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Abstract. In this paper, we resolve several long-standing issues dealing with optimal pointwise
in time error bounds for proper orthogonal decomposition (POD) reduced order modeling of the heat
equation. In particular, we study the role played by difference quotients (DQs) in obtaining reduced
order model (ROM) error bounds that are optimal with respect to both the time discretization
error and the ROM discretization error. When the DQs are not used, we prove that both the POD
projection error and the ROM error are suboptimal. When the DQs are used, we prove that both the
POD projection error and the ROM error are optimal. The numerical results for the heat equation
support the theoretical results.
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1. Introduction. In this paper, we consider the one-dimensional heat equation

ut  - \nu uxx = f ,(1.1)

where the spatial domain is [0, 1], the time domain is [0, T ], and \nu is the diffusion
coefficient. For simplicity, we consider homogeneous Dirichlet boundary conditions
u(0, t) = u(1, t) = 0 for t > 0 and given initial conditions u(x, 0) = u0(x).

We also consider projection reduced order models (ROMs) for the heat equation.
Specifically, we consider the proper orthogonal decomposition (POD) [23], which can
be summarized as follows: (i) The full order model (FOM) for (1.1) is run for selected
parameter values and/or time intervals to generate a set of snapshots \{ u0, u1, . . . , uN\} ;
(ii) these snapshots and the singular value decomposition are used to construct an
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2164 KOC, RUBINO, SCHNEIER, SINGLER, AND ILIESCU

orthonormal ROM basis \{ \varphi 1, . . . , \varphi s\} for a Hilbert space \scrH , where s is the rank of
the snapshot matrix; (iii) the ROM approximation

u(x, tn) \approx un
r (x) =

r\sum 
j=1

un
j \varphi j(x) , n = 1, . . . , N ,(1.2)

where r < s is the ROM dimension, is used together with a Galerkin projection and a
time discretization to yield a system of equations for un

j , which are the sought ROM
coefficients.

Definition 1.1 (generic constant C). For clarity, in what follows, we will denote
by C a generic positive constant that may vary from one line to another but which is
always independent of the discretization parameters.

In the pioneering paper [34], Kunisch and Volkwein laid the foundations of nu-
merical analysis for POD (see, e.g., [35, 40, 44] for relevant work). In particular, for
the ROM error

en(x) = u(x, tn) - un
r (x) , n = 1, . . . , N ,(1.3)

they proved the following error bound (see Theorem 7 in [34]):

1

N + 1

N\sum 
n=1

\| en\| 2L2 \leq C
\Bigl( 
time discretization error + ROM discretization error

\Bigr) 
.(1.4)

This estimate was later extended to include the spatial discretization error and a
pointwise in time estimate in [29] (see, e.g., [33, 44] for alternative pointwise in time
estimates), i.e.,

\| en\| L2 \leq C
\Bigl( 
space discretization error + time discretization error

+ROM discretization error
\Bigr) 
.(1.5)

Estimate (1.5) relied on an assumption about the POD projection error, which
roughly says that the POD projection error at each time step is of the same or-
der as the POD projection error at the remaining time steps. This assumption has
since been generally used in proving pointwise in time error bounds for parabolic
equations.

We emphasize that the error bound (1.5) includes all three ROM error sources:
(i) the space discretization error, which results from the spatial discretization of the
heat equation (1.1) with classical numerical methods, e.g., finite elements (FEs); (ii)
the time discretization error, which results from the time discretization of the heat
equation (1.1) with classical numerical methods, e.g., Euler or Crank--Nicolson (CN)
methods; and (iii) the ROM discretization error, which results from the truncation
in (1.2).

Pointwise error bounds like (1.5) without the ROM discretization error are stan-
dard in the numerical analysis of classical discretization methods for the heat equation
(see, e.g., [51]). Pointwise errors bounds such as (1.5) are desirable since they elimi-
nate the possibility of an error ``spike"" at a certain point in time, which in principle is
allowed with a bound of the form (1.4). Our goal here is to better understand these
pointwise error bounds in the context of POD reduced order modeling.
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OPTIMAL ERRORS AND DIFFERENCE QUOTIENTS FOR POD 2165

A fundamental issue in the POD numerical analysis is the optimality of the error
bound (1.5). We emphasize that there are three types of optimality, corresponding
to the three types of discretization levels: (i) space discretization optimality, (ii) time
discretization optimality, and (iii) ROM discretization optimality. We discuss each
optimality type below.

Space discretization optimality. For simplicity, we consider an FE spatial dis-
cretization. We emphasize, however, that other standard numerical methods (e.g.,
finite difference, spectral, or spectral element methods) could be considered. An error
bound is optimal with respect to the spatial discretization if the error scalings with
respect to the spatial discretization parameters only are of the following form

\| en\| L2 = \scrO (hm+1) ,(1.6)

\| \nabla en\| L2 = \scrO (hm) ,(1.7)

where h is the size of the FE mesh and m is the FE order. Proving estimates that
are optimal with respect to the spatial discretization is relatively straightforward (see,
e.g., [14, 27, 29]), since it follows the standard FE numerical analysis [51]. Thus, the
spatial discretization error component is generally ignored in POD numerical analysis
papers (see, e.g., [34, 54]). To simplify the presentation, we will not discuss the
spatial discretization optimality in this paper. We note, however, that our results
can be extended in a straightforward manner to include the spatial discretization
optimality.

Time discretization optimality. An error bound is optimal with respect to the time
discretization if the error scalings with respect to the time discretization parameters
only are of the following form:

\| en\| L2 = \scrO (\Delta tk) ,(1.8)

where \Delta t is the time step size used in the time discretization, and k is the time
discretization order (e.g., k = 1 for Euler's method, and k = 2 for CN).

The importance of the time discretization optimality was recognized early on. In
Remark 1 of [34], Kunisch and Volkwein proposed the difference quotients (DQs) (i.e.,
scaled snapshots of the form (un - un - 1)/\Delta t, n = 1, . . . , N) as a means to achieve time
discretization optimality. Specifically, on page 121 of [34], the authors noted that, in
the DQ case (i.e., if the DQs are used to build the POD basis), time discretization
optimal error bounds of the type (1.8) follow. However, in the noDQ case (i.e., if the
DQs are not used), the norm squared error bound has a suboptimal (\Delta t - 2) factor.

A major development in the study of POD optimality was made by Chapelle,
Gariah, and Sainte-Marie in [5]. The authors showed that using the L2 projection
instead of the Ritz projection used in [34] (which is standard in FE numerical analy-
sis [51, 55]) avoids the difficulties posed by the POD approximation of the time deriv-
ative. Pointwise error bounds were not considered in [5]; however, it can be checked
that using the L2 projection eliminates the need to use DQs to achieve time discretiza-
tion optimality if the pointwise POD projection error assumption mentioned earlier
is made.

ROM discretization optimality. The first discussion of the ROM discretization
optimality was presented in [28]. In that work, a pointwise in time error bound was
said to be optimal with respect to the ROM discretization if the error scalings with
respect to the ROM discretization parameters only take one of the following forms:
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2166 KOC, RUBINO, SCHNEIER, SINGLER, AND ILIESCU

\| en\| 2L2 = \scrO 

\Biggl( 
1

N + 1

N\sum 
n=0

\| \eta proj(tn)\| 2L2

\Biggr) 
= \scrO 

\Biggl( 
s\sum 

i=r+1

\lambda i

\Biggr) 
,(1.9)

\| \nabla en\| 2L2 = \scrO 

\Biggl( 
1

N + 1

N\sum 
n=0

\| \nabla \eta proj(tn)\| 2L2

\Biggr) 
= \scrO 

\Biggl( 
s\sum 

i=r+1

\lambda i\| \nabla \varphi i\| 2L2

\Biggr) 
,(1.10)

where \eta proj is the POD projection error, which is defined as

\eta proj(x, t) = u(x, t) - 
r\sum 

i=1

\Bigl( 
u(\cdot , t), \varphi i(\cdot )

\Bigr) 
\scrH 
\varphi i(x) ,(1.11)

and \lambda i and \varphi i are POD eigenvalues and modes. The first significant development
in the study of POD optimality was made in [28], where it was shown (utilizing the
technique from [5]) that not using the DQs yields pointwise error bounds that are
suboptimal with respect to the ROM discretization. (We note that the optimality
with respect to the time discretization was not considered in [28].) Specifically, in the
noDQ case, it was shown in [28] that

\| en\| 2L2 = \scrO 

\Biggl( 
1

N + 1

N\sum 
n=0

\| \nabla \eta proj(tn)\| 2L2

\Biggr) 
= \scrO 

\Biggl( 
s\sum 

i=r+1

\lambda i\| \nabla \varphi i\| 2L2

\Biggr) 
,(1.12)

which is suboptimal with respect to the ROM discretization. Furthermore, in the DQ
case, it was shown in [28] that

\| en\| 2L2 = \scrO 

\Biggl( 
1

N + 1

N\sum 
n=0

\| \eta proj(tn)\| 2L2

\Biggr) 
= \scrO 

\Biggl( 
s\sum 

i=r+1

\lambda i

\Biggr) 
,(1.13)

which is optimal with respect to the ROM discretization. However, two assumptions
on the POD projection errors were made in order to establish these results.

To summarize, the current state of the art in POD optimality suggests that

DQs are needed for optimal POD error bounds.(1.14)

We emphasize that, to our knowledge, (1.14) has never been proved. Indeed, [34]
focused on the time discretization optimality but ignored the ROM discretization op-
timality. Specifically, the authors proved that using DQs yields error bounds that are
optimal with respect to the time discretization, but not necessarily with respect to
the ROM discretization. In [5], the authors considered the noDQ case and developed
a framework that yields error bounds that are optimal with respect to the time dis-
cretization, but not necessarily with respect to the ROM discretization. A completely
different approach was taken in [28], where the focus was on ROM discretization op-
timality, without considering the time discretization optimality. Specifically, in [28] it
was shown both theoretically and numerically that in the noDQ case the error bounds
are suboptimal with respect to the ROM discretization error, whereas in the DQ case
the error bounds are optimal. The time discretization optimality was ignored in [28].

In this paper, we prove (1.14). Specifically, we make three main contributions.
First, in the noDQ case, we prove that the POD error bound is suboptimal not

only with respect to the ROM discretization (as shown in [28]) but also with respect
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OPTIMAL ERRORS AND DIFFERENCE QUOTIENTS FOR POD 2167

to the time discretization. Specifically, we show that the pointwise POD projection
error assumption mentioned earlier can fail and the scaling of the error bound (1.12)
with respect to the ROM discretization can degrade to

\| en\| 2L2 = \scrO 

\Biggl( 
\Delta t - 1

s\sum 
i=r+1

\lambda i

\Biggr) 
+\scrO 

\Biggl( 
s\sum 

i=r+1

\lambda i\| \nabla \varphi i\| 2L2

\Biggr) 
.(1.15)

In particular, we construct two analytical examples, and we prove that they sat-
isfy (1.15) in the noDQ case. We note that the bound (1.15) is a significant improve-
ment over the bound (1.12) proved in [28], since the latter did not display the time
discretization suboptimality.

Our second main contribution is that we prove new pointwise in time error bounds
in the DQ case, and we do not require any of the assumptions used in [28] to establish
similar pointwise bounds. All of these error bounds are optimal with respect to the
time discretization. One key component of our analysis is that we prove that an
assumption from [28, 29] concerning pointwise in time behavior of POD projection
errors is automatically satisfied in the DQ case.

Our third main contribution is that we revisit the definition of ROM discretization
error optimality, introduce a new stronger notion of optimality, and show that all of
the pointwise in time error bounds in the DQ case are optimal in at least one sense.
Both pointwise in time error bounds using the H1

0 norm are optimal in the new
stronger sense; the pointwise in time bounds using the L2 norm can be optimal in
either sense. We note that to prove the stronger optimality of the L2 error bounds,
we do need a uniform boundedness assumption of the type made in [28].

We emphasize that we do not attempt here to prove error bounds for the POD
ROMwhen the parameter \nu or the initial data are different from those used to generate
the POD basis. As in [34] and many other POD numerical analysis works, our main
goal here is to attempt to understand and begin to explain the approximation errors
of POD ROMs for PDEs. The much more challenging case of analyzing errors in
the POD ROM with variations in initial data and parameters is left to be explored
elsewhere.

We also note that the analysis we perform is focused on a priori error estimates.
For a posteriori error estimates extensive work has been conducted within the reduced
basis community for parameterized PDEs (see, e.g., [17, 21, 45, 52, 53]). We also
mention that a popular approach is to combine the reduced basis method in parameter
space with POD in time [12]. Whether or not the results in this paper could be used
to improve this approach is not explored within this paper.

