
88	 J. FOR. SCI., 63, 2017 (2): 88–97

JOURNAL OF FOREST SCIENCE, 63, 2017 (2): 88–97

doi: 10.17221/86/2016-JFS

Impact of plot size and model selection on forest  
biomass estimation using airborne LiDAR:  
A case study of pine plantations in southern Spain

Rafael M. NAVARRO-CERRILLO 1*, Eduardo GONZÁLEZ-FERREIRO 2,  
Jorge GARCÍA-GUTIÉRREZ 3, Carlos J. CEACERO RUIZ 4,  
Rocío HERNÁNDEZ-CLEMENTE 5

1�Department of Forestry Engineering, School of Forest Engineering,  
University of Cordoba, Córdoba, Spain

2�Department of Agroforestry Engineering, School of Forest Engineering,  
University of Santiago de Compostela, Lugo, Spain

3�Department of Computer Science Languages and Systems, School of Industrial Engineering, 
University of Seville, Sevilla, Spain

4�Department of Physiology, Anatomy and Cellular Biology, Faculty of Biology,  
Pablo de Olavide University, Sevilla, Spain

5�Department of Geography, College of Science, Swansea University, Swansea, UK

*Corresponding author: irlnacer@uco.es

Abstract

Navarro-Cerrillo R.M., González-Ferreiro E., García-Gutiérrez J., Ceacero Ruiz C.J., Hernández-Clemente R. 
(2017): Impact of plot size and model selection on forest biomass estimation using airborne LiDAR: A case 
study of pine plantations in southern Spain. J. For. Sci., 63: 88–97.

We explored the usefulness of LiDAR for modelling and mapping the stand biomass of two conifer species in southern Spain. 
We used three different plot sizes and two statistical approaches (i.e. stepwise selection and genetic algorithm selection) in 
combination with multiple linear regression models to estimate biomass. 43 predictor variables derived from discrete-return 
LiDAR data (4 pulses per m2) were used for estimating the forest biomass of Pinus sylvestris Linnaeus and Pinus nigra Arnold 
forests. Twelve circular plots – six for each species – and three different fixed-radius designs (i.e. 7, 15, and 30 m) were estab-
lished within the range of the airborne LiDAR. The Bayesian information criterion and R2 were used to select the best models. 
As expected, the models that included the largest plots (30 m) yielded the highest R2 value (0.91) for Pinus sp. using genetic 
algorithm models. Considering P. sylvestris and P. nigra models separately, the genetic algorithm approach also yielded the 
highest R2 values for the 30-m plots (P. nigra: R2 = 0.99, P. sylvestris: R2 = 0.97). The results we obtained with two species and 
different plot sizes revealed that increasing the size of plots from 15 to 30 m had a low effect on modelling attempts.
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The accurate estimation of forest biomass and the 
spatially explicit mapping of forest stocks based on 
field inventory methods or aerial photography have 

gained considerable interest (Avery, Burkhart 
1994). The high cost of establishing field plots has 
partially been offset by the recent progress made in 
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remote sensing technologies (e.g. airborne LiDAR), 
and it has been accepted that a modified sampling 
design with adequate statistical approach is re-
quired (Zhao, Popescu 2009). Along with sam-
pling effort, field plot shape and size selection are 
still among the main challenges of forest inventory 
design, because it is necessary to minimize poten-
tial edge effects and to capture an adequate amount 
of structural variability in the field (Zenner 2005; 
González-Ferreiro et al. 2013).

The use of airborne LiDAR as a sampling tool for 
taking forest inventories has been widely used to 
provide accurate estimates of aboveground forest 
biomass (Anderson et al. 2006; Zhao, Popescu 
2009). In addition, LiDAR systems reduce ground-
based measures such as tree diameters, heights 
and canopy parameters providing better data pro-
cessing and positional accuracy than photogram-
metric techniques (Maltamo et al. 2004; Næsset 
2004; González-Ferreiro et al. 2013). It may be 
possible to reduce the edge effect associated with  
LiDAR metrics related to trees located just outside 
plot boundaries by considering the use of different 
plot sizes as part of the design parameters in forest 
surveys. Sample plots with a high perimeter-to-ar-
ea ratio may substantially reduce the negative im-
pact of the edge effect on LiDAR metrics (Frazer 
et al. 2011).

