
Available online at www.sciencedirect.com
ScienceDirect

J. Differential Equations 269 (2020) 9123–9143
www.elsevier.com/locate/jde

On some geometric inverse problems for nonscalar 

elliptic systems

Raul K.C. Araújo a,1, Enrique Fernández-Cara b,2, Diego A. Souza a,∗,3

a Department of Mathematics, Federal University of Pernambuco, UFPE, CEP 50740-545, Recife, PE, Brazil
b University of Sevilla, Dpto. E.D.A.N., Aptdo 1160, 41080 Sevilla, Spain

Received 15 July 2019; revised 13 May 2020; accepted 11 June 2020
Available online 2 July 2020

Abstract

In this paper, we consider several geometric inverse problems for linear elliptic systems. We prove 
uniqueness and stability results. In particular, we show the way that the observation depends on the pertur-
bations of the domain. In some particular situations, this provides a strategy that could be used to compute 
approximations to the solution of the inverse problem. In the proofs, we use techniques related to (local) 
Carleman estimates and differentiation with respect to the domain.
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1. Introduction

Let � ⊂ RN be a simply connected bounded domain whose boundary ∂� is of class W 2,∞, 
let D∗ be a fixed nonempty open set with D∗ ⊂⊂ � and let γ ⊂ ∂� be a nonempty open 
set. In what follows, the symbols C, C1, C2, . . . will be used to denote generic positive con-
stants. Sometimes, we will indicate the data on which they depend by writing (for example) 
C(�, D∗).

Let us consider the following family of subsets of D∗:

D =
{
D ⊂ � : D is a nonempty simply connected domain, D ⊂ D∗ and ∂D is of class W 2,∞}

and let us denote by A the set of all (a, b, A, B) such that a, b, A, B ∈ L∞(�) and

[
ξ1
ξ2

]t [
a(x) b(x)

A(x) B(x)

][
ξ1
ξ2

]
≥ −λ(|ξ1|2 + |ξ2|2) ∀(ξ1, ξ2) ∈R2, a.e. in �, (1)

for some λ with 0 < λ < μ1(�)−1, where μ1(�) is the smallest positive constant such that

‖u‖2
L2 ≤ μ1(�)‖∇u‖2

L2 ∀u ∈ H 1
0 (�).

In this paper, we will always assume that (ϕ, ψ) ∈ H 1/2(∂�) × H 1/2(∂�) and (a, b, A, B) ∈
A. Under these circumstances it is well known that, for any D ∈D, there exists a unique solution 
(y, z) ∈ H 1(�\D) × H 1(�\D) to the system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−	y + ay + bz = 0 in �\D,

−	z + Ay + Bz = 0 in �\D,

y = ϕ, z = ψ on ∂�,

y = z = 0 on ∂D,

(2)

furthermore satisfying

‖(y, z)‖H 1(�\D) ≤ C(�,D∗)‖(ϕ,ψ)‖H 1/2(∂�).

In many physical phenomena, in order to predict the result of a measurement, we need a model 
of the system under investigation (typically a PDE system) and an explanation or interpretation of 
the observed quantities. If we are able to compute the solution to the model and quantify relevant 
observations, we say that we have solved the forward or direct problem. Contrarily, the inverse
problem consists of using the observations to recover unknown data that characterize the model. 
For details about the main questions concerning inverse problems for PDEs from the theoretical 
and numerical viewpoints, see for instance the book [11].

In this paper, we will deal with the following inverse geometric problem:

Given (ϕ, ψ) ∈ H 1/2(∂�) × H 1/2(∂�) and (α, β) ∈ H−1/2(∂�) × H−1/2(∂�), find a set 
D ∈ D such that the solution (y, z) to the linear system (2) satisfies the additional condi-
tions:
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∂y

∂n

∣∣∣∣
γ

= α and
∂z

∂n

∣∣∣∣
γ

= β. (3)

A motivation of problems of this kind can be found, for instance, when one tries to com-
pute the stationary temperature of a chemically reacting plate whose shape is unknown. More 
precisely, (2)-(3) has the following interpretation: assume that a chemical product, sensible to 
temperature effects, fills an unknown domain �\D; its concentration y = y(x) and its temper-
ature z = z(x) are imposed on the whole outer boundary ∂�, the associated normal fluxes are 
measured on γ ⊂ ∂� and both y and z vanish on the boundary of the non-reacting unknown set 
D; what we pretend to do is to determine D from these data and measurements.

In the context of the inverse problem (2)-(3), three main questions appear. They are the fol-
lowing:

• Uniqueness: Let (α0, β0) and (α1, β1) be two observations and let (y0, z0) and (y1, z1) be 
solutions to (2) satisfying the identities (3) associated to the sets D0 and D1, respectively. 
The question is: do we have D0 = D1 whenever (α0, β0) = (α1, β1)?

• Stability: Find an estimate of the “distance” μd(D0, D1) from D0 to D1 in terms of the 
“distance” μ0((α

0, β0), (α1, β1)) from (α0, β0) to (α1, β1) of the form

μd(D0,D1) ≤ �(μ0((α
0, β0), (α1, β1))),

where the function � : R+ �→ R+ satisfies �(s) → 0 as s → 0, valid at least whenever 
(α0, β0) and (α1, β1) are “close” to a fixed (ᾱ, β̄).

• Reconstruction: Find an iterative algorithm to compute the unknown domain D from the 
observation (α, β).

In the sequel, we will on the uniqueness and the stability of the inverse problem (2)-(3). 
Specifically, our first main result is the following:

Theorem 1. Assume that (ϕ, ψ) ∈ H 1/2(∂�) × H 1/2(∂�) is nonzero. For i = 0, 1, let (yi, zi)

be the unique weak solution to (2) with D replaced by Di and let αi and βi be given by the 
corresponding equalities (3). Then one has the following:

(α0, β0) = (α1, β1) =⇒ D0 = D1.

