which are either
positive self-adjoint with compact resolvent or matrices. Thus, it is natural also to
consider the case of general operators A, which generate an analytic semigroup and
are possibly non-self-adjoint. The goal of this section is precisely to discuss this case.
Our arguments will require the introduction of several spectral assumptions which are
hard to check in practice.

Theorem 5.1. Let A be an operator on the Hilbert space H having compact re-
solvent and such that  - A generates an analytic semigroup.

Assume that the Hilbert space H can be decomposed as

(5.1) H = \oplus k\in \BbbN Hk, where Hk are finite dimensional vector spaces

such that for all k \in \BbbN ,

(5.2) A\ast (Hk) \subset Hk, and A\ast | Hk
= A\ast 

k,

where A\ast 
k is of the form \lambda kI +Nk, with \lambda k \in \BbbC and Nk nilpotent.

Also assume for simplicity that \Re (\lambda 0) \leq \Re (\lambda 1) \leq \cdot \cdot \cdot \leq \Re (\lambda k) \leq \cdot \cdot \cdot \rightarrow \infty .
Furthermore, denoting by \BbbP k the projection on Hk parallel to \oplus j \not =kHj, we assume

that there exists T0 > 0 large enough so that

(5.3) \forall t \geq T0, e - tA\ast 
=
\sum 
k

e - tA\ast 
k\BbbP k,

i.e., the right-hand side is norm convergent for t \geq T0.
Let B \in L (U,D(A\ast )\prime ), where U is a Hilbert space, let n \in \BbbN with n \geq 2, and

assume that U is isomorphic to U1\times \cdot \cdot \cdot \times Un for some Hilbert spaces Ui, i \in \{ 1, . . . , n\} ,
and define Bi for i \in \{ 1, . . . , n\} as in (1.13).

We assume that system (1.1) is null-controllable in arbitrary small times.
Then the system (1.15) is null-controllable in arbitrary small times with switching

controls, i.e., satisfying (1.14). More precisely, given any T > 0 and any y0 \in H,
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there exist n control functions ui \in L2(0, T ;Ui), i \in \{ 1, . . . , n\} , such that the solution
y of (1.15) satisfies (1.6), while the control functions satisfy the switching condition
(1.14).

Before giving the proof of Theorem 5.1, let us emphasize that the assumptions on
A\ast may be delicate to prove for general operators A generating an analytic semigroup.

Of course, each Hk corresponds to the generalized eigenspaces corresponding to
the eigenvalues \lambda k, and the projections \BbbP k correspond to the spectral projections.
However, condition (5.3) is difficult to check in practice; see, e.g., [19] for an intro-
duction to spectral theory for non-self-adjoint operators.

To better illustrate that fact, we present two examples of interest. The first is
borrowed from [5].

Let us take A0 as a positive self-adjoint operator with compact resolvent defined
on a Hilbert space H0 with domain D(A0), which we will assume for simplicity to
have only simple eigenvalues. Then, for f \in C\infty (\BbbR \ast 

+;\BbbR \ast 
+) bounded at infinity, define

(5.4) \widehat A =

\biggl( 
A0 Id
0 A0 + f(A0)

\biggr) 
in H = (H0)

2, with D( \widehat A) = (D(A0))
2.

It is easy to check that such an \widehat A generates an analytic semigroup in H, since it is a
bounded perturbation of the operator Diag (A0, A0). Additionally, its spectrum can
be expressed easily in terms of those of A0. If (\lambda k,0)k\in \BbbN is the set of eigenvalues of
A0, corresponding to a family of normalized eigenvectors (\varphi k,0)k\in \BbbN , then it is easy to

check that the eigenvalues of \widehat A are given by the family (\lambda k,1, \lambda k,2)k\in \BbbN with \lambda k,1 = \lambda k,0

and \lambda k,2 = \lambda k,0 + f(\lambda k,0). The corresponding eigenvectors are given for k \in \BbbN by

\varphi k,1 =

\biggl( 
1
0

\biggr) 
\varphi k,0, \varphi k,2 =

1\sqrt{} 
1 + f(\lambda k,0)2

\biggl( 
1

f(\lambda k,0)

\biggr) 
\varphi k,0.

It is then easy to check that

\BbbP k,1

\biggl( 
z1
z2

\biggr) 
= \varphi k,1

\biggl\langle \biggl( 
1

 - 1
f(\lambda k)

\biggr) 
\varphi k,0,

\biggl( 
z1
z2

\biggr) \biggr\rangle 
H

,

\BbbP k,2

\biggl( 
z1
z2

\biggr) 
= \varphi k,2

\Biggl\langle \Biggl( 
0\surd 

1+f(\lambda k)2

f(\lambda k)

\Biggr) 
\varphi k,0,

\biggl( 
z1
z2

\biggr) \Biggr\rangle 
H

.