Several authors have reported that it is possible to 
estimate biomass at a tree and stand level in vari-
ous forest types and conditions using small-foot-
print LiDAR measurements (Maltamo et al. 2004; 
González-Ferreiro et al. 2012). Li et al. (2008) 
demonstrated that some explanatory variables (i.e. 
mean height, canopy cover, and coefficient of varia-
tion of height) are strongly correlated with stand bio-
mass and remain stable across different landscapes.

LiDAR-based models for estimating plot-level for-
est attributes (such as height, basal area, and biomass) 
are usually based in the relationships between ground 
data and selected LiDAR metrics generated using re-
gression analyses (González-Ferreiro et al. 2012). 
Concerning biomass, ground reference values are 
obtained by destructive sampling or more often us-
ing allometric equations (Nelson et al. 2004). Design 
inventories of forest biomass at different scale reso-
lutions by considering individual tree data at various 
spatial scales is a way to assess the effect of scale on 
the quantification of biomass using airborne LiDAR.

Moreover, in the context of applying LiDAR to 
the assessment of forest structure, most estimation 
models explored in previous studies used a step-
wise selection combined with multiple linear re-
gression (MLR), and the models were fitted using 

data collected at a given plot size (Næsset 2002, 
2004). However, many problems related to stepwise 
selection have been reported in the literature. The 
main concerns involve the dependence of results 
on the order of parameter entry (or deletion) and 
the absence of the control of the inflation of Type 
I errors in the sequence of statistical tests (Whit-
tingham et al. 2006). Recently, some authors have 
proposed to overcome the classic limitations of 
stepwise MLR on LiDAR by using evolutionary 
techniques (Latifi et al. 2010; García-Gutiérrez 
et al. 2014). Specifically, genetic algorithm (GA) se-
lection appears to be a suitable tool to overcome 
the above-mentioned problems related to variable 
selection.

The impact of sample plot size on the prediction 
accuracy of least-squares regression estimators of 
forest biomass using airborne LiDAR has often 
been explored in boreal forests (Gobakken, Næs-
set 2008; Mauro et al. 2009). Yet, further studies 
are needed to obtain additional information in or-
der to apply this knowledge to pine plantations in 
Mediterranean areas. In this paper we explored the 
optimization, under some cost or time constraints, 
of plot size to improve the quantification of forest 
biomass based on LiDAR and field inventory data 
in forests of Pinus sylvestris Linnaeus and Pinus 
nigra Arnold in southern Spain. We compared two 
statistical techniques for the selection of the vari-
ables: stepwise selection and GA selection.

MATERIAL AND METHODS

Study area. The experimental area was located 
in the Sierra de los Filabres mountain range (Al-
meria province, southeastern Spain) (37°13'27''N, 
2°32'54''W) (Fig. S1). The elevation of the study 
area ranged from 1,540 to 2,000 m a.s.l. and annual 
rainfall ranged between 300 and 400 mm. The an-
nual average temperature was 11°C, with a maxi-
mum of 32°C in summer and minimum of –8°C 
in winter. The vegetation was a 40-year-old mixed 
pine stand of P. nigra and P. sylvestris. The forest 
stands contained sparse evergreen shrubs (Adeno-
carpus decorticans Boissier and Cistus laurifolius 
Linnaeus). Parent material was composed of sili-
ceous rock with quartz mica schists, which form 
Eutric Cambisol-Regosol soils.

Field sampling. In July 2008, 12 plots – 6 per 
species – were established within the range of the 
airborne LiDAR strips (Fig. S1) in P. sylvestris and 
P. nigra plantations. The plots were randomly locat-
ed considering similar canopy structural parameters 
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in areas with slopes < 20%. In each plot, all the trees 
with DBH (1.3 m a.g.l. – DBH at 1 cm intervals) larg-
er than or equal to 10 cm were measured in circular 
plots with a radius of 7 (153.9 m2), 15 (706.9 m2), and 
30 m (2,827.3 m2) overlapped (i.e. the plot centre is 
7 m, which then expands to 15 and 30 m).

Total tree height was measured with a Vertex III 
hypsometer (Haglöf Sweden AB, Sweden) (Table 1). 
Total aboveground biomass – WT (mg·ha–1) was es-
timated as the sum of the fractions calculated using 
nationwide P. sylvestris and P. nigra biomass (kg) 
equations, as Eqs. 1–8 (Ruiz Peinado et al. 2011):

P. nigra:

1.838 0.945
s 0.0403 RMSE 71.13W d h     � (1)

where:
Ws	 – biomass weight of the stem fraction,
d	 – �DBH (cm), 
h	 – tree height (m),
RMSE	– root mean square error.