The proof is given in Section 2. It relies on some ideas from [9]; more precisely, we use 
two well known properties of (2): unique continuation and well-posedness in the Sobolev space 
H 1.

Remark 1. Note that, if (ϕ, ψ) = (0, 0), then the associated solution to (2) is zero, for any D ∈ D. 
Therefore, the uniqueness problem has no sense when (ϕ, ψ) = (0, 0). �
Remark 2. In the one-dimensional case, if one considers (2) with only one boundary observation, 
uniqueness may not hold. Indeed, suppose that � = (0, 1), L ∈ (0, 1) and consider the system
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−yxx + η2y + bz = 0 in (0,L),

−zxx + Ay + ζ 2z = 0 in (0,L),

y(0) = z(0) = 0,

yx(0) = 0,

(4)

where A, b, η, ζ ∈ R (all them different from zero) and |A| +|b| < 2|η||ζ |. Then, (η2, b, A, ζ 2) ∈
A and, using the parameter variation method, we get that a solution (y, z) to (4) is given by

z(x) = K

ζ
sinh(ζx) + A

ζ

x∫
0

y(s) sinh[ζ(x − s)]ds, y(x) = b

η

x∫
0

z(s) sinh[η(x − s)]ds

for each K ∈R. Therefore, if K �= 0 we have zx(0) �= 0 and this implies non-uniqueness.
For N ≥ 2, the uniqueness in the N-dimensional case with only one information on γ is, to 

our knowledge, an open question. �
In order to state our main stability result, let us introduce some notation. Thus, let D0 ∈ D be 

a fixed subdomain, let μ ∈ W 1,∞(RN ; RN) satisfy

‖μ‖W 1,∞ ≤ ε < 1, μ = 0 in �\D∗

and, for any σ ∈ (−1, 1), let us denote by mσ , Dσ and (yσ , zσ ) respectively the mapping 
mσ := I + σμ, the open set Dσ := mσ (D0) and the solution to (2) with D replaced by Dσ . 
For simplicity, it will be assumed that the coefficients a, b, A, B are constant. The following 
holds:

Theorem 2. There exists σ0 > 0 with the following properties:

1. The mapping

σ �→
(

∂yσ

∂n
,
∂zσ

∂n

)∣∣∣
γ

(5)

is well defined and analytic in (−σ0, σ0), with values in H−1/2(γ )2.
2. Either mσ (D0) = D0 for all σ ∈ (−σ0, σ0) (and then the mapping in (5) is constant), or 

there exist σ∗ ∈ (0, σ0), C > 0 and k ≥ 1 (an integer) such that

∥∥∥∥
(

∂yσ

∂n
,
∂zσ

∂n

)
−

(
∂y0

∂n
,
∂z0

∂n

)∥∥∥∥
H−1/2(γ )2

≥ C|σ |k ∀σ ∈ (−σ∗, σ∗).

In [12] and [4], a similar geometric inverse problem for one scalar elliptic equation is studied. 
For geometric inverse problems for nonlinear models, like Stokes, Navier-Stokes and Boussi-
nesq systems, the uniqueness has been analyzed in [1], [8] and [7], respectively. Reconstruction 
algorithms have been considered and applied in [2] and [3] for the stationary Stokes system and 
in [8] and [7] for the Navier-Stokes and Boussinesq systems.
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Note that, in the applications to fluid mechanics, the goal is to identify the shape of a body 
around which a fluid flows from measurements performed far from the body. In other contexts, 
the domain D can represent a rigid body immersed in an elastic medium. Thus, related inverse 
problems with relevant applications in Elastography have been analyzed in [5] for the wave 
equation and [6] for the Lamé system.

This paper is organized as follows. In Section 2, we prove a unique continuation property for 
the solutions to (2) and, then, we prove the uniqueness result (Theorem 1). Section 3 is devoted 
to proof of the stability result (Theorem 2). Finally, in Section 4, we present some additional 
comments and open questions.

2. Unique continuation and uniqueness

In this section, we analyze a unique continuation property for (2). More precisely, we have 
the following result:

Theorem 3. Let G ⊂ RN be a bounded domain whose boundary ∂G is of class W 1,∞, let ω ⊂
G be a nonempty open set and assume that a, b, A, B ∈ L∞(G). Then, any solution (y, z) ∈
H 1(G) × H 1(G) to the linear system

{
−	y + ay + bz = 0 in G,

−	z + Ay + Bz = 0 in G,
(6)

satisfying

y = z = 0 in ω, (7)

is zero everywhere.

As already mentioned, the proof relies on some ideas from [9]. In fact, we will divide the 
proof in two parts: (i) the proof of Theorem 3 when ω and G are open balls and (ii) the proof for 
general domains ω and G, using a compactness argument.

2.1. A unique continuation property for balls

In this Section, we prove a very particular result concerning the unique continuation of the 
solutions to (6):

Lemma 1. Assume that R > 0, x0 ∈ RN and a, b, A, B ∈ L∞(B2R(x0)), where B2R(x0) denotes 
the open ball of radius 2R centered at x0. For any solution (y, z) ∈ H 1(B2R(x0)) ×H 1(B2R(x0))

to the linear system (6) in B2R(x0), the following property holds:

(y, z) = (0,0) in BR(x0) ⇒ (y, z) = (0,0) in B2R(x0).

Before proving this lemma, let us introduce ϕ ∈ C∞
0 (RN) and let us define

a0(x, ξ) := |ξ |2 − |∇ϕ(x)|2 and b0(x, ξ) := 2ξ · ∇ϕ(x).
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Let us also recall that the Poisson bracket of a0 and b0 is given by

[a0, b0] := ∇ξ a0 · ∇xb0 − ∇xa0 · ∇ξ b0.

