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Abstract. Machine learning combines inductive and automated techniques for recognizing patterns. These techniques can be
used with remote sensing datasets to map aboveground biomass (AGB) with an acceptable degree of accuracy for evaluation and
management of forest ecosystems. Unfortunately, statistically rigorous comparisons of machine learning algorithms are scarce.
The aim of this study was to compare the performance of the 3 most common nonparametric machine learning techniques
reported in the literature, vis., Support Vector Machine (SVM), k-nearest neighbor (kNN) and Random Forest (RF), with that of
the parametric multiple linear regression (MLR) for estimating AGB from Landsat-5 Thematic Mapper (TM) spectral reflectance
data, texture features derived from the Normalized Difference Vegetation Index (NDVI), and topographical features derived from
a digital elevation model (DEM). The results obtained for 99 permanent sites (for calibration/validation of the models) established
during the winter of 2011 by systematic sampling in the state of Durango (Mexico), showed that SVM performed best once the
parameterization had been optimized. Otherwise, SVM could be outperformed by RF. However, the kNN yielded the best overall
results in relation to the goodness-of-fit measures. The findings confirm that nonparametric machine learning algorithms are
powerful tools for estimating AGB with datasets derived from sensors with medium spatial resolution.

Résumé. L’apprentissage automatique combine des techniques inductives et automatisées pour la reconnaissance des formes.
Ces techniques peuvent être utilisées avec des ensembles de données de télédétection pour cartographier la biomasse aérienne «
aboveground biomass » (AGB) avec un degré de précision acceptable pour l’évaluation et la gestion des écosystèmes forestiers.
Malheureusement, des comparaisons statistiquement rigoureuses des algorithmes d’apprentissage automatique sont rares. Le
but de cette étude était de comparer les performances des 3 méthodes d’apprentissage automatique non paramétriques les plus
fréquemment rapportées dans la littérature, vis., les machines à vecteurs de support « Support Vector Machine » (SVM), les k
plus proches voisins « k-nearest neighbor » (kNN) et les forêts aléatoires « Random Forest » (RF), avec celle de la régression
linéaire multiple paramétrique (MLR) pour l’estimation de l’AGB provenant des données de réflectance spectrale de Landsat-5
Thematic Mapper (TM), des caractéristiques de texture dérivées de l’indice de végétation par différence normalisée « Normalized
Difference Vegetation Index » (NDVI) et des caractéristiques topographiques dérivées d’un modèle numérique de terrain « digital
elevation model » (DEM).Les résultats obtenus pour 99 sites permanents (pour la calibration/validation des modèles) établis au
cours de l’hiver 2011 par l’échantillonnage systématique dans l’État de Durango (Mexique), ont montré que les SVM montrent
leurs meilleures performances une fois que le paramétrage a été optimisé. Par ailleurs, les SVM pourraient être surpassées par les
RF. Cependant, les kNN ont donné les meilleurs résultats globaux par rapport aux mesures d’ajustement. Les résultats confirment
que les algorithmes d’apprentissage automatique non paramétriques sont des outils puissants pour l’estimation de l’AGB avec
des ensembles de données provenant de capteurs avec une résolution spatiale moyenne.

INTRODUCTION
Forest biomass plays an important role in the global climate

system because forest ecosystems absorb approximately 1/12

 *Corresponding author e-mail: jorgarcia@us.es.

of Earth’s atmospheric carbon stocks every year (Malhi et al.
2002), and much of this carbon is stored as aboveground biomass
(AGB). The importance of forest biomass has been under-
lined by the United Nations Framework Convention on Climate
Change (UNFCCC), which has identified AGB as an Essen-
tial Climate Variable (GCOS 2010). Moreover, quantification
of AGB and modeling of the associated dynamics are important



to support decision-making models in different fields, includ-
ing energy and materials provision for human use (FAO 2001,
2006), forest fragmentation (e.g., Malhi and Phillips 2004), and
biodiversity conservation (e.g., Bunker et al. 2005). Accurate
monitoring of forest biomass and how it changes at local to
global scales is, therefore, of critical importance toward a better
understanding of these processes (Lu 2006; Hartig et al. 2012;
Le Toan and Quegan 2015).

The most accurate method of estimating forest biomass is
based on field measurements; however, estimating biomass in
large areas is not an easy task and is hindered by the high costs
(both time and money) associated with fieldwork (Lu et al.
2016).

Remote sensing has been shown to be a practical option that
helps to overcome these limitations because it enables obtaining
forest information in large areas with reasonable effort. This is
now the primary data source for large-scale biomass estimation
(e.g., Andersen et al. 2011; Lu et al. 2016). Over the past few
decades, the so-called passive sensors (i.e., sensors that use
the solar radiation reflected or emitted by the objects detected
at Earth’s surface) have been used to estimate AGB (e.g., Lu
et al. 2012; Frazier et al. 2014). Considering the advantages and
limitations of different remote sensing images, the medium-
resolution (pixel size, 30 m) Landsat-5 TM sensor is one of
the most widely used for biomass estimation (e.g., Agarwal
et al. 2014; Pflugmacher et al. 2014; Dube and Mutanga 2015;
Zhu and Liu 2015). The advantages of using the Landsat-5 TM
sensor over high-resolution sensors, particularly for analysis of
large áreas, are that numerous historical spatiotemporal archives
are available (images since 1972) and the Landsat data is free
of cost for users. For a review of Landsat imagery-based AGB
estimations, see Wu et al. (2016).