 2
b7 0.228 32.5 RMSE 25.33W d Z        � (2)

where:
Wb7	– �biomass weight of the thick branch fraction with 

a diameter larger than 7 cm (kg),
d	 – �DBH (cm), if d ≤ 32.5 cm, then Z = 0,  

if d > 32.5 cm, then Z = 1.

2
b2–7 0.0521 RMSE 31.48W d    � (3)

where:
Wb2–7	– �biomass weight of the medium branch fraction 

with a diameter between 2 and 7 cm (kg).

2
b2 0.0720 RMSE 26.86nW d     � (4)

where:
Wb2 + n	�– �biomass weight of the thin branch fraction with 

a diameter smaller than 2 cm with needles (kg).

P. sylvestris:

2
s 0.0154 RMSE 34.01W d h     � (5)

   2 2
b7 0.540 37.5 0.0119 37.5 RMSE 12.63W d d h Z           

            2 2
b7 0.540 37.5 0.0119 37.5 RMSE 12.63W d d h Z            � (6)

d	– �DBH (cm), if d ≤ 37.5 cm, then Z = 0, if d > 37.5 cm, 
then Z = 1.

2.742 0.899
b2–7 0.0295 RMSE 10.83W d h     � (7)

2.199 1.153
b2 0.530 RMSE 11.41nW d h

      � (8)

LiDAR processing. LiDAR data were acquired 
with an Optech Airborne Laser Terrain Mapper 
(small-footprint, multiple returns; LaserMap, USA) 
sensor operated at a laser wavelength of 1,064 nm 
from a flight altitude of 1,500 m a.s.l. in August 
2008. The beam divergence was 0.3 mrad, pulsing 
frequency 33 kHz, scan frequency 50 Hz, and the 
maximum scan angle ± 10°. The first and the last 
return pulses were recorded. The whole study area 
was flown over in 18 strips and each strip was flown 
over three times, which yielded an average mea-
surement density of about 4 pulses per m2. Verti-
cal and horizontal accuracy was determined to be 
about 0.15 and 0.45 m, respectively.

For each synthetic LiDAR plot cloud (i.e. circular 
plots with a fixed radius of 7, 15, and 30 m, respec-
tively), we computed LiDAR metrics to support a 
multiple regression model, based on previous re-
search by Næsset (2002). Metrics were calculated 
using a FUSION LIDAR Toolkit (McGaughey 
2009). In summary, the LiDAR point clouds were 
first filtered to generate a Digital Elevation Model 
(DEM) of 0.5 m cell size. LiDAR metrics were com-
puted for each LiDAR plot after normalising the 
data by subtracting the DEM. In this study, a total 
of 43 metrics were extracted from LiDAR pulses 
and used as regressors in the statistical analyses. 
For further details of the procedure used to ob-
tain such LiDAR metrics see the steps described 
in González-Ferreiro et al. (2012). To obtain 
a complete explanation of the FUSION tools see  
McGaughey (2009). The summary of the LiDAR 

Table 1. Main structural parameters of Pinus nigra Arnold and Pinus sylvestris Linnaeus forests (mean ± standard 
error) in the training areas, plot radius R = 15 m

Main species Age (yr) Density (trees per hectare) h (m) DBH (cm) G (m2·ha–1) WT (mg·ha–1)
Pinus sp. 1,169 ± 351 8.30 ± 1.06 16.58 ± 2.54 24.94 ± 4.78 85.61 ± 21.22
P. sylvestris 35 ± 2 1,088 ± 223 8.51 ± 1.19 17.04 ± 1.83 25.50 ± 6.50 87.25 ± 38.12
P. nigra 40 ± 3 1,262 ± 466 8.05 ± 0.92 16.01 ± 3.28 24.29 ± 1.82 83.50 ± 18.10

h – tree height, G – basimetric area, WT – total aboveground biomass
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metrics with their corresponding descriptions is 
shown in Table S1.

Linear regression model and genetic selection 
methods. Two selection procedures (i.e. stepwise 
and GA) were used to objectively choose the best 
linear models for predicting biomass from this 
suite of predictors.