DQs in applications. The focus of this paper is on the role played by DQs in the
POD numerical analysis. We emphasize, however, that DQs are also widely used in
practical applications.

One of the most important uses of DQs in practice is in hyperreduction methods
for ROMs of nonlinear systems of the form y\prime = f(t, y). Hyperreduction methods [57]
significantly decrease the computational cost of the nonlinear ROM operator eval-
uations, which can be prohibitive in realistic applications. Popular hyperreduction
methods (e.g., the empirical interpolation method (EIM) [3] and its discrete coun-
terpart, the discrete empirical interpolation method (DEIM) [6]), use the nonlinear
snapshots f(t, y) to construct accurate approximations of the nonlinear ROM opera-
tors. As noted on page 48 in [6], since f(t, y) = y\prime and (yn+1  - yn)/\Delta t \approx y\prime , using
nonlinear snapshots is similar to including the DQs. The DQs' connection to nonlinear
snapshots was also used in [7] to develop the solution-based nonlinear subspace (SNS)
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2168 KOC, RUBINO, SCHNEIER, SINGLER, AND ILIESCU

method as an efficient alternative to classical hyperreduction techniques. The SNS
method was used in the reduced order modeling of the nonlinear diffusion equation
and the parameterized quasi-one-dimensional Euler equation.

The DQs were explicitly used in various practical applications. For example,
the DQs were utilized to develop data-driven ROMs for turbulent flows, in which
the eddy viscosity field is a function of the time history of the velocity field (see
section 3.3 in [22]). The DQs were also used in the reduced order modeling of the
FitzHugh--Nagumo equations, which are used to model the dynamics of a spiking
neuron (see section 4 in [33]). Furthermore, the DQs were employed to construct
ROMs for the control of laser surface hardening [24], for feedback control of vari-
ous PDEs [38], for partial integro-differential equations arising in financial applica-
tions [47], for subdiffusion equations [31], for convection-diffusion equations [59], for
wave equations [20, 59], and for flow between offset cylinders and lid driven cavity
flows [32].

In this paper, we use DQs with respect to time to obtain optimal pointwise in time
error estimates. A different yet related approach was utilized in, e.g., [4, 30, 60], where
DQs with respect to system parameters and initial conditions were used to improve the
predictive capabilities of reduced basis methods [21, 43] for parameterized problems.
In this setting, the noDQ case is referred to as the Lagrange approach, whereas the
DQ case is referred to as the Hermite approach [30]. The error sensitivity with respect
to parameters was investigated in, e.g., [25, 44].

The rest of the paper is organized as follows. In section 2, we describe the
POD construction in the noDQ and DQ cases. In section 3, we give more detail
about the previously described POD pointwise projection error assumption, show
using examples that it can fail in the noDQ case, and prove that it is always satisfied
in the DQ case. These results allow us to complete the POD ROM error analysis in
section 4. For the first two main contributions, in section 5 we illustrate numerically
the theoretical results. Specifically, for the heat equation (1.1) and both analytical
examples, we show the following: (i) in the noDQ case, the error scales as in (1.15)
(i.e., is suboptimal), and (ii) in the DQ case, the error scales according to the new
error bounds. Finally, in section 6, we present our conclusions and future research
directions.

2. Proper orthogonal decomposition. In this section we introduce two dif-
ferent approaches for constructing our reduced basis by using the POD [23, 54]. Sup-
pose we have a collection of snapshots U = \{ un\} Nn=0 contained in a real Hilbert space
\scrH . In the POD numerical analysis, a typical assumption (see, e.g., [34, 54]) is that
each snapshot un is exactly equal to u(tn), where u \in C([0, T ];\scrH ) and tn = n\Delta t for
n = 0, . . . , N so that t0 = 0, tN = T , and \Delta t = T/N . For now, we only assume T > 0
is a fixed positive constant and we let \Delta t = T/N . We emphasize that T is fixed, but
N is allowed to vary.

2.1. POD without difference quotients (noDQ case). We begin by exam-
ining the POD problem without DQs. In what follows, we denote this case the noDQ
case. Given a fixed r > 0, the problem is to find a set of orthonormal basis functions
\{ \varphi i\} ri=1 \subset \scrH , called POD modes or POD basis functions, that optimally approximate
the snapshots in the sense that the following error measure is minimized:

Er =
1

N + 1

N\sum 
n=0

\| un  - Pru
n\| 2\scrH ,(2.1)
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OPTIMAL ERRORS AND DIFFERENCE QUOTIENTS FOR POD 2169

where Pr : \scrH \rightarrow \scrH is the orthogonal projection onto Xr = span\{ \varphi i\} ri=1 given by

Pru =

r\sum 
i=1

(u, \varphi i)\scrH \varphi i, u \in \scrH .(2.2)

One way to find a solution of this problem is to solve the eigenvalue problem

Kzi = \lambda izi for i = 1, . . . , r,(2.3)

where K is the snapshot correlation matrix with entries

Kmn =
1

N + 1
(um, un)\scrH , m, n = 0, . . . , N.(2.4)

We order the eigenvalues \{ \lambda i\} and corresponding orthonormal eigenvectors \{ zi\} so
that \lambda 1 \geq \lambda 2 \geq \lambda N+1 \geq 0. The optimizing orthonormal set \{ \varphi i\} ri=1 \subset \scrH is given by

\varphi i = \lambda 
 - 1/2
i (N + 1) - 1/2

N\sum 
m=0

(zi)
mum, i = 1, . . . , r,(2.5)

where (zi)
m is the mth entry of zi. Using these POD modes gives the optimal value

for the approximation error:

1

N + 1

N\sum 
n=0

\| un  - Pru
n\| 2\scrH =

\sum 
i>r

\lambda i.(2.6)

We note that the scaling factor (N + 1) - 1 is important if one is interested in
the solution of the optimization problem as more snapshots are collected, i.e., as \Delta t
decreases or N increases. For certain choices of the scaling factor, the error measure
Er in (2.1) converges to a time integral or a constant multiple of a time integral, and
the POD eigenvalues and POD modes also converge; see, e.g., [13, 18, 35, 49] for more
information.

Different choices for the scaling factor in (2.1) have been used in the literature.
We fix the scaling factor throughout this work to be (N+1) - 1 for simplicity. We note
that since \Delta t = T/N , we have (N + 1) - 1 = T - 1

1 \Delta t, where T1 = T +\Delta t. Therefore,
Er in (2.1) is equal to the left Riemann sum approximation of the integral

1

T1

\int T1

0

\| u(t) - Pru(t)\| 2\scrH dt.

We note that the results in this work will hold for other scaling factors, as long as the
scaling factor in question scales like a constant multiple of \Delta t.

Remark 2.1. One can also consider variable time steps and weights in the POD
problem; we only consider a constant time step and single weight (N + 1) - 1 for
simplicity. Furthermore, one can use other quadrature rules, such as the midpoint
rule or trapezoidal rule, to obtain appropriate weights for the POD problem.

In the following result, we give POD approximation errors in different norms and
using other projections onto Xr. Similar results have been proved in multiple works
(see, e.g., [28, 29, 39, 48, 50]), and our proof relies on techniques from these works.
We note that this result can be obtained directly from the general results in the recent
reference [39]; however, we include a proof to be complete. In this work, a bounded
linear operator \Pi : Z \rightarrow Z for a normed space Z is a projection onto Zr \subset Z if
\Pi 2 = \Pi and the range of \Pi equals Zr. In this case, \Pi z = z for any z \in Zr.
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Lemma 2.2. Let Xr = span\{ \varphi i\} ri=1 \subset \scrH , let Pr : \scrH \rightarrow \scrH be the orthogonal
projection onto Xr as defined in (2.2), and let s be the number of positive POD
eigenvalues for U = \{ un\} Nn=0. If W is a real Hilbert space with U \subset W and Rr :
W \rightarrow W is a bounded linear projection onto Xr, then

1

N + 1

N\sum 
n=0

\| un  - Pru
n\| 2W =

s\sum 
i=r+1

\lambda i\| \varphi i\| 2W ,(2.7)

1

N + 1

N\sum 
n=0

\| un  - Rru
n\| 2W =

s\sum 
i=r+1

\lambda i\| \varphi i  - Rr\varphi i\| 2W .(2.8)

Proof. First, we note that (2.7) is a special case of (2.8) since Pr\varphi i = 0 for i > r.
Therefore, we only prove (2.8).

Next, by the POD approximation error formula (2.6), we have un = Psu
n for each

n. If r \geq s, since Rr is a projection onto Xr we have Rru
n = RrPsu

n = Psu
n = un

and this proves the result. Therefore, assume r < s. Note by the definition of \varphi i in
(2.5), since un \in W for each n we have \varphi i \in W for i = 1, . . . , r. Therefore, Xr \subset W ,
and since the range of Rr equals Xr we know the W norm in (2.8) is well defined.

Now, using the definition of Pr in (2.2) gives

1

N + 1

N\sum 
n=0

\| un  - Rru
n\| 2W =

1

N + 1

N\sum 
n=0

((I  - Rr)Psu
n, (I  - Rr)Psu

n)W

=
1

N + 1

N\sum 
n=0

s\sum 
i,j=1

(un, \varphi j)\scrH (un, \varphi i)\scrH ((I  - Rr)\varphi j , (I  - Rr)\varphi i)W ,

where I is the identity operator. Next, take the \scrH inner product of (2.5) with un and
use the eigenvalue equations (2.3)--(2.4) to get

(un, \varphi i)\scrH = (N + 1)1/2\lambda 
1/2
i (zi)

n.

Using this and also that \{ zi\} is orthonormal so that
\sum N

n=0(zj)
n(zi)

n = \delta ij gives

1

N + 1

N\sum 
n=0

\| un  - Rru
n\| 2W =

s\sum 
i,j=1

(\lambda i\lambda j)
1/2\delta ij((I  - Rr)\varphi j , (I  - Rr)\varphi i)W

=

s\sum 
i=1

\lambda i\| (I  - Rr)\varphi i\| 2W .

Since \varphi i \in Xr for i = 1, . . . , r and Rr is a projection onto Xr, we have Rr\varphi i = \varphi i for
i = 1, . . . , r and this proves the result.

2.2. POD with difference quotients (DQ case). In this section we consider
a POD problem for the same snapshots as those in section 2.1, this time utilizing
the DQs [34]: find an orthonormal set of basis functions \{ \varphi i\} ri=1 \subset \scrH minimizing the
approximation error

EDQ
r =

1

2N + 1

N\sum 
n=0

\| un  - Pru
n\| 2\scrH +

1

2N + 1

N\sum 
n=1

\| \partial un  - Pr\partial u
n\| 2\scrH ,(2.9)

where the DQs \{ \partial un\} Ni=1 are defined by
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\partial un =
un  - un - 1

\Delta t
.(2.10)

In what follows, we denote this case the DQ case.

Remark 2.3. One can give different weights to the snapshot and DQ approxima-
tion errors by replacing the second scaling factor 1/(2N + 1) in (2.9) by a weighted
fraction \theta /(2N + 1), where \theta is a positive constant that is independent of N . The
main results in this work can be modified to handle this case; however, we consider
the unweighted case in (2.9) to simplify the presentation.

The solution to the minimization of the approximation error in (2.9) can be found
by setting vn = un for n = 0, . . . , N and vN+n = \partial un for n = 1, . . . , N . This yields a
new collection of snapshots UDQ = \{ vn\} Mn=0, where M = 2N . Proceeding as outlined
in section 2.1 using the new collection \{ vn\} Mn=0 in place of \{ un\} Nn=0 gives the solution

of this different POD problem. We use \{ \lambda DQ
i \} to denote the POD eigenvalues for this

POD problem; we use the same notation \{ \varphi i\} ri=1 for the POD basis functions. The
optimal approximation error is given by

1

2N + 1

N\sum 
n=0

\| un  - Pru
n\| 2\scrH +

1

2N + 1

N\sum 
n=1

\| \partial un  - Pr\partial u
n\| 2\scrH =

\sum 
i>r

\lambda DQ
i .(2.11)

Again, the choice of the scaling factor in the approximation error (2.9) is impor-
tant if we consider the case where the amount of data increases, i.e., a finer time
discretization is used so that \Delta t decreases and N increases. The DQs are used to
approximate the time derivative of the data; therefore, for an appropriate choice of
the scaling factor the approximation error in (2.9) contains approximations of time
integrals involving both the data u(t) and also the time derivative of the data \partial tu(t).
For the DQ case, we use (2N + 1) - 1 for the scaling factor throughout for simplicity.

As before, we give POD approximation errors in different norms and using other
projections onto Xr.