Regardless of thept type of sensor used, model accuracy and
error estimation vary in relation to a series of factors such as
the structure of the field data and the statistical techniques used
(Ghosh et al. 2014). The most common model used in estimating
forest biomass from remote sensing data is the regression-based
model (e.g., Tian et al. 2012; Lu et al. 2012; Næsset et al. 2013);
however, the accuracy of estimates obtained with small num-
bers of sample plots or when there is a weak linear relationship
between variables and biomass is rather low (Lu et al. 2016).
Nonparametric modeling approaches, which make no assump-
tions about the statistical distributions of the original data and
relationships between predictor and response variables, have
also been used to relate AGB and remotely sensed features.
Various recent studies have explored the use of nonparametric
approaches for estimating AGB with remote sensing data (e.g.,
Breidenbach et al. 2012; Mutanga et al. 2012; Jung et al. 2013;
Fassnacht et al. 2014).

Machine learning involves different techniques (mainly non-
parametric) that focus on automated and inductive learning to
recognize patterns (Cracknell and Reading 2014) in data (e.g.,
patterns in remote sensing data related to AGB in a set of located

plots); once the pattern is learned, it can be applied to yield a
prediction or classification in areas where it is not possible to
carry out fieldwork to quantify an objective variable (e.g., AGB).
In the last decade, various machine learning techniques such as
Support Vector Machine (SVM), k-nearest neighbor (kNN) and
Random Forest (RF) have been used to develop predictive mod-
els of AGB in large areas. Thus, Shataee (2013) showed that
kNN performed better than SVMs, RF, and Artificial Neural
Networks (ANN) for estimating biophysical variables such as
basal area. More recently, Garcia-Gutierrez et al. (2015) showed
that SVM models performed best for estimating forest variables
from Light Detection and Ranging (LIDAR), while Wang et al.
(2016) showed that RF outperformed SVM and ANN for es-
timating wheat biomass from remote sensing data. For a more
complete review of research being carried out to retrieve vegeta-
tion biomass from remote sensing data, using machine learning
methods, see Ali et al. (2016).

The goodness-of-fitpt of models derived from spectral data
are usually evaluated by the coefficient of determination (R2)
and the root mean square error (RMSE). These measures report
the performance of the model in predicting the data used to fit
the model; however, because the quality of the fit does not nec-
essarily reflect the quality of the prediction, assessment of their
validity is often needed to ensure that the predictions represent
the most likely outcome in the real world (Yang et al. 2004). The
only method that can be regarded as “true” validation involves
the use of a new independent dataset (Pretzsch et al. 2002; Yang
et al. 2004); however, the scarcity of such data forces the use
of alternative approaches, such as Cross Validation (CV), to en-
able evaluation of the quality of a particular fitting technique
and minimize the risk of overfitting (Molinaro et al. 2005). Un-
fortunately, most studies involving estimation of AGB do not
use CV as part of the model development.

For rigorous comparison of the performance of different ma-
chine learning techniques, the study should also be accompa-
nied by statistical validation of the results within a statistical
framework (i.e., not merely calculating statistics such as R2 or
RMSE). Although this is well known in the field of machine
learning (Garcı́a et al. 2010), this type of validation is not com-
mon in remote sensing, even though machine learning plays an
important role in many biomass estimation studies. This fact
might have led to some degree of discordance in the scientific
literature, in which we can find examples of kNN, SVM, and
RF outperforming each other (Shataee 2013; Garcia-Gutierrez
et al. 2015; Wang et al. 2016).

The objective of this study was to analyze and statistically
compare the performance of 3 nonparametric techniques (SVM,
kNN, and RF) and the parametric Multiple Linear Regression
(MLR) technique for estimating AGB. The techniques were
tested with Landsat-5 TM surface spectral reflectance data, tex-
ture features derived from the Normalized Difference Vegeta-
tion Index (NDVI), and topographical features derived from
a digital elevation model (DEM) in the Sierra Madre Occi-



FIG. 1. Geographical location of the study site and sample plots used in the study.

dental (state of Durango, Mexico). The results obtained with
each technique were compared after application of CV and pos-
terior statistical validation of the mean rankings obtained for
each.