The stepwise selection model was primarily used 
to define the empirical relationships between LiDAR 
and fieldwork adding (forward mode) or drop-
ping (backward mode) predictor variables one at 
a time until the Bayesian information criterion 
(BIC) statistic indicative of the relative model fit 
decreased (Means et al. 2000). According to the 
principle of parsimony, out of 43 initial variables 
the independent variables were reduced to fewer 
than 10 in all cases, including intensity variables. 
Variables were validated based on Pearson’s cor-
relation coefficients between independent and 
dependent variables. Only the variable with the 
highest correlation with the dependent variable 
(> 0.8) was retained. A value of 0.8 was chosen 
based on the characteristics of the data, with the 
knowledge that all LiDAR-derived variables are 
height-related, resulting in inherently high corre-
lations. This method was selected to avoid statis-
tically invalid models (i.e. overfitting) in the final 
regression step, namely linear regression using 
Mallow’s Cp and adjusted R2 as selection criteria. 
The comparison of the estimates for the selected 
models was based on the following three statistics: 
R2, RMSE, and BIC. Although the BIC was used as 
the final criterion to select the best model because 
of its better suitability for following the parsimo-
ny principle (González-Ferreiro et al. 2012), it 
does not provide an intuitive idea of model preci-
sion. The R2 and RMSE were therefore calculated 
to provide additional information. For this study, 
the data were processed using stepwise selection 
implemented with SPSS (Version 15.0, 2006).

Once the stepwise model results were available, 
we proceeded with the GA selection techniques 
(Renner, Ekárt 2003; García-Gutiérrez et 
al. 2014). The GA selection used in this paper 
was implemented using the Watchmaker frame-
work (García-Gutiérrez et al. 2014). The good-
ness of fit of each individual model, i.e. a set of 
predictors selected as the potentially best subset 
that competes to be the best solution in the evo-
lutionary process, was measured according to the 
BIC (Schwarz 1978), which provides a quality 
measurement penalizing the use of too many pa-
rameters (and therefore following the principle of 
parsimony). 

In both cases, stepwise selection and GA multi-
collinearity were taken into account. Among the 
explanatory variables selected, the condition index 
(CI) and the variance inflation factor (VIF) were 
calculated. Subset models with CI > 30 or VIF > 10  
were disregarded, as recommended by Belsley 
(1991) and Stevens (2002).

In the case of GA for individuals with values above 
these thresholds, the worst possible fitness was as-
signed to such values and they were removed by the 
GA itself. This guaranteed the elimination of multi-
collinear solutions from the genetic algorithm pro-
cess. Finally, GAs were also affected by a high ran-
dom influence. We reduced this undesirable effect by 
running the method five times for each dataset and 
variable (i.e. plot size and species). Subsequently, the 
median of the GA quality (i.e. the third best result) 
was selected in each case to be used in comparison 
with the results of the stepwise method based on the 
BIC, R2, and RMSE (higher R2 and lower residual er-
ror and BIC indicated better predictive models).

RESULTS

Stepwise and genetic selection methods 

By applying a forward selection method, the num-
ber of independent variables was reduced from the 
original 43 to fewer than five in each model (Table 2). 
LiDAR-derived variables were good predictors of 
biomass. LiDAR height variables were the best pre-
dictors, followed by intensity variables, which were 
all represented across species and plot sizes.

The correlation analysis was a key component of 
the preprocessing analysis. It was useful to remove 
unwanted high correlations and reduce the number 
of independent variables even more, ensuring vi-
able, valid models. Although vegetation percentiles 
were often well represented, only the most highly 
correlated percentiles with the dependent variable 
were ultimately selected (i.e. the 10th, 20th, 30th, 40th, 
80th, 90th, 95th, and 99th height percentiles). Factors 
such as descriptive statistic and skewness were log-
ical selections for distinguishing between different 
variables and species, based on distribution shapes 
and height frequencies.

The number of variables selected from the full 
models via stepwise and genetic selection to pre-
dict h, DBH and WT was similar. Except for a few 
models (e.g. 7 m plot size), it was possible to limit 
most models to five or fewer independent variables 
with no appreciable loss in goodness of fit for each 
forest type.

http://www.agriculturejournals.cz/uniqueFiles/208226.pdf
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Table 3 lists the best-performing models and as-
sociated descriptive statistics for both regression 
models. The final model selection was based on 
BIC, R2, and RMSE (higher R2 and lower residual 
error and BIC indicated better predictive models). 
As expected, models including the largest plots 
(i.e. 30 m) yielded the highest R2 statistics con-
sidering Pinus sp. as an individual species. Pinus 
equations with adjusted R2 values ranged from 
0.58 (RMSE = 21.43%, GA, 7 m plot size) to as 
high as 0.91 (RMSE = 7.81%, GA, 30 m plot size).  
R2 values for species biomass considering the spe-
cies separately were also higher in large plots and 
GA models (P. nigra and P. sylvestris, 0.99, RMSE = 
0.38% and 0.97, RMSE = 2.89%, respectively; GA, 
30 m plot size).