When f goes to zero at infinity, the norms of these projections behave like 1/f(\lambda k).
In particular, if for T0 > 0 there exists C such that f(s) \leq Ce - T0s for s large enough,
we see that the right-hand side of (5.3) is not norm convergent for t \in (0, T0). Of
course, this also means that when considering f(s) = exp( - s2), condition (5.3) is not
satisfied no matter what T0 > 0 is.

This example shows that even for rather gentle perturbations of self-adjoint op-
erators, condition (5.3) should be analyzed with caution.

We also present another example in this direction, based on the works [11, 12]
discussing the operator A\alpha defined for complex number \alpha \in \BbbC \setminus \{ 0\} with Arg (\alpha ) < \pi /4
on L2(\BbbR ) by

A\alpha y =  - \alpha  - 2y\prime \prime + \alpha 2x2y.

In fact, to be perfectly rigorous, the operator A\alpha has to be defined as the closed
densely defined operator associated to the quadratic form\int 

\BbbR 

\bigl( 
\alpha  - 2| y\prime (x)| 2 + \alpha 2x2y(x)2

\bigr) 
dx,
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originally defined on C\infty 
c (\BbbR ).

According to [11], the eigenvalues of the operator A\alpha do not depend on \alpha for
\alpha \in \BbbC \setminus \{ 0\} with | Arg (\alpha )| < \pi /4 and thus coincide with the usual ones for the
harmonic operator (which are 2\BbbN +1); however, except in the case when \alpha \in \BbbR \ast 

+, the
spectrum of A\alpha is wild [11, Theorem 9], meaning that, denoting by \BbbP k the spectral
projector on the kth eigenvector, \| \BbbP k\| cannot be bounded by a polynomial in k.

In fact, the situation is even worse, and for \alpha /\in \BbbR , the formula

e - t\alpha 2A\alpha =
\sum 
k\in \BbbN 

e - t\alpha 2\lambda k\BbbP k

holds only for t large enough (see [12, Corollary 4]) due to the fact that \| \BbbP k\| behaves
like exp(c\Re (\lambda k)) for some strictly positive c as k \rightarrow \infty .

To sum up, we see that condition (5.3) is rather delicate to deal with. Although
it is automatically satisfied in finite dimensional contexts or when A is self-adjoint,
when considering general operators A generating an analytic semigroup, condition
(5.3) should be carefully analyzed.

Proof. The proof of Theorem 5.1 closely follows the proofs of Theorems 1.1 and
1.3.

For the sake of simplicity, we will only focus on the case where n = 2 and B \in 
L (U,H), similarly to Theorem 1.1, since the general case where n \geq 3 and B \in 
L (U,D(A\ast )\prime ) can be handled similarly as in section 3 by minor adaptations of the
case where n = 2.

In fact, it is easy to check that the only point which needs further analysis is the
counterpart of Lemmas 2.1 and 2.2.

We thus take X as in (2.2) and let ZT \in X be a minimizer of the functional J in
(1.10), and we study the set I defined in (2.4).

Lemma 5.2. Assume that A is an operator on the Hilbert space H having compact
resolvent and such that  - A generates an analytic semigroup. Also assume that the
Hilbert space H can be decomposed as in (5.1) such that A\ast satisfies (5.2) for all
k \in \BbbN , where the corresponding eigenvalues (\lambda k)k\in \BbbN are ordered such that \Re (\lambda 0) \leq 
\Re (\lambda 1) \leq \cdot \cdot \cdot \leq \Re (\lambda k) \leq \cdot \cdot \cdot \rightarrow \infty . Further assume that, denoting by \BbbP k the projection
on Hk parallel to \oplus j \not =kHj, there exists T0 > 0 large enough such that (5.3) holds.

Define the set W as in (2.5).
Let B \in L (U,H), and assume that system (1.1) is null-controllable in arbitrary

small times.
Then, for \alpha as in (1.11) with \omega \in \BbbR \setminus W , the set I is necessarily of zero measure,

except in the trivial case \| B\ast 
1Z\| L2(0,T ;U1) = \| B\ast 

2Z\| L2(0,T ;U2) = 0.

After Lemma 5.2 is proved, the end of the proof of Theorem 5.1 will follow line by
line the proof of Theorem 1.1 by showing that the Euler--Lagrange equation satisfied
by ZT is given by (2.8) when ZT \not = 0, entailing that the controls u1 and u2 given
by (2.9) are of switching forms and indeed control (1.4). As before, the case ZT = 0
corresponds to the case y0 = 0, and then taking the controls u1 and u2 to be identically
zero solves the problem.