MATERIAL AND METHODS

Study Area
The study site is located in the Sierra Madre Occidental, in

the north of the state of Durango (Mexico), and covers an area
of 1,142,916 ha (Figure 1). The climate is humid temperate,
with rainfall in summer (relative humidity, 50.1%). The average
temperature ranges from 8 ◦C to 20 ◦C, and the annual precipi-
tation is from 400 mm to 1200 mm. The average altitude above
sea level in this area is 1,900 m. The vegetation comprises pine,
oak, Douglas fir, pine-oak, and oak-pine forest, according to the
description in the Land Use and Vegetation Cover Chart, scale
1:250,000, Series V (INEGI 2012). The forests are basically
mixed and uneven-aged pine-oak stands, with a canopy cover
ranging from 32% to 100%. These forests have been subject to
selective harvesting for almost a century to provide a mixture of
services to local communities. This structure is the result of the
management history, which has depended on land ownership
and the economic and social changes that have taken place in
the state, as well as natural conditions (Wehenkel et al. 2011).

Dataset
Field Data

A network of 99 permanent sampling plots was established
during the winter of 2011, following the method described by
Corral-Rivas et al. (2009). The plots were located by systematic
sampling (with some exceptions to avoid nonforested areas) of a
grid of equidistant points separated by 3 km or 5 km, depending
on the accessibility, which is limited by the rugged terrain of
the study area. In each plot (squares of side 50 m), all species
of trees were recorded and the diameters at breast height (cm)
and total height (m) of all standing trees were measured.

Species-specific individual tree models developed by Vargas-
Larreta (2013) were used to estimate the total AGB of field plots
by tree value aggregation. The R2 and the RMSE of the mod-
els used ranged from 0.87 kg–0.99 kg and 22.8 kg–95.2 kg,
respectively. The mean, minimum, maximum and standard de-
viation of the AGB values per hectare of the sample plots are
summarized in Table 1.

Spectral Data
The spectral data were derived from a satellite image

Landsat-5 TM obtained in April 2011 (path 32, row 42) and
covering the entire study área.1 Landsat-5 TM data have a

1Available from the US Geological Service webpage, at
http://glovis.usgs.gov/



TABLE 1
Total biomass statistics expressed in Mg ha−1

No. of
Observations Mean

Standard
Deviation

Minimum
Value

Maximum
Value

99 89.03 43.45 2.70 234.03

spatial resolution of 30 m with a revisit period of 16 days.
Bands 1, 2, 3, 4, 5, and 7 (level L1T) of Landsat-5 TM were
used in the present study; band 6 was not used because of its
thermal characteristics, its coarse spatial resolution (120 m), and
the low contrast in the forest area (NASA 2011). The satellite
images were radiometrically, atmospherically, and topographi-
cally corrected by using the ATCOR3 R© module (Geosystems
2013), regarded as particularly suitable for mountainous zones.
The ATCOR3 R© module first calculates the radiance at sensor
level (W sr−1 m−2) from the image pixel. Several input pa-
rameters were required for this calculation and were retrieved
from the image metadata (header file): date of acquisition, scale
factors, geometry (solar zenith angle and solar azimuth), and
other information about the sensor calibration file (“gain and
bias”). Other parameters were adjusted by taking into account
the characteristics of the input datasets and the conditions of the
imagery dates, e.g., visibility (35 km), pixel size of the DEM
(15 m), aerosol type (rural), among others. Because the image
was cloudless and no suitable water vapor bands were available,
dehazing/cloud removal and atmospheric water retrieval settings
were kept as “default,” which, in this case, is recommended by
the ATCOR3 R© User Manual (Geosystems 2013). The correc-
tions were implemented with the ERDAS R© IMAGINE R© 2013
software. (ERDAS Inc. 2014). A number of vegetation indices
were computed from the atmospherically and topographically
corrected image bands and included in the biomass estimation
models for evaluation as possible regressor features (Table 2).

Texture Features
The texture features homogeneity, contrast, dissimilarity,

mean, standard deviation, entropy, second-order angular mo-
ment, and correlation (Haralick et al. 1973) were calculated
from the NDVI image based on grey level cooccurrence ma-
trices, with the aim of including information combining the
spatial and spectral domain of the remotely sensed imagery in
the biomass estimation models. We used NDVI texture features
rather than each spectral band of Landsat-5 TM to avoid sat-
urating high biomass values (Mutanga and Skidmore 2004).
Because it also becomes more difficult to obtain an optimal sub-
set as the number of attributes increases, we therefore aimed
for a compromise between quantity and quality. The features
were calculated using PCI Geomatica2013 R© software,2 and 3

2PCI Geomatics Inc. 2013

TABLE 2
Features (independent variables) for biomass estimation in

comparison of machine learning techniques

Abbreviation Variable Reference

Vegetation Index

NDVI Normalized Difference
Vegetation Index

Rouse et al.
(1974)

MSAVI2 Modified Soil-Adjusted
Vegetation Index

Qi et al. (1994)

SAVI Adjusted Soil Vegetation
Index

Huete (1988)

IAF Leaf Area Index Baret and Guyot
(1991)

ALB Albedo Asrar (1989)
Fpar Fraction of

Photosynthetically
Active Radiation

Asrar et al.
(1984)

FSR Flow Solar Radiation Brutsaerts (1975)

Texture (NDVI)

HOL Homogeneity Haralick et al.
(1973)

CO Contrast
DI Dissimilarity
ME Mean
STD Standard Deviation
EN Entropy
ASM Angular Second Moment
CR Correlation

Terrain (DEM)

Altitude Altitude
B Slope
TRASP Transformed Aspect Roberts and

Cooper (1989)
TSI Terrain Shape Index McNab (1989)
WI Wetness Index Moore and

Nieber (1989)
PC Profile Curvature Wilson and

Gallant (2000)
PLC Plan Curvature
C Curvature

different scales of operation were considered by using moving
window sizes of 3 × 3 pixels, 5 × 5 pixels, and 7 × 7 pixels
(Table 2).