Biomass cartography

The best WT models (Table 3; GA models using 
30-m plots) were applied to the LiDAR layers se-
lected as predictor variables by the models. The 
total biomass estimated in the study area ranged 
between 21 ± 2.98 mg·ha–1 (RMSE of 8%) and 160 ± 
2.98 mg·ha–1 (RMSE of 8%), and between 21 ± 
2.98 mg·ha–1 (RMSE of 8%) and 160 ± 2.98 mg·ha–1 
(RMSE of 8%) for P. sylvestris; they ranged be-
tween 21 ± 2.98 mg·ha–1 (RMSE of 8%) and 160 ± 
2.98 mg·ha–1 (RMSE of 8%) for P. nigra. The W lay-
ers for the study area appear fragmented with blue, 
green, and brown areas related to the topographic 

and silvicultural status of the different areas, since 
many of them are composed of pine stands with 
differing site conditions and productivity (Fig. 1).

DISCUSSION

This study provides a new statistical approach to 
taking forest inventories based on regression equa-
tions using LiDAR predictor variables to model 
aboveground biomass in Mediterranean pine for-
ests. The results of this study indicate that a single 
equation can be used to relate LiDAR data to total 
aboveground biomass in two areas with plantations 
of different Pinus species over a large area with ac-
ceptable precision (Pinus 85.61 mg·ha–1; P. sylvestris 
87.25 mg·ha–1 and P. nigra 83.50 mg·ha–1 RMSE < 
21.43%), despite the fact that the use of a LiDAR-
based model introduces variability due to sampling 
and modelling error. Raw LiDAR datasets seem to 
contain a considerable amount of useful informa-
tion apart from height measurements. LiDAR-de-
rived height variables are clearly more sensitive to 
canopy structural variation at the plot scale of sam-
pling (Frazer et al. 2011). This was expected, given 
the even-age forests with the homogeneous canopy 
studied, but the intensity variables proved to be use-
ful as predictors in some models.

Two different statistical approaches – stepwise 
selection and genetic algorithm – were compared 
to estimate biomass. Although reducing the num-
ber of parameters was an important consideration, 

Table 2. Multiple linear regression models built using stepwise and genetic algorithm selection procedures to predict 
total aboveground biomass (mg·ha–1) from LiDAR variable groups according to plot size (7, 15 and 30 m). For details 
of prediction of LiDAR variables see the FUSION manual (McGaughey 2009)

Plot size (m)
Selection

stepwise evolutionary

Pinus spp.

7 TOTAL, TOTAL_R2, H_P05, H_P40, H_P95, I_P40 H_P40, H_P95, I_L_SKEW

15 H_MIN, H_P05, H_P20, H_P95 H_MAD_MED, H_L1

30 H_STD, H_MAD_MODE, H_P20 TOTAL_R1, H_P10, I_L3

Pinus nigra Arnold

7 H_MAD_MODE, H_P40,H_P80 H_MAD_MODE, H_P40, H_CUBIC_MEAN

15 H_P10, H_P90, I_P25 H_P40, H_P50, I_P40

30 H_MIN, H_P80 H_IQ, I_L_SKEW, I_L_KURT

Pinus sylvestris Linnaeus

7 H_MAD_MODE, H_P99, I_MIN H_CV, H_L3, H_P99

15 H_P95, H_VAR, I_P05, I_P25 H_P20, H_P99, I_P05

30 H_MAX TOTAL_R3, I_KURT
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it was not the only one applied to choose the best 
model for biomass estimation. In order to predict 
each response variable, we also sought a model 
with predictor variables similar to those of the oth-
er candidate models. Once that had been achieved, 
we chose the model with the lowest BIC values. 
Except for biomass models in which both species 
were used (Pinus sp.) it was possible to limit the 
models to five or fewer independent variables with 
no appreciable loss in goodness of fit for each spe-
cific forest type. Pinus equations with adjusted R2 
values ranged from 0.58 (RMSE = 21.43%, GA, 7 m 
plot size) to as high as 0.91 (RMSE = 7.81%, GA, 
30 m plot size). R2 values for species biomass con-
sidering each species separately were also higher in 
large plot and GA models (P. nigra and P. sylvestris, 
0.99, RMSE = 0.38% and 0.97, RMSE = 2.89% re-
spectively; GA, 30 m plot size).