Proof of Lemma 5.2. In order to prove that the set I is of zero measure except
when \| B\ast 

1Z\| L2(0,T ;U1) = \| B\ast 
2Z\| L2(0,T ;U2) = 0, we consider a strictly positive and

strictly increasing sequence Tn going to T as n \rightarrow \infty , and we show that for all n \in \BbbN ,
the set In = I \cap (0, Tn) is of zero measure except in the trivial case in which both
B\ast 

1Z and B\ast 
2Z vanish identically on (0, Tn).
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As in the proof of Lemma 2.1, the small time null-controllability implies that
since ZT \in X, the trajectory Z| (0,Tn) is well defined and in fact solves (2.11) with
some initial datum Zn \in H.

Accordingly, since  - A\ast generates an analytic semigroup, the function t \mapsto \rightarrow Z(t)
is in fact analytic on (0, Tn) with values in H and can be extended analytically to
( - \infty , Tn).

We now assume that In is not of zero measure. According to the analyticity
properties above, this implies that the identity (2.13) holds.

To conclude as in the proof of Lemma 2.1 or Lemma 2.2, we would like to write
formula (2.15). This cannot be done for all t < Tn as before, but according to (5.3),
it is still true for t \leq Tn  - T0:

(5.5) \forall t \leq Tn  - T0, Z(t) =
\sum 
k\in \BbbN 

eA
\ast 
k(t - Tn)\BbbP kZn.

Each Hk is a finite dimensional vector space. Therefore, writing the Jordan
decomposition of A\ast | Hk

for each k \in \BbbN , denoting by mk the size of the maximal
Jordan block corresponding to \lambda k,

eA
\ast 
k(t - Tn) = e\lambda k(t - Tn)

\sum 
\ell \in \{ 0,...,mk\} 

(t - Tn)
\ell 

\ell !
N \ell 

k.

We then follow the proof of Lemma 2.2, introducing

k0 = inf
\bigl\{ 
k \in \BbbN : \exists \ell \in \{ 0, . . . ,mk\} such that \| B\ast 

1N
\ell 
k\BbbP kZn\| U1

+ \| B\ast 
2N

\ell 
k\BbbP kZn\| U2

\not = 0
\bigr\} 
.

Our goal is to show that k0 is necessarily infinite. Indeed, if k0 is infinite, then for all
k, B\ast 

1e
A\ast 

k(t - Tn)\BbbP kZn and B\ast 
2e

A\ast 
k(t - Tn)\BbbP kZn identically vanish, so that using formula

(5.5), we see that B\ast 
1Z and B\ast 

2Z identically vanish on ( - \infty , Tn - T0) and by analyticity
on (0, Tn) as well. We prove that k0 is necessarily infinite by contradiction, assuming
that k0 is finite.

Next, we define \ell 1 by

\ell 1 = sup
\bigl\{ 
\ell : \exists k with \Re (\lambda k) = \Re (\lambda k0

) and \| B\ast 
1N

\ell 
k\BbbP kZn\| U1

+ \| B\ast 
2N

\ell 
k\BbbP kZn\| U2

\not = 0
\bigr\} 

and define the set

D =
\Bigl\{ 
k : \Re (\lambda k) = \Re (\lambda k0

) and \| B\ast 
1N

\ell 1
k \BbbP kZn\| U1

+ \| B\ast 
2N

\ell 1
k \BbbP kZn\| U2

\not = 0
\Bigr\} 
.

According to the above definition, we can decompose Z as

Zd(t) = e\Re (\lambda k0
)t (Tn  - t)\ell 1

\ell 1!

\sum 
k\in D

N \ell 1
k \BbbP kZne

i\Im (\lambda k)(t - Tn) (t \in ( - \infty , Tn)),

Zd,2(t)=
\sum 

k with \Re (\lambda k)=\Re (\lambda k0
)

e\lambda k(t - Tn)

\left(  \sum 
\ell \in \{ 0,...,\ell 1 - 1\} 

(Tn  - t)\ell 

\ell !
N \ell 

k\BbbP kZn

\right)  (t\in ( - \infty , Tn)),

Zd,3(t) =
\sum 

k with \Re (\lambda k)=\Re (\lambda k0
)

e\lambda k(t - Tn)

\left(  \sum 
\ell \geq \ell 1+1

(Tn  - t)\ell 

\ell !
N \ell 

k\BbbP kZn

\right)  (t \in ( - \infty , Tn)),

Z0(t) =
\sum 

k with \Re (\lambda k)<\Re (\lambda k0
)

eA
\ast 
k(t - Tn)\BbbP kZn (t \in ( - \infty , Tn)),

Zr(t) =
\sum 

k with \Re (\lambda k)>\Re (\lambda k0
)

eA
\ast 
k(t - Tn)\BbbP kZn (t \in ( - \infty , Tn  - T0]).
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By the definitions of k0 and \ell 1, we easily see that
(5.6)
\forall t \in ( - \infty , Tn), \| B\ast 

1Zd,3(t)\| U1
+ \| B\ast 

1Z0(t)\| U1
+ \| B\ast 

2Zd,3(t)\| U2
+ \| B\ast 

2Z0(t)\| U2
= 0.