A crucial result in the proof of Lemma 1 is the following:

Theorem 4 ([9, Proposition 2.3]). Let U ⊂ RN be a nonempty bounded open set, K ⊂ U a 
nonempty compact set and assume that ϕ ∈ C∞

0 (RN). Suppose that ϕ is bi-convex in U with 
respect to the characteristics of a0 and b0, i.e. ϕ satisfies the following:

⎧⎪⎨
⎪⎩

∇ϕ(x) �= 0 ∀x ∈ U,

∃C0 > 0 such that [a0, b0](x, ξ) ≥ C0

whenever (x, ξ) ∈ U ×RN and a0(x, ξ) = b0(x, ξ) = 0.

(8)

Then, there exist C1 > 0 and h1 > 0 such that, for all 0 < h < h1 and any function u ∈ H 2
0 (K), 

one has:

I0(u) :=
∫
K

e2ϕ/h|u|2 dx + h2
∫
K

e2ϕ/h|∇u|2 dx ≤ C1h
3
∫
K

e2ϕ/h|	u|2 dx.

Proof of Lemma 1. Without loss of generality we may assume that x0 = 0. Let (y, z) ∈
H 1(B2R) × H 1(B2R) be a solution to (6) such that y = 0 and z = 0 in BR .

We will try to apply Theorem 4 to the functions y and z. To do this, let us fix ε > 0 and let us 
introduce the sets

K :=
{
x ∈ RN : 3

4
R ≤ |x| ≤ 2R − ε

}
and U :=

{
x ∈ RN : 1

2
R < |x| < 2R

}

and a function ϕ ∈ C∞
0 (RN), with

ϕ(x) := e−δ|x|2 ∀x ∈ B2R, δ > 4/R2. (9)

It is not difficult to see that

∂xj
ϕ(x) = −2δxjϕ(x) and ∂xj

∂xk
ϕ(x) = −2δϕ(x)δjk + 4δ2xjxkϕ(x), (10)

where the δjk are the Kronecker symbols. From (9) and (10), we have that

[a0, b0](x, ξ) = 64 δ3ϕ(x)3|x|2
[
δ|x|2 − 1

]

≥16 δ3R2e−12R2δ

(
δR2

4
− 1

)

for any (x, ξ) ∈ U ×RN such that a0(x, ξ) = b0(x, ξ) = 0. Therefore, we see that (8) is satisfied 
by the function ϕ in U .
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Let us introduce a cut-off function ζ ∈ C∞
0 (K̊) satisfying ζ ≡ 1 for R − ε ≤ |x| ≤ 2R − 2ε

and let us set ỹ := ζy and z̃ := ζz. It is then clear that (ỹ, ̃z) ∈ H 2
0 (K) × H 2

0 (K). After some 
computations, we obtain that:

{
	ỹ = aỹ + bz̃ + H1,

	z̃ = Aỹ + Bz̃ + H2,

where

H1 := 2∇ζ · ∇y + y	ζ and H2 := 2∇ζ · ∇z + z	ζ. (11)

Consequently, we can apply Theorem 4 to ỹ and deduce that there exist C2 > 0 and h2 > 0
such that

I0(ỹ) ≤ C2h
3

⎛
⎝∫

K

e2ϕ/h|z̃|2 dx +
∫
K

e2ϕ/h|H1|2 dx

⎞
⎠ (12)

for all h ∈ (0, h2). Here, we have absorbed the lower order term for ỹ from the right hand side 
by taking h2 small enough. Analogously, there exist positive constants C3 > 0 and h3 > 0 such 
that,

I0(z̃) ≤ C3h
3

⎛
⎝∫

K

e2ϕ/h|ỹ|2 dx +
∫
K

e2ϕ/h|H2|2 dx

⎞
⎠ (13)

for all h ∈ (0, h3).
Next, adding (12) and (13), taking h4 sufficiently small and C4 sufficiently large and absorbing 

again the lower order terms for ỹ and z̃ from the right hand side, we have

I0(ỹ) + I0(z̃) ≤ C4h
3
∫
K

e2ϕ/h
(
|H1|2 + |H2|2

)
dx, (14)

for all h ∈ (0, h4).
To conclude the proof, we note that (11), the fact that y = z = 0 in BR and ∇ζ = 	ζ = 0 for 

R − ε ≤ |x| ≤ 2R − 2ε imply that H1 and H2 vanish in B2R−2ε . Now, we have from (9) that ϕ is 
positive and radially decreasing in U . Thus, one has

∫
K

e2ϕ/h(|H1|2 + |H2|2) dx ≤ e2ϕ(2R−2ε)/h

∫
K

(|H1|2 + |H2|2) dx. (15)

On the other hand,
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∫
K

e2ϕ/h(|ỹ|2 + |z̃|2) dx ≥
∫

R≤|x|≤2R−3ε

e2ϕ/h(|y|2 + |z|2) dx

≥ e2ϕ(2R−3ε)/h

∫
R≤|x|≤2R−3ε

(|y|2 + |z|2) dx.

(16)

It follows from (14)–(16) that

∫
R≤|x|≤2R−3ε

(|y|2 + |z|2) dx ≤ C4h
3e2[ϕ(2R−2ε)−ϕ(2R−3ε)]/h

∫
K

(|H1|2 + |H2|2) dx.

Since H1 and H2 are independent of h and ϕ(2R − 2ε) < ϕ(2R − 3ε), we can let h → 0 and get 
that

y = z = 0 in R ≤ |x| ≤ 2R − 3ε

and, consequently, y and z vanish in B2R−3ε . Since ε > 0 is arbitrarily small, we conclude that 
y and z vanish identically in B2R . �
2.2. Unique continuation for general domains

The goal of this section is to prove Theorem 3 in the general case.
Let (y, z) ∈ H 1(G) × H 1(G) be a solution to (6) satisfying (7) and let us assume that 

Bρ0(x0) ⊂ ω. Let x1 be a point of G and let us see that y = 0 and z = 0 in a neighborhood 
of x1.