R2 values were likely high due to the homo-
geneous, even-aged coniferous stand structure. 
Moreover, these results are comparable with those 
obtained by Means et al. (2000) – adjusted R2 and 
Næsset (2002) – R2. Both authors used a grid-cell 
based LiDAR distribution approach to biomass 
modelling. R2 values for these two studies ranged 
from 0.91 to 0.97 for P. sylvestris in a mature forest 
(639.8 m3·ha–1) (Næsset 2002). Lower adjusted R2 
values in small plots were attributed to a narrower 
range in biomass per-hectare values in this study 
(83.50 to 87.25 mg·ha–1). RMSE values for conifers 
in our study (< 18.35 mg·ha–1) compared favour-
ably with those found by Means et al. (2000) – 
73 m3·ha–1 and Næsset (2002) – 18.3–31.9 m3·ha–1. 

R2 biomass values were similar in 15- and 30-m 
plots; however, this trend was not observed in 7-m 
plots. Additionally, the biomass equations used 
to model tree biomass were based on tree diam-
eter and height values (Ruiz-Peinado et al. 2011), 
which may have contributed to better residual dis-
tributions due to the use of the same sort of vari-
able between biomass equations and LiDAR-based 
biomass models. LiDAR data are inherently height-
based data sources, while most biomass models do 
not include height as an independent variable.

The results of applying the genetic algorithm to 
LiDAR-based estimates using the three alternative 
plot sizes (7, 15 and 30 m) indicate that using larger 
plots (30 m) can substantially increase the preci-
sion of total biomass estimates in the Mediterra-
nean pine plantations observed in this study. Using 
a larger plot captures greater variability within a 
given forest area and reduces the sampling error as-
sociated with measuring only small trees in a small-
er plot. The authors of previous studies have pro-
posed that the plot size be modified according to 
different canopy structures and densities. Yet, this 
is seldom possible in taking operational forest in-
ventory with a standard plot protocol (Gobakken, 
Næsset 2008). However, considering the range of 
RMSE values of 30- and 15-m plots, the operational 
measurement of biomass using a smaller plot size is 
feasible and provides accuracy of information.

Model fit statistics did not exhibit any large dif-
ferences between different approaches but gen-
erally improved with the increasing average plot 
size. Although biomass estimation results for 15-m 

Table 3. Summary of regression parameters obtained by stepwise and evolutionary selection methods to predict total 
aboveground biomass (WT, mg·ha–1) from LiDAR variable groups according to plot size (7, 15 and 30 m) and species

Plot size  
(m)

Selection
stepwise evolutionary

R2 RMSE BIC VIF CI R2 RMSE BIC VIF CI
Pinus sp.

7 0.66 12.89 123.88 6.76 22.38 0.56 14.59 119.41 3.05 13.50
15 0.73 11.52 115.82 4.95 11.01 0.73 15.94 119.14 1.13 46.74
30 0.89 7.47 63.38 4.54 29.29 0.91 6.69 60.51 1.94 11.16

Pinus nigra Arnold
7 0.81 13.55 490.88 2.48 26.56 0.82 13.34 488.15 2.65 29.87
15 0.89 9.61 121.33 1.73 24.28 0.93 8.04 112.77 2.24 25.73
30 0.99 2.29 15.94 1.20 24.80 0.99 0.32 –4.11 2.64 15.52

Pinus sylvestris Linnaeus
7 0.49 17.65 619.87 2.29 21.56 0.52 17.13 613.54 6.01 27.69
15 0.78 12.30 158.19 5.49 40.04 0.74 13.55 159.12 1.41 20.33
30 0.75 7.76 31.71 0.00 15.61 0.97 2.53 19.22 1.49 28.31

R2 – coefficient of determination, RMSE – root mean square error, BIC – Bayesian information criterion, VIF – variance 
inflation factor, CI – condition index, the most robust model is indicated in bold letters
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Fig. 1. Predicted total aboveground 
biomass (mg·ha–1) for the Sierra 
de los Filabres woodlands using 
genetic algorithm models includ-
ing the largest plots (30 m) for 
Pinus sp. (a), Pinus nigra Arnold 
(b), and Pinus sylvestris Linnaeus 
(c) considered separately. Note 
that the areas along the drainage 
system concentrate the highest 
biomass values