It is also easy to check, since the sum defining Zd,2 is finite, that there exists a
constant C such that Zd,2 satisfies

(5.7) \forall t \leq Tn  - 1, \| B\ast 
1Zd,2(t)\| U1

+ \| B\ast 
2Zd,2(t)\| U2

\leq e\Re (\lambda k0
)tC(Tn  - t)\ell  - 1.

We claim that there exist constants C and \mu > \Re (\lambda k0) such that

(5.8) \forall t \leq Tn  - T0  - 1, \| Zr(t)\| H \leq Ce\mu t.

Indeed, denoting A\ast 
r = A\ast | \oplus k with \Re (\lambda k)>\Re (\lambda k0

)Hk
, Zr solves

 - Z \prime 
r+A\ast 

rZr=0, t\in ( - \infty , Tn - T0), Zr| t=Tn - T0
=

\sum 
k with \Re (\lambda k)>\Re (\lambda k0

)

e - A\ast 
kT0\BbbP kZn.

Since A\ast generates an analytic semigroup on H, it is easy to check that A\ast 
r =

A\ast | \oplus k with \Re (\lambda k)>\Re (\lambda k0
)Hk

also generates an analytic semigroup on\oplus k with \Re (\lambda k)>\Re (\lambda k0
)Hk

and that its spectral abscissa is given by inf\{ \Re (\lambda k), with \Re (\lambda k) > \Re (\lambda k0
)\} . Accord-

ing to [28, Theorem 4.3], Zr thus decays exponentially at any rate smaller than

inf\{ \Re (\lambda k), with \Re (\lambda k) > \Re (\lambda k0
)\} .

Since this quantity is strictly larger than \Re (\lambda k0), we have proved (5.8).
Estimate (5.8) in turns imply that

(5.9) \forall t \leq Tn  - T0  - 1, \| B\ast 
1Zr(t)\| U1

+ \| B\ast 
2Zr(t)\| U2

\leq Ce\mu t

for some \mu > \Re (\lambda k0
).

Using the identity (2.13) and the decay estimates (5.6), (5.7), and (5.9), we easily
obtain the counterpart of (2.27), that is, the existence of positive constants C1, C2

such that for all t \leq Tn  - T0  - 1,\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| B\ast 

1

\Biggl( \sum 
k\in D

N \ell 1
k \BbbP kZne

i\Im (\lambda k)(t - Tn)

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

U1

 - \alpha (t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| B\ast 
2

\Biggl( \sum 
k\in D

N \ell 1
k \BbbP kZne

i\Im (\lambda k)(t - Tn)

\Biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

U2

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq C

Tn  - t
.

(5.10)

As in the proof of Lemma 2.2, we then easily get that, if \alpha is as in (1.11) with \omega /\in W ,
for all k \in D, \bigm\| \bigm\| \bigm\| B\ast 

1N
\ell 1
k \BbbP kZn

\bigm\| \bigm\| \bigm\| 
U1

+
\bigm\| \bigm\| \bigm\| B\ast 

2N
\ell 1
k \BbbP kZn

\bigm\| \bigm\| \bigm\| 
U2

= 0.

This contradicts the definition of k0 when k0 < \infty and concludes the proof of Lemma
5.2.
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6. Further comments and open problems.

6.1. Further comments.
Approximate controllability. In this article, we focused on the null-controllability

property, but several other notions can be used and developed similarly. For instance,
we could consider the approximate controllability property at time T , which reads as
follows for system (1.1): for any y0 \in H and \varepsilon > 0, there exists u \in L2(0, T ) such
that the solution y of (1.1) satisfies \| y(T )\| H \leq \varepsilon .

It is classical (see, for instance, [25]) that this is equivalent to the following unique
continuation property for the adjoint equation: if zT \in H is such that the solution z
of (1.8) satisfies B\ast z = 0 in L2(0, T ;U), then zT = 0.

In this context, following the same strategy as before, we can prove the following
counterpart of Theorem 1.1.

Theorem 6.1. Assume that system (1.1) is approximately controllable at time T
and that one of the following two conditions holds:

\bullet A : D(A) \subset H \rightarrow H is a self-adjoint positive definite operator with compact
resolvent, with H being a Hilbert space;

\bullet H is a finite dimensional vector space.
Let B \in L (U,H), where U is a Hilbert space, and assume that U is isomorphic to
U1 \times U2 for some Hilbert spaces U1 and U2, and define B1 and B2 as in (1.3).