Since G is connected, there exists a curve η ∈ C∞([0, 1]; G) such that η(0) = x0 and η(1) =
x1.

Notice that for any t ∈ [0, 1] there exists rt > 0 such that B2rt (η(t)) ⊂ G. Since � := η ([0,1])
is a compact set, there exist m ≥ 1 and 0 ≤ t1 < . . . < tm ≤ 1 satisfying

� ⊂
m⋃

j=1

B2rj

(
η(tj )

)
, where we have set rj := rtj .

By construction, setting ρ1 := min {r1, . . . , rm,ρ0}, we have that Bρ1(x) ⊂ G, for all x ∈ �.
Finally, we set r0 := ρ1/2 and fix 0 < r < r0. It is clear that (y, z) vanishes in Br(x0) whence, 

by Lemma 1, (y, z) also vanishes in B2r (x0). Let ξ1 := η(τ1) ∈ ∂Br(x0) ∩ �. Then, we have that 
(y, z) = (0, 0) in Br(ξ1) and, in view of Lemma 1, (y, z) = (0, 0) in B2r (ξ1). Applying the same 
idea a finite number of times, we obtain y = 0 and z = 0 in Br(x1). This ends the proof.

2.3. Proof of Theorem 1: uniqueness

Let us introduce the open sets D := D0 ∪ D1 and O0 := �\D and let O be the unique 
connected component of O0 such that ∂� ⊂ ∂O . Also, let us set y := y0 − y1 and z := z0 − z1

in O . Since α0 = α1 and β0 = β1, the couple (y, z) ∈ H 1(O) × H 1(O) satisfies:
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Fig. 1. The filled region is the set D2\D0
.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−	y + ay + bz = 0 in O,

−	z + Ay + Bz = 0 in O,

y = z = 0 on ∂�,

∂y

∂n
= ∂z

∂n
= 0 on γ.

(17)

Now, we fix x0 ∈ γ and we choose r > 0 such that Br(x0) ∩ ∂� ⊂ γ . Let us set O ′ :=
O ∪ Br(x0) and consider the extension by zero (ỹ, ̃z) of (y, z) to the whole set O ′.

From (17), it follows that

{
−	ỹ + aỹ + bz̃ = 0 in O ′,
−	z̃ + Aỹ + Bz̃ = 0 in O ′.

Also, since O ′ is connected and (ỹ, ̃z) = (0, 0) in O ′\O , Theorem 3 implies (ỹ, ̃z) = (0, 0) in 
O ′. In particular, (y, z) = (0, 0) in O .

To conclude, let us prove that D1\D0
and D0\D1

must be empty. Thus, let us suppose that 
D1\D0 �= ∅ and let us introduce the set D2 := D1 ∪ [(�\D0

) ∩ (�\O)]. By hypothesis, D2\D0

is nonempty. On the other hand, note that ∂(D2\D0
) := �0 ∪ �1, where �0 = ∂(D2\D0

) ∩ ∂D0

and �1 = ∂(D2\D0
) ∩ ∂D1 (see Fig. 1).

Therefore, since (y0, z0) = (y1, z1) in O , the pair (y0, z0) verifies

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−	y0 + ay0 + bz0 = 0 in D2\D0
,

−	z0 + Ay0 + Bz0 = 0 in D2\D0
,

y0 = 0, z0 = 0 on �0,

y0 = 0, z0 = 0 on �1.

(18)

Since the linear system (18) possesses exactly one solution, we necessarily have (y0, z0) = (0, 0)

in D2\D0
. Consequently, in view of Theorem 3, (y0, z0) = (0, 0) in �\D0

. This contradicts the 
fact that (ϕ, ψ) is not identically zero on ∂�. Hence, D1\D0

is the empty set.

Analogously, one can prove that D0\D1
is empty and, finally, one has D0 = D1.
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3. Stability

3.1. Preliminary results

Let us introduce some basic notation. Let m = (m1, . . . , mN) ∈ W 1,∞(RN ; RN) be given and 
let us set

m′ :=
(

∂mi

∂xj

)N

i,j=1
, Jac(m) := |det(m′)|, M := ((m′)∗)−1.

In the sequel, we will consider the set

Wε := {μ ∈ W 1,∞(RN ;RN) : ‖μ‖W 1,∞ ≤ ε, μ = 0 in �\D∗},

where 0 < ε < 1. We will work with mappings of the form m := I + μ, where I : RN �→ RN

is the identity and μ ∈ Wε . For any μ ∈ Wε , I + μ is obviously bijective, (I + μ)−1 ∈
W 1,∞(RN ; RN) (see [10], p. 193) and

(I + μ)(D) ∈D ∀D ∈ D.

Also, the corresponding functions Jac(m), M and M−1 satisfy

Jac(m) ≥ C(ε) > 0, ‖M‖L∞ + ‖M−1‖L∞ ≤ C(ε). (19)

Let D0 ∈ D and μ ∈ Wε be given, let us set again m := I + μ and D1 = m(D0) and let us 
consider the solution (y1, z1) ∈ H 1(�\D1

)2 to

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−	y1 + ay1 + bz1 = 0 in �\D1
,

−	z1 + Ay1 + Bz1 = 0 in �\D1
,

y1 = ϕ, z1 = ψ on ∂�,

y1 = 0, z1 = 0 on ∂D1.

Since (ϕ, ψ) ∈ H 1/2(∂�)2, there exists (ϕ1, ψ1) ∈ H 1(�)2 such that

(ϕ1,ψ1) = 0 in D∗ and (ϕ1,ψ1) = (ϕ,ψ) on ∂�.