Terrain Features
Terrain features are directly related to forest species compo-

sition, tree height growth, and other forest stand variables, en-



abling these to be modeled (McNab 1989; Roberts and Cooper
1989). First- and second-order terrain features were, therefore,
derived from the 5 × 5-pixel low pass filtered DEM of the study
area with a spatial resolution of 15 m. The DEM was derived
from LIDAR data and corresponds to an array of elevation data
interpolated to 15 m resolution from the coordinates of the last
return of the pulses emitted (INEGI 2014). The final set of fea-
tures derived from Landsat-5 TM sensor and from the DEM,
which were used as possible predictors (independent variables)
for estimating AGB (which played the role of dependent vari-
able), are shown in Table 2.

Finally, the sample plots were geopositioned with the aim of
extracting the pixel value average with an associated buffer of
25 m for each described feature, to obtain a database with the
mean biomass values and the associated features for each plot.
The extraction was carried out using R statistical software (R
Core Team 2014) and the “raster” package.

Comparison Framework
Machine Learning Techniques

Three nonparametric machine learning techniques and one
parametric technique were applied to data from the study area
in order to compare their performance: (i) k-Nearest Neigh-
bour (kNN), (ii) Support Vector Machine (SVM), (iii) Random
Forest (RF), and (iv) Multiple Linear Regression (MLR). All
these techniques were used to estimate AGB, using as possible
predictors the variables included in Table 2.

The parametric MLR technique is the most commonly used
in this kind of study (Fassnacht et al. 2014). Moreover, this
type of model is easy to understand and is widely used in most
scientific disciplines. However, unlike the nonparametric ap-
proaches, MLR relies on certain assumptions, such as the fun-
damental least squares assumption of independence and equal
distribution of errors with zero mean and constant variance,
which can be violated by factors such as nonnormality of vari-
ables, multicollinearity of variables, and heteroscedasticity of
error variance.

Nearest neighbor (NN), a well-known machine learning tech-
nique used in remote sensing (Shataee 2013), makes a prediction
by using the information about the neighbors of the instance to
be regressed (Cover and Hart 1967). The NN depends on a
parameter, usually called k, which determines the number of
neighbors used by the algorithm. The technique is therefore
usually called kNN when more than one neighbor is used. Al-
though the idea behind this type of technique is quite intuitive,
the resulting model is not easy to interpret because all results
depend on a training set.

SVMs have been developed from artificial neural networks
(Cortes and Vapnik 1995) and have been used in many scientific
fields (e.g., Abedi et al. 2012; Bayoudh et al. 2015; Garcia-
Gutierrez et al. 2015). SVM models are developed by a set
of vectors (or hyperplanes if greater dimension is requested)
that separate instances of different labels (classification) or

minimize the mean error (regression). Kernel functions are used
to overcome the limitations associated with linear separability
in SVM models. Appropriate selection of the kernel function
and the kernel regularization parameters is important in relation
to the SVM model behavior, which can make this type of tech-
nique more difficult to implement for users. As with kNN, the
models produced using SVM are more difficult to interpret than
those of MLR.

RF is not exactly a classification or regression technique, but
a combination of other techniques, mainly regression or clas-
sification trees (Breiman 2001). The success of this technique
is based on the use of numerous trees, developed with differ-
ent independent variables that are randomly selected from the
complete original set of features (e.g., Deschamps et al. 2012;
Wang et al. 2016). The number of predictors used by trees and
the number of trees are established by the users.

WEKA open source software (Hall et al. 2009) was used to
implement all of the techniques compared. Thus, linear regres-
sion was used for MLR, IBk for kNN, SMOreg with polynomial
and Gaussian kernels for SVM, and an adaptation of the RF im-
plementation of WEKA for regression (using M5P as the basic
regression technique for the development of this ensemble).