Lemma 2.4. Let Xr = span\{ \varphi i\} ri=1 \subset \scrH , let Pr : \scrH \rightarrow \scrH be the orthogonal
projection onto Xr as defined in (2.2), and let s be the number of positive POD
eigenvalues for the collection UDQ = \{ vn\} 2Nn=0 described above. If W is a real Hilbert
space with UDQ \subset W and Rr : W \rightarrow W is a bounded linear projection onto Xr, then

1

2N + 1

\Biggl( 
N\sum 

n=0

\| un  - Pru
n\| 2W +

N\sum 
n=1

\| \partial un  - Pr\partial u
n\| 2W

\Biggr) 
=

s\sum 
i=r+1

\lambda DQ
i \| \varphi i\| 2W ,

(2.12)

1

2N + 1

\Biggl( 
N\sum 

n=0

\| un  - Rru
n\| 2W +

N\sum 
n=1

\| \partial un  - Rr\partial u
n\| 2W

\Biggr) 
=

s\sum 
i=r+1

\lambda DQ
i \| \varphi i  - Rr\varphi i\| 2W .

(2.13)

Proof. Apply Lemma 2.2 to the new collection of snapshots \{ vn\} Mn=0 described
above.

Remark 2.5. In this section, we considered the DQs defined by (2.10). In practice
the definition of the DQs will reflect the time discretization used to collect the snapshot
data. For example, POD with central DQs is used for wave equations in [20, 59] and
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2172 KOC, RUBINO, SCHNEIER, SINGLER, AND ILIESCU

fractional DQs are used for a subdiffusion problem in [31]. It is possible that the
results of this paper can be extended to these and other definitions of the DQs, such
as those arising from the backward differentiation formulas (BDF2, BDF3, etc.). We
leave this to be considered elsewhere.

3. Pointwise projection error estimates. In the current literature on point-
wise error bounds for the POD of parabolic problems several researchers make an
assumption concerning the pointwise in time behavior of the POD projection er-
rors [8, 9, 10, 19, 28, 29, 32, 41, 56, 58]. Roughly, the assumption says that the POD
projection error at any time is of the same order as the total POD projection errors
considered in section 2. Next, we formalize this assumption in Assumption 3.1, and
then we discuss it for the noDQ case (section 3.1) and the DQ case (section 3.2).

We consider the POD of a collection of snapshots U := \{ un\} Nn=0 \subset \scrH and also
U \subset W , as in section 2. Recall that Pr : \scrH \rightarrow \scrH is the orthogonal projection onto
the first r POD modes. For either the noDQ case or the DQ case, the pointwise POD
projection error assumption is given as follows.

Assumption 3.1. There exists a constant C, depending on T = N\Delta t only, such
that the POD projection error satisfies

\| un  - Pru
n\| 2W \leq C

s\sum 
i=r+1

\lambda i\| \varphi i\| 2W \forall r = 1, . . . , s and n = 0, . . . , N.(3.1)

In section 3.1, we construct examples that show that this assumption can be vio-
lated in the noDQ case. In section 3.2, we show in Theorem 3.7 that this assumption
is always satisfied in the DQ case.

Remark 3.1 (avoiding Assumption 3.1). We notice that Assumption 3.1 would
follow directly from the POD approximation properties (2.7) (in the noDQ case)
and (2.12) (in the DQ case) if we dropped the 1/(N + 1) and 1/(2N + 1) factors
in the definitions (2.1) and (2.9) of the error measures Er and EDQ

r . In fact, when
\scrH = W = \BbbR m, this approach is used in, e.g., [33]. We emphasize, however, that using
this approach would increase by \Delta t - 1 the magnitudes of the eigenvalues on the right-
hand side of the POD approximation properties (2.7) and (2.12), which would yield
suboptimal error estimates. Similar conclusions were reached in Remark 2.3 in [28]
for the case W = \scrH .

Remark 3.2 (similar assumptions). For W = \scrH , Assumption 3.1 is Assumption
2.1 in [28] (in which the L2 inner product should be replaced with the correct \scrH inner
product). A similar assumption (but for the L2 projection of a continuous solution
on Xr when \scrH = L2) is made in Assumption 3.2 in [29]. No such assumption is
made in [27], since Theorem 3.5 proves an estimate for the average error, not for the
pointwise in time error. Finally, we note that Figure 4 in [28] provided numerical
validation for Assumption 3.1 for the particular setting in [28] when W = \scrH .

3.1. Pointwise error estimates: noDQ case. First, we note that in general
the scaling factor N + 1 is the worst-case scenario for the failure of Assumption 3.1.
To see this, note that for any fixed k we have
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\| uk  - Pru
k\| 2W = (N + 1)

1

N + 1
\| uk  - Pru

k\| 2W

\leq (N + 1)

\Biggl( 
1

N + 1

N\sum 
i=0

\| ui  - Pru
i\| 2W

\Biggr) 
(3.2)

= (N + 1)

s\sum 
i=r+1

\lambda noDQ
i \| \varphi i\| 2W ,(3.3)

where we used Lemma 2.2 to obtain (3.3). Note that for many collections of snapshots
\{ uk\} Nk=0 the inequality in (3.2) will be very conservative. Nevertheless, we show below
that the above N + 1 scaling is attained for a family of examples.

Assumption 3.1 says that the error at any particular index is not much larger than
the other pointwise errors, or equivalently the inequality (3.2) is overly conservative.
Therefore, Assumption 3.1 will be false if there is an index n such that the projection
error at index n is much larger than the remaining pointwise errors, i.e.,

\| un  - Pru
n\| 2W \gg \| ui  - Pru

i\| 2W \forall i \not = n, 0 \leq i \leq N.(3.4)

Next, we provide a family of counterexamples to Assumption 3.1, i.e., a family of exact
solutions (data) that yield POD bases that satisfy condition (3.4).

Let \{ \varphi k\} k\geq 1 be an orthonormal set in a Hilbert space \scrH , with dim(\scrH ) \geq N + 1,
and let \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot > 0 be any sequence of positive numbers. Suppose the data
U = \{ un\} Nn=0 \subset \scrH is given by

un = (N + 1)1/2\lambda 
1/2
n+1\varphi n+1, n = 0, . . . , N.(3.5)

It can be checked that this data has POD eigenvalues \{ \lambda k\} with corresponding POD
modes \{ \varphi k\} .

Let W be a real Hilbert space with U \subset W . In Proposition 3.3, we show that
Assumption 3.1 fails for the data above. Specifically, (3.6) shows that the assumption
fails for the specific case of r = N at index N . Furthermore, if the values \{ \lambda k\} decay
exponentially fast as in (3.7), then (3.8) shows that the assumption fails for any r at
index r.

Proposition 3.3. Let the data U = \{ un\} Nn=0 \subset \scrH be given in (3.5) as described
above. Then the POD pointwise projection error for uN is given by\bigm\| \bigm\| uN  - PNuN

\bigm\| \bigm\| 2
W

= (N + 1)\lambda N+1\| \varphi N+1\| 2W .(3.6)

Also, for any fixed r if

\lambda k = \beta \| \varphi k\|  - 2
W e - \gamma k, k > r,(3.7)

for some positive constants \beta and \gamma , then

\| ur  - Pru
r\| 2W \geq min\{ 1, \gamma \} 

2
(N + 1)

N+1\sum 
k=r+1

\lambda k\| \varphi k\| 2W .(3.8)

Remark 3.4. Note that for the second part of the result we still assume the POD
eigenvalues in (3.7) are ordered so that \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot > 0. Depending on the values of
\| \varphi k\| W and \gamma , the POD eigenvalues in (3.7) may not be ordered in this way. In such
a case, the POD eigenvalues may need to be reordered in order to obtain a similar
result. If W = \scrH or if \| \varphi k\| W increases slowly relative to e - \gamma k, then the ordering
\lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot > 0 will automatically be satisfied.
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Proof. Note that Pru
k = 0 when k \geq r and so

\| uk  - Pru
k\| 2W = (N + 1)\lambda k+1\| \varphi k+1\| 2W , k \geq r.(3.9)

Thus, (3.6) follows immediately from (3.9) with k = N .
Next, to prove (3.8), fix r and assume (3.7) holds. Then (3.9) with k = r gives

\| ur  - Pru
r\| 2W = (N + 1)\lambda r+1\| \varphi r+1\| 2W .(3.10)

We bound half of the right-hand side of (3.10) from below by a constant multiple of
the remaining terms in the sum in (3.8). Note that the assumption (3.7) on the value
of \lambda r+1 gives

1

2
\lambda r+1\| \varphi r+1\| 2W =

\beta 

2
e - \gamma (r+1).(3.11)

Next, we note that the exponential term on the right-hand side of (3.11) satisfies the
following estimate:

1

\gamma 
e - \gamma (r+1) \geq 1

\gamma 

\Bigl( 
e - \gamma (r+1)  - e - \gamma (N+1)

\Bigr) 
=

\int N+1

r+1

e - \gamma xdx \geq 
N+1\sum 

k=r+2

e - \gamma k.(3.12)

Using (3.7), (3.11), and (3.12), we obtain

1

2
(N + 1)\lambda r+1\| \varphi r+1\| 2W \geq \gamma \beta 

2
(N + 1)

N+1\sum 
k=r+2

e - \gamma k =
\gamma 

2
(N + 1)

N+1\sum 
k=r+2

\lambda k\| \varphi k\| 2W .

(3.13)

Using (3.10) and (3.13), we get

\| ur  - Pru
r\| 2W \geq 1

2
(N + 1)\lambda r+1\| \varphi r+1\| 2W +

\gamma 

2
(N + 1)

N+1\sum 
k=r+2

\lambda k\| \varphi k\| 2W

\geq min\{ 1, \gamma \} 
2

(N + 1)

N+1\sum 
k=r+1

\lambda k\| \varphi k\| 2W ,(3.14)

which proves (3.8).

Proposition 3.3 yields a family of counterexamples to Assumption 3.1. Next, we
consider two counterexamples that we investigate numerically in section 5.

3.1.1. Counterexample 1. To construct the first counterexample to Assump-
tion 3.1 (which we denote counterexample 1), we follow the theoretical setting in this
section and construct a family of ROM basis functions that satisfy (3.5). Specifically,
we consider an orthonormal set \{ \varphi n\} Nn=0 in \scrH = L2(0, 1) given by

\varphi n+1(x) := 21/2 sin((k tn + 1)\pi x) ,(3.15)

where k is a positive integer, x \in [0, 1], and tn = n\Delta t is chosen such that k tn \in 
\BbbN \forall n \in \BbbN . Next, we choose the eigenvalues

\lambda 1 = \lambda 2 = \cdot \cdot \cdot = \lambda N+1 =
1

2(N + 1)
,(3.16)
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which satisfy \lambda 1 \geq \lambda 2 \geq \cdot \cdot \cdot \geq \lambda N+1 > 0. Finally, choosing the analytical solution

ucounterexample 1(x, t) = sin((k t+ 1)\pi x)(3.17)

and the corresponding forcing term

f = (k \pi x) cos((k t+ 1)\pi x) + \nu \pi 2(kt+ 1)2 sin((k t+ 1)\pi x)(3.18)

yields the data U = \{ un\} Nn=0 that satisfies (3.5).
In section 5, we investigate numerically counterexample 1 given by the analytical

solution (3.17).

Remark 3.5. Equation (3.5) (see also the comment below Assumption A.1 in [41])
shows that the ROM basis functions are scaled versions of the snapshots. For coun-
terexample 1, this scaling is illustrated in (3.15) and (3.17).

3.1.2. Counterexample 2. To construct the second counterexample to As-
sumption 3.1 (which we denote counterexample 2), we construct a family of ROM
basis functions that satisfy both (3.5) and (3.7) in Proposition 3.3. Specifically, we
consider the same orthonormal set \{ \varphi n\} Nn=0 in \scrH = L2(0, 1) given in (3.15) above,
where again k is a positive integer, x \in [0, 1], and tn = n\Delta t is chosen such that
k tn \in \BbbN , \forall n \in \BbbN . Next, for positive constants \alpha , \delta , and \rho , with \delta = \rho \Delta t, we choose
exponentially decaying eigenvalues as in (3.7):

\lambda n+1 = \beta e - \gamma (n+1),

\beta =
1

4\delta (N + 1)
e - \alpha +\alpha \delta  - 1\Delta t =

1

4\rho T1
e - \alpha +\alpha \rho  - 1

,

\gamma = \alpha \delta  - 1\Delta t = \alpha \rho  - 1,

where T1 = T +\Delta t. Finally, it can be checked that choosing the analytical solution

ucounterexample 2(x, t) =
1\surd 
2\delta 

\Bigl( 
e - \alpha (1+t/\delta )

\Bigr) 1/2
sin((kt+ 1)\pi x)(3.19)

and the corresponding forcing term

f =
1\surd 
2\delta 

\Bigl( 
e - \alpha (1+t/\delta )

\Bigr) 1/2 \Bigl[  - \alpha 

2\delta 
sin((kt+ 1)\pi x) + (k\pi x) cos((kt+ 1)\pi x)

+ \nu \pi 2(kt+ 1)2 sin((kt+ 1)\pi x)
\Bigr] (3.20)

yields the data U = \{ un\} Nn=0 that satisfies (3.5), which shows that, in counterexample
2, the ROM basis functions are scaled versions of the snapshots.