Thus, we can write (y1, z1) = (u1 + ϕ1, v1 + ψ1), where (u1, v1) is the solution to

⎧⎪⎪⎨
⎪⎪⎩

−	u1 + au1 + bv1 = F1 in �\D1
,

−	v1 + Au1 + Bv1 = G1 in �\D1
,

u1 = 0, v1 = 0 on ∂� ∪ ∂D1

(20)

and
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F1 = 	ϕ1 − aϕ1 − bψ1, G1 = 	ψ1 − Aϕ1 − Bψ1.

We see from (20) that for any (w, p) ∈ H 1
0 (�\D1

)2 the following holds:

∫
�\D1

(∇u1 · ∇w + ∇v1 · ∇p) dy +
∫

�\D1

(au1w + bv1w + Au1p + Bv1p) dy

= −
∫

�\D1

(∇ϕ1 · ∇w + ∇ψ1 · ∇p) dy −
∫

�\D1

(aϕ1w + bψ1w + Aϕ1p + Bψ1p) dy.

(21)

Let us introduce the functions:

u0 := m̃(u1), v0 := m̃(u1), ϕ0 := m̃(ϕ1), ψ0 := m̃(ψ1),

where m̃ is the isomorphism from H 1
0 (�\D1

)2 onto H 1
0 (�\D0

)2 induced by m, that is,

m̃(f ) := f ◦ m ∀f ∈ H 1
0 (�\D1

)2.

Observe that, since (ϕ1, ψ1) = 0 in D∗ and m = I in �\D∗
, we have (ϕ0, ψ0) = (ϕ1, ψ1) in �. 

In other words, (ϕ1, ψ1) is invariant under the isomorphism m̃ associated to m.
It can be easily shown that solving the variational problem (21) is equivalent to find (u0, v0) ∈

H 1
0 (�\D0

)2 such that

∫
�\D0

(M∇u0·M∇z+M∇v0·M∇q) Jac(m)dx+
∫

�\D0

(au0z+bv0z+Au0q+Bv0q) Jac(m)dx

= −
∫

�\D0

(M∇ϕ0·∇z+M∇ψ0·∇q) Jac(m)dx−
∫

�\D0

(aϕ0z+bψ0z+Aϕ0q+Bψ0q) Jac(m)dx

for all (z, q) ∈ H 1
0 (�\D0

) that is, a solution to the system:

⎧⎪⎪⎨
⎪⎪⎩

−∇ · (Jac(m)M∗M∇u0) + (au0 + bv0) Jac(m) = F0 in �\D0
,

−∇ · (Jac(m)M∗M∇v0) + (Au0 + Bv0) Jac(m) = G0 in �\D0
,

u0 = 0, v0 = 0 in ∂� ∪ ∂D0,

(22)

where (F0, G0) ∈ H−1(�\D0
)2 is given by

F0 = ∇ · (Jac(m)M∗M∇ϕ0) − (aϕ0 + bψ0) Jac(m),

G = ∇ · (Jac(m)M∗M∇ψ ) − (Aϕ + Bψ ) Jac(m).
0 0 0 0
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For convenience, we will rewrite (22) in the abridged form

{
T (u0, v0) = (F0,G0) in �\D0

,

u0 = 0, v0 = 0 in ∂� ∪ ∂D0,
(23)

where the notation is self-explanatory.

Lemma 2. The linear operator T : H 1
0 (�\D0

)2 �→ H−1(�\D0
)2 is an isomorphism. Further-

more, if ‖ · ‖L0 denotes the usual norm in L(H 1
0 (�\D0

)2; H−1(�\D0
)2), one has

‖T ‖L0 + ‖T −1‖L0 ≤ C(ε).

Proof. It is easy to see that T ∈ L(H 1
0 (�\D0

)2; H−1(�\D0
)2) and ‖T ‖L0 ≤ C(ε). On the other 

hand, the bilinear form τ(· , ·), given by

τ( (u, v), (z, q) ) := 〈T (u, v), (z, q)〉H−1,H 1
0

∀(u, v), (z, q) ∈ H 1
0 (�\D0

)2,

is coercive in view of (19). Indeed, one has

〈T (u, v), (u, v)〉H−1,H 1
0

=
∫

�\D0

(|M∇u|2 + |M∇v|2) Jac(m)dx

+
∫

�\D0

(a|u|2 + B|v|2 + (b + A)uv)Jac(m)dx

≥ C(ε)‖(u, v)‖H 1
0

for all (u, v) ∈ H 1
0 (�\D0

)2.
Therefore, from Lax-Milgram’s Lemma, we get the result. �

Theorem 5. The mapping μ �→ (u0, v0) is analytic in a neighborhood of the origin in Wε .

Proof. We note first that (F0, G0) does not depend of μ, because (ϕ0, ψ0) = 0 where μ �= 0. 
Then, since the mapping T is a isomorphism we have by (23) that

(u0, v0) = T −1(F0,G0).

From the results in [10,15], we know that the mapping μ �→ T is analytic in a neighborhood
of 0. Consequently, this is also the case for μ �→ (u0, v0) and the proof is done. �
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3.2. Proof of Theorem 2: stability

Let D0 ∈ D and μ ∈ Wε be given, with μ �= 0 in D0. Recall that, in Theorem 2, for any 
σ ∈ (−1, 1), we have set mσ := I + σμ and Dσ := mσ (D0) and (yσ , zσ ) ∈ H 1(�\Dσ )2 is the 
solution to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−	yσ + ayσ + bzσ = 0 in �\Dσ ,

−	zσ + Ayσ + Bzσ = 0 in �\Dσ ,

yσ = ϕ, zσ = ψ on ∂�,

yσ = 0, zσ = 0 on ∂Dσ .