Then system (1.4) is approximately controllable at time T with switching controls,
i.e., satisfying (1.5). More precisely, given any \varepsilon > 0 and any y0 \in H, there exist
control functions u1 \in L2(0, T ;U1) and u2 \in L2(0, T ;U2) such that the solution y of
(1.4) satisfies \| y(T )\| H \leq \varepsilon , while the control functions satisfy the switching condition
(1.5).

The proof of Theorem 6.1 can be performed the same way as the proof of Theorem
1.1 by minimizing, instead of J in (1.10), the functional J\varepsilon given by

(6.1) J\varepsilon (zT ) =
1

2

\int T

0

max\{ \| B\ast 
1z(t)\| 2U1

, \alpha (t)\| B\ast 
2z(t)\| 2U2

\} dt+ \varepsilon \| zT \| H + \langle y0, z(0)\rangle H ,

where z is the solution of the adjoint problem (1.8), and \alpha = \alpha (t) is as in (1.11) for
a suitable choice of \omega \in \BbbR \ast .

Details of the proof are left to the reader.
Similarly, counterparts of Theorems 1.3 and 5.1 can also be proved in the context

of approximate controllability by penalizing the functional under consideration by
the additional term \varepsilon \| zT \| H as in (6.1); the rest of the proof is the same. Precise
statements and proofs are left to the reader.

Handling source terms. In the proofs of Theorems 1.1, 1.3, and 5.1, we assume
that system (1.1) is null-controllable in arbitrary small times. As we said earlier, this
is equivalent to saying that for all T > 0, any solution z of (1.8) with initial datum
zT \in H satisfies (1.9). It is then easy to check that this property implies that for all
zT \in H, the solution z of (1.8) satisfies

1

T

\int T

0

1

C2
T - t

\| z(t)\| 2H dt \leq sup
(0,T )

\biggl\{ 
1

C2
T - t

\| z(t)\| 2H
\biggr\} 

\leq \| B\ast z\| 2L2(0,T ;U)

and thus entails the existence of a positive function \rho T \in L1
loc([0, T )) such that

(6.2)

\int T

0

\rho T (t)
2\| z(t)\| 2H dt \leq \| B\ast z\| 2L2(0,T ;U).
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Additionally, easy considerations allow us to show that \rho T can be chosen as a strictly
positive function which may degenerate to zero only as t \rightarrow T .

This allows us to handle source terms in the control problems corresponding to
(1.1). For simplicity, as before we only focus on the counterpart of Theorem 1.1, since
the counterparts of Theorems 1.3 and 5.1 can be performed similarly.

Theorem 6.2. Let us assume A : D(A) \subset H \rightarrow H is a self-adjoint positive
definite operator with compact resolvent, with H being a Hilbert space.

Let B \in L (U,H), where U is a Hilbert space, assume that U is isomorphic to
U1 \times U2 for some Hilbert spaces U1 and U2, and define B1 and B2 as in (1.3).

Assume that system (1.1) is null-controllable in arbitrary small times and satisfies
the observability inequality (6.2) for some functions (\rho T )T>0 a.e. strictly positive with
\rho T \in L1

loc(0, T ).
Then given any T > 0, any y0 \in H, and f \in L2(0, T ;H) satisfying

(6.3)

\int T

0

1

\rho T (t)2
\| f(t)\| 2H dt < \infty ,

there exist control functions u1 \in L2(0, T ;U1) and u2 \in L2(0, T ;U2) such that the
solution y of

(6.4) y\prime +Ay = B1u1 +B2u2 + f, t \in (0, T ), y(0) = y0,

satisfies (1.6), while the control functions satisfy the switching condition (1.5).

Again, the proof of Theorem 6.2 can be easily adapted from the proof of Theorem
1.1 by minimizing, instead of the functional J in (1.10), the functional Js defined for
zT \in H by
(6.5)

Js(zT ) =
1

2

\int T

0

max\{ \| B\ast 
1z(t)\| 2U1

, \alpha (t)\| B\ast 
2z(t)\| 2U2

\} dt+

\int T

0

\langle f(t), z(t)\rangle H dt+\langle y0, z(0)\rangle H ,

where z is the solution of the adjoint problem (1.8), and \alpha = \alpha (t) is as in (1.11) for
a suitable choice of \omega \in \BbbR \ast .

The condition (6.3) is there to guarantee that the term

\int T

0

\langle f(t), z(t)\rangle H dt

is well defined in the space X in (2.2) and to preserve the coercivity of the functional
Js. Again, the rest of the proof of Theorem 6.2 follows verbatim that of Theorem 1.1
and is left to the reader.

The interest of Theorem 6.2 is that it allows one to handle source terms and
therefore paves the way for proving local null-controllability results with switching
controls for semilinear equations in the presence of superlinear nonlinearities.

To do so, one should add suitable weights in the design of the controls. These
weights can depend only on time, as in the work [27] based on the knowledge of the
cost of controllability in small times, or to more general weights depending on time
and space variables as it occurs naturally when using Carleman estimates; see, e.g.,
[15, 18].