In section 5, we investigate numerically counterexample 2 given by the analytical
solution (3.19).

3.2. POD pointwise error estimates: DQ case. We now give one of the
main results of this paper. In Theorem 3.7, we show that Assumption 3.1 is always
satisfied in the DQ case. This will allow us to prove in section 4 optimal pointwise
in time ROM error bounds in the DQ case. In particular, Theorem 3.7 will show
that the assumptions similar to Assumption 3.1 that have been made in, e.g., [28] are
unnecessary for obtaining optimal error bounds in the DQ case.

In continuous time, it is well known that the magnitude of a function z \in H1(0, T )
at any point in time is bounded above by a constant multiple of the H1(0, T ) norm
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of z. The constant in the bound only depends on T , and there is also a similar
inequality that holds for functions taking values in a Banach space Z (see, e.g., [11,
section 5.9.2, Theorem 2(iii)], p. 302). Below, we establish a discrete time analogue of
this Sobolev embedding H1(0, T ;Z) \lhook \rightarrow C([0, T ];Z), where the DQs replace the time
derivative in theH1(0, T ;Z) norm. This lemma will allow us to directly establish POD
pointwise projection error bounds in Theorem 3.7, which shows that Assumption 3.1
is automatically satisfied in the DQ case.

Lemma 3.6 (discrete time Sobolev inequality). Let T > 0, Z be a normed space,
\{ zn\} Nn=0 \subset Z, and \Delta t = T/N . Then

max
0\leq k\leq N

\| zk\| 2Z \leq C

\Biggl( 
1

2N + 1

N\sum 
n=0

\| zn\| 2Z +
1

2N + 1

N\sum 
n=1

\| \partial zn\| 2Z

\Biggr) 
,

where C = 6max\{ 1, T 2\} and \partial zn = (zn  - zn - 1)/\Delta t for n = 1, . . . , N .

Proof. For each k, \ell with N \geq k > \ell \geq 0, we have zk - z\ell = \Delta t
\sum k

n=\ell +1 \partial z
n. This

gives

\| zk\| Z \leq \| z\ell \| Z +

N\sum 
n=1

\Delta t1/2(\Delta t1/2\| \partial zn\| Z) \leq \| z\ell \| Z + T 1/2

\Biggl( 
N\sum 

n=1

\Delta t\| \partial zn\| 2Z

\Biggr) 1/2

,

(3.21)

where we used
\sum N

n=1 \Delta t = N\Delta t = T . This inequality is also clearly true for k = \ell ,
and a similar argument shows that this inequality also holds for 0 \leq k < \ell \leq N .

Now we choose \ell so that

\| z\ell \| Z = min
0\leq n\leq N

\| zn\| Z .(3.22)

We know such an \ell must exist since N is finite. Then

\| z\ell \| Z =
1

N + 1
(N + 1)\| z\ell \| Z =

1

N + 1

N\sum 
n=0

\| z\ell \| Z

\leq 1

T

N\sum 
n=0

\Delta t\| zn\| Z \leq T - 1/2

\Biggl( 
N\sum 

n=0

\Delta t\| zn\| 2Z

\Biggr) 1/2

,

where we used (3.22), 1/(N + 1) < 1/N = T - 1\Delta t,
\sum N

n=1 \Delta t = N\Delta t = T , and the
Cauchy--Schwarz inequality. Using this inequality with (3.21) yields

\| zk\| Z \leq T - 1/2

\Biggl( 
N\sum 

n=0

\Delta t\| zn\| 2Z

\Biggr) 1/2

+ T 1/2

\Biggl( 
N\sum 

n=1

\Delta t\| \partial zn\| 2Z

\Biggr) 1/2

.(3.23)

Squaring both sides, and using the inequalities (a + b)2 \leq 2(a2 + b2) and \Delta t =
(2T +\Delta t)/(2N + 1) \leq 3T/(2N + 1), we obtain the result.

Theorem 3.7. Let Xr = span\{ \varphi i\} ri=1 \subset \scrH , let Pr : \scrH \rightarrow \scrH be the orthogonal
projection onto Xr as defined in (2.2), and let s be the number of positive POD
eigenvalues for UDQ. If W is a real Hilbert space with UDQ \subset W and Rr : W \rightarrow W
is a bounded linear projection onto Xr, then
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max
0\leq k\leq N

\bigm\| \bigm\| uk  - Pru
k
\bigm\| \bigm\| 2
\scrH \leq C

s\sum 
i=r+1

\lambda DQ
i ,(3.24a)

max
0\leq k\leq N

\bigm\| \bigm\| uk  - Pru
k
\bigm\| \bigm\| 2
W

\leq C

s\sum 
i=r+1

\lambda DQ
i \| \varphi i\| 2W ,(3.24b)

max
0\leq k\leq N

\bigm\| \bigm\| uk  - Rru
k
\bigm\| \bigm\| 2
W

\leq C

s\sum 
i=r+1

\lambda DQ
i \| \varphi i  - Rr\varphi i\| 2W ,(3.24c)

where C = 6max\{ 1, T 2\} .
Proof. First, note that (3.24a) follows from (3.24b) with W = \scrH since \| \varphi i\| \scrH =

1 \forall i. Also, (3.24b) follows from (3.24c) since Pr\varphi i = 0 for i > r. Therefore, we only
prove (3.24c).

Set Z = W and zn = un - Rru
n for each n. Using Lemma 3.6, \partial zn = \partial un - Rr\partial u

n

for each n, and Lemma 2.4 gives the result.

4. Pointwise error estimates: DQ case. In this section, we prove pointwise
in time error estimates for the heat equation and discuss the time and ROM discretiza-
tion optimality of these estimates. In section 4.1, we prove the pointwise in time error
estimates using CN time stepping in the DQ case (see section 2.2). In section 4.2, we
consider three definitions of optimality for the ROM discretization error and classify
the optimality types of each pointwise error estimate in section 4.1. We show that
all of the error estimates are optimal in some sense, although in some cases we need
to assume that various POD projection uniform boundedness conditions are satisfied.
We also briefly discuss error estimates and optimality for the noDQ case; see Re-
marks 4.2, 4.4, and 4.9. Below, we consider the DQ case unless explicitly mentioned
otherwise.

We begin by establishing notation and definitions and giving preliminary results
that will be used in the ensuing analysis. We let \Omega \in \BbbR d, d = 2, 3, be a regular open
domain with Lipschitz continuous boundary \Omega and denote by (\cdot , \cdot )L2 and \| \cdot \| L2 the
L2 inner product and norm, respectively. We define the function space X = H1

0 (\Omega )
as

X := H1
0 (\Omega )

d = \{ v \in H1(\Omega )d : v| \Gamma = 0\} .
With the inner product (u, v)H1

0
= (\nabla u,\nabla v)L2 , the space X = H1

0 (\Omega ) is a Hilbert
space.

For simplicity, we will only consider the heat equation (1.1). We take u(\cdot , t) \in X,
t \in [0, T ] to be the weak solution of the weak formulation of the heat equation with
homogeneous Dirichlet boundary conditions:

(\partial tu, v)L2 + \nu (\nabla u,\nabla v)L2 = (f, v)L2 \forall v \in X.(4.1)

Replacing the unknown u with ur in the heat equation (4.1), using the Galerkin
method, projecting the resulting equations onto a space Xr \subset X, and discretizing in
time using CN, one obtains the standard CN POD-G-ROM for the heat equation

(\partial un+1
r , vr)L2 + \nu (\nabla un+1/2

r ,\nabla vr)L2 = (fn+1/2, vr)L2 \forall vr \in Xr,(4.2)

where \partial un+1
r = (un+1

r  - un
r )/\Delta t. Also, here and below we use the notation zn+1/2 for

any discrete or continuous time function z to denote the average

zn+1/2 :=
1

2

\bigl( 
zn+1 + zn

\bigr) 
.

Note that, for continuous time functions, we do not use zn+1/2 to denote z(tn+\Delta t/2).
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2178 KOC, RUBINO, SCHNEIER, SINGLER, AND ILIESCU

Remark 4.1. An alternative CN approach to the time discretization is to replace
fn+1/2 in (4.2) with f(tn +\Delta t/2). The results in this section also hold for this case.

We now prove error estimates for the error un+1  - un+1
r , where un+1 := u(tn+1)

is the solution of the weak formulation of the heat equation (4.1), and un+1
r is the

solution of the CN POD-G-ROM (4.2). For clarity of presentation, we only consider
the error components corresponding to the POD truncation and time discretization,
i.e., we ignore the spatial discretization (e.g., FE) error. We start by noting that the
weak solution of the heat equation evaluated at time t = tn +\Delta t/2 satisfies\bigl( 

\partial un+1, vr
\bigr) 
L2 + \nu (\nabla un+1/2,\nabla vr)L2 = (fn+1/2, vr)L2 + \tau n(vr) \forall vr \in Xr,(4.3)

where \partial un+1 = (un+1 - un)/\Delta t, and, after integrating by parts, the consistency error
is given by

\tau n(v) :=
\bigl( 
\partial un+1  - \partial tu(tn +\Delta t/2), v

\bigr) 
L2 + \nu 

\Bigl( 
\Delta (u(tn +\Delta t/2) - un+1/2), v

\Bigr) 
L2

+
\Bigl( 
f(tn +\Delta t/2) - fn+1/2, v

\Bigr) 
L2

.
(4.4)

We assume that the solution u and the forcing f are smooth enough so that \tau n(v) is
well defined for any v \in X. We provide a more precise regularity assumption below.

The error is split into two parts:

en+1 = un+1  - un+1
r = (un+1  - wn+1

r ) - (un+1
r  - wn+1

r ) = \eta n+1  - \phi n+1
r ,(4.5)

where wn+1
r is a proper projection of un+1 on Xr, \eta n+1 := un+1  - wn+1

r , and \phi n+1
r =

un+1
r  - wn+1

r . Subtracting (4.2) from (4.3) then yields

(\partial \phi n+1
r , vr)L2 + \nu (\nabla \phi n+1/2

r ,\nabla vr)L2 = (\partial \eta n+1, vr)L2 + \nu (\nabla \eta n+1/2,\nabla vr)L2

 - \tau n (vr) \forall vr \in Xr.
(4.6)

The standard approach used to prove error estimates in this case is to use the
Ritz projection [2, 27, 29, 34, 35, 46]. This is also the standard approach in the FE
context [15, 37, 51, 55]. Thus, for the ensuing analysis we choose wr := Rr(u) in
(4.5), where Rr(u) is the Ritz projection of u on Xr:

(\nabla (u - Rr(u)),\nabla vr)L2 = 0 \forall vr \in Xr.(4.7)

We then denote \eta Ritz := u - Rr(u). Using the Ritz projection, (4.6) then becomes

(\partial \phi n+1
r , vr)L2 + \nu (\nabla \phi n+1/2

r ,\nabla vr)L2 = (\partial \eta n+1
Ritz, vr)L2  - \tau n (vr) \forall vr \in Xr,(4.8)

where we have used the fact that (\nabla \eta 
n+1/2
Ritz ,\nabla vr)L2 = 0 by (4.7).

Remark 4.2. In the noDQ case (see section 2.1), a different approach is typically
used to prove error estimates; see, e.g., [5, 28, 29, 50]. Instead of the Ritz projection,

in the noDQ case we use the L2 projection \Pi L2

r and take wn+1
r = \Pi L2

r un+1. The term
\nu (\nabla \eta n+1/2,\nabla vr)L2 in (4.6) no longer vanishes; instead, the DQ projection error term
is eliminated, i.e., (\partial \eta n+1, vr)L2 = 0 in (4.6). However, as explained in Remark 4.4,
the resulting pointwise error estimates are suboptimal.