(24)

We will argue as in [1]:

1. First, it follows from Theorem 5 and the fact that μ ≡ 0 in �\D∗
that there exists σ0 > 0

such that the mapping in (5) is well defined and analytic in (−σ0, σ0). Hence, there exist 
F1, F2, . . . in H−1/2(γ )2 such that

(
∂yσ

∂n
,
∂zσ

∂n

)
−

(
∂y0

∂n
,
∂z0

∂n

)
=

∞∑
j=1

σ jFj ∀σ ∈ (−σ0, σ0), (25)

where the series converges in H−1/2(γ )2.
2. Now, let us assume that mσ (D0) �= D0 for some σ ∈ (−σ0, σ0). In view of Theorem 1, not 

all the Fj can be zero. Let k be the smallest j such that Fj �= 0. It is then clear that there 
exists σ∗ ∈ (0, σ0) such that

∥∥∥∥∥∥
∞∑

j=k+1

σ jFj

∥∥∥∥∥∥
H−1/2

≤ 1

2
|σ |k‖Fk‖H−1/2 ∀σ ∈ (−σ∗, σ∗).

Accordingly, for these σ , one must also have

|σ |k‖Fk‖H−1/2 ≤
∥∥∥∥
(

∂yσ

∂n
,
∂zσ

∂n

)
−

(
∂y0

∂n
,
∂z0

∂n

)∥∥∥∥
H−1/2

+ 1

2
|σ |k‖Fk‖H−1/2 ,

which allows to achieve the proof.

4. Additional comments and questions

4.1. A similar inverse problem with internal observation

Let ω ⊂⊂ �\D∗
be a nonempty open set. Consider the following geometric inverse problem, 

where the observation is performed on ω:

Given (ϕ, ψ) ∈ H 1/2(∂�) × H 1/2(∂�) and α ∈ H 1(ω), find a set D ∈ D such that the 
solution (y, z) to the linear system (2) satisfies the following additional condition:
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y
∣∣
ω

= α. (26)

We have the following uniqueness result:

Theorem 6. Assume that (ϕ, ψ) ∈ H 1/2(∂�) × H 1/2(∂�) is nonzero and suppose that there 
exists a nonempty open set ω0 ⊂ ω such that b �= 0 a.e. in ω0. Let (yi, zi) be the unique weak 
solution to (2) with D replaced by Di for i = 0, 1 and let αi be given by the corresponding 
equality (26). Then, one has:

α0 = α1 =⇒ D0 = D1.

Proof. The proof is very similar to the proof of Theorem 1.
As before, we can consider the open sets D := D0 ∪ D1, O0 := �\D and the unique con-

nected component O of O0 such that ∂� ⊂ ∂O . Again, let us set y := y0 −y1 and z := z0 −z1 in 
O . Then, using the facts that α0 = α1 and b �= 0 a.e. in ω0, we have that (y, z) ∈ H 1(O) ×H 1(O)

and satisfies

{
−	y + ay + bz = 0 in O,

−	z + Ay + Bz = 0 in O

and

y = z = 0 in ω0.

Consequently, Theorem 3 guarantees that (y, z) = (0, 0) in O . Arguing as in the proof of 
Theorem 1, we deduce that D0\D1

and D1\D0
are empty sets and, consequently, D0 = D1. �

We also have a stability result similar to Theorem 2. Thus, let us fix D0 ∈D and μ ∈ Wε with 
μ �= 0 in D0, let us take mσ = I +σμ and Dσ = mσ (D0) and let (yσ , zσ ) be the solution to (24). 
The following holds:

Theorem 7. Under the assumptions in Theorem 6 on (ϕ, ψ) and b, there exists σ0 > 0 with the 
following properties:

1. The mapping

σ �→ yσ

∣∣
ω

(27)

is well defined and analytic in (−σ0, σ0), with values in L2(ω).
2. Either mσ (D0) = D0 for all σ ∈ (−σ0, σ0) (and then the mapping in (27) is constant), or 

there exist σ∗ ∈ (0, σ0), C > 0 and k ≥ 1 (an integer) such that

∥∥(yσ − y0)
∣∣ ∥∥

2 ≥ C|σ |k ∀σ ∈ (−σ∗, σ∗).
ω L
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Proof. Again, the proof is very similar to the proof of stability in the boundary observation case 
(Theorem 2). In fact, the unique difference appears in the last part of the argument, when we 
write

(yσ − y0)
∣∣
ω

=
∞∑

j=1

σ jFj ∀σ ∈ (−σ0, σ0),

instead of (25).
For brevity, we omit the details. �

Remark 3. Recall that, in the case of problem (2)–(3), we need two boundary observations, the 
normal derivatives of y and z on γ , to deduce uniqueness and stability. The last two results 
show that, with internal observations, this holds with the information supplied by just one vari-
able. �
4.2. A geometric inverse problem for a parabolic system

Let us present some ideas that allow to extend Theorems 1 and 6 to time-dependent parabolic 
systems. For brevity, we will only consider the boundary observation case. Thus, let T > 0 be 
given and let us consider the following inverse problem:

Given (ϕ, ψ) and (α, β) in appropriate spaces and a nonempty open set γ ⊂ ∂�, find an 
open set D ∈ D such that the solution (y, z) to the linear evolution system:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yt − 	y + ay + bz = 0 in �\D × (0, T ),

zt − 	z + Ay + Bz = 0 in �\D × (0, T ),

y = ϕ, z = ψ on ∂� × (0, T ),

y = 0, z = 0 on ∂D × (0, T ),

y(· ,0) = 0, z(· ,0) = 0 in �\D,

(28)

satisfies the additional conditions:

∂y

∂n

∣∣∣∣
γ×(0,T )

= α and
∂z

∂n

∣∣∣∣
γ×(0,T )

= β. (29)

If one assumes that (ϕ, ψ) �≡ (0, 0), then arguments similar to those in the proof of Theorem 1
can be used to deduce uniqueness for (28)–(29).