Feature Selection, Parameterization and Validation
In machine learning, spurious data features must be removed

before a model is generated (Hall 1999). Thus, the variables
that are potentially most important are selected. Some tech-
niques (e.g., SVM and RF) carry out this selection, but others
might be seriously affected by excessively large combinations
of variables (e.g., the Hughes effect [Hughes 1968] in kNN and
multicollinearity in MLR). This is a common situation in this
type of analysis because of the large set of predictor variables
that can be calculated from remote sensing data (Packalén et al.
2012). Moreover, correct functioning of different machine learn-
ing techniques depends on a proper parameterization (set-up of
their parameters, i.e., variables that modify the behavior of the
machine learning techniques). In this study, both of these steps
(feature selection and parameterization) were carried out via
a metaheuristic search (Samadzadegan et al. 2012). From the
possible metaheuristic techniques (i.e., a method of optimiza-
tion that provides a near-optimal solution in computationally
affordable time), we selected an evolutionary algorithm, which
is illustrated in Figure 2. The algorithm starts with a population
of random solutions (Initial Population in Figure 2) called in-
dividuals and ranks them according to fitness of the individuals
(Fitness Sorting in Figure 2). In the present study, the fitness
was evaluated by the RMSE obtained with a training set. A new
population of individuals is then created by mating parents (ran-
dom selection of coefficients shown in Figure 2), selected with
a probability proportional to their fitness, and later mutating the
new individuals with a given probability (in this case, a value
will be randomly selected and changed to a new random value,
as can be seen in Figure 2).



FIG. 2. Description of the evolutionary procedure used to determine the best methods for parameterization and feature selection.



TABLE 3
Intervals used by the evolutionary algorithm to search for the

different optimal parameters∗

Technique Name Minimum Maximum

kNN k 1 20
SVM GAMMA (Gaussian-

kernel-only)
0.01 2.0

EXP (Polynomial-
kernel-only)

1 5

C 1 100
EPSILON 0.0 0.2

RF NT 1 100
NF 1 5

∗Note: k = number of neighbors; EPSILON = determines the risk of
overfitting; GAMMA = controls the transformation produced by the
kernel; EXP = kernel’s exponent; C = penalty factor per instance of
misclassification in training; NT = number of trees that form each
ensemble; NF = number of attributes selected for constructing each
tree

The general scheme described in Figure 2 was modified
slightly according to the specific regression technique. Thus,
we used a specific design for MLR (see Garcı́a-Gutiérrez et al.
2014) and an adaptation of the genetic algorithm of Huang and
Wang (2006) for the nonparametric techniques (kNN, SVM, and

RF). In the kNN method, pure selection (coefficients associated
with each feature as 1 or 0 depending on whether the predictor
is selected or not) was substituted by weighting each attribute
(real value between 0.0 and 1.0), which enables better adapta-
tion of the algorithm to the characteristics of kNN (see Mateos
et al. 2012). In SVMs, the type of kernel is another parameter
to be optimized and had 2 possible values (radial basis function
and polynomial). The parameters optimized for each machine
learning technique are included in Table 3.

For comparison of the different techniques, validation was
based on the leave-one-out CV technique. This is a special case
of k-fold CV in which k is equal to the number of observations
and a prediction is obtained as many times as there are obser-
vations in the dataset (Packalén et al. 2012). In other words, an
observation is excluded (target observation), and a prediction is
computed with the other observations (reference observations).
The prediction can be evaluated by the target observation. This
procedure is repeated for every single observation. The final
quality of a technique evaluated with CV is based on the aver-
aged error obtained. A general description of the procedure is
provided in Figure 3.

Parameterization of each submodel at the different stages
of the CV was repeated 5 times for each technique to pre-
vent skew (due to the random nature of the evolutionary
algorithms applied to predictor selection and parameteriza-
tion). The best submodel and the average submodel for the 5

FIG. 3. Description of the leave-one-out CV evaluation of the techniques compared in the text.



FIG. 4. Relative frequency of ocurrence (importance) of each attribute in the best models obtained by each technique (in terms of
the sum of residuals).

executions, ranked in terms of the RMSE reached in the evo-
lutionary procedure, were used to calculate the goodness-of-fit
statistics.

Statistical Analysis
The error of the predictions in the CV was compared for each

technique in terms of R2 and RMSE. In addition, for statistical
analysis of differences between the methods, the absolute errors
of the predictions made by each technique throughout the 99
iterations in the CV were compared (the number of iterations is

equal to the number of instances in the database, which, in this
case, refers to the 99 plots available). In theory, this should be
carried out by Analysis of Variance (ANOVA), if the data com-
ply with the underlying assumptions of independence, normal-
ity, and homoscedasticity required for parametric tests. These
conditions can be tested by, respectively, the Shapiro-Wilk test,
Lilliefor’s test, and Levenes’ test. If the data do not comply with
these conditions, a nonparametric test such as the Friedman’s
(aligned) test (described by Garcı́a et al. 2010) should be used.

Friedman’s (aligned) test first obtains the mean ranking for
each technique by taking into account the position obtained for

FIG. 5. Relative frequency of ocurrence (importance) in the averaged models obtained by each technique (in terms of the sum of
residuals).



FIG. 6. Absolute frequency of relative position achieved by each technique (ranking) with the best parameterization of 5 executions.

FIG. 7. Absolute frequency of the relative position achieved (ranking) by each technique with average parameterization.