For the POD basis construction, we must specify a Hilbert space \scrH . For this
problem, two natural Hilbert spaces that are often used are \scrH = L2(\Omega ) or \scrH = X =
H1

0 (\Omega ). Let Xr be the span of the first r POD modes for the data set containing
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the snapshots \{ un\} Nn=0 and the snapshot DQs \{ \partial un\} Nn=1. We can use Lemma 2.4 and
Theorem 3.7 to obtain POD approximation error results with either W = L2(\Omega ) or
W = H1

0 (\Omega ). We note that in the case \scrH = H1
0 (\Omega ), the standard orthogonal POD

projection Pr is exactly equal to the Ritz projection Rr.
We emphasize that, in this section, we use the exact solution of the heat equation

for the POD basis construction in order to focus on the POD and time discretization
errors. Exact solution data was used in this way by Kunisch and Volkwein in their
original POD numerical analysis work [34] and also by many other researchers in
subsequent works.

4.1. Error estimates. We give multiple error bounds for the solution when
both the L2 and H1

0 POD bases are used. Specifically, we first provide a pointwise in
time error bound for the L2 norm of the solution, and an error bound for the solution
norm (a discrete time analogue of the L2(0, T ;H1

0 (\Omega )) norm) that includes the L2

norm of the solution at the final time step. Then, we prove a pointwise in time error
bound for the H1

0 norm of the solution.
We assume that the solution u of the heat equation (1.1) and the forcing f satisfy

the regularity condition

uttt, \Delta utt, ftt \in L2(0, T ;L2(\Omega )).(4.9)

We also define the regularity constants

In,1(u, f) := \| uttt\| L2(tn,tn+1;L2) + \| \Delta utt\| L2(tn,tn+1;L2) + \| ftt\| L2(tn,tn+1;L2),

In(u, f) := \| uttt\| 2L2(tn,tn+1;L2) + \| \Delta utt\| 2L2(tn,tn+1;L2) + \| ftt\| 2L2(tn,tn+1;L2),

I(u, f) := \| uttt\| 2L2(0,T ;L2) + \| \Delta utt\| 2L2(0,T ;L2) + \| ftt\| 2L2(0,T ;L2).

(4.10)

As mentioned above, for all of the results below we assume that Xr is the span of
the first r POD modes for the data set containing the snapshots \{ un\} Nn=0 of the
exact solution and the snapshot DQs \{ \partial un\} Nn=1. Furthermore, as pointed out in the
introduction, we prove POD error bounds when the parameter \nu and the initial data
are the same as those used to generate the POD basis.

Lemma 4.3. Consider the CN POD-G-ROM scheme (4.2). If (4.9) is satisfied,
then the following error bounds hold when the L2 POD basis is used,

max
1\leq k\leq N

\| ek\| 2L2 \leq C

\Biggl( 
s\sum 

i=r+1

\lambda DQ
i \| \varphi i  - Rr(\varphi i)\| 2L2 + \| \phi 0

r\| 2L2 +\Delta t4I(u, f)

\Biggr) 
,(4.11)

\| eN\| 2L2 +\Delta t

N - 1\sum 
n=0

\| \nabla en+1/2\| 2L2 \leq C

\Biggl( 
s\sum 

i=r+1

\lambda DQ
i (\| \varphi i  - Rr(\varphi i)\| 2L2

+ \| \nabla (\varphi i  - Rr(\varphi i))\| 2L2)+ \| \phi 0
r\| 2L2 +\Delta t4I(u, f)

\Biggr) 
,

(4.12)

and the following error bounds hold when the H1
0 POD basis is used,

max
1\leq k\leq N

\| ek\| 2L2 \leq C

\Biggl( 
s\sum 

i=r+1

\lambda DQ
i \| \varphi i\| 2L2 + \| \phi 0

r\| 2L2 +\Delta t4I(u, f)

\Biggr) 
,(4.13)
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\| eN\| 2L2 +\Delta t

N - 1\sum 
n=0

\| \nabla en+1/2\| 2L2 \leq C

\Biggl( 
s\sum 

i=r+1

(1 + \| \varphi i\| 2L2)\lambda 
DQ
i + \| \phi 0

r\| 2L2 +\Delta t4I(u, f)

\Biggr) 
.

(4.14)

Proof. We let vr := \phi 
n+1/2
r in (4.8) and use 2\Delta t (\partial \phi n+1

r , \phi 
n+1/2
r )L2 = \| \phi n+1

r \| 2L2  - 
\| \phi n

r \| 2L2 to obtain

\| \phi n+1
r \| 2L2  - \| \phi n

r \| 2L2 + 2\nu \Delta t\| \nabla \phi n+1/2
r \| 2L2 = 2\Delta t[(\partial \eta n+1

Ritz, \phi 
n+1/2
r )L2

 - \tau n(\phi 
n+1/2
r )].

(4.15)

Next, we use the Cauchy--Schwarz inequality, the Poincar\'e inequality \| \phi n+1/2
r \| L2 \leq 

C\| \nabla \phi 
n+1/2
r \| L2 , and Taylor's theorem1 to bound the right-hand side and obtain

\| \phi n+1
r \| 2L2  - \| \phi n

r \| 2L2 + 2\nu \Delta t\| \nabla \phi n+1/2
r \| 2L2

\leq C\Delta t
\bigl( 
\| \partial \eta n+1

Ritz\| L2 +\Delta t3/2In,1(u, f)
\bigr) 
\| \nabla \phi n+1/2

r \| L2 .
(4.16)

Applying Young's inequality and using (a+ b+ c)2 \leq 3(a2 + b2 + c2) yields

\| \phi n+1
r \| 2L2  - \| \phi n

r \| 2L2 + 2\nu \Delta t \| \nabla \phi n+1/2
r \| 2L2 \leq 

\biggl( 
C\Delta t

\bigm\| \bigm\| \partial \eta n+1
Ritz

\bigm\| \bigm\| 2
L2 + C\Delta t4In(u, f)

+ \nu \Delta t \| \nabla \phi n+1/2
r \| 2L2

\biggr) 
.

(4.17)

Now, summing from n = 0 to k  - 1 gives
(4.18)

\| \phi k
r\| 2L2 + \nu 

k - 1\sum 
n=0

\Delta t \| \nabla \phi n+1/2
r \| 2L2 \leq C

\Biggl( 
k - 1\sum 
n=0

\Delta t
\bigm\| \bigm\| \partial \eta n+1

Ritz

\bigm\| \bigm\| 2
L2 +\Delta t4I(u, f) + \| \phi 0

r\| 2L2

\Biggr) 
.

By the triangle inequality we have \| ek\| 2L2 \leq 2(\| \eta kRitz\| 2L2 + \| \phi k
r\| 2L2). Applying this

inequality, rearranging terms, dropping an unnecessary term, and taking a maximum
among constants it then follows from (4.18) that

(4.19) \| ek\| 2L2 \leq C

\Biggl( 
\Delta t

N\sum 
n=1

\| \partial \eta nRitz\| 2L2 + \| \eta kRitz\| 2L2 + \| \phi 0
r\| 2L2 +\Delta t4I(u, f)

\Biggr) 
.

The pointwise in time estimates (4.11) and (4.13) then follow from applying Lemma
2.4 and Theorem 3.7 with W = L2(\Omega ) and \eta kRitz = uk  - Rru

k, where Rr is the Ritz
projection (which also equals Pr for the H1

0 POD basis), and using \Delta t(2N + 1) =
(2 + 1/N)T \leq 3T .

The error bounds (4.12) and (4.14) in the solution norm follow by taking k = N
in (4.18) and proceeding similarly.

Remark 4.4. We briefly provide one pointwise in time error estimate for the noDQ
case with the L2 POD basis; other pointwise estimates can be obtained using similar
ideas. In the noDQ case, to obtain a pointwise in time L2 error estimate one can

1For more details, see, e.g., [37, Lemma 26, p. 166] or [51, pp. 16--17].
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proceed in a similar fashion to the above proof using the L2 projection instead of
the Ritz projection, as discussed in Remark 4.2. The error estimate (4.20) can be
obtained using Lemma 2.2 with \scrH = L2(\Omega ) and W = H1

0 (\Omega ), and the worst-case
pointwise projection error bound (3.3):

max
1\leq k\leq N

\| ek\| 2L2 \leq C

\biggl( 
(N + 1)

N+1\sum 
i=r+1

\lambda noDQ
i +

N+1\sum 
i=r+1

\lambda noDQ
i \| \nabla \varphi i\| 2L2

+ \| \phi 0
r\| 2L2 +\Delta t4I(u, f)

\biggr) 
.

(4.20)

If Assumption 3.1 is satisfied, then the (N + 1) scaling factor can be removed.
We emphasize that the error estimate (4.20) is suboptimal; see Remark 4.9 below

for precise optimality definitions. First, the estimate is suboptimal with respect to the
time discretization error because of the extra factor (N + 1) = (T\Delta t - 1 + 1). Second,
the estimate is suboptimal with respect to the POD projection error because of the
second term on the right-hand side, which contains \| \nabla \varphi i\| 2L2 instead of \| \varphi i\| 2L2 . This
is a consequence of using the L2 projection instead of the classical Ritz projection
(see Remark 4.2). As explained in [28], using the L2 projection eliminates the need
to use the DQs but yields suboptimal estimates with respect to the POD projection
error. Thus, even if Assumption 3.1 is satisfied and the (N + 1) scaling factor can
be removed, the error estimate (4.20) is still suboptimal. If the H1

0 POD basis is
used instead, the resulting error estimate is also suboptimal, even if Assumption 3.1
is satisfied; the details are similar.

Next, we prove a pointwise in time error bound in the H1
0 norm.

Lemma 4.5. Consider the CN POD-G-ROM scheme (4.2). If (4.9) is satisfied,
then the following error bound holds when the L2 POD basis is used,

max
1\leq k\leq N

\| \nabla ek\| 2L2 \leq C

\Biggl( 
s\sum 

i=r+1

\lambda DQ
i

\bigl( 
\| \varphi i  - Rr(\varphi i)\| 2L2 + \| \nabla (\varphi i  - Rr(\varphi i))\| 2L2

\bigr) 
+ \| \nabla \phi 0

r\| 2L2 +\Delta t4I(u, f)

\Biggr) 
,

(4.21)

and the following error bound holds when the H1
0 POD basis is used,

max
1\leq k\leq N

\| \nabla ek\| 2L2 \leq C

\Biggl( 
s\sum 

i=r+1

\lambda DQ
i (1 + \| \varphi i\| 2L2) + \| \nabla \phi 0

r\| 2L2 +\Delta t4I(u, f)

\Biggr) 
.(4.22)

Proof. We let vr := \partial \phi n+1
r in (4.8):

\| \partial \phi n+1
r \| 2L2 +

\nu 

2\Delta t
(\| \nabla \phi n+1

r \| 2L2  - \| \nabla \phi n
r \| 2L2) = (\partial \eta n+1

Ritz, \partial \phi 
n+1
r )L2  - \tau n(\partial \phi 

n+1
r ).

(4.23)

Applying Cauchy--Schwarz and Young's inequalities along with Taylor's theorem
on the right-hand side of (4.23), we get

\nu (\| \nabla \phi n+1
r \| 2L2  - \| \nabla \phi n

r \| 2L2) + 2\Delta t \| \partial \phi n+1
r \| 2L2 \leq \Delta t \| \partial \eta n+1

Ritz\| 
2
L2 +

3

2
\Delta t \| \partial \phi n+1

r \| 2L2

+ C\Delta t4In(u, f).

(4.24)
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Next, we sum from n = 0 to n = k  - 1 and drop an unnecessary term:

\| \nabla \phi k
r\| 2L2 \leq 1

\nu 

N - 1\sum 
n=0

\Delta t \| \partial \eta n+1
Ritz\| 

2
L2 + C\Delta t4I(u, f) + \| \nabla \phi 0

r\| 2L2 .

Now we use \| \nabla ek\| 2L2 \leq 2(\| \nabla \eta kRitz\| 2L2 + \| \nabla \phi k
r\| 2L2) to obtain

\| \nabla ek\| 2L2 \leq C

\Biggl( 
N - 1\sum 
n=0

\Delta t \| \partial \eta n+1
Ritz\| 

2
L2 + \| \nabla \eta kRitz\| 2L2 +\Delta t4I(u, f) + \| \nabla \phi 0

r\| 2L2

\Biggr) 
.

We use Lemma 2.4, Theorem 3.7, and \Delta t(2N + 1) = (2 + 1/N)T \leq 3T to complete
the proof.

4.2. Optimality of pointwise ROM discretization errors. Next, we dis-
cuss three different definitions of optimality for pointwise in time ROM discretization
errors. Again, we assume that we are in the DQ case throughout, although we do
briefly discuss the noDQ case in Remark 4.9 below. We classify the optimality type
of each pointwise in time error bound for the DQ case from section 4.1.