D
ow

nl
oa

de
d 

12
/1

2/
22

 to
 5

2.
18

.6
3.

16
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SWITCHING CONTROLS FOR ANALYTIC SEMIGROUPS 2847

6.2. Open problems.
Time-dependent coefficients. One of the important restrictions of our approach

is that it is based on spectral decompositions of the space, and therefore seems to be
strongly limited to operators which are independent of time. It is natural to discuss
this property more closely. In fact, looking at our proof, it seems that the only
relevant assumption should be an analytic dependence of the operators with respect
to the time t. However, so far this problem seems to be out of reach.

Positive time of controllability. Our arguments are limited to the case of analytic
semigroups which are null-controllable in arbitrary small times, but several recent
results have shown that there are analytic semigroups which are null-controllable only
after some strictly positive critical time. This is the case, for instance, for the one
dimensional heat equation controlled from one well-chosen point (see [13]) or when
considering Grushin operators (see [4] and references therein).

Our proofs fail to handle these cases, since we do not know how to prove that for
ZT \in X (defined in (2.2)), the function t \mapsto \rightarrow B\ast Z(t) (also t \mapsto \rightarrow B\ast 

1Z(t), t \mapsto \rightarrow B\ast 
2Z(t))

is analytic in time on strict subintervals of (0, T ), which is an essential element of our
analysis in the study of the set I in (2.4).

Appendix A. Proof of (2.8). The goal of this appendix is to present the proof
of the derivation of the Euler--Lagrange equation (2.8) satisfied by a minimizer Z of
the functional J in (1.10) when the set I in (2.4) is of zero measure.

Here, we follow the arguments in [31, pp. 91--93].
We keep the notation of section 2: ZT \not = 0 is assumed to be the minimizer of the

functional J in (1.10) on X (defined in (2.2)), the set I in (2.4) is of zero measure,
and I1 and I2 are defined as in (2.6)--(2.7).

For zT \in H, and a.e. in t \in (0, T ), we clearly have

1

h

\bigl( 
max\{ \| B\ast 

1(Z + hz)(t)\| 2U1
, \alpha (t)\| B\ast 

2(Z + hz)(t)\| 2U2
\} (A.1)

 - max\{ \| B\ast 
1Z(t)\| 2U1

, \alpha (t)\| B\ast 
2Z(t)\| 2U2

\} 
\bigr) 

 - \rightarrow 
h\rightarrow 0

\biggl\{ 
2\langle B\ast 

1Z(t), B\ast 
1z(t)\rangle U1 if t \in I1,

2\alpha (t)\langle B\ast 
2Z(t), B\ast 

2z(t)\rangle U2
if t \in I2,

i.e., pointwise convergence in the set I, which is of full measure. Thus, to establish
that the Gateaux derivative of J in ZT is given by (2.8), we only have to prove that
this convergence also holds in L1(0, T ).

Using Lebesgue's dominated convergence, we only have to find an L1(0, T ) majo-
rant to the aforementioned ratio as h \rightarrow 0.

Fix t \in (0, T ), and denote by i \in \{ 1, 2\} the index in which the maximum of
the expression max\{ \| B\ast 

1(Z + hz)(t)\| 2U1
, \alpha (t)\| B\ast 

2(Z + hz)(t)\| 2U2
\} is achieved and by

j \in \{ 1, 2\} the index in which the maximum of the expression max\{ \| B\ast 
1Z(t)\| 2U1

,
\alpha (t)\| B\ast 

2Z(t)\| 2U2
\} is achieved (i and j depend on t, but this dependence is omitted for

simplicity).
Of course, if i = j, it is easy to derive the following bounds:

1

h

\bigl( 
max\{ \| B\ast 

1(Z + hz)(t)\| 2U1
, \alpha (t)\| B\ast 

2(Z + hz)(t)\| 2U2
\} 

 - max\{ \| B\ast 
1Z(t)\| 2U1

, \alpha (t)\| B\ast 
2Z(t)\| 2U2

\} 
\bigr) 

=

\biggl\{ 
2\langle B\ast 

1Z(t), B\ast 
1z(t)\rangle U1

+ h\| B\ast 
1z(t)\| 2U1

if i = j = 1,
2\alpha (t)\langle B\ast 

2Z(t), B\ast 
2z(t)\rangle U2

+ h\alpha (t)\| B\ast 
2z(t)\| 2U2

if i = j = 2.
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When i \not = j, this is slightly more delicate. Let us assume, for instance, that (i, j) =
(1, 2); the case (i, j) = (2, 1) is the same. Then we have

\| B\ast 
1(Z+hz)(t)\| 2U1

> \alpha (t)\| B\ast 
2(Z+hz)(t)\| 2U2

and \| B\ast 
1Z(t)\| 2U1

< \alpha (t)\| B\ast 
2Z(t)\| 2U2

.