Indeed, the first step is to deduce a unique continuation property:

Proposition 1. Let G ⊂ RN be a bounded domain whose boundary is of class W 2,∞ and let us 
set Q := G × (0, T ). Suppose that a, b, A, B ∈ L∞(Q) and let O be a nonempty open subset of 
Q. Then, any solution (y, z) ∈ L2(0, T ; H 2(G) × H 2(G)) to

{
yt − 	y + ay + bz = 0 in Q,

zt − 	z + Ay + Bz = 0 in Q,
(30)
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satisfies the following property:

(y, z) = (0,0) in O =⇒ (y, z) = (0,0) in C(O),

where C(O) is the horizontal component of O , defined by

C(O) := {(x, t) ∈ Q : ∃x0 such that (x0, t) ∈ O}.

The proof of this result is similar to the proof of Theorem 1.4 in [9].

Remark 4. Let �0 be an open nonempty subset of ∂� × (0, T ). Then, any solution (y, z) ∈
L2(0, T ; H 2(G) × H 2(G)) to (30) satisfies the following property:

(y, z) = (0,0) and

(
∂y

∂n
,
∂z

∂n

)
= (0,0) on �0 =⇒ (y, z) = (0,0) in C(�0).

Indeed, take (x0, t0) ∈ �0. Since �0 is open in ∂� × (0, T ), there exist constants r, δ > 0
such that (Br(x0) ∩ ∂�) × (t0 − δ, t0 + δ) ⊂ �0. Let us denote by (ỹ, ̃z) the extension by zero 
of (y, z) to O := (B(x0; r) ∩ �c) × (t0 − δ, t0 + δ). Then, (ỹ, ̃z) ∈ L2(0, T ; H 2(G) × H 2(G)) is 
a solution to (30) in (B(x0; r) ∪ �) × (t0 − δ, t0 + δ) and (ỹ, ̃z) = (0, 0) in O . Consequently, 
by Proposition 1, (ỹ, ̃z) vanishes in C(O). Since (x0, t0) is arbitrary in �0, we get the re-
sult. �

Let us now achieve the proof of uniqueness for the geometric inverse problem (28)-(29). To 
this end, let D0 and D1 be two open sets in D and let (yi, zi) be the solution to (28) with D = Di . 
Let us also assume that

(
∂y0

∂n
,
∂z0

∂n

)
=

(
∂y1

∂n
,
∂z1

∂n

)
on γ × (0, T ).

As before, by introducing the open sets D := D0 ∪ D1, O0 := �\D and O , with y := y0 − y1

and z := z0 − z1, we have

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

yt − 	y + ay + bz = 0 in O × (0, T ),

zt − 	z + Ay + Bz = 0 in O × (0, T ),

y = 0, z = 0 on ∂� × (0, T ),

∂y

∂n
= 0,

∂z

∂n
= 0 on γ × (0, T ).

From Remark 4, we find that (y, z) = (0, 0) in O × (0, T ).

We can prove that D1\D0
is the empty set. Indeed, suppose the contrary, i.e. that D1\D0

is 
nonempty. Let us introduce the open set D2 = D1 ∪ ((�\D0 ∩ (�\O)). As before, using the fact 
that (y0, z0) = (y1, z1) in O × (0, T ), we see that
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

y0
t − 	y0 + ay0 + bz0 = 0 in (D2\D0

) × (0, T ),

z0
t − 	z0 + Ay0 + Bz0 = 0 in (D2\D0

) × (0, T ),

y0 = z0 = 0 on ∂(D2\D0
) × (0, T ),

y0(· ,0) = z0(· ,0) = 0 in D2\D0
.

(31)

Consequently, thanks to the uniqueness of solution to (31) and Proposition 1, we must have 
(y0, z0) = (0, 0) in (�\D0

) × (0, T ), which implies (ϕ, ψ) ≡ (0, 0), an absurd. This proves that 
D1 ⊂ D0.

Similarly, we can also prove that D0 ⊂ D1 and, therefore, D0 = D1.

Remark 5. If, in (28), we impose nonzero initial conditions on y and/or z, the situation is much 
more complex. In particular, the previous argument does not work. A detailed analysis will be 
the objective of a forthcoming paper. �
Remark 6. Notice that, in this time-dependent case, no assumption of the kind (1) is needed. �

Stability results like Theorems 2 and 7 can also be established in this framework. We will not 
give the details for brevity, since the arguments are not very different and can easily be completed 
by the reader.

4.3. Additional comments on stability

In the context of the stability problem, we can adopt another (more geometrical) viewpoint. 
To clarify the situation, let us consider the scalar systems

⎧⎪⎨
⎪⎩

−	yi = 0 in �\Di,

y = ϕi on ∂�,

y = 0 on ∂Di,

where �, is as before, D0 and D1 are convex and have nonempty intersection and the following 
regularity properties hold:

ϕi ∈ C2(∂�), α̃i := ∂yi

∂n
∈ C1(γ ), yi ∈ C2(� \ Di).

Let us assume that { ‖ϕi‖C0(∂�) ≥ m > 0, ‖ϕ0 − ϕ1‖C2(∂�) ≤ ε

‖α̃0 − α̃1‖C1(γ ) ≤ ε, ‖yi‖C2(�\Di) ≤ M.

Then, it can be proved that the Haussdorf distance dH(D0, D1) satisfies the estimate

dH (D0,D1) ≤ C(
log(log 1 )

)2 ,
ε
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Fig. 2. The deformations of D.

where C only depends on �, M and m; see [4].
The proof is based on the following well-posedness results, where C is as above:

• Let us set again G = � \ D0 ∪ D1 and let us assume that

|y0(x̂) − y1(x̂)| = max
x∈G

|y0(x) − y1(x)|.