The optimality type of a pointwise error bound depends on both the space \scrH 
for the POD basis and the space W for the pointwise error norm. In section 4.1 we
considered four possibilities: we used \scrH = L2 or \scrH = H1

0 for the POD basis, and
we used W = L2 or W = H1

0 for the error norm. Below, we let \scrH and W be any
real Hilbert spaces, we consider the DQ case, and we let ek = uk  - uk

r be the ROM
error for k = 0, . . . , N . For the discretization, we assume that if certain conditions are
satisfied, then there exists a constant C so that the following pointwise error bound
holds:

max
1\leq k\leq N

\| ek\| 2W \leq C
\bigl( 
\Lambda r + \Lambda 0

r + \zeta (\Delta t) + \xi (h)
\bigr) 
,(4.25)

where
\bullet \Lambda r is the ROM discretization error and depends only on r, the POD eigen-
values, and the POD modes;

\bullet \Lambda 0
r is the ROM discretization error for the initial condition only and depends

only on r, the POD eigenvalues, and the POD modes;
\bullet \zeta (\Delta t) is an optimal time discretization error; and
\bullet \xi (h) is an optimal spatial discretization error.

We automatically consider the discretization error suboptimal if either the time or
the space discretization errors are suboptimal; therefore, we assume those errors are
optimal here and focus on the ROM discretization error.

Let Xr \subset \scrH be the span of the first r POD modes, and assume Xr is also
contained in W . Let Pr : \scrH \rightarrow \scrH be the orthogonal POD projection onto Xr, and let
\Pi W

r : W \rightarrow W be the W -orthogonal projection onto Xr. Also, let s be the number
of positive POD eigenvalues.

Definition 4.6. We say that the ROM discretization error \Lambda r is
\bullet truly optimal if there exists a constant C such that

\Lambda r \leq C\Lambda  \star 
r , \Lambda  \star 

r := max
1\leq k\leq N

\| uk  - \Pi W
r uk\| 2W ,(4.26)

\bullet optimal-I if there exists a constant C such that

\Lambda r \leq C\Lambda I
r , \Lambda I

r :=

s\sum 
i=r+1

\lambda i\| \varphi i\| 2W ,(4.27)
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\bullet optimal-II if there exists a constant C such that

\Lambda r \leq C\Lambda II
r , \Lambda II

r :=

s\sum 
i=r+1

\lambda i\| \varphi i  - \Pi W
r \varphi i\| 2W .(4.28)

The constant C above should be independent of all discretization parameters but may
depend on the solution data and the problem data.

We note that the first two notions of optimality above are generalizations of
definitions discussed in [28], while we believe the optimal-II definition is new. We
discuss each type of optimality below.

Remark 4.7. Note that we do not consider the ROM discretization error for the
initial condition, \Lambda 0

r, in these optimality definitions. These definitions can be modified
to include the ROM initial condition error, if desired.

Truly optimal. Since \Pi W
r is the W -orthogonal projection, the quantity \Lambda  \star 

r

defined in (4.26) is the best possible pointwise POD data approximation error. As
discussed in [28], this is the most natural definition of optimality; however, it may
not be straightforward to evaluate the quantity \Lambda  \star 

r and compare it to the ROM dis-
cretization error bound \Lambda r.

Optimal-I (optimal type I). Since it may not be easy to deal with the notion
of truly optimal, Iliescu and Wang proposed the notion of Optimal-I in [28]. Optimal-
I has the advantage of being simple to compute since \Lambda I

r involves only the POD
eigenvalues and modes. Optimal-I is also simple to interpret since from Lemma 2.4
we have

\Lambda I
r =

1

2N + 1

N\sum 
n=0

\| un  - Pru
n\| 2W +

1

2N + 1

N\sum 
n=1

\| \partial un  - Pr\partial u
n\| 2W .(4.29)

Therefore, \Lambda I
r is the total POD projection error for all of the data using the POD

projection Pr and the error norm W .
Optimal-II (optimal type II). The value of \Lambda II

r is also relatively straightfor-
ward to compute, since it involves only POD eigenvalues, modes, and the projection
\Pi W

r . Also, by Lemma 2.4 we have

\Lambda II
r =

1

2N + 1

N\sum 
n=0

\bigm\| \bigm\| un  - \Pi W
r un

\bigm\| \bigm\| 2
W

+
1

2N + 1

N\sum 
n=1

\bigm\| \bigm\| \partial un  - \Pi W
r \partial un

\bigm\| \bigm\| 2
W

.(4.30)

Since \Pi W
r is the W -orthogonal projection, the quantity \Lambda II

r is the best possible total
POD data approximation error, and (4.29)--(4.30) imply

\Lambda II
r \leq \Lambda I

r .

Optimal-II has the advantage of using a best possible POD approximation error,
while also being relatively simple to compute and understand. Finally, we note that
if W = \scrH , then Pr = \Pi W

r and therefore Optimal-I and Optimal-II are identical;
however, Optimal-I and Optimal-II may be different if \scrH \not = W .

Comparing the optimality types. Since we are in the DQ case, the pointwise
POD projection error result Theorem 3.7 implies that there exists a constant C such
that

\Lambda  \star 
r \leq C\Lambda II

r .

The above definitions, observations, and inequalities give the following result compar-
ing the optimality types.
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Proposition 4.8. The following hold:
(i) If the ROM discretization error is truly optimal, then it is Optimal-II.
(ii) If the ROM discretization error is Optimal-II, then it is Optimal-I.
(iii) If \scrH = W , then Optimal-I and Optimal-II are identical conditions.
(iv) If there exists a constant C such that

\| \varphi i\| W \leq C\| \varphi i  - \Pi W
r \varphi i\| W , r + 1 \leq i \leq s,(4.31)

and if the ROM discretization error is Optimal-I, then it is Optimal-II.

In general, we do not know if Optimal-II implies truly optimal; however, again,
\Lambda II
r is easier to deal with compared to \Lambda  \star 

r . We also do not know in general if Optimal-I
implies Optimal-II when \scrH \not = W . We discuss condition (4.31) below.

Remark 4.9 (the noDQ case). In the noDQ case, the same definitions of optimal-
ity can be used and Lemma 2.2 also gives interpretations of \Lambda I

r and \Lambda II
r as total POD

projections errors in the W norm. As in the DQ case, Optimal-II implies Optimal-
I, the two conditions are equivalent if \scrH = W , and Optimal-I with (4.31) implies
Optimal-II.

However, as shown in Proposition 3.3, in general we cannot bound the pointwise
POD projection error by a constant multiple of the total POD projection error, i.e.,
Assumption 3.1 is not always satisfied. Thus, we do not know if truly optimal implies
Optimal-II. Furthermore, even if Assumption 3.1 is satisfied, the L2 pointwise error
estimate (4.20) in Remark 4.4 is not optimal in any sense, since the second term on
its right-hand side contains \| \nabla \varphi i\| 2L2 instead of \| \varphi i\| 2L2 .

Optimality of bounds in section 4.1. Next, we consider the optimality type
of each pointwise in time error bound for the DQ case from section 4.1. Comparing
the pointwise bounds in Lemmas 4.3 and 4.5 to the above optimality definitions gives
the following result.

Theorem 4.10. For the pointwise error bounds in Lemma 4.3 with error norm
W = L2,

(i) if the L2 POD basis is used (i.e., \scrH = L2) and there exists a constant C such
that

\| \varphi i  - Rr(\varphi i)\| L2 \leq C, r + 1 \leq i \leq s,(4.32)

then the ROM discretization error in (4.11) is Optimal-I (which is identical
to Optimal-II);

(ii) if the H1
0 POD basis is used (i.e., \scrH = H1

0 ), then the ROM discretization
error in (4.13) is Optimal-I;

(iii) if the H1
0 POD basis is used (i.e., \scrH = H1

0 ) and condition (4.31) is satisfied
(with W = L2), then the ROM discretization error in (4.13) is Optimal-II.

For the pointwise error bounds in Lemma 4.5 with error norm W = H1
0 ,

(iv) if the L2 POD basis is used (i.e., \scrH = L2), then the ROM discretization error
in (4.21) is Optimal-II;

(v) if the H1
0 POD basis is used (i.e., \scrH = H1

0 ), then the ROM discretization
error in (4.22) is Optimal-I (which is identical to Optimal-II).

Proof. Beginning with (i), the ROM discretization error from (4.11) is given by

\Lambda r =

s\sum 
i=r+1

\lambda DQ
i \| \varphi i  - Rr(\varphi i)\| 2L2 .(4.33)
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By (4.32), the L2 orthonormality of the POD basis, and the definition of Optimal-I
it follows that

\Lambda r \leq C

s\sum 
i=r+1

\lambda DQ
i = C

s\sum 
i=r+1

\lambda DQ
i \| \varphi i\| 2L2 = C\Lambda I

r .(4.34)

From Proposition 4.8 since \scrH = W this is identical to Optimal-II.
For (ii) the ROM discretization error from (4.13) is given by

\Lambda r =

s\sum 
i=r+1

\lambda DQ
i \| \varphi i\| 2L2 ,(4.35)

which is Optimal-I by definition.
Next, (iii) follows from (ii) and Proposition 4.8.
For (iv), the ROM discretization error in (4.21) is given by

\Lambda r =

s\sum 
i=r+1

\lambda DQ
i

\bigl( 
\| \varphi i  - Rr(\varphi i)\| 2L2 + \| \nabla (\varphi i  - Rr(\varphi i))\| 2L2

\bigr) 
.(4.36)

Applying Poincar\'e's inequality to \| \varphi i  - Rr(\varphi i)\| 2L2 shows that \Lambda r is Optimal-II.
Finally, to prove (v) we use the fact that Pr = Rr for \scrH = H1

0 , Poincar\'e's
inequality, and the fact that Pr\varphi i = 0 for i > r to obtain

\Lambda r = C

s\sum 
i=r+1

\lambda DQ
i

\bigl( 
\| \varphi i  - Pr(\varphi i)\| 2L2 + \| \nabla (\varphi i  - Pr(\varphi i))\| 2L2

\bigr) 
\leq C

s\sum 
i=r+1

\lambda DQ
i \| \nabla \varphi i\| 2L2 ,

which is Optimal-I by definition. Since W = \scrH = H1
0 , this is identical to Optimal-II

by Proposition 4.8.

The W = L2 and \scrH = H1
0 case suggests it may be possible for the ROM dis-

cretization error to be Optimal-I but not Optimal-II, since an additional assumption
is required for Optimal-II. However, no other case shows a substantial difference be-
tween Optimal-I and Optimal-II. It is possible that further differences arise for other
partial differential equations; we leave this to be investigated elsewhere.

We note that (4.31) and (4.32) are uniform boundedness type conditions for
nonorthogonal POD projections. Indeed, for the case W = \scrH = L2, the Ritz projec-
tion Rr : L2 \rightarrow L2 is not orthogonal (even though it is orthogonal when viewed as
a mapping Rr : H1

0 \rightarrow H1
0 ). Thus, (4.32) is a uniform boundedness condition for a

nonorthogonal POD projection. Furthermore, for the case W = L2 and \scrH = H1
0 , we

have Rr\varphi i = 0 for i > r, and so (4.31) can be viewed as

\| \varphi i  - Rr\varphi i\| L2 \leq C\| \varphi i  - \Pi L2

r \varphi i\| L2 , r + 1 \leq i \leq s.(4.37)

Thus, (4.31) is a uniformly bounded comparison of a nonorthogonal POD projection
with an orthogonal POD projection. These types of uniform boundedness conditions
have been considered in [5, 28, 32, 39, 50, 56], but they are not well understood. We
do not consider them further here; we leave them to be more fully explored elsewhere.

5. Numerical results. In this section, we investigate numerically Assump-
tion 3.1. Specifically, we consider the following questions: (i) Is Assumption 3.1
satisfied? (ii) Is the pointwise in time projection error optimal? (iii) Is the point-
wise in time ROM error optimal? To investigate these questions numerically, we use
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the two counterexamples proposed in sections 3.1.1--3.1.2: counterexample 1, which
was defined in (3.17), and counterexample 2, which was defined in (3.19). For each
counterexample, we consider both the noDQ case (i.e., when the DQs are not used to
construct the ROM basis; see section 2.1) and the DQ case (i.e., when the DQs are
used to construct the ROM basis; see section 2.2).

Based on the theoretical results in sections 3.1 and 4.1, we expect the noDQ case
to (i) violate Assumption 3.1 (see (3.4)); (ii) yield suboptimal pointwise projection
errors (see (3.6) in Proposition 3.3); and (iii) yield suboptimal pointwise ROM errors
(see (4.20)). In contrast, based on the theoretical results in sections 3.2 and 4.1, we
expect the DQ case to (i) fulfill Assumption 3.1 (see Theorem 3.7); (ii) yield optimal
pointwise projection errors (see Theorem 3.7); and (iii) yield optimal pointwise ROM
errors (see 4.11).