Accordingly,

1

h

\bigl( 
max\{ \| B\ast 

1(Z + hz)(t)\| 2U1
, \alpha (t)\| B\ast 

2(Z + hz)(t)\| 2U2
\} 

 - max\{ \| B\ast 
1Z(t)\| 2U1

, \alpha (t)\| B\ast 
2Z(t)\| 2U2

\} 
\bigr) 

=
1

h

\bigl( 
\| B\ast 

1(Z + hz)(t)\| 2U1
 - \alpha (t)\| B\ast 

2Z(t)\| 2U2

\bigr) 
\Biggl\{ 

\leq 1
h

\bigl( 
\| B\ast 

1(Z + hz)(t)\| 2U1
 - \| B\ast 

1Z(t)\| 2U1

\bigr) 
\geq 1

h

\bigl( 
\alpha (t)\| B\ast 

2(Z + hz)(t)\| 2U2
 - \alpha (t)\| B\ast 

2Z(t)\| 2U2

\bigr) 
,

which have been estimated in the cases i = j.
Thus, we get that for all (i, j) \in \{ 1, 2\} 2,

1

h

\bigl( 
max\{ \| B\ast 

1(Z + hz)(t)\| 2U1
, \alpha (t)\| B\ast 

2(Z + hz)(t)\| 2U2
\} 

 - max\{ \| B\ast 
1Z(t)\| 2U1

, \alpha (t)\| B\ast 
2Z(t)\| 2U2

\} 
\bigr) 

\leq max\{ | 2\langle B\ast 
1Z(t), B\ast 

1z(t)\rangle U1
| + h\| B\ast 

1z(t)\| 2U1
, 2\alpha (t)| \langle B\ast 

2Z(t), B\ast 
2z(t)\rangle U2

| 
+ h\alpha (t)\| B\ast 

2z(t)\| 2U2
\} .

The right-hand side of this estimate is clearly in L1(0, T ) since B\ast 
i Z and B\ast 

i z belong
to L2(0, T ;Ui) for i \in \{ 1, 2\} and \alpha \in L\infty (0, T ). Combining these results with the
pointwise convergence (A), we can use Lebesgue's dominated convergence theorem to
deduce the Euler--Lagrange equation (2.8).

Acknowledgments. We deeply thank Franck Boyer for his encouragement re-
garding this work and especially for pointing out to us example (5.4) provided in
section 5. We thank Marius Tucsnak for pointing out Remark 1.2 to us.

REFERENCES

[1] W. Alt and C. Schneider, Linear-quadratic control problems with L1-control cost, Optimal
Control Appl. Methods, 36 (2015), pp. 512--534.

[2] F. Ammar-Khodja, A. Benabdallah, M. Gonz\'alez-Burgos, and L. de Teresa, Recent
results on the controllability of linear coupled parabolic problems: A survey, Math. Control
Relat. Fields, 1 (2011), pp. 267--306.

[3] F. Ammar Khodja, A. Benabdallah, M. Gonz\'alez-Burgos, and L. de Teresa, New phe-
nomena for the null controllability of parabolic systems: Minimal time and geometrical
dependence, J. Math. Anal. Appl., 444 (2016), pp. 1071--1113.

[4] K. Beauchard, J. Dard\'e, and S. Ervedoza, Minimal time issues for the observability of
Grushin-type equations, Ann. Inst. Fourier (Grenoble), 70 (2020), pp. 247--312.

[5] A. Benabdallah, F. Boyer, and M. Morancey, A block moment method to handle spectral
condensation phenomenon in parabolic control problems, Ann. H. Lebesgue, 3 (2020), pp.
717--793.

[6] F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-
Stokes Equations and Related Models, Appl. Math. Sci. 183, Springer, New York, 2013.

[7] S. Chowdhury and S. Ervedoza, Open loop stabilization of incompressible Navier--Stokes
equations in a 2D channel using power series expansion, J. Math. Pures Appl., 130 (2019),
pp. 301--346.

D
ow

nl
oa

de
d 

12
/1

2/
22

 to
 5

2.
18

.6
3.

16
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SWITCHING CONTROLS FOR ANALYTIC SEMIGROUPS 2849

[8] S. Chowdhury, D. Mitra, and M. Renardy, Null controllability of the incompressible Stokes
equations in a 2-D channel using normal boundary control, Evol. Equ. Control Theory, 7
(2018), pp. 447--463.

[9] J.-M. Coron and S. Guerrero, Null controllability of the N-dimensional Stokes system with
N  - 1 scalar controls, J. Differential Equations, 246 (2009), pp. 2908--2921.

[10] J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier--Stokes
system with a distributed control having two vanishing components, Invent. Math., 198
(2014), pp. 833--880.