Then, under the previous hypotheses, one has |y0(x̂) − y1(x̂)| ≤ C
(
log 1

ε

)−1
.

• Assume that ‖y0 − y1‖C0(G) ≤ δ. Then dH (D0, D1) ≤ C
(
log 1

δ

)−2
.

Under additional properties for the ϕi , α̃i and yi , the previous estimates can be improved; 
see [4] for more details.

It would be interesting to extend this approach to the inverse problems (2), (3) and (2), (26). 
At present, to our knowledge, whether or not this is possible is an open question.

4.4. Reconstruction

As already said, reconstruction algorithms for the solution of problems of the kind (2)–(3)
have been considered in several papers. In all them, the main idea is to reduce to finite di-
mension and reformulate the search of the unknown D as a constrained (maybe numerically 
ill-conditioned) extremal problem. Then, usual gradient, quasi-Newton or even Newton methods 
can be used to compute approximate solutions; see for instance [1–3].

Let us present in this section a different approach that relies on the domain variation tech-
niques introduced in [13–15].

The main idea is to describe how the observation depends on small perturbations of D as 
explicitly as possible. Thus, for each μ ∈Wε , let us set

D + μ :=
{
z ∈RNz : x + μ(x), x ∈ D

}

and let us recall that, whenever D ∈ D, we also have D + μ ∈ D as indicated in Fig. 2.
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Let us assume that a, b, A, B ∈ L∞(�) satisfy (1) and we can consider the perturbed system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−	yμ + ayμ + bzμ = 0 in �\(D + μ),

−	zμ + Ayμ + Bzμ = 0 in �\(D + μ),

yμ = ϕ, zμ = ψ on ∂�,

yμ = 0, zμ = 0 on ∂(D + μ).

Assuming appropriate regularity hypothesis on D and (ϕ, ψ), it can be proved that

(
∂yμ

∂n
,
∂zμ

∂n

)
−

(
∂y

∂n
,
∂z

∂n

)
=

(
∂y′

μ

∂n
,
∂z′

μ

∂n

)
+ o(μ) on γ,

where (y′
μ, z′

μ) is the unique solution to the linear system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−	y′
μ + ay′

μ + bz′
μ = 0 in �\D,

−	z′
μ + Ay′

μ + Bz′
μ = 0 in �\D,

y′
μ = 0, z′

μ = 0 on ∂�,

y′
μ = −(μ · n)

∂y

∂n
, z′

μ = −(μ · n)
∂z

∂n
on ∂D,

and

o(μ)

‖μ‖W 2,∞
→ 0 as ‖μ‖W 2,∞ → 0.

Moreover, for any (η, θ) ∈ C2(γ ), one has

∫
γ

[(
∂yμ

∂n
− ∂y

∂n

)
η +

(
∂zμ

∂n
− ∂z

∂n

)
θ

]
d� = −

∫
∂D

(μ · n)

(
∂y

∂n

∂η

∂n
+ ∂z

∂n

∂θ

∂n

)
d� + o(μ),

(32)
where (η, θ) is the solution to the adjoint system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−	η + aη + Aθ = 0 in �\D,

−	θ + bη + Bθ = 0 in �\D,

η = η1γ , θ = θ1γ on ∂�,

η = 0, θ = 0 on ∂D.

(33)

Let us see how, starting from an already computed candidate D̃ to the solution of the geometric 
inverse problem (2)–(3), we can compute a better candidate of the form D̃ + μ.

Let M be a finite dimensional subspace of L∞(∂D̃) and let {f1, . . . , fp} be a basis of M. 
We will take μ such that μ · n|

∂D̃
∈ M. Then, we can write

μ · n|
∂D̃

=
p∑

λifi
i=1
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for some λi ∈R to be determined.
Now, let us introduce p linearly independent functions (ηi, θ

i
) ∈ C2(γ ). Using (32), we ob-

tain

∫
γ

[(
∂yμ

∂n
− α̃

)
ηj 1γ +

(
∂zμ

∂n
− β̃

)
θ

j
1γ

]
d� = −

p∑
i=1

Kijλi + o(μ),

where

Kij :=
∫

∂D̃

fi

(
∂ỹ

∂n

∂ηj

∂n
+ ∂z̃

∂n

∂θj

∂n

)
d�,

we have denoted by (ηj , θj ) is the solution to (33) corresponding to (ηj , θ
j
) and (α̃, β̃) is the 

observation corresponding to (ỹ, ̃z). We thus see that an appropriate strategy to compute the 
coefficients λi is to solve, if possible, the finite-dimensional algebraic system

p∑
i=1

Kijλi = −
∫
γ

[
(α − α̃)ηj + (β − β̃)θ

j
]
d�, 1 ≤ j ≤ p.

A rigorous justification of the main steps presented before, together with a detailed analysis 
of the reconstruction method, will be the subject of a forthcoming work.

Remark 7. Let us devote some words to other reconstruction issues. A natural way to compute 
a sequence of open sets Dk such that, in some sense, Dk converges to a solution to the inverse 
problem is the following:

1. Reformulate (2)-(3) as an extremal (direct) problem

⎧⎪⎨
⎪⎩

Minimize
1

2

∥∥∥∥
(

∂y

∂n
,
∂z

∂n

)
− (α,β)

∥∥∥∥
2

H−1/2(γ )2

Subject to y = yD, z = zD, D ∈ Dad .

(34)

Here, Dad is an appropriated family of admissible domains and, for each D ∈ Dad , (yD, zD)

is the unique solution to (2). For practical purposes, it is of course interesting to take, for 
instance, classes Dad similar to those in Theorem 2.

2. Try to solve (34) by applying an iterative algorithm. For example, if the domains in Dad

are parametrized (as in Theorem 2), it makes sense to apply constrained descent techniques. 
This approach has been chosen in a lot of references up to date in connection with many 
different problems. �
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