In our numerical investigation, we use the one-dimensional heat equation (1.1),
which was used in the theoretical development in section 4. For all the numerical ex-
periments, we consider \nu = 1. We note that the time step, \Delta t, plays an important role
in our theoretical and numerical investigation. Indeed, an (N +1) = (T\Delta t - 1+1) fac-
tor determines the suboptimality of the pointwise projection and ROM error bounds
for the noDQ case (see (3.6) and (4.20), respectively). Thus, in our numerical inves-
tigation it is desirable to consider as many \Delta t values as possible in order to study
the asymptotic behavior of the error as \Delta t goes to zero. We note, however, that the
two counterexamples that we investigate restrict the \Delta t values that we can consider.
The reason is that while the two counterexamples yield ROM basis functions that
are scaled versions of the snapshots (which is advantageous for the theoretical devel-
opment), the treatment of their boundary conditions is somewhat delicate. Indeed,
both counterexamples vanish at x = 0, but not at x = 1. To simplify the numerical
treatment of the right boundary condition, we consider snapshots at \Delta t values for
which k\Delta t is an integer. This choice yields snapshots that vanish both at x = 0 and
at x = 1, which allows for a straightforward ROM construction. To summarize, in our
numerical investigation we strive to consider optimal k values that are large enough
to ensure a large number of \Delta t values (while satisfying the restriction k\Delta t \in \BbbN ) and
also low enough so that the numerical approximation is accurate.

Snapshot generation. Counterexamples 1 and 2 display a highly oscillatory be-
havior for the relatively large k values chosen (i.e., k = 128 and k = 100, respectively).
Thus, to minimize the numerical error in generating the snapshots, we do not use a
standard (e.g., FE) discretization. Instead, to construct the snapshots, we use the
analytical forms of counterexamples 1 and 2 given in (3.17) and (3.19), respectively.

ROM construction. To construct the ROM basis, we collect equally spaced snap-
shots on the time interval [0, 1] and [0, 0.2] for counterexamples 1 and 2, respectively.
Thus, the snapshot matrix K is (N +1)-dimensional in the noDQ case, and (2N +1)-
dimensional in the DQ case, as explained in sections 2.1 and 2.2, respectively. To
construct K, in (2.4) we use the standard Lagrange interpolant operator with respect
to the FE nodes to interpolate the analytical solution of counterexamples 1 and 2.
Next, we use K to build the ROM basis for the noDQ and DQ cases. We emphasize
that, although K has different dimensions in the noDQ and DQ cases, to ensure a fair
comparison, we use the same r value in all the numerical experiments. We construct
the ROM operators by using the FE mass and stiffness matrices, which are obtained
by using a linear FE spatial discretization with mesh size \Delta h = 1/4096. As the ROM
initial condition, we use the L2 projection of the initial condition in the noDQ case
and the Ritz projection of the initial condition in the DQ case. We use these ROM
operators to build the ROM, and run it over the time interval [0, T ] with the CN time
discretization and the time step \Delta t = T/N .
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5.1. Counterexample 1. In this section, we consider counterexample 1, which
was proposed in (3.17) of section 3.1.1. In all the numerical experiments in this
section, we consider k = 128 in (3.17). The numerical results are organized as follows.
In section 5.1.1, for both the noDQ and the DQ case, we investigate numerically
whether (i) Assumption 3.1 holds and (ii) the pointwise projection error is optimal.
In section 5.1.2, for both the noDQ and the DQ case, we investigate numerically
whether the pointwise ROM errors are optimal.

As explained in section 3.1.1, counterexample 1 was constructed to display the
suboptimality of the pointwise projection and ROM bounds when r = N and t = tN .
Thus, in our numerical investigation we also consider r = N and t = tN .

5.1.1. Pointwise projection error. In this section, we investigate numerically
whether Assumption 3.1 holds. To this end, we monitor the magnitude of the projec-
tion error (1.11),

\bigm\| \bigm\| \bigm\| \eta proj(., tn)\bigm\| \bigm\| \bigm\| 
L2

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| u(., tn) - 
N\sum 
i=1

\Bigl( 
u(., tn), \varphi i

\Bigr) 
L2
\varphi i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2

, n = 0, . . . , N,(5.1)

at all the time instances, and check whether there are large variations in its magnitude.
Furthermore, for various \Delta t values, we investigate numerically whether the projection
error (5.1) at the last time step is suboptimal (i.e., it has a suboptimal \Delta t - 1 factor).
Specifically, as shown in (3.3) for counterexample 1 in the noDQ case, the projection
error at the last time step satisfies

\bigm\| \bigm\| \bigm\| \eta proj(., tN )
\bigm\| \bigm\| \bigm\| 2
L2

= CnoDQ
proj

N+1\sum 
i=N+1

\lambda noDQ
i

\bigm\| \bigm\| \bigm\| \varphi i

\bigm\| \bigm\| \bigm\| 2
L2

,(5.2)

where

CnoDQ
proj = T \Delta t - 1 + 1 = (N + 1) .(5.3)

Moreover, as shown in (3.24b) for counterexample 1 in the DQ case, the projection
error at the last time step satisfies

\bigm\| \bigm\| \bigm\| \eta proj(., tN )
\bigm\| \bigm\| \bigm\| 2
L2

\leq CDQ
proj

N+1\sum 
i=N+1

\lambda DQ
i

\bigm\| \bigm\| \bigm\| \varphi i

\bigm\| \bigm\| \bigm\| 2
L2

,(5.4)

where

CDQ
proj = \scrO (1).(5.5)

In this section, we investigate numerically the scalings (5.2) and (5.4).
noDQ case. In Table 1, for the noDQ case, we list the pointwise projection errors

(5.1) at each time step. These results show that the pointwise projection error at the
last time step is orders of magnitude higher than the pointwise projection error at
the other time steps. Thus, we conclude that, in the noDQ case, counterexample 1
violates Assumption 3.1.

In Table 2, we list the scaling factor (5.2) for different \Delta t values. As expected
from (5.3), these results show that the scaling factor is equal to (N + 1). Thus,
we conclude that, in the noDQ case, counterexample 1 yields suboptimal pointwise
projection errors.
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Table 1
Counterexample 1 (3.17), \Delta t = 1/16, noDQ case: pointwise projection error (5.1) at each time

step.

n | | \eta proj(., tn)| | L2 n | | \eta proj(., tn)| | L2 n | | \eta proj(., tn)| | L2

0 2.79e - 08 6 2.11e - 08 12 0.00e + 00
1 2.24e - 08 7 0.00e + 00 13 1.49e - 08
2 2.69e - 08 8 1.67e - 08 14 7.45e - 09
3 7.45e - 09 9 1.05e - 08 15 1.67e - 08
4 1.49e - 08 10 2.11e - 08 16 7.07e - 01
5 1.83e - 08 11 1.05e - 08

Table 2
Counterexample 1 (3.17), noDQ case: scaling factor (5.2) for different time step values.

\Delta t 1/4 1/8 1/16 1/32 1/64 1/128

CnoDQ
proj 5.0e + 00 9.0e + 00 1.7e + 01 3.3e + 01 6.5e + 01 1.3e + 02

Table 3
Counterexample 1 (3.17), \Delta t = 1/16, DQ case: pointwise projection error (5.1) at each time step.

n | | \eta proj(., tn)| | L2 n | | \eta proj(., tn)| | L2 n | | \eta proj(., tn)| | L2

0 1.7144e - 01 6 1.7144e - 01 12 1.7146e - 01
1 1.7144e - 01 7 1.7145e - 01 13 1.7146e - 01
2 1.7144e - 01 8 1.7145e - 01 14 1.7146e - 01
3 1.7144e - 01 9 1.7145e - 01 15 1.7146e - 01
4 1.7144e - 01 10 1.7145e - 01 16 1.7147e - 01
5 1.7144e - 01 11 1.7146e - 01

Table 4
Counterexample 1 (3.17), DQ case: scaling factor (5.4) for different time step values.

\Delta t 1/4 1/8 1/16 1/32 1/64 1/128

\scrC DQ
proj 1.8e + 00 1.9e + 00 1.9e + 00 2.0e + 00 2.0e + 00 2.0e + 00

DQ case. In Table 3, for the DQ case, we list the pointwise projection errors
(5.1) at each time step. These results show that, in contrast with the noDQ case, the
pointwise projection error at the last time step is of the same order of magnitude as
the pointwise projection error at the other time steps. Thus, we conclude that, in the
DQ case, counterexample 1 satisfies Assumption 3.1.

In Table 4, we list the scaling factor (5.4) for different time step values. As
expected from (5.5), these results show that the scaling factor is bounded. Thus, we
conclude that, in the DQ case, counterexample 1 yields optimal pointwise projection
errors.

The numerical results in this section support the theoretical results in section 3.
Specifically, counterexample 1 satisfies Assumption 3.1 in the DQ case but not in
the noDQ case. Furthermore, the pointwise projection error at the last time step is
optimal in the DQ case and suboptimal in the noDQ case.

5.1.2. Pointwise ROM error. In this section, we investigate whether the
pointwise ROM error is suboptimal.

noDQ case. In the noDQ case, we investigate numerically the error estimate
proved in (4.20):
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max
1\leq k\leq N

\| ek\| 2L2 = \scrO 

\Biggl( 
(N + 1)

N+1\sum 
i=N+1

\lambda noDQ
i \| \varphi i\| 2L2 +\Delta t4 +

N+1\sum 
i=N+1

\lambda noDQ
i \| \nabla \varphi i\| 2L2

\Biggr) 
.

(5.6)

We note that, since the ROM initial condition is the L2 projection of the initial
condition, the term \| \phi 0

r\| 2L2 in (4.20) vanishes in (5.6). As explained in Remark 4.4, the
error bound (5.6) is suboptimal with respect to the time step due to the factor (N +
1) = (\Delta t - 1 + 1) in the first term on the right-hand side. To investigate numerically
the suboptimality of the error bound (5.6), in Table 5 we list the ratio

CnoDQ
rom =

\biggl( 
max

1\leq k\leq N
\| ek\| 2L2

\biggr) 
/

\Biggl( 
(N + 1)

N+1\sum 
i=N+1

\lambda noDQ
i \| \varphi i\| 2L2(5.7)

+\Delta t4 +

N+1\sum 
i=N+1

\lambda noDQ
i \| \nabla \varphi i\| 2L2

\Biggr) 
.

The results in Table 5 show that the ratio (5.7) is bounded from below. Thus, we
conclude that the pointwise ROM error in the noDQ case is suboptimal.

To investigate the sensitivity of our numerical results with respect to k (i.e., the
level of oscillations in counterexample 1), in Table 6 we list the ratio (5.7) for k = 8.
The results in Table 6 confirm the results in Table 5, i.e., the pointwise ROM error
in the noDQ case is suboptimal.

DQ case. In the DQ case, we investigate numerically the error estimate proved
in (4.11):

max
1\leq k\leq N

\| ek\| 2L2 = \scrO 

\Biggl( 
N+1\sum 

i=N+1

\lambda DQ
i \| \varphi i  - Rr(\varphi i)\| 2L2 +\Delta t4

\Biggr) 
.(5.8)

We note that the error bound (5.8) is optimal. In Table 7, we list the ratio

CDQ
rom =

\biggl( 
max

1\leq k\leq N
\| ek\| 2L2

\biggr) 
/

\Biggl( 
N+1\sum 

i=N+1

\lambda DQ
i \| \varphi i  - Rr(\varphi i)\| 2L2 +\Delta t4

\Biggr) 
.(5.9)

The results in Table 7 show that the ratio (5.9), while increasing, seems to be
bounded, as predicted by (5.8).

The increase of CDQ
rom in Table 7 is due to the highly oscillatory character of coun-

terexample 1 in (3.17), which makes the ROM simulation in the DQ case challenging.

Table 5
Counterexample 1 (3.17), noDQ case: ratio (5.7) for different time step values.

\Delta t 1/4 1/8 1/16 1/32 1/64 1/128

\scrC noDQ
rom 3.0e - 04 1.8e - 04 1.0e - 04 2.0e - 04 7.6e - 04 7.9e - 04

Table 6
Counterexample 1 (3.17), k = 8, noDQ case: ratio (5.7) for different time step values.

\Delta t 1/2 1/4 1/8

\scrC noDQ
rom 3.75e - 03 6.371e - 03 1.13  - 02
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Table 7
Counterexample 1 (3.17), DQ case: ratio (5.9) for different time step values.