TABLE 4
Mean rankings for models obtained by each technique; best

mean ranks indicated in bold

Ranking

Technique Best Models Only Averaged Models

MLR 197.98 188.11
kNN 186.69 184.37
RF 232.16 176.04
SVM 161.18 197.48

each of the results relative to the other. Thus, a ranking of 1
for one of the techniques signifies that the result is the best of
all results obtained in the procedure, whereas a rank of m ∗

n, where m is the number of techniques being compared and
n is the number of tests, indicates the poorest result obtained.
After establishing the mean rankings for each technique, the
Friedman’s (aligned) test and Holm’s post hoc procedure (see
Luengo et al. 2009; and Garcı́a et al. 2010, for a complete
description) are used for statistical validation of the differences
between the methods compared.

RESULTS AND DISCUSSION
The results indicated that the features for estimating AGB by

the different machine learning algorithms evaluated can be clas-
sified into 3 different groups. In order of decreasing importance,
the 1st group comprises the spectral bands and the spectral in-
dices, the 2nd group comprises the first- and second-order terrain
topographical variables derived from DEM, and the 3rd group
comprises the texture features derived from the NDVI. The

correlation derived from the texture image with a moving win-
dow of 7 pixels x 7 pixels (CR7 × 7, see Table 2 for acronyms
and abbreviations) was also a key feature in the MLR technique
(as was also reported by Kelsey and Neff 2014), although it was
not important in the other techniques (see Figures 4 and 5).

The results obtained in terms of the RMSE were used for sta-
tistical comparison of the techniques. The comparison is sum-
marized in histograms showing the relative positions reached
(rankings) for each technique (Figures 6 and 7). Qualitatively,
the SVM technique yielded the best results when the param-
eterization and selection of predictors were relatively optimal,
whereas, on average, the RF technique produced the best results.

The rankings associated with the Friedman’s (aligned) test
and a post hoc Holm’s test for paired comparison of the best
algorithms (Table 4) confirm the idea (previously outlined in
Figures 6 and 7) that SVM and RF techniques yielded the best
results, considering, respectively, the best model and the aver-
aged models for the 5 executions per plot. Friedman’s (aligned)
test yielded a p-value < 0.0001, thus confirming rejection of the
null hypothesis (i.e., that the overall performance of the methods
was not significantly different).

Application of Holm’s procedure revealed that the results
yielded by the SVM technique were significantly different from
those produced by all other techniques except kNN (p = 0.1131,
higher than the significance levels of the test; α = 0.05). Com-
parison of RF and the other techniques for the averaged models
showed that none of the comparisons was statistically signif-
icant, and it was, therefore, not possible to infer that RF per-
formed better than the other models. The results of both proce-
dures are summarized in Table 5.

Finally, the results for all plots were used to calculate the
goodness-of-fit statistics: R2 and RMSE. Table 6 summarizes

TABLE 5
Results of post hoc Holm’s test of paired comparisons for SVM (best models only) and RF (averaged models); not significantly

different comparisons indicated in bold

Best Models Only Averaged Models

Technique p z Holm Technique p z Holm

RF 0.000 4.408 0.0167 SVM 0.174 1.36 0.0167
MLR 0.022 2.285 0.025 MLR 0.444 0.77 0.025
kNN 0.113 1.584 0.05 kNN 0.598 0.53 0.05

TABLE 6
Summary of goodness-of-fit statistics, taking into account overall results for 99 plots; best models indicated in bold

MLR kNN SVM RF

Best models only R2 0.54 0.66 0.62 0.48
RMSE (Mg ha-1) 29.61 26.64 27.28 31.61

Averaged models R2 0.36 0.41 0.30 0.29
RMSE (Mg ha-1) 34.67 33.53 36.15 39.20



FIG. 8. Biomass maps derived by each technique: (a) MLR, (b) kNN , (c) RF, and (d) SVM.

the application of these to the best models and the averaged
models, in which kNN was the best technique in both cases.
Maps of the AGB estimations obtained for the study area by
each technique are shown in Figure 8.

The results showed that the features that were most important
for estimating AGB by the different machine learning techniques
evaluated (kNN, RF, and SVM) correspond to the bands and
spectral indices derived from the Landsat-5 TM sensor (Band
1, Band 5, and Band 7, IAF, ALB, MSAVI2, and NDVI, see Ta-
ble 2 for acronyms and abbreviations); which are correlated with

many ecosystem attributes, such as photosynthetic activity, total
plant cover, plant and soil moisture, plant stress, and biomass
(Lu et al. 2004; Günlü et al. 2014). Several studies have demon-
strated that spectral bands and vegetation indices are usually
good predictors for estimating AGB (Lu et al. 2012; Castillo-
Santiago et al., 2013; Lu et al., 2016; López-Serrano, Corral-
Rivas, et al. 2016; López-Serrano, López-Sánchez, Dı́az-Varela,
et al. 2016; López-Serrano, López-Sánchez, Solı́s-Moreno, et al.
2016). Terrain features are potentially related to key features for
forest stand development, such as overall climate characteristics,



FIG. 9. Box-plot of AGB estimations in the study area for the 4 techniques used and AGB observed values in the sample plots
(training data). Boxes represent the interquartile range, and maximum and minimum of AGB estimations are represented by upper
and lower whiskers, respectively.

insolation, evapotranspiration, run-off, infiltration, wind expo-
sure, and site productivity (McNab 1989; Roberts and Cooper
1989; Wilson and Gallant 2000). Finally, the texture features
could address some of the existing problems with vegetation
index saturation and the data acquisition constraints related to
mapping forest biomass at regional scales (Kelsey and Neff
2014).