[11] E. B. Davies, Wild spectral behaviour of anharmonic oscillators, Bull. London Math. Soc., 32
(2000), pp. 432--438.

[12] E. B. Davies and A. B. J. Kuijlaars, Spectral asymptotics of the non-self-adjoint harmonic
oscillator, J. London Math. Soc. (2), 70 (2004), pp. 420--426.

[13] S. Dolecki, Observability for the one-dimensional heat equation, Studia Math., 48 (1973), pp.
291--305.

[14] M. Duprez and P. Lissy, Positive and negative results on the internal controllability of para-
bolic equations coupled by zero- and first-order terms, J. Evol. Equ., 18 (2018), pp. 659--680.

[15] E. Fern\'andez-Cara and S. Guerrero, Global Carleman estimates for solutions of parabolic
systems defined by transposition and some applications to controllability, AMRX Appl.
Math. Res. Express, 2006 (2006), 75090.

[16] E. Fern\'andez-Cara, S. Guerrero, O. Y. Imanuvilov, and J.-P. Puel, Local exact control-
lability of the Navier--Stokes system, J. Math. Pures Appl. (9), 83 (2004), pp. 1501--1542.

[17] A. V. Fursikov, Exact boundary zero controllability of three-dimensional Navier-Stokes equa-
tions, J. Dynam. Control Systems, 1 (1995), pp. 325--350.

[18] A. V. Fursikov and O. Y. Imanuvilov, Controllability of Evolution Equations, Lecture Notes
Ser. 34, Seoul National University Research Institute of Mathematics, Global Analysis
Research Center, Seoul, 1996.

[19] I. C. Gohberg and M. G. Kre\u in, Introduction to the Theory of Linear Nonselfadjoint Oper-
ators, translated from the Russian by A. Feinstein, Transl. Math. Monogr. 18, American
Mathematical Society, Providence, RI, 1969.

[20] O. Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations, ESAIM
Control Optim. Calc. Var., 6 (2001), pp. 39--72.

[21] K. Ito and K. Kunisch, A variational approach to sparsity optimization based on Lagrange
multiplier theory, Inverse Problems, 30 (2014), 015001.

[22] D. Kalise, K. Kunisch, and Z. Rao, Infinite horizon sparse optimal control, J. Optim. Theory
Appl., 172 (2017), pp. 481--517.

[23] D. Kalise, K. Kunisch, and Z. Rao, Sparse and switching infinite horizon optimal control
with nonconvex penalizations, ESAIM Control Optim. Calc. Var., 26 (2020), 61.

[24] K. Kunisch, P. Trautmann, and B. Vexler, Optimal control of the undamped linear wave
equation with measure valued controls, SIAM J. Control Optim., 54 (2016), pp. 1212--1244,
https://doi.org/10.1137/141001366.

[25] J.-L. Lions, Remarks on approximate controllability: Festschrift on the occasion of the 70th
birthday of Shmuel Agmon, J. Anal. Math., 59 (1992), pp. 103--116.

[26] J.-L. Lions and E. Zuazua, A generic uniqueness result for the Stokes system and its control
theoretical consequences, in Partial Differential Equations and Applications, Lecture Notes
in Pure and Appl. Math. 177, Dekker, New York, 1996, pp. 221--235.

[27] Y. Liu, T. Takahashi, and M. Tucsnak, Single input controllability of a simplified fluid-
structure interaction model, ESAIM Control Optim. Calc. Var., 19 (2012), pp. 20--42.

[28] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Appl. Math. Sci. 44, Springer-Verlag, New York, 1983.

[29] J.-P. Raymond, Stokes and Navier--Stokes equations with nonhomogeneous boundary condi-
tions, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 24 (2007), pp. 921--951.

[30] M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups, Birkh\"auser
Adv. Texts Basler Lehrb\"ucher [Birkh\"auser Adv. Texts Basel Textbooks], Birkh\"auser Verlag,
Basel, 2009.

[31] E. Zuazua, Switching control, J. Eur. Math. Soc. (JEMS), 13 (2011), pp. 85--117.

D
ow

nl
oa

de
d 

12
/1

2/
22

 to
 5

2.
18

.6
3.

16
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

https://doi.org/10.1137/141001366

	Introduction
	Proof of Theorem 1.1
	Proof of Lemma 2.1: The case of a self-adjoint positive definite operator A with compact resolvent
	Proof of Lemma 2.2: The case of a finite dimensional space H

	Proof of Theorem 1.3
	Examples
	Examples in finite dimension
	Distributed control of parabolic systems
	Distributed controls of 3D Stokes equations
	Boundary control of a system of coupled heat equations
	Boundary control of 3D Stokes equations

	Extensions
	Further comments and open problems
	Further comments
	Open problems

	Appendix A. Proof of (2.8)
	Acknowledgments
	References