\Delta t 1/4 1/8 1/16 1/32 1/64 1/128

CDQ
rom 7.8e - 02 1.3e - 01 2.0e - 01 3.5e - 01 5.3e - 01 8.7e - 01

Table 8
Counterexample 1 (3.17), k = 8, and DQ case: ratio (5.9) for different time step values.

\Delta t 1/2 1/4 1/8

\scrC DQ
rom 4.73e - 01 5.92e - 01 2.55e - 01

To alleviate the highly oscillatory behavior of counterexample 1, we keep all the pa-
rameters unchanged and choose a lower k value (i.e., k = 8) in (3.17), which yields
a solution with fewer oscillations. In Table 8, we list the ratio (5.9) for k = 8. The
results in Table 8 show that the ratio (5.9) is bounded, as predicted by (5.8).

The numerical results in this section support the theoretical results in section 4.
Specifically, for counterexample 1, the pointwise ROM error is optimal in the DQ
case, and suboptimal in the noDQ case.

5.2. Counterexample 2. In this section, we consider counterexample 2, which
was proposed in (3.19) of section 3.1.2. In all the numerical experiments in this
section, we consider k = 100, \delta = 0.01, and \alpha = 1 in (3.19). The numerical results
are organized as follows. In section 5.2.1, for both the noDQ and the DQ case,
we investigate numerically whether (i) Assumption 3.1 holds; and (ii) the pointwise
projection error is optimal. In section 5.2.2, for both the noDQ and the DQ case, we
investigate numerically whether the pointwise ROM errors are optimal.

As explained in section 3.1.2, counterexample 2 was constructed to display the
suboptimality of the pointwise projection and ROM error bounds for any r values.
In our numerical investigation, we consider general r and t = tk values for both the
pointwise projection error and the pointwise ROM error.

5.2.1. Pointwise projection error. In this section, we investigate numerically
whether Assumption 3.1 holds. To this end, for various \Delta t values, we investigate nu-
merically whether the projection error (5.10) at various time instances is suboptimal.

\bigm\| \bigm\| \bigm\| \eta proj(., tr)\bigm\| \bigm\| \bigm\| 
L2

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| u(., tr) - 
r\sum 

i=1

\Bigl( 
u(., tr), \varphi i

\Bigr) 
L2
\varphi i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
L2

, r = 1, . . . , N,(5.10)

Specifically, as shown in (3.8) in Proposition 3.3 for counterexample 2 in the noDQ
case, for fixed r values, the projection error at t = tr satisfies

\bigm\| \bigm\| \bigm\| \eta proj(., tr)\bigm\| \bigm\| \bigm\| 2
L2

= CnoDQ
proj (N + 1)

N+1\sum 
i=r+1

\lambda noDQ
i

\bigm\| \bigm\| \bigm\| \varphi i

\bigm\| \bigm\| \bigm\| 2
L2

,(5.11)

where

CnoDQ
proj \geq min\{ 1, \gamma \} 

2
.(5.12)

Moreover, as shown in (3.24b) for counterexample 2 in the DQ case, the projection
error at various time instances satisfies
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Table 9
Counterexample 2 (3.19), r = 4, and noDQ case: scaling factor (5.11) for different time step

values.

\Delta t 0.05 0.04 0.02 0.01

\scrC noDQ
proj 1.00e + 00 9.82e - 01 8.65e - 01 6.32e - 01

Table 10
Counterexample 2 (3.19), r = 4, and DQ case: scaling factor (5.13) for different time step values.

\Delta t 0.05 0.04 0.02 0.01

\scrC DQ
proj 1.83e + 00 1.76e - 02 8.32e - 03 3.84e - 03

max
0\leq k\leq N

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| u(., tk) - 
r\sum 

i=1

\Bigl( 
u(., tk), \varphi i

\Bigr) 
L2
\varphi i

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

L2

\leq CDQ
proj

d\sum 
i=r+1

\lambda DQ
i \| \varphi i\| L2 ,(5.13)

where CDQ
proj is bounded from above. In this section, we investigate numerically the

scalings (5.11)--(5.12) and (5.13).

noDQ case. In Table 9, for r = 4, we list the scaling factor \scrC DQ
proj in (5.11) for

different time step values. As expected from (5.12), these results show that the
scaling factor is bounded from below. Thus, we conclude that, in the noDQ case,
counterexample 2 yields suboptimal pointwise projection errors.

DQ case. In Table 10, for r = 4, we list the scaling factor (5.13) for different
time step values. As expected, these results show that the scaling factor is bounded
from above. Thus, we conclude that, in the DQ case, counterexample 2 yields optimal
pointwise projection errors.

The numerical results in this section support the theoretical results in section 3.
Specifically, for a generic r value, counterexample 2 satisfies Assumption 3.1 in the
DQ case but not in the noDQ case. Furthermore, the pointwise projection error is
optimal in the DQ case and suboptimal in the noDQ case.

5.2.2. Pointwise ROM error. In this section, we investigate whether the
pointwise ROM error is suboptimal. We note that the time evolution of the ana-
lytical solution in counterexample 2 (which is displayed in Figure 1) prompted us
to make the following parameter choices in the numerical investigation of the point-
wise ROM error. Since the magnitude of the analytical solution is significant on the
time interval [0, 0.04] and almost negligible on the time interval [0.04, 0.2], we decided
to compute the pointwise ROM errors for both the noDQ and the DQ case on the
time interval [0, 0.05]. Furthermore, since the DQ ROM basis functions with large
indices are very oscillatory, we decided to use low r values in order to avoid numerical
instabilities.

noDQ case. In the noDQ case, we investigate numerically the error estimate
proved in (4.20):

max
1\leq k\leq N

\| ek\| 2L2 = \scrO 

\Biggl( 
(N + 1)

N+1\sum 
i=r+1

\lambda noDQ
i \| \varphi i\| 2L2 +\Delta t4 +

N+1\sum 
i=r+1

\lambda noDQ
i \| \nabla \varphi i\| 2L2

\Biggr) 
.

(5.14)

We note that since the ROM initial condition is the L2 projection of the initial
condition, the term \| \phi 0

r\| 2L2 in (4.20) vanishes in (5.14). As explained in Remark 4.4,
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Fig. 1. Counterexample 2 (3.19), FOM plot: h = 1/4096 and \Delta t = 0.02.

Table 11
Counterexample 2 (3.19) and noDQ case: ratio (5.15) for fixed time step \Delta t = 0.01 and different

r values.

r 1 2 3 4 5 6

\scrC noDQ
rom 1.7e - 01 9.8e - 02 1.1e - 01 2.2e - 01 4.4e - 01 9.2e - 01

the error bound (5.14) is suboptimal with respect to the time step due to the factor
(N + 1) = (T\Delta t - 1 + 1) in the first term on the right-hand side. To investigate
numerically the suboptimality of the error bound (5.14), in Table 11 we list the ratio
(5.15) for fixed \Delta t values and various r values. The ratios in Table 11 are bounded
from below. Thus, we conclude that the pointwise ROM error in the noDQ case is
suboptimal.

CnoDQ
rom =

\biggl( 
max

1\leq k\leq N
\| ek\| 2L2

\biggr) 
/

\Biggl( 
(N + 1)

N+1\sum 
i=r+1

\lambda noDQ
i \| \varphi i\| 2L2(5.15)

+\Delta t4 +

N+1\sum 
i=r+1

\lambda noDQ
i \| \nabla \varphi i\| 2L2

\Biggr) 
.

DQ case. In the DQ case, we investigate numerically the error estimate proved
in (4.11):

max
1\leq k\leq N

\| ek\| 2L2 = \scrO 

\Biggl( 
N+1\sum 
i=r+1

\lambda DQ
i \| \varphi i  - Rr(\varphi i)\| 2L2 +\Delta t4

\Biggr) 
.(5.16)

To investigate numerically the optimality of the error bound (5.16), in Table 12
we list the ratio (5.17) for fixed \Delta t values and various r values. The ratios in Table 12
are bounded. Thus, we conclude that the pointwise ROM error in the DQ case is
optimal.

CDQ
rom =

\biggl( 
max

1\leq k\leq N
\| ek\| 2L2

\biggr) 
/

\Biggl( 
N+1\sum 
i=r+1

\lambda DQ
i \| \varphi i  - Rr(\varphi i)\| 2L2 +\Delta t4

\Biggr) 
.(5.17)
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Table 12
Counterexample 2 (3.19) and DQ case: ratio (5.17) for fixed time step \Delta t = 0.01 and different

r values.

r 1 2 3 4 5 6

\scrC DQ
rom 2.9e - 03 4.0e - 03 4.9e - 03 5.7e - 03 1.0e - 02 2.9e - 02

The numerical results in this section support the theoretical results in section 4.
Specifically, for counterexample 2, the pointwise ROM error is optimal in the DQ case
and suboptimal in the noDQ case.

6. Conclusions. In this paper, we resolved several theoretical issues dealing
with the optimality of pointwise in time error bounds for POD-ROMs of the heat
equation. In particular, we studied the role played by the DQs in the optimality of
pointwise POD error bounds with respect to (i) the time discretization error and (ii)
the ROM discretization error.

First, in the noDQ case (i.e., when the DQs are not used to construct the POD
basis), we proved that the error bound is suboptimal not only with respect to the
ROM discretization (as shown in [28]) but also with respect to the time discretization.
Specifically, in Proposition 3.3 we constructed two classes of analytical examples, and
we proved that these examples violate Assumption 3.1 and yield suboptimal (with
respect to the time discretization) pointwise projection error bounds. Furthermore,
we noted that these suboptimal pointwise projection error bounds yield suboptimal
ROM error bounds (see Remark 4.4). Finally, we illustrated the suboptimality of the
pointwise projection and ROM error bounds in the numerical simulation of the heat
equation.

Our second main contribution is Theorem 3.7, where we proved that, in the DQ
case (i.e., when the DQs are used to construct the POD basis), Assumption 3.1 is
always satisfied. To prove Theorem 3.7, in Lemma 3.6 we first proved a discrete
time Sobolev inequality for the DQ case. Next, in section 4, we used Theorem 3.7 to
prove pointwise ROM error bounds that are optimal with respect to both the ROM
discretization error and the time discretization error in the DQ case. In section 5,
we illustrated the optimality of the pointwise projection and error bounds in the
numerical simulation of the heat equation.

Our third main contribution is that, in Definition 4.6, we proposed a new defini-
tion for the optimality of pointwise in time ROM discretization errors. In section 4.2,
we carefully discussed the relationship between this new optimality definition and the
other two optimality definitions in current use. In Theorem 4.10, for two of the three
optimality definitions, we showed that the DQ case yields optimal bounds, whereas
the noDQ case yields suboptimal error bounds.

Our theoretical and numerical investigations (see also [28, 34, 50]) show that the
DQs are needed to prove optimal pointwise in time error bounds. There are, however,
several research directions that need to be investigated.

At a theoretical level, the uniform boundedness type conditions for nonorthogo-
nal POD projections considered in Proposition 4.8 and Theorem 4.10 are important
in proving some of the optimal pointwise ROM error bounds. These type of uni-
form boundedness conditions have been studied both theoretically and numerically
in [5, 28, 32, 39, 50, 56], but they are not well understood. Further investigation of
these conditions is needed. Additionally, at a theoretical level we considered optimal
uniform estimates only for the heat equation. How these estimates will extend to more
complicated nonlinear PDEs (e.g., the Navier--Stokes equations) is an open problem.
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In this paper, we considered equally spaced snapshots to construct the POD basis.
The POD adaptivity in time (see, e.g., [1, 26, 36, 42] and the survey in [16]) aims
at choosing snapshot time instances that are optimal in some sense (e.g., such that
the error between the ROM and FOM trajectories is minimized [36]). The effect of
POD adaptivity in time on the optimality of error bounds in the noDQ and DQ cases
should also be investigated.

At a numerical level, further investigation of the role of DQs in practical com-
putations is needed. In this paper, we focused exclusively on the optimality of the
rates of convergence of ROM error bounds. We emphasize, however, that we did
not address the size of the ROM error. In our numerical investigation, the size of
the ROM error was sometimes lower in the noDQ case and other times lower in the
DQ case. Overall, the size of the ROM error was of the same order in the noDQ
and DQ cases (results are not included). We note that the current literature yields
similar qualitative conclusions: In some references [24, 33], the ROM error is lower
in the DQ case than in the noDQ case; in other references [28, 32, 34], the situation
is reversed. Further investigation of the size of the ROM error in the noDQ and DQ
cases is needed.

Acknowledgment. We thank the three anonymous reviewers for their construc-
tive comments and suggestions, which improved the manuscript.
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