WT (mg·ha–1)

(a)

(b)

(c)
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plots were poorer than for 30-m plots, adjusted R2 
values for the former may be acceptable according 
to inventory precision (Sun et al. 2011). A similar 
value was obtained for P. nigra (0.93 in 15-m plots 
and 0.99 in 30-m plots) but it was lower for P. syl-
vestris (0.74 in 15-m plots and 0.97 in 30-m plots). 
This latter result is of importance and indicates 
the potential of the genetic algorithm approach to 
biomass modelling, specifically when compared to 
stepwise analysis. Interestingly, 15-m plot size is an 
established forestry inventory technique in Spain 
and may account for all variability in a given stand 
because RMSE values were better than those found 
by Næsset (2002). This suggests that a LiDAR-
based approach using a medium plot size (15 m) 
and the genetic biomass estimation for two Pinus 
species in similar ecological situations can be op-
erationally applied to forest inventory and forest 
exploitation activities at a real scale. This was at-
tributed to the relative homogeneity of the conifer 
stands studied, resulting in a better selection of 
independent variables that were correlated with 
dependent variables, as opposed to heterogeneous 
deciduous stands, where more independent vari-
ables were deemed significant for modelling. Most 
plots were located in uniform conifer stands and 
captured the homogeneous nature of such stands 
without including more heterogeneous structural 
components such as stand boundaries.

These results indicate that increasing plot size 
can lead to more precise estimates of biomass us-
ing LiDAR; however, there are many other factors 
to consider when determining the appropriate plot 
size for a forest inventory, including consistency, 
time spent on the plot, and statistical efficiency. 
The results presented here are intended to show 
that there are advantages of using medium-sized 
(i.e. 15 m) plots and the genetic statistical approach 
for LiDAR model-based estimation of biomass in 
Mediterranean pine plantations, an important con-
sideration for planning future projects.

As operational cartography, biomass was mapped 
across the study areas. The distribution of biomass 
is characterized by a clear pattern associated with 
the drainage network. It can be seen (green colour) 
that the largest amount of biomass is concentrated 
in the vicinity of the streams where water availabil-
ity increases throughout the growth season. By con-
trast, the lowest concentration of biomass (brown 
colour) is related to places of lower water avail-
ability related to defoliation processes (Navarro-
Cerrillo et al. 2014). The Sierra de los Filabres is a 
very sensitive area to global change (Hernández-
Clemente et al. 2011), which makes it particularly 

important to establish inventory protocols at a lo-
cal scale based on LiDAR and other remote sens-
ing data acquisitions (Navarro-Cerrillo et al. 
2014). LiDAR-based cartography becomes more 
reliable for forest managers’ decisions (as frequent 
as possible).

CONCLUSIONS

Biomass modelling based on LiDAR distribu-
tions has been implemented successfully for P. syl-
vestris and P. nigra in Mediterranean pine plan-
tations. Our study was limited to two mountain 
conifer species, but R2 values above 0.90 bode well 
for future LiDAR application studies in forest bio-
mass estimations. The improvement observed in R2 
values among species and plot sizes using the ge-
netic algorithm approach indicates that increasing 
the plot size from 15 to 30 m had a low effect on 
modelling attempts, which may allow a better sam-
pling design to LiDAR-based forest inventories. 
The usefulness of the genetic algorithm to estimate 
biomass was very promising, although R2 values 
for biomass were lower when both species were 
considered together. However, stepwise regres-
sion models, which showed the lowest response 
variables, can also be applied as an alternative in 
some stands. Additionally, the genetic approach 
proved successful in reducing the number of inde-
pendent variables from as many as 43 initial height 
distributional variables to fewer than 5 used for fi-
nal modelling. The final model selection was based 
on R2, RMSE values, the BIC, and model simplic-
ity. All criteria proved useful and even necessary 
to select a single best option. Biomass modelling 
could be a comprehensive approach to taking for-
est inventory using LiDAR technology and LiDAR 
equations could be applied to future stands, with 
periodic verification using plots of different size. 
Our results can potentially be used to efficiently as-
sess the minimum plot size required to produce a 
regression estimator with the best statistical prop-
erties to monitor biomass in large pine plantation 
areas in Mediterranean forests. 
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