The results obtained in the statistical study of the 99 plots
showed that the SVM technique yielded the best fits once the pa-
rameterization had been optimized (averaged ranking of 161.18,
which is about 15% better than kNN, the 2nd best technique),
thus confirming that this type of technique is of great potential
for improving biomass estimation, independently of the type of
sensor to which it is applied, as demonstrated in recent studies
(e.g., Zhao et al. 2011; Garcı́a-Gutiérrez et al. 2015). However,
the results show that SVMs are very sensitive to parameteriza-
tion, which hampers their use by nonexperts. For nonexperts, an
autoparameterization procedure such as Grid Search, which is
a classic technique used to fit machine learning models (Glea-
son and Im 2012), could be applied. Unfortunately, this type
of procedure has an important drawback in that it separates
optimization of parameters (specific to each technique) from
feature selection. Both concepts (parameterization and feature

selection) are closely related and should occur simultaneously
(Huang and Wang 2011). Nonetheless, Grid Search represents
a simpler alternative to more complex procedures such as meta-
heuristics.

A boxplot with the AGB estimations obtained for the sample
plots with the different approaches used after just one evolution-
ary parameterization and feature selection is shown in Figure 9.
Both MLR and RF present a range of AGB estimations in the
study area similar to the values observed in the sample plots
used as training data (2 Mg ha−1 to 234 Mg ha−1), especially
MLR, although MLR tended to overestimate the values (Fig-
ure 9). However, the kNN and SVM techniques estimated a
limited range of values of AGB (from 56 Mg ha−1 to 138 Mg
ha−1 for kNN and from 56 Mg ha−1 to 160 Mg ha−1 for SVM).
This was mainly due to inaccurate parameterization by the evo-
lutionary procedure (see averaged models vs. optimal models
in Figures 6 and 7). In the case of kNN, inadequate feature se-
lection might lead to a decrease in accuracy due to the Hughes
effect. For the SVM, the number of parameters was higher and
the evolutionary procedure was, therefore, more complex. Note
that if the penalty factor (parameter C) is not well fitted and
the hyperplane is thus not optimized, problems related to over-
or underfitting may occur (Xie et al. 2008). In addition to the



special random nature of evolutionary computation, this risk
makes the automatic configuration for SVM difficult in a single
optimization procedure (due to the random nature of evolution-
ary computation). Regardless of whether automatic or manual
parameterization is selected, determination of the best configu-
ration for remote sensing nonparametric techniques (especially
for the most complex such as SVMs and not so much for others
such as RF) is time consuming, scenario dependent and some-
times requires a priori knowledge (Camps-Valls and Bruzzone
2005).

The results obtained for the averaged models show that RF is
a more robust technique, confirming the results reported by other
authors (Latifi et al. 2010); however, the differences relative to
the other techniques were not statistically significant. The lack of
significance could be related to the fact that RF is a combination
of techniques that depend on other regression techniques; this
factor is often not taken into account, although it is essential to
guarantee the quality of the regressions. In the present study,
we used regression trees, as in the original study in which RFs
were proposed (Breiman 2001), although the best results for
biomass estimation involve the use of RF with kNN as an internal
algorithm (Latifi et al. 2010).

Analysis of the overall results obtained using data from 99
plots showed that the classical kNN algorithm, which is well
known and frequently used in the field of remote sensing, es-
pecially in forestry applications (Latifi et al. 2010; McRoberts
2012; Packalén 2012), yielded the best results in relation to
the goodness-of-fit statistics (best parameterization: R2 = 0.66,
RMSE = 26.64 Mg ha−1; average parameterization: R2 = 0.41,
RMSE = 33.35 Mg ha−1). This difference relative to the statis-
tical comparison is due to the fact that the rankings do not
specifically take into account the size of the error, whereas
the goodness-of-fit statistics do take this into account. In other
words, although RF and SVM generally produce good results, in
some cases they yield much larger errors than the mean, so that
the kNN provided the best results. Although a priori this appears
to contradict the statistical comparison, it does not invalidate it,
because the results of the SVM or RF were not significantly
different from those obtained by kNN in any of the cases. In
addition, the goodness-of-fit statistics for the kNN technique
obtained in the present study were better than those reported by
Guo et al. (2014) in a study in which the AGB in a Picea crassi-
folia forest in NW China was estimated using Landsat TM data
and 2 nonparametric methods (kNN: R2 = 0.54, RMSE = 26.62
Mg ha−1 and SVM: R2 = 0.51, RMSE = 27.45 Mg ha−1). Like-
wise, Tian et al. (2014), who estimated AGB with Landsat TM
data, reported an optimized kNN method (R2 = 0.59, RMSE =
24.92 Mg ha−1) in comparison with the classic MLR (R2 = 0.42,
RMSE = 29.74 Mg ha−1).

The findings of the present study with regard to the use of
machine learning algorithms to estimate AGB from remote sens-
ing data are encouraging, specifically because the spectral data
used in this study are available to the public free of charge. The
use of nonparametric machine learning methods in combination
with multisensor data has been shown to be a valuable option for

increasing the accuracy of aboveground forest biomass estima-
tion (Li et al. 2012; Ali et al. 2016; Lu et al. 2016). For example,
in a study of mangrove in southwest Thailand, Jachowsky et al.
(2013) found that the SVM model performed better than another
18 parametric and nonparametric approaches for estimating for-
est biomass by using GeoEye-1 and ASTER data. Similar results
were obtained by Zhang et al. (2014), who used the Geoscience
Laser Altimeter System (GLAS) and MODIS data in a study
in which SVM performed better than stepwise regression and
partial least-squares regression for forest biomass mapping in
northeastern China. Moreover, the new technologies associated
with active sensors such as LiDAR might provide more accurate
results (R2 in [0.60,0.90]), depending on the vegetation condi-
tions (Lu et al. 2012), the number of field observations, and the
specific focus of the statistical modeling (Laurin et al. 2014).
However, these multisensory alternatives are costly and, in the
case of LiDAR, of limited accessibility. The present findings
are, therefore, important because they demonstrate that medium
resolution sensors, such as the Landsat-5 TM, together with
machine learning algorithms, can represent a balanced solution
between the costs of training data and the utility of the mapped
outcomes for monitoring AGB in large areas.

CONCLUSIONS
The kNN, RF and SVM machine learning algorithms are

powerful tools for estimating aboveground forest biomass with
remote sensing datasets, and they are all viable and accurate
alternatives to the classic parametric MLR method. In addition
to the usual sources of uncertainty associated with the accuracy
of the AGB estimations from remote sensing data (field mea-
surement errors, plot locations errors, errors of the individual
tree biomass equations, or error caused by geometrical and ra-
diometric correction of remotely sensed data), parameterization
of machine learning algorithms also has an important influence
on the final performance of the models. The choice of method
used will largely depend on the user’s capacity to carry out that
parameterization, because the techniques (especially SVMs) are
not easy to apply and require a certain degree of expertise. Our
findings indicate that SVM is the best alternative for experts,
whereas RF represents a balance between model accuracy and
ease of use for nonexperts although differences with kNN could
not be statistically demonstrated.
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Kändler G., Kenk, G., et al. 2002. “Recommendations for stan-
dardized documentation and further development of forest growth
simulators.” Forstwissenschaftliches Centralblatt, Vol. 121(No. 3):
pp. 138–151.

Qi, J., Chehbouni, A., Huete, A.R., and Kerr, Y.H. 1994. “A modified
soil adjusted vegetation index.” Remote Sensing of Environment, Vol.
48(No. 2): pp. 119–126.

R Core Team. 2014. R: A Language and Environment for Statistical
Computing. Vienna, Austria: R Foundation for Statistical Comput-
ing.

Roberts, D.W., and Cooper, S.V. 1989. “Concepts and techniques of
vegetation mapping.” In Land Classifications Based on Vegetation:
Applications for Resource Management, USDA Forest Service GTR
INT-257, edited by D. Ferguson, P. Morgan, and F.D. Johnson, pp.
90–96. Ogden, UT: USDA Forest Service.

Rouse, J.W., Haas, R.H., Schiell, J.A., Deferino, D.W., and Har-
lan, J.C. 1974. Monitoring the vernal advancement of retrograda-
tion of natural vegetation. NASA/GSFC Type III, Greenbelt, MD:
NASA.

Samadzadegan, F., Hasani, H., and Schenk, T. 2012. “Simultane-
ous feature selection and SVM parameter determination in clas-
sification of hyperspectral imagery using ant colony optimiza-
tion.” Canadian Journal of Remote Sensing, Vol. 38(No. 2): pp.
139–156.

Shataee, S. 2013. “Forest attributes estimation using aerial laser scanner
and TM Data.” Forest Systems, Vol. 22(No. 3): 484–496.

Tian, X., Li, Z., Su, Z., Chen, E., Van der Tol, C., Li, X., Guo, Y.,
Li L., and Ling, F. 2014. “Estimating montane forest above-ground
biomass in the upper reaches of the Heihe River Basin using Landsat-
TM data.” International Journal of Remote Sensing, Vol. 35(No. 21):
pp. 7339–7362.

Tian, X., Su, Z., Chen, E., Li, Z., van der Tol, C., Guo, J., and He,
Q. 2012. “Estimation of forest above-ground biomass using multi-
parameter remote sensing data over a cold and arid area.” Interna-
tional Journal of Applied Earth Observation and Geoinformation,
Vol. 14(No. 1): pp. 160–168.

Vargas-Larreta, B. 2013. Estimación del potencial de los bosques de
Durango para la mitigación del cambio climático. Modelización
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